Articles | Volume 18, issue 5
https://doi.org/10.5194/cp-18-1047-2022
https://doi.org/10.5194/cp-18-1047-2022
Research article
 | 
13 May 2022
Research article |  | 13 May 2022

Calendar effects on surface air temperature and precipitation based on model-ensemble equilibrium and transient simulations from PMIP4 and PACMEDY

Xiaoxu Shi, Martin Werner, Carolin Krug, Chris M. Brierley, Anni Zhao, Endurance Igbinosa, Pascale Braconnot, Esther Brady, Jian Cao, Roberta D'Agostino, Johann Jungclaus, Xingxing Liu, Bette Otto-Bliesner, Dmitry Sidorenko, Robert Tomas, Evgeny M. Volodin, Hu Yang, Qiong Zhang, Weipeng Zheng, and Gerrit Lohmann

Related authors

Simulated stable water isotopes during the mid-Holocene and pre-industrial periods using AWI-ESM-2.1-wiso
Xiaoxu Shi, Alexandre Cauquoin, Gerrit Lohmann, Lukas Jonkers, Qiang Wang, Hu Yang, Yuchen Sun, and Martin Werner
Geosci. Model Dev., 16, 5153–5178, https://doi.org/10.5194/gmd-16-5153-2023,https://doi.org/10.5194/gmd-16-5153-2023, 2023
Short summary
Evaluating seasonal sea-ice cover over the Southern Ocean at the Last Glacial Maximum
Ryan A. Green, Laurie Menviel, Katrin J. Meissner, Xavier Crosta, Deepak Chandan, Gerrit Lohmann, W. Richard Peltier, Xiaoxu Shi, and Jiang Zhu
Clim. Past, 18, 845–862, https://doi.org/10.5194/cp-18-845-2022,https://doi.org/10.5194/cp-18-845-2022, 2022
Short summary
Sensitivity of Northern Hemisphere climate to ice–ocean interface heat flux parameterizations
Xiaoxu Shi, Dirk Notz, Jiping Liu, Hu Yang, and Gerrit Lohmann
Geosci. Model Dev., 14, 4891–4908, https://doi.org/10.5194/gmd-14-4891-2021,https://doi.org/10.5194/gmd-14-4891-2021, 2021
Short summary
Importance of open-water ice growth and ice concentration evolution: a study based on FESOM-ECHAM6
X. Shi and G. Lohmann
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esdd-6-2137-2015,https://doi.org/10.5194/esdd-6-2137-2015, 2015
Revised manuscript not accepted
Short summary

Related subject area

Subject: Climate Modelling | Archive: Modelling only | Timescale: Holocene
Insights into the Australian mid-Holocene climate using downscaled climate models
Andrew L. Lowry and Hamish A. McGowan
Clim. Past, 20, 2309–2325, https://doi.org/10.5194/cp-20-2309-2024,https://doi.org/10.5194/cp-20-2309-2024, 2024
Short summary
Modelling Mediterranean ocean biogeochemistry of the Last Glacial Maximum
Katharina D. Six, Uwe Mikolajewicz, and Gerhard Schmiedl
Clim. Past, 20, 1785–1816, https://doi.org/10.5194/cp-20-1785-2024,https://doi.org/10.5194/cp-20-1785-2024, 2024
Short summary
Mid-Holocene climate at mid-latitudes: assessing the impact of Saharan greening
Marco Gaetani, Gabriele Messori, Francesco S. R. Pausata, Shivangi Tiwari, M. Carmen Alvarez Castro, and Qiong Zhang
Clim. Past, 20, 1735–1759, https://doi.org/10.5194/cp-20-1735-2024,https://doi.org/10.5194/cp-20-1735-2024, 2024
Short summary
Dynamic interaction between lakes, climate, and vegetation across northern Africa during the mid-Holocene
Nora Farina Specht, Martin Claussen, and Thomas Kleinen
Clim. Past, 20, 1595–1613, https://doi.org/10.5194/cp-20-1595-2024,https://doi.org/10.5194/cp-20-1595-2024, 2024
Short summary
Simulating dust emissions and secondary organic aerosol formation over northern Africa during the mid-Holocene Green Sahara period
Putian Zhou, Zhengyao Lu, Jukka-Pekka Keskinen, Qiong Zhang, Juha Lento, Jianpu Bian, Twan van Noije, Philippe Le Sager, Veli-Matti Kerminen, Markku Kulmala, Michael Boy, and Risto Makkonen
Clim. Past, 19, 2445–2462, https://doi.org/10.5194/cp-19-2445-2023,https://doi.org/10.5194/cp-19-2445-2023, 2023
Short summary

Cited articles

Bader, J., Jungclaus, J., Krivova, N., Lorenz, S., Maycock, A., Raddatz, T., Schmidt, H., Toohey, M., Wu, C.-J., and Claussen, M.: Global temperature modes shed light on the Holocene temperature conundrum, Nat. Commun., 11, 1–8, 2020. a
Bartlein, P. J. and Shafer, S. L.: Paleo calendar-effect adjustments in time-slice and transient climate-model simulations (PaleoCalAdjust v1.0): impact and strategies for data analysis, Geosci. Model Dev., 12, 3889–3913, https://doi.org/10.5194/gmd-12-3889-201, 2019. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o
Bartlein, P. J., Harrison, S., Brewer, S., Connor, S., Davis, B., Gajewski, K., Guiot, J., Harrison-Prentice, T., Henderson, A., Peyron, O., Prentice, I. C., Scholze, M., Seppä, H., Shuman, B., Sugita, S., Thompson, R. S., Viau, A. E., Williams, J., and Wu, H.: Pollen-based continental climate reconstructions at 6 and 21 ka: a global synthesis, Clim. Dynam., 37, 775–802, 2011. a, b
Bereiter, B., Eggleston, S., Schmitt, J., Nehrbass-Ahles, C., Stocker, T. F., Fischer, H., Kipfstuhl, S., and Chappellaz, J.: Revision of the EPICA Dome C CO2 record from 800 to 600 kyr before present, Geophys. Res. Lett., 42, 542–549, 2015. a
Berger, A.: Long-term variations of the earth's orbital elements, Celestial Mech., 15, 53–74, 1977. a, b, c
Download
Short summary
Since the orbital parameters of the past are different from today, applying the modern calendar to the past climate can lead to an artificial bias in seasonal cycles. With the use of multiple model outputs, we found that such a bias is non-ignorable and should be corrected to ensure an accurate comparison between modeled results and observational records, as well as between simulated past and modern climates, especially for the Last Interglacial.