Articles | Volume 12, issue 11
https://doi.org/10.5194/cp-12-2107-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/cp-12-2107-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
The 1430s: a cold period of extraordinary internal climate variability during the early Spörer Minimum with social and economic impacts in north-western and central Europe
Chantal Camenisch
CORRESPONDING AUTHOR
Oeschger Centre for Climate Change Research, University of Bern, Bern,
Switzerland
Economic, Social, and Environmental History, Institute of History,
University of Bern, Bern, Switzerland
Kathrin M. Keller
Oeschger Centre for Climate Change Research, University of Bern, Bern,
Switzerland
Climate and Environmental Physics, Physics Institute, University of
Bern, Bern, Switzerland
Melanie Salvisberg
Oeschger Centre for Climate Change Research, University of Bern, Bern,
Switzerland
Economic, Social, and Environmental History, Institute of History,
University of Bern, Bern, Switzerland
Benjamin Amann
Oeschger Centre for Climate Change Research, University of Bern, Bern,
Switzerland
Institute of Geography, University of Bern, Bern, Switzerland
Department of Geography and Planning, Queen's University, Kingston, ON, Canada
Martin Bauch
German Historical Institute in Rome, Rome, Italy
Sandro Blumer
Oeschger Centre for Climate Change Research, University of Bern, Bern,
Switzerland
Climate and Environmental Physics, Physics Institute, University of
Bern, Bern, Switzerland
Rudolf Brázdil
Institute of Geography, Masaryk University, Brno, Czech Republic
Global Change Research Institute, Czech Academy of Sciences, Brno,
Czech Republic
Stefan Brönnimann
Oeschger Centre for Climate Change Research, University of Bern, Bern,
Switzerland
Institute of Geography, University of Bern, Bern, Switzerland
Ulf Büntgen
Oeschger Centre for Climate Change Research, University of Bern, Bern,
Switzerland
Global Change Research Institute, Czech Academy of Sciences, Brno,
Czech Republic
Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
Bruce M. S. Campbell
School of the Natural and Built Environment, Queen's University
Belfast, Northern Ireland
Laura Fernández-Donado
Department of Astrophysics and Atmospheric Sciences, Institute of
Geosciences (UCM-CSIC), University Complutense, Madrid, Spain
Dominik Fleitmann
Department of Archaeology and Centre for Past Climate Change, School
of Archaeology, Geography and Environmental Science, University of Reading,
Reading, UK
Rüdiger Glaser
Institute of Environmental Social Sciences and Geography, University
of Freiburg, Germany
Fidel González-Rouco
Department of Astrophysics and Atmospheric Sciences, Institute of
Geosciences (UCM-CSIC), University Complutense, Madrid, Spain
Martin Grosjean
Oeschger Centre for Climate Change Research, University of Bern, Bern,
Switzerland
Institute of Geography, University of Bern, Bern, Switzerland
Richard C. Hoffmann
Department of History, York University, Toronto, Canada
Heli Huhtamaa
Oeschger Centre for Climate Change Research, University of Bern, Bern,
Switzerland
Economic, Social, and Environmental History, Institute of History,
University of Bern, Bern, Switzerland
Department of Geographical and Historical Studies, University of
Eastern Finland, Joensuu, Finland
Fortunat Joos
Oeschger Centre for Climate Change Research, University of Bern, Bern,
Switzerland
Climate and Environmental Physics, Physics Institute, University of
Bern, Bern, Switzerland
Andrea Kiss
Institute of Hydraulic Engineering and Water Resources Management,
Vienna University of Technology, Vienna, Austria
Oldřich Kotyza
Regional Museum, Litoměřice, Czech Republic
Flavio Lehner
Climate & Global Dynamics Laboratory, National Center for
Atmospheric Research, Boulder, USA
Jürg Luterbacher
Department of Geography, Climatology, Climate Dynamics and Climate
Change, Justus Liebig University, Giessen, Germany
Centre for International Development and Environmental Research,
Justus Liebig University of Giessen, Giessen, Germany
Nicolas Maughan
Institut de Mathématique, Aix-Marseille University, Marseille, France
Raphael Neukom
Oeschger Centre for Climate Change Research, University of Bern, Bern,
Switzerland
Institute of Geography, University of Bern, Bern, Switzerland
Theresa Novy
Historisches Seminar, Johannes Gutenberg University of Mainz, Mainz, Germany
Kathleen Pribyl
University of East Anglia, Norwich, UK
Christoph C. Raible
Oeschger Centre for Climate Change Research, University of Bern, Bern,
Switzerland
Climate and Environmental Physics, Physics Institute, University of
Bern, Bern, Switzerland
Dirk Riemann
Institute of Environmental Social Sciences and Geography, University
of Freiburg, Germany
Maximilian Schuh
Historisches Seminar and Heidelberg Center for the Environment,
University of Heidelberg, Heidelberg, Germany
Philip Slavin
School of History, Rutherford College, University of Kent,
Canterbury, UK
Johannes P. Werner
Department of Earth Science and Bjerknes Centre of Climate
Research, University of Bergen, Bergen, Norway
Oliver Wetter
Oeschger Centre for Climate Change Research, University of Bern, Bern,
Switzerland
Economic, Social, and Environmental History, Institute of History,
University of Bern, Bern, Switzerland
Related authors
Chantal Camenisch, Fernando Jaume-Santero, Sam White, Qing Pei, Ralf Hand, Christian Rohr, and Stefan Brönnimann
Clim. Past, 18, 2449–2462, https://doi.org/10.5194/cp-18-2449-2022, https://doi.org/10.5194/cp-18-2449-2022, 2022
Short summary
Short summary
We present a novel approach to assimilate climate information contained in chronicles and annals from the 15th century to generate climate reconstructions of the Burgundian Low Countries, taking into account uncertainties associated with the descriptions of narrative sources. Our study aims to be a first step towards a more quantitative use of available information contained in historical texts, showing how Bayesian inference can help the climate community with this endeavor.
Markus Stoffel, Christophe Corona, Francis Ludlow, Michael Sigl, Heli Huhtamaa, Emmanuel Garnier, Samuli Helama, Sébastien Guillet, Arlene Crampsie, Katrin Kleemann, Chantal Camenisch, Joseph McConnell, and Chaochao Gao
Clim. Past, 18, 1083–1108, https://doi.org/10.5194/cp-18-1083-2022, https://doi.org/10.5194/cp-18-1083-2022, 2022
Short summary
Short summary
The mid-17th century saw several volcanic eruptions, deteriorating climate, political instability, and famine in Europe, China, and Japan. We analyze impacts of the eruptions on climate but also study their socio-political context. We show that an unambiguous distinction of volcanic cooling or wetting from natural climate variability is not straightforward. It also shows that political instability, poor harvest, and famine cannot only be attributed to volcanic climatic impacts.
David J. Nash, George C. D. Adamson, Linden Ashcroft, Martin Bauch, Chantal Camenisch, Dagomar Degroot, Joelle Gergis, Adrian Jusopović, Thomas Labbé, Kuan-Hui Elaine Lin, Sharon D. Nicholson, Qing Pei, María del Rosario Prieto, Ursula Rack, Facundo Rojas, and Sam White
Clim. Past, 17, 1273–1314, https://doi.org/10.5194/cp-17-1273-2021, https://doi.org/10.5194/cp-17-1273-2021, 2021
Short summary
Short summary
Qualitative evidence contained within historical sources provides an important record of climate variability for periods prior to the onset of systematic meteorological data collection. Before such evidence can be used for climate reconstructions, it needs to be converted to a quantitative format. A common approach is the generation of ordinal-scale climate indices. This review, written by members of the PAGES CRIAS working group, provides a global synthesis of the use of the index approach.
Chantal Camenisch and Melanie Salvisberg
Clim. Past, 16, 2173–2182, https://doi.org/10.5194/cp-16-2173-2020, https://doi.org/10.5194/cp-16-2173-2020, 2020
Short summary
Short summary
Droughts derive from a precipitation deficit and belong to the most dangerous natural hazards for human societies. Documentary data of the pre-modern and early modern times contain direct and indirect information on precipitation that allows for the production of reconstructions using historical climatology methods. For this study, two drought indices were created on the basis of documentary data produced in Bern, Switzerland, and Rouen, France, for the period from 1315 to 1715.
Rudolf Brázdil, Petr Dobrovolný, Martin Bauch, Chantal Camenisch, Andrea Kiss, Oldřich Kotyza, Piotr Oliński, and Ladislava Řezníčková
Clim. Past, 16, 2125–2151, https://doi.org/10.5194/cp-16-2125-2020, https://doi.org/10.5194/cp-16-2125-2020, 2020
Short summary
Short summary
Previous studies related to historical droughts in the Czech Lands showed that the summers of 1531–1540 could represent the driest summer decade of the past 500 years. To confirm this hypothesis, documentary data from central Europe were collected and presented for individual summers and complemented by maps of precipitation and drought distribution to document corresponding weather patterns and their various impacts. The main droughts occurred in 1532, 1534–1536, 1538, and particularly in 1540.
C. Camenisch
Clim. Past, 11, 1049–1066, https://doi.org/10.5194/cp-11-1049-2015, https://doi.org/10.5194/cp-11-1049-2015, 2015
Short summary
Short summary
This paper applies the methods of historical climatology to present a climate reconstruction for the area of the Burgundian Low Countries during the 15th century. The results are based on documentary evidence. Approximately 3000 written records derived from about 100 different sources were examined and converted into seasonal seven-degree indices of temperature and precipitation.
Nicolas Duque-Gardeazabal, Andrew R. Friedman, and Stefan Brönnimann
EGUsphere, https://doi.org/10.5194/egusphere-2024-2846, https://doi.org/10.5194/egusphere-2024-2846, 2024
Short summary
Short summary
Understanding hydrological variability is essential for ecological conservation and sustainable development. Evapotranspiration influences the carbon cycle, finding what causes its variability is important for ecosystems. This study shows that not only El Niño – ENSO influences South America’s rainfall and evaporation, but also other phenomena in the Atlantic Ocean. The impacts change depending on the season, impacting the Amazon and Orinoco basins.
Rudolf Brázdil, Jan Lhoták, Kateřina Chromá, Dominik Collet, Petr Dobrovolný, and Heli Huhtamaa
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-69, https://doi.org/10.5194/cp-2024-69, 2024
Preprint under review for CP
Short summary
Short summary
Public granaries served as key infrastructures to improve food security in agrarian societies. The granary data from 15 domains at the Sušice region (southwestern Bohemia) in the period 1789–1849 CE were used to identify years with bad and good grain harvests, which have been further confronted with documentary data and climatic reconstructions. Data used represent the new source of proxy data for historical-climatological research.
Rudolf Brázdil, Dominika Faturová, Monika Šulc Michalková, Jan Řehoř, Martin Caletka, and Pavel Zahradníček
Nat. Hazards Earth Syst. Sci., 24, 3663–3682, https://doi.org/10.5194/nhess-24-3663-2024, https://doi.org/10.5194/nhess-24-3663-2024, 2024
Short summary
Short summary
Flash floods belong to natural hazards that can be enhanced in frequency, intensity, and impact during recent climate change. This paper presents a complex analysis of spatiotemporal variability and human impacts (including material damage and fatalities) of flash floods in the Czech Republic for the 2001–2023 period. The analysis generally shows no statistically significant trends in the characteristics analyzed.
Peter Stucki, Lucas Pfister, Yuri Brugnara, Renate Varga, Chantal Hari, and Stefan Brönnimann
Clim. Past, 20, 2327–2348, https://doi.org/10.5194/cp-20-2327-2024, https://doi.org/10.5194/cp-20-2327-2024, 2024
Short summary
Short summary
In our work, we reconstruct the weather of the extremely cold and wet summer in 1816 using a weather forecasting model to obtain high-resolution, three-dimensional weather simulations. We refine our simulations with surface pressure and temperature observations, representing a novel approach for this period. Our results show that this approach yields detailed and accurate weather reconstructions, opening the door to analyzing past weather events and their impacts in detail.
Stefan Brönnimann, Janusz Filipiak, Siyu Chen, and Lucas Pfister
Clim. Past, 20, 2219–2235, https://doi.org/10.5194/cp-20-2219-2024, https://doi.org/10.5194/cp-20-2219-2024, 2024
Short summary
Short summary
The year 1740 was the coldest in central Europe since at least 1421. New monthly global climate reconstructions, together with daily weather reconstructions, allow a detailed view of this climatic event. Following several severe cold spells in January and February, a persistent circulation pattern with blocking over the British Isles caused northerly flow towards western Europe during a large part of the year. It was one of the strongest, arguably unforced excursions in European temperature.
Onno Doensen, Martina Messmer, Christoph C. Raible, and Woon Mi Kim
EGUsphere, https://doi.org/10.5194/egusphere-2024-2731, https://doi.org/10.5194/egusphere-2024-2731, 2024
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
Extratropical cyclones are crucial systems in the Mediterranean. While extensively studied, their late Holocene variability is poorly understood. Using a climate model spanning 3350-years, we find Mediterranean cyclones show significant multi-decadal variability. Extreme cyclones tend to be more extreme in the central Mediterranean in terms of wind speed. Our work creates a reference baseline to better understand the impact of climate change on Mediterranean cyclones.
Fortunat Joos, Sebastian Lienert, and Sönke Zaehle
EGUsphere, https://doi.org/10.5194/egusphere-2024-1972, https://doi.org/10.5194/egusphere-2024-1972, 2024
Short summary
Short summary
How plants regulate their exchange of CO2 and water with the atmosphere under global warming is critical for their carbon uptake and their cooling influence. We analyze the isotope ratio of atmospheric CO2 and detect no significant decadal trends in the seasonal cycle amplitude. The data are consistent with the regulation towards leaf CO2 and intrinsic water use efficiency to grow proportionally to atmospheric CO2, in contrast to recent suggestions of downregulation of CO2 and water fluxes.
Christian Pfister, Stefan Brönnimann, Andres Altwegg, Rudolf Brázdil, Laurent Litzenburger, Daniele Lorusso, and Thomas Pliemon
Clim. Past, 20, 1387–1399, https://doi.org/10.5194/cp-20-1387-2024, https://doi.org/10.5194/cp-20-1387-2024, 2024
Short summary
Short summary
This bottle of Riesling from the traditional Bassermann Jordan winery in Deidesheim (Germany) is a relic of the premium wine harvested in 1811. It was named “Comet Wine” after the bright comet that year. The study shows that wine quality can be used to infer summer weather conditions over the past 600 years. After rainy summers with cold winds, wines turned sour, while long periods of high pressure led to excellent qualities. Since 1990, only good wines have been produced due to rapid warming.
Markus Adloff, Aurich Jeltsch-Thömmes, Frerk Pöppelmeier, Thomas F. Stocker, and Fortunat Joos
EGUsphere, https://doi.org/10.5194/egusphere-2024-1754, https://doi.org/10.5194/egusphere-2024-1754, 2024
Short summary
Short summary
We used an Earth system model to simulate how different processes changed the amount of carbon in the ocean and atmosphere over the last eight glacial cycles. We found that the effects of interactive marine sediments enlarge the carbon fluxes that result from these processes, especially in the ocean. Comparison with proxy data showed that no single process explains the global carbon cycle changes over glacial cycles, but individual processes can dominate regional and proxy-specific changes.
Hanqin Tian, Naiqing Pan, Rona L. Thompson, Josep G. Canadell, Parvadha Suntharalingam, Pierre Regnier, Eric A. Davidson, Michael Prather, Philippe Ciais, Marilena Muntean, Shufen Pan, Wilfried Winiwarter, Sönke Zaehle, Feng Zhou, Robert B. Jackson, Hermann W. Bange, Sarah Berthet, Zihao Bian, Daniele Bianchi, Alexander F. Bouwman, Erik T. Buitenhuis, Geoffrey Dutton, Minpeng Hu, Akihiko Ito, Atul K. Jain, Aurich Jeltsch-Thömmes, Fortunat Joos, Sian Kou-Giesbrecht, Paul B. Krummel, Xin Lan, Angela Landolfi, Ronny Lauerwald, Ya Li, Chaoqun Lu, Taylor Maavara, Manfredi Manizza, Dylan B. Millet, Jens Mühle, Prabir K. Patra, Glen P. Peters, Xiaoyu Qin, Peter Raymond, Laure Resplandy, Judith A. Rosentreter, Hao Shi, Qing Sun, Daniele Tonina, Francesco N. Tubiello, Guido R. van der Werf, Nicolas Vuichard, Junjie Wang, Kelley C. Wells, Luke M. Western, Chris Wilson, Jia Yang, Yuanzhi Yao, Yongfa You, and Qing Zhu
Earth Syst. Sci. Data, 16, 2543–2604, https://doi.org/10.5194/essd-16-2543-2024, https://doi.org/10.5194/essd-16-2543-2024, 2024
Short summary
Short summary
Atmospheric concentrations of nitrous oxide (N2O), a greenhouse gas 273 times more potent than carbon dioxide, have increased by 25 % since the preindustrial period, with the highest observed growth rate in 2020 and 2021. This rapid growth rate has primarily been due to a 40 % increase in anthropogenic emissions since 1980. Observed atmospheric N2O concentrations in recent years have exceeded the worst-case climate scenario, underscoring the importance of reducing anthropogenic N2O emissions.
Zhen Zhang, Benjamin Poulter, Joe R. Melton, William J. Riley, George H. Allen, David J. Beerling, Philippe Bousquet, Josep G. Canadell, Etienne Fluet-Chouinard, Philippe Ciais, Nicola Gedney, Peter O. Hopcroft, Akihiko Ito, Robert B. Jackson, Atul K. Jain, Katherine Jensen, Fortunat Joos, Thomas Kleinen, Sara Knox, Tingting Li, Xin Li, Xiangyu Liu, Kyle McDonald, Gavin McNicol, Paul A. Miller, Jurek Müller, Prabir K. Patra, Changhui Peng, Shushi Peng, Zhangcai Qin, Ryan M. Riggs, Marielle Saunois, Qing Sun, Hanqin Tian, Xiaoming Xu, Yuanzhi Yao, Xi Yi, Wenxin Zhang, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
EGUsphere, https://doi.org/10.5194/egusphere-2024-1584, https://doi.org/10.5194/egusphere-2024-1584, 2024
Short summary
Short summary
This study assesses global methane emissions from wetlands between 2000 and 2020 using multiple models. We found that wetland emissions increased by 6–7 Tg CH4 per year in the 2010s compared to the 2000s. Rising temperatures primarily drove this increase, while changes in precipitation and CO2 levels also played roles. Our findings highlight the importance of wetlands in the global methane budget and the need for continuous monitoring to understand their impact on climate change.
Markus Adloff, Frerk Pöppelmeier, Aurich Jeltsch-Thömmes, Thomas F. Stocker, and Fortunat Joos
Clim. Past, 20, 1233–1250, https://doi.org/10.5194/cp-20-1233-2024, https://doi.org/10.5194/cp-20-1233-2024, 2024
Short summary
Short summary
The Atlantic Meridional Overturning Circulation (AMOC) is an ocean current that transports heat into the North Atlantic. Over the ice age cycles, AMOC strength and its spatial pattern varied. We tested the role of heat forcing for these AMOC changes by simulating the temperature changes of the last eight glacial cycles. In our model, AMOC shifts between four distinct circulation modes caused by heat and salt redistributions that reproduce reconstructed long-term North Atlantic SST changes.
Jan Řehoř, Rudolf Brázdil, Oldřich Rakovec, Martin Hanel, Milan Fischer, Rohini Kumar, Jan Balek, Markéta Poděbradská, Vojtěch Moravec, Luis Samaniego, and Miroslav Trnka
EGUsphere, https://doi.org/10.5194/egusphere-2024-1434, https://doi.org/10.5194/egusphere-2024-1434, 2024
Short summary
Short summary
We present a robust method for identification and classification of global land drought events (GLDEs) based on soil moisture. Two models were used to calculate soil moisture and delimit soil drought over global land from 1980–2022, which was clustered into 775/630 GLDEs. Using four spatiotemporal and three motion-related characteristics, we categorized GLDEs into seven severity and seven dynamic categories. The frequency of GLDEs has generally increased in recent decades.
Lucas Pfister, Lena Wilhelm, Yuri Brugnara, Noemi Imfeld, and Stefan Brönnimann
EGUsphere, https://doi.org/10.5194/egusphere-2024-1346, https://doi.org/10.5194/egusphere-2024-1346, 2024
Short summary
Short summary
Our work compares different machine learning approaches for creating long-term classifications of daily atmospheric circulation patterns using input data from surface meteorological observations. Our comparison reveals a so-called feedforward neural network to perform best in this task. Using this model, we present a daily reconstruction of the CAP9 weather type classification for Central Europe back to 1728.
Bjorn Stevens, Stefan Adami, Tariq Ali, Hartwig Anzt, Zafer Aslan, Sabine Attinger, Jaana Bäck, Johanna Baehr, Peter Bauer, Natacha Bernier, Bob Bishop, Hendryk Bockelmann, Sandrine Bony, Guy Brasseur, David N. Bresch, Sean Breyer, Gilbert Brunet, Pier Luigi Buttigieg, Junji Cao, Christelle Castet, Yafang Cheng, Ayantika Dey Choudhury, Deborah Coen, Susanne Crewell, Atish Dabholkar, Qing Dai, Francisco Doblas-Reyes, Dale Durran, Ayoub El Gaidi, Charlie Ewen, Eleftheria Exarchou, Veronika Eyring, Florencia Falkinhoff, David Farrell, Piers M. Forster, Ariane Frassoni, Claudia Frauen, Oliver Fuhrer, Shahzad Gani, Edwin Gerber, Debra Goldfarb, Jens Grieger, Nicolas Gruber, Wilco Hazeleger, Rolf Herken, Chris Hewitt, Torsten Hoefler, Huang-Hsiung Hsu, Daniela Jacob, Alexandra Jahn, Christian Jakob, Thomas Jung, Christopher Kadow, In-Sik Kang, Sarah Kang, Karthik Kashinath, Katharina Kleinen-von Königslöw, Daniel Klocke, Uta Kloenne, Milan Klöwer, Chihiro Kodama, Stefan Kollet, Tobias Kölling, Jenni Kontkanen, Steve Kopp, Michal Koran, Markku Kulmala, Hanna Lappalainen, Fakhria Latifi, Bryan Lawrence, June Yi Lee, Quentin Lejeun, Christian Lessig, Chao Li, Thomas Lippert, Jürg Luterbacher, Pekka Manninen, Jochem Marotzke, Satoshi Matsouoka, Charlotte Merchant, Peter Messmer, Gero Michel, Kristel Michielsen, Tomoki Miyakawa, Jens Müller, Ramsha Munir, Sandeep Narayanasetti, Ousmane Ndiaye, Carlos Nobre, Achim Oberg, Riko Oki, Tuba Özkan-Haller, Tim Palmer, Stan Posey, Andreas Prein, Odessa Primus, Mike Pritchard, Julie Pullen, Dian Putrasahan, Johannes Quaas, Krishnan Raghavan, Venkatachalam Ramaswamy, Markus Rapp, Florian Rauser, Markus Reichstein, Aromar Revi, Sonakshi Saluja, Masaki Satoh, Vera Schemann, Sebastian Schemm, Christina Schnadt Poberaj, Thomas Schulthess, Cath Senior, Jagadish Shukla, Manmeet Singh, Julia Slingo, Adam Sobel, Silvina Solman, Jenna Spitzer, Philip Stier, Thomas Stocker, Sarah Strock, Hang Su, Petteri Taalas, John Taylor, Susann Tegtmeier, Georg Teutsch, Adrian Tompkins, Uwe Ulbrich, Pier-Luigi Vidale, Chien-Ming Wu, Hao Xu, Najibullah Zaki, Laure Zanna, Tianjun Zhou, and Florian Ziemen
Earth Syst. Sci. Data, 16, 2113–2122, https://doi.org/10.5194/essd-16-2113-2024, https://doi.org/10.5194/essd-16-2113-2024, 2024
Short summary
Short summary
To manage Earth in the Anthropocene, new tools, new institutions, and new forms of international cooperation will be required. Earth Virtualization Engines is proposed as an international federation of centers of excellence to empower all people to respond to the immense and urgent challenges posed by climate change.
Rudolf Brázdil, Jan Lhoták, Kateřina Chromá, and Petr Dobrovolný
Clim. Past, 20, 1017–1037, https://doi.org/10.5194/cp-20-1017-2024, https://doi.org/10.5194/cp-20-1017-2024, 2024
Short summary
Short summary
The newly developed series of wheat, rye, barley, and oats prices from Sušice (southwestern Bohemia) for the period 1725–1824 CE is used to demonstrate effects of weather, climate, socio-economic, and societal factors on their fluctuations, with particular attention paid to years with extremely high prices. Cold spring temperatures and wet conditions from winter to summer were reflected in very high grain prices.
Rudolf Brázdil, Kateřina Chromá, and Pavel Zahradníček
Nat. Hazards Earth Syst. Sci., 24, 1437–1457, https://doi.org/10.5194/nhess-24-1437-2024, https://doi.org/10.5194/nhess-24-1437-2024, 2024
Short summary
Short summary
The official mortality data in the Czech Republic in 1919–2022 are used to show long-term fluctuations in the number of fatalities caused by excessive natural cold and heat, lightning, natural disasters, and falls on ice/snow, as well as the sex and age of the deceased, based on certain meteorological, historical, and socioeconomic factors that strongly influence changes in the number and structure of such fatalities. Knowledge obtained is usable in risk management for the preservation of lives.
Richard Warren, Niklaus Emanuel Bartlome, Noémie Wellinger, Jörg Franke, Ralf Hand, Stefan Brönnimann, and Heli Huhtamaa
EGUsphere, https://doi.org/10.5194/egusphere-2024-743, https://doi.org/10.5194/egusphere-2024-743, 2024
Short summary
Short summary
This paper introduces the ClimeApp web application. The app provides quick access to the ModE-RA global climate reanalysis. Users can calculate and plot anomalies, composites, correlations, regressions and annual cycles across three different datasets and four climate variables. By re-examining the 1815 Tambora eruption, we demonstrate how combining results from different datasets and sources can help us investigate the historical palaeoclimate and integrate it into human history.
Stefan Brönnimann, Yuri Brugnara, and Clive Wilkinson
Clim. Past, 20, 757–767, https://doi.org/10.5194/cp-20-757-2024, https://doi.org/10.5194/cp-20-757-2024, 2024
Short summary
Short summary
The early 20th century warming – the first phase of global warming in the 20th century – started from a peculiar cold state around 1910. We digitised additional ship logbooks for these years to study this specific climate state and found that it is real and likely an overlap of several climatic anomalies, including oceanic variability (La Niña) and volcanic eruptions.
Noemi Imfeld, Koen Hufkens, and Stefan Brönnimann
Clim. Past, 20, 659–682, https://doi.org/10.5194/cp-20-659-2024, https://doi.org/10.5194/cp-20-659-2024, 2024
Short summary
Short summary
Climate and weather in spring are important because they can have far-reaching impacts, e.g. on plant growth, due to cold spells. Here, we study changes in climate and phenological indices for the period from 1763 to 2020 based on newly published reconstructed fields of daily temperature and precipitation for Switzerland. We look at three cases of extreme spring conditions, namely a warm spring in 1862, two frost events in 1873 and 1957, and three cold springs in 1785, 1837, and 1852.
Ankur Dixit, Sandeep Sahany, Flavio Lehner, and Saroj Kanta Mishra
EGUsphere, https://doi.org/10.5194/egusphere-2024-587, https://doi.org/10.5194/egusphere-2024-587, 2024
Preprint archived
Short summary
Short summary
This study calibrates WRF-Hydro in a Himalayan basin, finding precipitation choice significantly influences results over parameter sets. Study highlights the importance of tailored calibration strategies and parameter sensitivity analyses for accurate streamflow predictions in Himalayan basins, crucial for effective water resource management.
Emmanuele Russo, Jonathan Buzan, Sebastian Lienert, Guillaume Jouvet, Patricio Velasquez Alvarez, Basil Davis, Patrick Ludwig, Fortunat Joos, and Christoph C. Raible
Clim. Past, 20, 449–465, https://doi.org/10.5194/cp-20-449-2024, https://doi.org/10.5194/cp-20-449-2024, 2024
Short summary
Short summary
We present a series of experiments conducted for the Last Glacial Maximum (~21 ka) over Europe using the regional climate Weather Research and Forecasting model (WRF) at convection-permitting resolutions. The model, with new developments better suited to paleo-studies, agrees well with pollen-based climate reconstructions. This agreement is improved when considering different sources of uncertainty. The effect of convection-permitting resolutions is also assessed.
Yona Silvy, Thomas L. Frölicher, Jens Terhaar, Fortunat Joos, Friedrich A. Burger, Fabrice Lacroix, Myles Allen, Raffaele Bernadello, Laurent Bopp, Victor Brovkin, Jonathan R. Buzan, Patricia Cadule, Martin Dix, John Dunne, Pierre Friedlingstein, Goran Georgievski, Tomohiro Hajima, Stuart Jenkins, Michio Kawamiya, Nancy Y. Kiang, Vladimir Lapin, Donghyun Lee, Paul Lerner, Nadine Mengis, Estela A. Monteiro, David Paynter, Glen P. Peters, Anastasia Romanou, Jörg Schwinger, Sarah Sparrow, Eric Stofferahn, Jerry Tjiputra, Etienne Tourigny, and Tilo Ziehn
EGUsphere, https://doi.org/10.5194/egusphere-2024-488, https://doi.org/10.5194/egusphere-2024-488, 2024
Short summary
Short summary
We apply the Adaptive Emission Reduction Approach with Earth System Models to provide simulations in which all ESMs converge at 1.5 °C and 2 °C warming levels. These simulations provide compatible emission pathways for a given warming level, uncovering uncertainty ranges previously missing in the CMIP scenarios. This new type of target-based emission-driven simulations offers a more coherent assessment across ESMs for studying both the carbon cycle and impacts under climate stabilization.
Dominik L. Schumacher, Mariam Zachariah, Friederike Otto, Clair Barnes, Sjoukje Philip, Sarah Kew, Maja Vahlberg, Roop Singh, Dorothy Heinrich, Julie Arrighi, Maarten van Aalst, Mathias Hauser, Martin Hirschi, Verena Bessenbacher, Lukas Gudmundsson, Hiroko K. Beaudoing, Matthew Rodell, Sihan Li, Wenchang Yang, Gabriel A. Vecchi, Luke J. Harrington, Flavio Lehner, Gianpaolo Balsamo, and Sonia I. Seneviratne
Earth Syst. Dynam., 15, 131–154, https://doi.org/10.5194/esd-15-131-2024, https://doi.org/10.5194/esd-15-131-2024, 2024
Short summary
Short summary
The 2022 summer was accompanied by widespread soil moisture deficits, including an unprecedented drought in Europe. Combining several observation-based estimates and models, we find that such an event has become at least 5 and 20 times more likely due to human-induced climate change in western Europe and the northern extratropics, respectively. Strong regional warming fuels soil desiccation; hence, projections indicate even more potent future droughts as we progress towards a 2 °C warmer world.
Woon Mi Kim, Santos J. González-Rojí, and Christoph C. Raible
Clim. Past, 19, 2511–2533, https://doi.org/10.5194/cp-19-2511-2023, https://doi.org/10.5194/cp-19-2511-2023, 2023
Short summary
Short summary
In this study, we investigate circulation patterns associated with Mediterranean droughts during the last millennium using global climate simulations. Different circulation patterns driven by internal interactions in the climate system contribute to the occurrence of droughts in the Mediterranean. The detected patterns are different between the models, and this difference can be a potential source of uncertainty in model–proxy comparison and future projections of Mediterranean droughts.
Fredrik Charpentier Ljungqvist, Bo Christiansen, Jan Esper, Heli Huhtamaa, Lotta Leijonhufvud, Christian Pfister, Andrea Seim, Martin Karl Skoglund, and Peter Thejll
Clim. Past, 19, 2463–2491, https://doi.org/10.5194/cp-19-2463-2023, https://doi.org/10.5194/cp-19-2463-2023, 2023
Short summary
Short summary
We study the climate signal in long harvest series from across Europe between the 16th and 18th centuries. The climate–harvest yield relationship is found to be relatively weak but regionally consistent and similar in strength and sign to modern climate–harvest yield relationships. The strongest climate–harvest yield patterns are a significant summer soil moisture signal in Sweden, a winter temperature and precipitation signal in Switzerland, and spring temperature signals in Spain.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Dorothee C. E. Bakker, Judith Hauck, Peter Landschützer, Corinne Le Quéré, Ingrid T. Luijkx, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Peter Anthoni, Leticia Barbero, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Bertrand Decharme, Laurent Bopp, Ida Bagus Mandhara Brasika, Patricia Cadule, Matthew A. Chamberlain, Naveen Chandra, Thi-Tuyet-Trang Chau, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Xinyu Dou, Kazutaka Enyo, Wiley Evans, Stefanie Falk, Richard A. Feely, Liang Feng, Daniel J. Ford, Thomas Gasser, Josefine Ghattas, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Jens Heinke, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Andrew R. Jacobson, Atul Jain, Tereza Jarníková, Annika Jersild, Fei Jiang, Zhe Jin, Fortunat Joos, Etsushi Kato, Ralph F. Keeling, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Arne Körtzinger, Xin Lan, Nathalie Lefèvre, Hongmei Li, Junjie Liu, Zhiqiang Liu, Lei Ma, Greg Marland, Nicolas Mayot, Patrick C. McGuire, Galen A. McKinley, Gesa Meyer, Eric J. Morgan, David R. Munro, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin M. O'Brien, Are Olsen, Abdirahman M. Omar, Tsuneo Ono, Melf Paulsen, Denis Pierrot, Katie Pocock, Benjamin Poulter, Carter M. Powis, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Thais M. Rosan, Jörg Schwinger, Roland Séférian, T. Luke Smallman, Stephen M. Smith, Reinel Sospedra-Alfonso, Qing Sun, Adrienne J. Sutton, Colm Sweeney, Shintaro Takao, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Hiroyuki Tsujino, Francesco Tubiello, Guido R. van der Werf, Erik van Ooijen, Rik Wanninkhof, Michio Watanabe, Cathy Wimart-Rousseau, Dongxu Yang, Xiaojuan Yang, Wenping Yuan, Xu Yue, Sönke Zaehle, Jiye Zeng, and Bo Zheng
Earth Syst. Sci. Data, 15, 5301–5369, https://doi.org/10.5194/essd-15-5301-2023, https://doi.org/10.5194/essd-15-5301-2023, 2023
Short summary
Short summary
The Global Carbon Budget 2023 describes the methodology, main results, and data sets used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, land ecosystems, and the ocean over the historical period (1750–2023). These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Luke Skinner, Francois Primeau, Aurich Jeltsch-Thömmes, Fortunat Joos, Peter Köhler, and Edouard Bard
Clim. Past, 19, 2177–2202, https://doi.org/10.5194/cp-19-2177-2023, https://doi.org/10.5194/cp-19-2177-2023, 2023
Short summary
Short summary
Radiocarbon is best known as a dating tool, but it also allows us to track CO2 exchange between the ocean and atmosphere. Using decades of data and novel mapping methods, we have charted the ocean’s average radiocarbon ″age” since the last Ice Age. Combined with climate model simulations, these data quantify the ocean’s role in atmospheric CO2 rise since the last Ice Age while also revealing that Earth likely received far more cosmic radiation during the last Ice Age than hitherto believed.
Mari R. Tye, Ming Ge, Jadwiga H. Richter, Ethan D. Gutmann, Allyson Rugg, Cindy L. Bruyère, Sue Ellen Haupt, Flavio Lehner, Rachel McCrary, Andrew J. Newman, and Andrew Wood
EGUsphere, https://doi.org/10.5194/egusphere-2023-2326, https://doi.org/10.5194/egusphere-2023-2326, 2023
Short summary
Short summary
There is a perceived mismatch between the spatial scales that global climate models can produce data and that needed for water management decisions. However, poor communication of specific metrics relevant to local decisions is also a problem. We identified a potential set of water use decision metrics to assess their credibility in the Community Earth System Model v2 (CESM2). CESM2 can reliably reproduce many of these metrics and shows potential to support long-range water resource decisions.
Christoph Heinze, Thorsten Blenckner, Peter Brown, Friederike Fröb, Anne Morée, Adrian L. New, Cara Nissen, Stefanie Rynders, Isabel Seguro, Yevgeny Aksenov, Yuri Artioli, Timothée Bourgeois, Friedrich Burger, Jonathan Buzan, B. B. Cael, Veli Çağlar Yumruktepe, Melissa Chierici, Christopher Danek, Ulf Dieckmann, Agneta Fransson, Thomas Frölicher, Giovanni Galli, Marion Gehlen, Aridane G. González, Melchor Gonzalez-Davila, Nicolas Gruber, Örjan Gustafsson, Judith Hauck, Mikko Heino, Stephanie Henson, Jenny Hieronymus, I. Emma Huertas, Fatma Jebri, Aurich Jeltsch-Thömmes, Fortunat Joos, Jaideep Joshi, Stephen Kelly, Nandini Menon, Precious Mongwe, Laurent Oziel, Sólveig Ólafsdottir, Julien Palmieri, Fiz F. Pérez, Rajamohanan Pillai Ranith, Juliano Ramanantsoa, Tilla Roy, Dagmara Rusiecka, J. Magdalena Santana Casiano, Yeray Santana-Falcón, Jörg Schwinger, Roland Séférian, Miriam Seifert, Anna Shchiptsova, Bablu Sinha, Christopher Somes, Reiner Steinfeldt, Dandan Tao, Jerry Tjiputra, Adam Ulfsbo, Christoph Völker, Tsuyoshi Wakamatsu, and Ying Ye
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-182, https://doi.org/10.5194/bg-2023-182, 2023
Preprint under review for BG
Short summary
Short summary
For assessing the consequences of human-induced climate change for the marine realm, it is necessary to not only look at gradual changes but also at abrupt changes of environmental conditions. We summarise abrupt changes in ocean warming, acidification, and oxygen concentration as the key environmental factors for ecosystems. Taking these abrupt changes into account requires greenhouse gas emissions to be reduced to a larger extent than previously thought to limit respective damage.
Rudolf Brázdil, Petr Dobrovolný, Christian Pfister, Katrin Kleemann, Kateřina Chromá, Péter Szabó, and Piotr Olinski
Clim. Past, 19, 1863–1890, https://doi.org/10.5194/cp-19-1863-2023, https://doi.org/10.5194/cp-19-1863-2023, 2023
Short summary
Short summary
The Thirty Years' War (from 1618 to 1648 CE), an armed military conflict in Europe, brought extensive devastation to Europe. The paper analyses annual and seasonal temperature, precipitation, and drought patterns, as well as severe weather extremes, based particularly on documentary data, during this event in central Europe to demonstrate their broad impacts on human society and human responses in coincidence with weather and climate during this period of hardship.
Eric Samakinwa, Christoph C. Raible, Ralf Hand, Andrew R. Friedman, and Stefan Brönnimann
Clim. Past Discuss., https://doi.org/10.5194/cp-2023-67, https://doi.org/10.5194/cp-2023-67, 2023
Publication in CP not foreseen
Short summary
Short summary
In this study, we nudged a stand-alone ocean model MPI-OM to proxy-reconstructed SST. Based on these model simulations, we introduce new estimates of the AMOC variations during the period 1450–1780 through a 10-member ensemble simulation with a novel nudging technique. Our approach reaffirms the known mechanisms of AMOC variability and also improves existing knowledge of the interplay between the AMOC and the NAO during the AMOC's weak and strong phases.
Ralf Hand, Eric Samakinwa, Laura Lipfert, and Stefan Brönnimann
Geosci. Model Dev., 16, 4853–4866, https://doi.org/10.5194/gmd-16-4853-2023, https://doi.org/10.5194/gmd-16-4853-2023, 2023
Short summary
Short summary
ModE-Sim is an ensemble of simulations with an atmosphere model. It uses observed sea surface temperatures, sea ice conditions, and volcanic aerosols for 1420 to 2009 as model input while accounting for uncertainties in these conditions. This generates several representations of the possible climate given these preconditions. Such a setup can be useful to understand the mechanisms that contribute to climate variability. This paper describes the setup of ModE-Sim and evaluates its performance.
Sian Kou-Giesbrecht, Vivek K. Arora, Christian Seiler, Almut Arneth, Stefanie Falk, Atul K. Jain, Fortunat Joos, Daniel Kennedy, Jürgen Knauer, Stephen Sitch, Michael O'Sullivan, Naiqing Pan, Qing Sun, Hanqin Tian, Nicolas Vuichard, and Sönke Zaehle
Earth Syst. Dynam., 14, 767–795, https://doi.org/10.5194/esd-14-767-2023, https://doi.org/10.5194/esd-14-767-2023, 2023
Short summary
Short summary
Nitrogen (N) is an essential limiting nutrient to terrestrial carbon (C) sequestration. We evaluate N cycling in an ensemble of terrestrial biosphere models. We find that variability in N processes across models is large. Models tended to overestimate C storage per unit N in vegetation and soil, which could have consequences for projecting the future terrestrial C sink. However, N cycling measurements are highly uncertain, and more are necessary to guide the development of N cycling in models.
Elena Xoplaki, Florian Ellsäßer, Jens Grieger, Katrin M. Nissen, Joaquim Pinto, Markus Augenstein, Ting-Chen Chen, Hendrik Feldmann, Petra Friederichs, Daniel Gliksman, Laura Goulier, Karsten Haustein, Jens Heinke, Lisa Jach, Florian Knutzen, Stefan Kollet, Jürg Luterbacher, Niklas Luther, Susanna Mohr, Christoph Mudersbach, Christoph Müller, Efi Rousi, Felix Simon, Laura Suarez-Gutierrez, Svenja Szemkus, Sara M. Vallejo-Bernal, Odysseas Vlachopoulos, and Frederik Wolf
EGUsphere, https://doi.org/10.5194/egusphere-2023-1460, https://doi.org/10.5194/egusphere-2023-1460, 2023
Short summary
Short summary
Europe is regularly affected by compound events and natural hazards that occur simultaneously or with a temporal lag and are connected with disproportional impacts. Within the interdisciplinary project climXtreme (https://climxtreme.net/) we investigate the interplay of these events, their characteristics and changes, intensity, frequency and uncertainties in the past, present and future, as well as the associated impacts on different socio-economic sectors in Germany and Central Europe.
Stefan Brönnimann and Yuri Brugnara
Clim. Past, 19, 1435–1445, https://doi.org/10.5194/cp-19-1435-2023, https://doi.org/10.5194/cp-19-1435-2023, 2023
Short summary
Short summary
We present the weather diaries of the Kirch family from 1677–1774 containing weather observations made in Leipzig and Guben and, from 1701 onward, instrumental observations made in Berlin. We publish the imaged diaries (10 445 images) and the digitized measurements (from 1720 onward). This is one of the oldest and longest meteorological records from Germany. The digitized pressure data show good agreement with neighbouring stations, highlighting their potential for weather reconstruction.
Stefan Brönnimann
Clim. Past, 19, 1345–1357, https://doi.org/10.5194/cp-19-1345-2023, https://doi.org/10.5194/cp-19-1345-2023, 2023
Short summary
Short summary
Weather reconstructions could help us to better understand the mechanisms leading to, and the impacts caused by, climatic changes. This requires daily weather information such as diaries. Here I present the weather diary by Georg Christoph Eimmart from Nuremberg covering the period 1695–1704. This was a particularly cold period in Europe, and the diary helps to better characterize this climatic anomaly.
Noemi Imfeld, Lucas Pfister, Yuri Brugnara, and Stefan Brönnimann
Clim. Past, 19, 703–729, https://doi.org/10.5194/cp-19-703-2023, https://doi.org/10.5194/cp-19-703-2023, 2023
Short summary
Short summary
Climate reconstructions give insights into monthly and seasonal climate variability of the past few hundred years. However, to understand past extreme weather events and to relate them to impacts, for example to periods of extreme floods, reconstructions on a daily timescale are needed. Here, we present a reconstruction of 258 years of high-resolution daily temperature and precipitation fields for Switzerland covering the period 1763 to 2020, which is based on instrumental measurements.
Jonathan Robert Buzan, Emmanuele Russo, Woon Mi Kim, and Christoph C. Raible
EGUsphere, https://doi.org/10.5194/egusphere-2023-324, https://doi.org/10.5194/egusphere-2023-324, 2023
Preprint archived
Short summary
Short summary
Paleoclimate is used to test climate models to verify that simulations accurately project both future and past climate states. We present fully coupled climate sensitivity simulations of Preindustrial, Last Glacial Maximum, and the Quaternary climate periods. We show distinct climate states derived from non-linear responses to ice sheet heights and orbits. The implication is that as paleo proxy data become more reliable, they may constrain the specific climate states produced by climate models.
Moritz Buchmann, Gernot Resch, Michael Begert, Stefan Brönnimann, Barbara Chimani, Wolfgang Schöner, and Christoph Marty
The Cryosphere, 17, 653–671, https://doi.org/10.5194/tc-17-653-2023, https://doi.org/10.5194/tc-17-653-2023, 2023
Short summary
Short summary
Our current knowledge of spatial and temporal snow depth trends is based almost exclusively on time series of non-homogenised observational data. However, like other long-term series from observations, they are susceptible to inhomogeneities that can affect the trends and even change the sign. To assess the relevance of homogenisation for daily snow depths, we investigated its impact on trends and changes in extreme values of snow indices between 1961 and 2021 in the Swiss observation network.
Jianquan Dong, Stefan Brönnimann, Tao Hu, Yanxu Liu, and Jian Peng
Earth Syst. Sci. Data, 14, 5651–5664, https://doi.org/10.5194/essd-14-5651-2022, https://doi.org/10.5194/essd-14-5651-2022, 2022
Short summary
Short summary
We produced a new dataset of global station-based daily maximum wet-bulb temperature (GSDM-WBT) through the calculation of wet-bulb temperature, data quality control, infilling missing values, and homogenization. The GSDM-WBT covers the complete daily series of 1834 stations from 1981 to 2020. The GSDM-WBT dataset handles stations with many missing values and possible inhomogeneities, which could better support the studies on global and regional humid heat events.
Sjoukje Y. Philip, Sarah F. Kew, Geert Jan van Oldenborgh, Faron S. Anslow, Sonia I. Seneviratne, Robert Vautard, Dim Coumou, Kristie L. Ebi, Julie Arrighi, Roop Singh, Maarten van Aalst, Carolina Pereira Marghidan, Michael Wehner, Wenchang Yang, Sihan Li, Dominik L. Schumacher, Mathias Hauser, Rémy Bonnet, Linh N. Luu, Flavio Lehner, Nathan Gillett, Jordis S. Tradowsky, Gabriel A. Vecchi, Chris Rodell, Roland B. Stull, Rosie Howard, and Friederike E. L. Otto
Earth Syst. Dynam., 13, 1689–1713, https://doi.org/10.5194/esd-13-1689-2022, https://doi.org/10.5194/esd-13-1689-2022, 2022
Short summary
Short summary
In June 2021, the Pacific Northwest of the US and Canada saw record temperatures far exceeding those previously observed. This attribution study found such a severe heat wave would have been virtually impossible without human-induced climate change. Assuming no nonlinear interactions, such events have become at least 150 times more common, are about 2 °C hotter and will become even more common as warming continues. Therefore, adaptation and mitigation are urgently needed to prepare society.
Duncan Pappert, Mariano Barriendos, Yuri Brugnara, Noemi Imfeld, Sylvie Jourdain, Rajmund Przybylak, Christian Rohr, and Stefan Brönnimann
Clim. Past, 18, 2545–2565, https://doi.org/10.5194/cp-18-2545-2022, https://doi.org/10.5194/cp-18-2545-2022, 2022
Short summary
Short summary
We present daily temperature and sea level pressure fields for Europe for the severe winter 1788/1789 based on historical meteorological measurements and an analogue reconstruction approach. The resulting reconstruction skilfully reproduces temperature and pressure variations over central and western Europe. We find intense blocking systems over northern Europe and several abrupt, strong cold air outbreaks, demonstrating that quantitative weather reconstruction of past extremes is possible.
Chantal Camenisch, Fernando Jaume-Santero, Sam White, Qing Pei, Ralf Hand, Christian Rohr, and Stefan Brönnimann
Clim. Past, 18, 2449–2462, https://doi.org/10.5194/cp-18-2449-2022, https://doi.org/10.5194/cp-18-2449-2022, 2022
Short summary
Short summary
We present a novel approach to assimilate climate information contained in chronicles and annals from the 15th century to generate climate reconstructions of the Burgundian Low Countries, taking into account uncertainties associated with the descriptions of narrative sources. Our study aims to be a first step towards a more quantitative use of available information contained in historical texts, showing how Bayesian inference can help the climate community with this endeavor.
Yuri Brugnara, Chantal Hari, Lucas Pfister, Veronika Valler, and Stefan Brönnimann
Clim. Past, 18, 2357–2379, https://doi.org/10.5194/cp-18-2357-2022, https://doi.org/10.5194/cp-18-2357-2022, 2022
Short summary
Short summary
We digitized dozens of weather journals containing temperature measurements from in and around Bern and Zurich. They cover over a century before the creation of a national weather service in Switzerland. With these data we could create daily temperature series for the two cities that span the last 265 years. We found that the pre-industrial climate on the Swiss Plateau was colder than suggested by previously available instrumental data sets and about 2.5 °C colder than the present-day climate.
Rudolf Brázdil, Petr Zahradník, Péter Szabó, Kateřina Chromá, Petr Dobrovolný, Lukáš Dolák, Miroslav Trnka, Jan Řehoř, and Silvie Suchánková
Clim. Past, 18, 2155–2180, https://doi.org/10.5194/cp-18-2155-2022, https://doi.org/10.5194/cp-18-2155-2022, 2022
Short summary
Short summary
Bark beetle outbreaks are important disturbances to Norway spruce forests. Their meteorological and climatological triggers are analysed for the main oubreaks over the territory of the Czech Republic based on newly created series of such outbreaks, covering the 1781–2021 CE period. The paper demonstrates the shift from windstorms as the main meteorological triggers of past outbreaks to effects of high temperatures and droughts together with windstorms in past decades.
Jens Terhaar, Thomas L. Frölicher, and Fortunat Joos
Biogeosciences, 19, 4431–4457, https://doi.org/10.5194/bg-19-4431-2022, https://doi.org/10.5194/bg-19-4431-2022, 2022
Short summary
Short summary
Estimates of the ocean sink of anthropogenic carbon vary across various approaches. We show that the global ocean carbon sink can be estimated by three parameters, two of which approximate the ocean ventilation in the Southern Ocean and the North Atlantic, and one of which approximates the chemical capacity of the ocean to take up carbon. With observations of these parameters, we estimate that the global ocean carbon sink is 10 % larger than previously assumed, and we cut uncertainties in half.
Heli Huhtamaa, Markus Stoffel, and Christophe Corona
Clim. Past, 18, 2077–2092, https://doi.org/10.5194/cp-18-2077-2022, https://doi.org/10.5194/cp-18-2077-2022, 2022
Short summary
Short summary
Tree-ring data and written sources from northern Fennoscandia reveal that large 17th century eruptions had considerable climatic, agricultural, and socioeconomic impacts far away from the eruption locations. Yet, micro-regional investigation shows that the human consequences were commonly indirect, as various factors, like agro-ecosystems, resource availability, institutions, and personal networks, dictated how the volcanic cold pulses and related crop failures materialized on a societal level.
Patricio Velasquez, Martina Messmer, and Christoph C. Raible
Clim. Past, 18, 1579–1600, https://doi.org/10.5194/cp-18-1579-2022, https://doi.org/10.5194/cp-18-1579-2022, 2022
Short summary
Short summary
We investigate the sensitivity of the glacial Alpine hydro-climate to northern hemispheric and local ice-sheet changes. We perform sensitivity simulations of up to 2 km horizontal resolution over the Alps for glacial periods. The findings demonstrate that northern hemispheric and local ice-sheet topography are important role in regulating the Alpine hydro-climate and permits a better understanding of the Alpine precipitation patterns at glacial times.
Helen Mackay, Gill Plunkett, Britta J. L. Jensen, Thomas J. Aubry, Christophe Corona, Woon Mi Kim, Matthew Toohey, Michael Sigl, Markus Stoffel, Kevin J. Anchukaitis, Christoph Raible, Matthew S. M. Bolton, Joseph G. Manning, Timothy P. Newfield, Nicola Di Cosmo, Francis Ludlow, Conor Kostick, Zhen Yang, Lisa Coyle McClung, Matthew Amesbury, Alistair Monteath, Paul D. M. Hughes, Pete G. Langdon, Dan Charman, Robert Booth, Kimberley L. Davies, Antony Blundell, and Graeme T. Swindles
Clim. Past, 18, 1475–1508, https://doi.org/10.5194/cp-18-1475-2022, https://doi.org/10.5194/cp-18-1475-2022, 2022
Short summary
Short summary
We assess the climatic and societal impact of the 852/3 CE Alaska Mount Churchill eruption using environmental reconstructions, historical records and climate simulations. The eruption is associated with significant Northern Hemisphere summer cooling, despite having only a moderate sulfate-based climate forcing potential; however, evidence of a widespread societal response is lacking. We discuss the difficulties of confirming volcanic impacts of a single eruption even when it is precisely dated.
Gilles Delaygue, Stefan Brönnimann, and Philip D. Jones
Weather Clim. Dynam. Discuss., https://doi.org/10.5194/wcd-2022-33, https://doi.org/10.5194/wcd-2022-33, 2022
Revised manuscript not accepted
Short summary
Short summary
We test whether any association between solar activity and meteorological conditions in the north Atlantic – European sector could be detected. We find associations consistent with those found by previous studies, with a slightly better statistical significance, and with less methodological biases which have impaired previous studies. Our study should help strengthen the recognition of meteorological impacts of solar activity.
Moritz Buchmann, John Coll, Johannes Aschauer, Michael Begert, Stefan Brönnimann, Barbara Chimani, Gernot Resch, Wolfgang Schöner, and Christoph Marty
The Cryosphere, 16, 2147–2161, https://doi.org/10.5194/tc-16-2147-2022, https://doi.org/10.5194/tc-16-2147-2022, 2022
Short summary
Short summary
Knowledge about inhomogeneities in a data set is important for any subsequent climatological analysis. We ran three well-established homogenization methods and compared the identified break points. By only treating breaks as valid when detected by at least two out of three methods, we enhanced the robustness of our results. We found 45 breaks within 42 of 184 investigated series; of these 70 % could be explained by events recorded in the station history.
Markus Stoffel, Christophe Corona, Francis Ludlow, Michael Sigl, Heli Huhtamaa, Emmanuel Garnier, Samuli Helama, Sébastien Guillet, Arlene Crampsie, Katrin Kleemann, Chantal Camenisch, Joseph McConnell, and Chaochao Gao
Clim. Past, 18, 1083–1108, https://doi.org/10.5194/cp-18-1083-2022, https://doi.org/10.5194/cp-18-1083-2022, 2022
Short summary
Short summary
The mid-17th century saw several volcanic eruptions, deteriorating climate, political instability, and famine in Europe, China, and Japan. We analyze impacts of the eruptions on climate but also study their socio-political context. We show that an unambiguous distinction of volcanic cooling or wetting from natural climate variability is not straightforward. It also shows that political instability, poor harvest, and famine cannot only be attributed to volcanic climatic impacts.
Rudolf Brázdil, Petr Dobrovolný, Jiří Mikšovský, Petr Pišoft, Miroslav Trnka, Martin Možný, and Jan Balek
Clim. Past, 18, 935–959, https://doi.org/10.5194/cp-18-935-2022, https://doi.org/10.5194/cp-18-935-2022, 2022
Short summary
Short summary
The paper deals with 520-year series (1501–2020 CE) of temperature, precipitation, and four drought indices reconstructed from documentary evidence and instrumental observations for the Czech Lands. Basic features of their fluctuations, long-term trends, and periodicities as well as attribution to changes in external forcings and climate variability modes are analysed. Representativeness of Czech reconstructions at European scale is evaluated. The paper shows extreme character of past decades.
Stefan Brönnimann, Peter Stucki, Jörg Franke, Veronika Valler, Yuri Brugnara, Ralf Hand, Laura C. Slivinski, Gilbert P. Compo, Prashant D. Sardeshmukh, Michel Lang, and Bettina Schaefli
Clim. Past, 18, 919–933, https://doi.org/10.5194/cp-18-919-2022, https://doi.org/10.5194/cp-18-919-2022, 2022
Short summary
Short summary
Floods in Europe vary on time scales of several decades. Flood-rich and flood-poor periods alternate. Recently floods have again become more frequent. Long time series of peak stream flow, precipitation, and atmospheric variables reveal that until around 1980, these changes were mostly due to changes in atmospheric circulation. However, in recent decades the role of increasing atmospheric moisture due to climate warming has become more important and is now the main driver of flood changes.
Emmanuele Russo, Bijan Fallah, Patrick Ludwig, Melanie Karremann, and Christoph C. Raible
Clim. Past, 18, 895–909, https://doi.org/10.5194/cp-18-895-2022, https://doi.org/10.5194/cp-18-895-2022, 2022
Short summary
Short summary
In this study a set of simulations are performed with the regional climate model COSMO-CLM for Europe, for the mid-Holocene and pre-industrial periods. The main aim is to better understand the drivers of differences between models and pollen-based summer temperatures. Results show that a fundamental role is played by spring soil moisture availability. Additionally, results suggest that model bias is not stationary, and an optimal configuration could not be the best under different forcing.
Sam White, Eduardo Moreno-Chamarro, Davide Zanchettin, Heli Huhtamaa, Dagomar Degroot, Markus Stoffel, and Christophe Corona
Clim. Past, 18, 739–757, https://doi.org/10.5194/cp-18-739-2022, https://doi.org/10.5194/cp-18-739-2022, 2022
Short summary
Short summary
This study examines whether the 1600 Huaynaputina volcano eruption triggered persistent cooling in the North Atlantic. It compares previous paleoclimate simulations with new climate reconstructions from natural proxies and historical documents and finds that the reconstructions are consistent with, but do not support, an eruption trigger for persistent cooling. The study also analyzes societal impacts of climatic change in ca. 1600 and the use of historical observations in model–data comparison.
Daniel Steinfeld, Adrian Peter, Olivia Martius, and Stefan Brönnimann
EGUsphere, https://doi.org/10.5194/egusphere-2022-92, https://doi.org/10.5194/egusphere-2022-92, 2022
Preprint archived
Short summary
Short summary
We assess the performance of various fire weather indices to predict wildfire occurrence in Northern Switzerland. We find that indices responding readily to weather changes have the best performance during spring; in the summer and autumn seasons, indices that describe persistent hot and dry conditions perform best. We demonstrate that a logistic regression model trained on local historical fire activity can outperform existing fire weather indices.
Santos J. González-Rojí, Martina Messmer, Christoph C. Raible, and Thomas F. Stocker
Geosci. Model Dev., 15, 2859–2879, https://doi.org/10.5194/gmd-15-2859-2022, https://doi.org/10.5194/gmd-15-2859-2022, 2022
Short summary
Short summary
Different configurations of physics parameterizations of a regional climate model are tested over southern Peru at fine resolution. The most challenging regions compared to observational data are the slopes of the Andes. Model configurations for Europe and East Africa are not perfectly suitable for southern Peru. The experiment with the Stony Brook University microphysics scheme and the Grell–Freitas cumulus parameterization provides the most accurate results over Madre de Dios.
Elisabeth Tschumi, Sebastian Lienert, Karin van der Wiel, Fortunat Joos, and Jakob Zscheischler
Biogeosciences, 19, 1979–1993, https://doi.org/10.5194/bg-19-1979-2022, https://doi.org/10.5194/bg-19-1979-2022, 2022
Short summary
Short summary
Droughts and heatwaves are expected to occur more often in the future, but their effects on land vegetation and the carbon cycle are poorly understood. We use six climate scenarios with differing extreme occurrences and a vegetation model to analyse these effects. Tree coverage and associated plant productivity increase under a climate with no extremes. Frequent co-occurring droughts and heatwaves decrease plant productivity more than the combined effects of single droughts or heatwaves.
Nils Riach, Nicolas Scholze, and Rüdiger Glaser
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2021-385, https://doi.org/10.5194/nhess-2021-385, 2021
Manuscript not accepted for further review
Short summary
Short summary
In this study we examine the spatial patterns of risk towards climate change and climatic extremes in the “Trinational Metropolitan Region Upper Rhine” (TMU). Following the concept of risk analysis, we identify the regional dimension of climatic stressors in relation to the socio-economic dimension. The results show differentiated spatial patterns of risk with cross-border clusters i.e. transnational corridors.
Duncan Pappert, Yuri Brugnara, Sylvie Jourdain, Aleksandra Pospieszyńska, Rajmund Przybylak, Christian Rohr, and Stefan Brönnimann
Clim. Past, 17, 2361–2379, https://doi.org/10.5194/cp-17-2361-2021, https://doi.org/10.5194/cp-17-2361-2021, 2021
Short summary
Short summary
This paper presents temperature and pressure measurements from the 37 stations of the late 18th century network of the Societas Meteorologica Palatina, in addition to providing an inventory of the available observations, most of which have been digitised. The quality of the recovered series is relatively good, as demonstrated by two case studies. Early instrumental data such as these will help to explore past climate and weather extremes in Europe in greater detail.
Gerard van der Schrier, Richard P. Allan, Albert Ossó, Pedro M. Sousa, Hans Van de Vyver, Bert Van Schaeybroeck, Roberto Coscarelli, Angela A. Pasqua, Olga Petrucci, Mary Curley, Mirosław Mietus, Janusz Filipiak, Petr Štěpánek, Pavel Zahradníček, Rudolf Brázdil, Ladislava Řezníčková, Else J. M. van den Besselaar, Ricardo Trigo, and Enric Aguilar
Clim. Past, 17, 2201–2221, https://doi.org/10.5194/cp-17-2201-2021, https://doi.org/10.5194/cp-17-2201-2021, 2021
Short summary
Short summary
The 1921 drought was the most severe drought to hit Europe since the start of the 20th century. Here the climatological description of the drought is coupled to an overview of its impacts, sourced from newspapers, and an analysis of its drivers. The area from Ireland to the Ukraine was affected but hardest hit was the triangle between Brussels, Paris and Lyon. The drought impacts lingered on until well into autumn and winter, affecting water supply and agriculture and livestock farming.
Woon Mi Kim, Richard Blender, Michael Sigl, Martina Messmer, and Christoph C. Raible
Clim. Past, 17, 2031–2053, https://doi.org/10.5194/cp-17-2031-2021, https://doi.org/10.5194/cp-17-2031-2021, 2021
Short summary
Short summary
To understand the natural characteristics and future changes of the global extreme daily precipitation, it is necessary to explore the long-term characteristics of extreme daily precipitation. Here, we used climate simulations to analyze the characteristics and long-term changes of extreme precipitation during the past 3351 years. Our findings indicate that extreme precipitation in the past is associated with internal climate variability and regional surface temperatures.
Moritz Buchmann, Michael Begert, Stefan Brönnimann, and Christoph Marty
The Cryosphere, 15, 4625–4636, https://doi.org/10.5194/tc-15-4625-2021, https://doi.org/10.5194/tc-15-4625-2021, 2021
Short summary
Short summary
We investigated the impacts of local-scale variations by analysing snow climate indicators derived from parallel snow measurements. We found the largest relative inter-pair differences for all indicators in spring and the smallest in winter. The findings serve as an important basis for our understanding of uncertainties of commonly used snow indicators and provide, in combination with break-detection methods, the groundwork in view of any homogenization efforts regarding snow time series.
Christina Heinze-Deml, Sebastian Sippel, Angeline G. Pendergrass, Flavio Lehner, and Nicolai Meinshausen
Geosci. Model Dev., 14, 4977–4999, https://doi.org/10.5194/gmd-14-4977-2021, https://doi.org/10.5194/gmd-14-4977-2021, 2021
Short summary
Short summary
Quantifying dynamical and thermodynamical components of regional precipitation change is a key challenge in climate science. We introduce a novel statistical model (Latent Linear Adjustment Autoencoder) that combines the flexibility of deep neural networks with the robustness advantages of linear regression. The method enables estimation of the contribution of a coarse-scale atmospheric circulation proxy to daily precipitation at high resolution and in a spatially coherent manner.
Loïc Schmidely, Christoph Nehrbass-Ahles, Jochen Schmitt, Juhyeong Han, Lucas Silva, Jinwha Shin, Fortunat Joos, Jérôme Chappellaz, Hubertus Fischer, and Thomas F. Stocker
Clim. Past, 17, 1627–1643, https://doi.org/10.5194/cp-17-1627-2021, https://doi.org/10.5194/cp-17-1627-2021, 2021
Short summary
Short summary
Using ancient gas trapped in polar glaciers, we reconstructed the atmospheric concentrations of methane and nitrous oxide over the penultimate deglaciation to study their response to major climate changes. We show this deglaciation to be characterized by modes of methane and nitrous oxide variability that are also found during the last deglaciation and glacial cycle.
Folmer Krikken, Flavio Lehner, Karsten Haustein, Igor Drobyshev, and Geert Jan van Oldenborgh
Nat. Hazards Earth Syst. Sci., 21, 2169–2179, https://doi.org/10.5194/nhess-21-2169-2021, https://doi.org/10.5194/nhess-21-2169-2021, 2021
Short summary
Short summary
In this study, we analyse the role of climate change in the forest fires that raged through large parts of Sweden in the summer of 2018 from a meteorological perspective. This is done by studying observationally constrained data and multiple climate models. We find a small reduced probability of such events, based on reanalyses, but a small increased probability due to global warming up to now and a more robust increase in the risk for such events in the future, based on climate models.
Claudia Timmreck, Matthew Toohey, Davide Zanchettin, Stefan Brönnimann, Elin Lundstad, and Rob Wilson
Clim. Past, 17, 1455–1482, https://doi.org/10.5194/cp-17-1455-2021, https://doi.org/10.5194/cp-17-1455-2021, 2021
Short summary
Short summary
The 1809 eruption is one of the most recent unidentified volcanic eruptions with a global climate impact. We demonstrate that climate model simulations of the 1809 eruption show generally good agreement with many large-scale temperature reconstructions and early instrumental records for a range of radiative forcing estimates. In terms of explaining the spatially heterogeneous and temporally delayed Northern Hemisphere cooling suggested by tree-ring networks, the investigation remains open.
Jurek Müller and Fortunat Joos
Biogeosciences, 18, 3657–3687, https://doi.org/10.5194/bg-18-3657-2021, https://doi.org/10.5194/bg-18-3657-2021, 2021
Short summary
Short summary
We present long-term projections of global peatland area and carbon with a continuous transient history since the Last Glacial Maximum. Our novel results show that large parts of today’s northern peatlands are at risk from past and future climate change, with larger emissions clearly connected to larger risks. The study includes comparisons between different emission and land-use scenarios, driver attribution through factorial simulations, and assessments of uncertainty from climate forcing.
David J. Nash, George C. D. Adamson, Linden Ashcroft, Martin Bauch, Chantal Camenisch, Dagomar Degroot, Joelle Gergis, Adrian Jusopović, Thomas Labbé, Kuan-Hui Elaine Lin, Sharon D. Nicholson, Qing Pei, María del Rosario Prieto, Ursula Rack, Facundo Rojas, and Sam White
Clim. Past, 17, 1273–1314, https://doi.org/10.5194/cp-17-1273-2021, https://doi.org/10.5194/cp-17-1273-2021, 2021
Short summary
Short summary
Qualitative evidence contained within historical sources provides an important record of climate variability for periods prior to the onset of systematic meteorological data collection. Before such evidence can be used for climate reconstructions, it needs to be converted to a quantitative format. A common approach is the generation of ordinal-scale climate indices. This review, written by members of the PAGES CRIAS working group, provides a global synthesis of the use of the index approach.
Patricio Velasquez, Jed O. Kaplan, Martina Messmer, Patrick Ludwig, and Christoph C. Raible
Clim. Past, 17, 1161–1180, https://doi.org/10.5194/cp-17-1161-2021, https://doi.org/10.5194/cp-17-1161-2021, 2021
Short summary
Short summary
This study assesses the importance of resolution and land–atmosphere feedbacks for European climate. We performed an asynchronously coupled experiment that combined a global climate model (~ 100 km), a regional climate model (18 km), and a dynamic vegetation model (18 km). Modelled climate and land cover agree reasonably well with independent reconstructions based on pollen and other paleoenvironmental proxies. The regional climate is significantly influenced by land cover.
Noemi Imfeld, Leopold Haimberger, Alexander Sterin, Yuri Brugnara, and Stefan Brönnimann
Earth Syst. Sci. Data, 13, 2471–2485, https://doi.org/10.5194/essd-13-2471-2021, https://doi.org/10.5194/essd-13-2471-2021, 2021
Short summary
Short summary
Upper-air data form the backbone of reanalysis products, particularly in the pre-satellite era. However, historical upper-air data are error-prone because measurements at high altitude were especially challenging. Here, we present a collection of data from historical intercomparisons of radiosondes and error assessments reaching back to the 1930s that may allow us to better characterize such errors. The full database, including digitized data, images, and metadata, is made publicly available.
Martina Messmer, Santos J. González-Rojí, Christoph C. Raible, and Thomas F. Stocker
Geosci. Model Dev., 14, 2691–2711, https://doi.org/10.5194/gmd-14-2691-2021, https://doi.org/10.5194/gmd-14-2691-2021, 2021
Short summary
Short summary
Sensitivity experiments with the WRF model are run to find an optimal parameterization setup for precipitation around Mount Kenya at a scale that resolves convection (1 km). Precipitation is compared against many weather stations and gridded observational data sets. Both the temporal correlation of precipitation sums and pattern correlations show that fewer nests lead to a more constrained simulation with higher correlation. The Grell–Freitas cumulus scheme obtains the most accurate results.
Rudolf Brázdil, Kateřina Chromá, Lukáš Dolák, Jan Řehoř, Ladislava Řezníčková, Pavel Zahradníček, and Petr Dobrovolný
Nat. Hazards Earth Syst. Sci., 21, 1355–1382, https://doi.org/10.5194/nhess-21-1355-2021, https://doi.org/10.5194/nhess-21-1355-2021, 2021
Short summary
Short summary
We present an analysis of fatalities attributable to weather conditions in the Czech Republic during the 2000–2019 period based on our own database created from newspaper reports, on the database of the Czech Statistical Office, and on the database of the police of the Czech Republic as well as on their comparison. Despite some uncertainties, generally declining trends in the number of fatalities appear for the majority of weather variables. The structure of fatalities is described in detail.
Woon Mi Kim and Christoph C. Raible
Clim. Past, 17, 887–911, https://doi.org/10.5194/cp-17-887-2021, https://doi.org/10.5194/cp-17-887-2021, 2021
Short summary
Short summary
The analysis of the dynamics of western central Mediterranean droughts for 850–2099 CE in the Community Earth System Model indicates that past Mediterranean droughts were driven by the internal variability. This internal variability is more important during the initial years of droughts. During the transition years, the longevity of droughts is defined by the land–atmosphere feedbacks. In the future, this land–atmosphere feedbacks are intensified, causing a constant dryness over the region.
Geert Jan van Oldenborgh, Folmer Krikken, Sophie Lewis, Nicholas J. Leach, Flavio Lehner, Kate R. Saunders, Michiel van Weele, Karsten Haustein, Sihan Li, David Wallom, Sarah Sparrow, Julie Arrighi, Roop K. Singh, Maarten K. van Aalst, Sjoukje Y. Philip, Robert Vautard, and Friederike E. L. Otto
Nat. Hazards Earth Syst. Sci., 21, 941–960, https://doi.org/10.5194/nhess-21-941-2021, https://doi.org/10.5194/nhess-21-941-2021, 2021
Short summary
Short summary
Southeastern Australia suffered from disastrous bushfires during the 2019/20 fire season, raising the question whether these have become more likely due to climate change. We found no attributable trend in extreme annual or monthly low precipitation but a clear shift towards more extreme heat. However, this shift is underestimated by the models. Analysing fire weather directly, we found that the chance has increased by at least 30 %, but due to the underestimation it could well be higher.
Shannon A. Bengtson, Laurie C. Menviel, Katrin J. Meissner, Lise Missiaen, Carlye D. Peterson, Lorraine E. Lisiecki, and Fortunat Joos
Clim. Past, 17, 507–528, https://doi.org/10.5194/cp-17-507-2021, https://doi.org/10.5194/cp-17-507-2021, 2021
Short summary
Short summary
The last interglacial was a warm period that may provide insights into future climates. Here, we compile and analyse stable carbon isotope data from the ocean during the last interglacial and compare it to the Holocene. The data show that Atlantic Ocean circulation was similar during the last interglacial and the Holocene. We also establish a difference in the mean oceanic carbon isotopic ratio between these periods, which was most likely caused by burial and weathering carbon fluxes.
Jakob Zscheischler, Philippe Naveau, Olivia Martius, Sebastian Engelke, and Christoph C. Raible
Earth Syst. Dynam., 12, 1–16, https://doi.org/10.5194/esd-12-1-2021, https://doi.org/10.5194/esd-12-1-2021, 2021
Short summary
Short summary
Compound extremes such as heavy precipitation and extreme winds can lead to large damage. To date it is unclear how well climate models represent such compound extremes. Here we present a new measure to assess differences in the dependence structure of bivariate extremes. This measure is applied to assess differences in the dependence of compound precipitation and wind extremes between three model simulations and one reanalysis dataset in a domain in central Europe.
Emmanuele Russo, Silje Lund Sørland, Ingo Kirchner, Martijn Schaap, Christoph C. Raible, and Ulrich Cubasch
Geosci. Model Dev., 13, 5779–5797, https://doi.org/10.5194/gmd-13-5779-2020, https://doi.org/10.5194/gmd-13-5779-2020, 2020
Short summary
Short summary
The parameter space of the COSMO-CLM RCM is investigated for the Central Asia CORDEX domain using a perturbed physics ensemble (PPE) with different parameter values. Results show that only a subset of model parameters presents relevant changes in model performance and these changes depend on the considered region and variable: objective calibration methods are highly necessary in this case. Additionally, the results suggest the need for calibrating an RCM when targeting different domains.
Stefan Brönnimann and Sylvia Nichol
Atmos. Chem. Phys., 20, 14333–14346, https://doi.org/10.5194/acp-20-14333-2020, https://doi.org/10.5194/acp-20-14333-2020, 2020
Short summary
Short summary
Historical column ozone data from New Zealand and the UK from the 1950s are digitised and re-evaluated. They allow studying the ozone layer prior to the era of ozone depletion. Day-to-day changes are addressed, which reflect the flow near the tropopause and hence may serve as a diagnostic for atmospheric circulation in a time and region of sparse radiosondes. A long-term comparison shows the amount of ozone depletion at southern mid-latitudes and indicates how far we are from full recovery.
Chantal Camenisch and Melanie Salvisberg
Clim. Past, 16, 2173–2182, https://doi.org/10.5194/cp-16-2173-2020, https://doi.org/10.5194/cp-16-2173-2020, 2020
Short summary
Short summary
Droughts derive from a precipitation deficit and belong to the most dangerous natural hazards for human societies. Documentary data of the pre-modern and early modern times contain direct and indirect information on precipitation that allows for the production of reconstructions using historical climatology methods. For this study, two drought indices were created on the basis of documentary data produced in Bern, Switzerland, and Rouen, France, for the period from 1315 to 1715.
Mathilde Erfurt, Georgios Skiadaresis, Erik Tijdeman, Veit Blauhut, Jürgen Bauhus, Rüdiger Glaser, Julia Schwarz, Willy Tegel, and Kerstin Stahl
Nat. Hazards Earth Syst. Sci., 20, 2979–2995, https://doi.org/10.5194/nhess-20-2979-2020, https://doi.org/10.5194/nhess-20-2979-2020, 2020
Short summary
Short summary
Droughts are multifaceted hazards with widespread negative consequences for the environment and society. This study explores different perspectives on drought and determines the added value of multidisciplinary datasets for a comprehensive understanding of past drought events in southwestern Germany. A long-term evaluation of drought frequency since 1801 revealed that events occurred in all decades, but a particular clustering was found in the mid-19th century and the most recent decade.
Rudolf Brázdil, Petr Dobrovolný, Martin Bauch, Chantal Camenisch, Andrea Kiss, Oldřich Kotyza, Piotr Oliński, and Ladislava Řezníčková
Clim. Past, 16, 2125–2151, https://doi.org/10.5194/cp-16-2125-2020, https://doi.org/10.5194/cp-16-2125-2020, 2020
Short summary
Short summary
Previous studies related to historical droughts in the Czech Lands showed that the summers of 1531–1540 could represent the driest summer decade of the past 500 years. To confirm this hypothesis, documentary data from central Europe were collected and presented for individual summers and complemented by maps of precipitation and drought distribution to document corresponding weather patterns and their various impacts. The main droughts occurred in 1532, 1534–1536, 1538, and particularly in 1540.
Jurek Müller and Fortunat Joos
Biogeosciences, 17, 5285–5308, https://doi.org/10.5194/bg-17-5285-2020, https://doi.org/10.5194/bg-17-5285-2020, 2020
Short summary
Short summary
We present an in-depth model analysis of transient peatland area and carbon dynamics over the last 22 000 years. Our novel results show that the consideration of both gross positive and negative area changes are necessary to understand the transient evolution of peatlands and their net effect on atmospheric carbon. The study includes the attributions to drivers through factorial simulations, assessments of uncertainty from climate forcing, and determination of the global net carbon balance.
Patricio Velasquez, Martina Messmer, and Christoph C. Raible
Geosci. Model Dev., 13, 5007–5027, https://doi.org/10.5194/gmd-13-5007-2020, https://doi.org/10.5194/gmd-13-5007-2020, 2020
Short summary
Short summary
This work presents a new bias-correction method for precipitation that considers orographic characteristics, which can be used in studies where the latter strongly changes. The three-step correction method consists of a separation into orographic features, correction of low-intensity precipitation, and application of empirical quantile mapping. Seasonal bias induced by the global climate model is fully corrected. Rigorous cross-validations illustrate the method's applicability and robustness.
Stefan Brönnimann
Clim. Past, 16, 1937–1952, https://doi.org/10.5194/cp-16-1937-2020, https://doi.org/10.5194/cp-16-1937-2020, 2020
Short summary
Short summary
Scientists often reconstruct climate from proxy data such as tree rings or historical documents. Here, I do the reverse and produce a weather diary from historical numerical weather data. Such "synthetic weather diaries" may be useful for historians, e.g. to compare with other sources or to study the weather experienced during a journey or a military operation. They could also help train machine-learning approaches, which could then be used to reconstruct weather from historical diaries.
Olga Petrucci, Luigi Aceto, Cinzia Bianchi, Victoria Bigot, Rudolf Brázdil, Moshe Inbar, Abdullah Kahraman, Özgenur Kılıç, Vassiliki Kotroni, Maria Carmen Llasat, Montserrat Llasat-Botija, Michele Mercuri, Katerina Papagiannaki, Susana Pereira, Jan Řehoř, Joan Rossello Geli, Paola Salvati, Freddy Vinet, and José Luis Zêzere
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-154, https://doi.org/10.5194/essd-2020-154, 2020
Preprint withdrawn
Short summary
Short summary
EUFF 2020 database (EUropean Flood Fatalities-FF) contains 2483 flood fatalities (1980–2018) occurred in 8 countries. Gender, age, activity of FF and dynamics of accidents were obtained from documentary sources. 64.8 % of FF were killed by floods killing less than 10 people. Males were more numerous than females due higher proportion of them driving and working outdoors. FF 30–64 years old died traveling to home/work, driving vehicles dragged by water. Elderly people were trapped indoor by flood.
Veronika Valler, Yuri Brugnara, Jörg Franke, and Stefan Brönnimann
Clim. Past, 16, 1309–1323, https://doi.org/10.5194/cp-16-1309-2020, https://doi.org/10.5194/cp-16-1309-2020, 2020
Short summary
Short summary
Data assimilation is becoming more and more important for past climate reconstructions. The assimilation of monthly resolved precipitation information has not been explored much so far. In this study we analyze the impact of assimilating monthly precipitation amounts and the number of wet days within an existing paleoclimate data assimilation framework. We find increased skill in the reconstruction, suggesting that monthly precipitation can constitute valuable input for future reconstructions.
Marielle Saunois, Ann R. Stavert, Ben Poulter, Philippe Bousquet, Josep G. Canadell, Robert B. Jackson, Peter A. Raymond, Edward J. Dlugokencky, Sander Houweling, Prabir K. Patra, Philippe Ciais, Vivek K. Arora, David Bastviken, Peter Bergamaschi, Donald R. Blake, Gordon Brailsford, Lori Bruhwiler, Kimberly M. Carlson, Mark Carrol, Simona Castaldi, Naveen Chandra, Cyril Crevoisier, Patrick M. Crill, Kristofer Covey, Charles L. Curry, Giuseppe Etiope, Christian Frankenberg, Nicola Gedney, Michaela I. Hegglin, Lena Höglund-Isaksson, Gustaf Hugelius, Misa Ishizawa, Akihiko Ito, Greet Janssens-Maenhout, Katherine M. Jensen, Fortunat Joos, Thomas Kleinen, Paul B. Krummel, Ray L. Langenfelds, Goulven G. Laruelle, Licheng Liu, Toshinobu Machida, Shamil Maksyutov, Kyle C. McDonald, Joe McNorton, Paul A. Miller, Joe R. Melton, Isamu Morino, Jurek Müller, Fabiola Murguia-Flores, Vaishali Naik, Yosuke Niwa, Sergio Noce, Simon O'Doherty, Robert J. Parker, Changhui Peng, Shushi Peng, Glen P. Peters, Catherine Prigent, Ronald Prinn, Michel Ramonet, Pierre Regnier, William J. Riley, Judith A. Rosentreter, Arjo Segers, Isobel J. Simpson, Hao Shi, Steven J. Smith, L. Paul Steele, Brett F. Thornton, Hanqin Tian, Yasunori Tohjima, Francesco N. Tubiello, Aki Tsuruta, Nicolas Viovy, Apostolos Voulgarakis, Thomas S. Weber, Michiel van Weele, Guido R. van der Werf, Ray F. Weiss, Doug Worthy, Debra Wunch, Yi Yin, Yukio Yoshida, Wenxin Zhang, Zhen Zhang, Yuanhong Zhao, Bo Zheng, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
Earth Syst. Sci. Data, 12, 1561–1623, https://doi.org/10.5194/essd-12-1561-2020, https://doi.org/10.5194/essd-12-1561-2020, 2020
Short summary
Short summary
Understanding and quantifying the global methane (CH4) budget is important for assessing realistic pathways to mitigate climate change. We have established a consortium of multidisciplinary scientists under the umbrella of the Global Carbon Project to synthesize and stimulate new research aimed at improving and regularly updating the global methane budget. This is the second version of the review dedicated to the decadal methane budget, integrating results of top-down and bottom-up estimates.
Rüdiger Glaser and Michael Kahle
Clim. Past, 16, 1207–1222, https://doi.org/10.5194/cp-16-1207-2020, https://doi.org/10.5194/cp-16-1207-2020, 2020
Short summary
Short summary
A new study on droughts in Germany since 1500 reveals the long-term trend of single extreme events, as well as drier periods. Extreme droughts appeared in 1540, 1590, 1615, 1706, 1834, 1893, 1921, 1949 and 2018. Like today, droughts had manifold impacts such as harvest failures, water deficits, low water levels and forest fires. This had different societal consequences ranging from famine, disease, rising prices, migration and riots leading to subsidies and discussions on climate change.
Ashley Dinauer, Florian Adolphi, and Fortunat Joos
Clim. Past, 16, 1159–1185, https://doi.org/10.5194/cp-16-1159-2020, https://doi.org/10.5194/cp-16-1159-2020, 2020
Short summary
Short summary
Despite intense focus on the ~ 190 ‰ drop in Δ14C across the deglacial
mystery interval, the specific mechanisms responsible for the apparent Δ14C excess in the glacial atmosphere have received considerably less attention. Sensitivity experiments with the computationally efficient Bern3D Earth system model suggest that our inability to reproduce the elevated Δ14C levels during the last glacial may reflect an underestimation of 14C production and/or a biased-high reconstruction of Δ14C.
Fortunat Joos, Renato Spahni, Benjamin D. Stocker, Sebastian Lienert, Jurek Müller, Hubertus Fischer, Jochen Schmitt, I. Colin Prentice, Bette Otto-Bliesner, and Zhengyu Liu
Biogeosciences, 17, 3511–3543, https://doi.org/10.5194/bg-17-3511-2020, https://doi.org/10.5194/bg-17-3511-2020, 2020
Short summary
Short summary
Results of the first globally resolved simulations of terrestrial carbon and nitrogen (N) cycling and N2O emissions over the past 21 000 years are compared with reconstructed N2O emissions. Modelled and reconstructed emissions increased strongly during past abrupt warming events. This evidence appears consistent with a dynamic response of biological N fixation to increasing N demand by ecosystems, thereby reducing N limitation of plant productivity and supporting a land sink for atmospheric CO2.
Jörg Franke, Veronika Valler, Stefan Brönnimann, Raphael Neukom, and Fernando Jaume-Santero
Clim. Past, 16, 1061–1074, https://doi.org/10.5194/cp-16-1061-2020, https://doi.org/10.5194/cp-16-1061-2020, 2020
Short summary
Short summary
This study explores the influence of the input data choice on spatial climate reconstructions. We compare three tree-ring-based data sets which range from small sample size, small spatial coverage and strict screening for temperature sensitivity to the opposite. We achieve the best spatial reconstruction quality by combining all available input data but rejecting records with little and uncertain climatic information and considering moisture availability as an additional growth limitation.
Kathleen Pribyl
Clim. Past, 16, 1027–1041, https://doi.org/10.5194/cp-16-1027-2020, https://doi.org/10.5194/cp-16-1027-2020, 2020
Short summary
Short summary
Droughts pose a climatic hazard that can have a profound impacts on past societies. Using documentary sources, this paper studies the occurrence and impacts of spring–summer droughts in pre-industrial England from 1200 to 1700. The impacts most relevant to human livelihood, including the agricultural and pastoral sectors of agrarian production, and public health are evaluated.
Flavio Lehner, Clara Deser, Nicola Maher, Jochem Marotzke, Erich M. Fischer, Lukas Brunner, Reto Knutti, and Ed Hawkins
Earth Syst. Dynam., 11, 491–508, https://doi.org/10.5194/esd-11-491-2020, https://doi.org/10.5194/esd-11-491-2020, 2020
Short summary
Short summary
Projections of climate change are uncertain because climate models are imperfect, future greenhouse gases emissions are unknown and climate is to some extent chaotic. To partition and understand these sources of uncertainty and make the best use of climate projections, large ensembles with multiple climate models are needed. Such ensembles now exist in a public data archive. We provide several novel applications focused on global and regional temperature and precipitation projections.
Yuri Brugnara, Lucas Pfister, Leonie Villiger, Christian Rohr, Francesco Alessandro Isotta, and Stefan Brönnimann
Earth Syst. Sci. Data, 12, 1179–1190, https://doi.org/10.5194/essd-12-1179-2020, https://doi.org/10.5194/essd-12-1179-2020, 2020
Short summary
Short summary
Early instrumental meteorological observations in Switzerland made before 1863, the year a national station network was created, were until recently largely unexplored. After a systematic compilation of the documents available in Swiss archives, we digitised a large part of the data so that they can be used in climate research. In this paper we give an overview of the development of meteorological observations in Switzerland and describe our approach to convert them into modern units.
Thomas L. Frölicher, Luca Ramseyer, Christoph C. Raible, Keith B. Rodgers, and John Dunne
Biogeosciences, 17, 2061–2083, https://doi.org/10.5194/bg-17-2061-2020, https://doi.org/10.5194/bg-17-2061-2020, 2020
Short summary
Short summary
Climate variations can have profound impacts on marine ecosystems. Here we show that on global scales marine ecosystem drivers such as temperature, pH, O2 and NPP are potentially predictable 3 (at the surface) and more than 10 years (subsurface) in advance. However, there are distinct regional differences in the potential predictability of these drivers. Our study suggests that physical–biogeochemical forecast systems have considerable potential for use in marine resource management.
Angélique Hameau, Thomas L. Frölicher, Juliette Mignot, and Fortunat Joos
Biogeosciences, 17, 1877–1895, https://doi.org/10.5194/bg-17-1877-2020, https://doi.org/10.5194/bg-17-1877-2020, 2020
Short summary
Short summary
Ocean deoxygenation and warming are observed and projected to intensify under continued greenhouse gas emissions. Whereas temperature is considered the main climate change indicator, we show that in certain regions, thermocline doxygenation may be detectable before warming.
Lucas Pfister, Stefan Brönnimann, Mikhaël Schwander, Francesco Alessandro Isotta, Pascal Horton, and Christian Rohr
Clim. Past, 16, 663–678, https://doi.org/10.5194/cp-16-663-2020, https://doi.org/10.5194/cp-16-663-2020, 2020
Short summary
Short summary
This paper aims to reconstruct high-resolution daily precipitation and temperature fields for Switzerland back to 1864 using a statistical approach called the analogue resampling method. Results suggest that the presented method is suitable for weather reconstruction. As illustrated with the example of the avalanche in winter 1887/88, these weather reconstructions have great potential for various analyses of past weather and climate impact modelling.
Aurich Jeltsch-Thömmes and Fortunat Joos
Clim. Past, 16, 423–451, https://doi.org/10.5194/cp-16-423-2020, https://doi.org/10.5194/cp-16-423-2020, 2020
Short summary
Short summary
Perturbations in atmospheric CO2 and in its isotopic composition, e.g., in response to carbon release from the land biosphere or from fossil fuel burning, evolve differently in time. We use an Earth system model of intermediate complexity to show that fluxes to and from the solid Earth play an important role in removing these perturbations from the atmosphere over thousands of years.
Steffen Therre, Jens Fohlmeister, Dominik Fleitmann, Albert Matter, Stephen J. Burns, Jennifer Arps, Andrea Schröder-Ritzrau, Ronny Friedrich, and Norbert Frank
Clim. Past, 16, 409–421, https://doi.org/10.5194/cp-16-409-2020, https://doi.org/10.5194/cp-16-409-2020, 2020
Short summary
Short summary
The radiocarbon (14C) levels of a stalagmite (grown 27–11 kyr before today) from Socotra Island (Arabian Sea) show drastic changes across the last termination. Our study highlights the influence of a warming climate with increasing precipitation towards the ending glacial on stalagmite 14C. High-resolution measurements suggest 14C is linked to a denser vegetation coverage on the island. Therefore, stalagmite 14C can be used as a climate tracer on millennial to sub-centennial timescales.
Angela-Maria Burgdorf, Stefan Brönnimann, and Jörg Franke
Clim. Past, 15, 2053–2065, https://doi.org/10.5194/cp-15-2053-2019, https://doi.org/10.5194/cp-15-2053-2019, 2019
Short summary
Short summary
The western USA is frequently affected by multiannual summer droughts. They can be separated into two groups with distinct spatial patterns. This study analyzes the atmospheric circulation during multiannual droughts in a new 3-D climate reconstruction. We confirm two distinct drought types differing with respect to atmospheric circulation as well as sea surface temperatures. Our results suggest that both the Pacific and the extratropical North Atlantic region affect North American droughts.
This Rutishauser, François Jeanneret, Robert Brügger, Yuri Brugnara, Christian Röthlisberger, August Bernasconi, Peter Bangerter, Céline Portenier, Leonie Villiger, Daria Lehmann, Lukas Meyer, Bruno Messerli, and Stefan Brönnimann
Earth Syst. Sci. Data, 11, 1645–1654, https://doi.org/10.5194/essd-11-1645-2019, https://doi.org/10.5194/essd-11-1645-2019, 2019
Short summary
Short summary
This paper reports 7414 quality-controlled plant phenological observations of the BernClim phenological network in Switzerland. The data from 1304 sites at 110 stations were recorded between 1970 and 2018. The quality control (QC) points to very good internal consistency (only 0.2 % flagged as internally inconsistent) and likely to high quality of the data. BernClim data originally served in regional planning and agricultural suitability and are now valuable for climate change impact studies.
Hubertus Fischer, Jochen Schmitt, Michael Bock, Barbara Seth, Fortunat Joos, Renato Spahni, Sebastian Lienert, Gianna Battaglia, Benjamin D. Stocker, Adrian Schilt, and Edward J. Brook
Biogeosciences, 16, 3997–4021, https://doi.org/10.5194/bg-16-3997-2019, https://doi.org/10.5194/bg-16-3997-2019, 2019
Short summary
Short summary
N2O concentrations were subject to strong variations accompanying glacial–interglacial but also rapid climate changes over the last 21 kyr. The sources of these N2O changes can be identified by measuring the isotopic composition of N2O in ice cores and using the distinct isotopic composition of terrestrial and marine N2O. We show that both marine and terrestrial sources increased from the last glacial to the Holocene but that only terrestrial emissions responded quickly to rapid climate changes.
Rudolf Brázdil, Gaston R. Demarée, Andrea Kiss, Petr Dobrovolný, Kateřina Chromá, Miroslav Trnka, Lukáš Dolák, Ladislava Řezníčková, Pavel Zahradníček, Danuta Limanowka, and Sylvie Jourdain
Clim. Past, 15, 1861–1884, https://doi.org/10.5194/cp-15-1861-2019, https://doi.org/10.5194/cp-15-1861-2019, 2019
Short summary
Short summary
The paper presents analysis of the 1842 drought in Europe (except the Mediterranean) based on documentary data and instrumental records. First the meteorological background of this drought is shown (seasonal distribution of precipitation, annual variation of temperature, precipitation and drought indices, synoptic reasons) and effects of drought on water management, agriculture, and in society are described in detail with particular attention to human responses.
Marcelo Zamuriano, Paul Froidevaux, Isabel Moreno, Mathias Vuille, and Stefan Brönnimann
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2019-286, https://doi.org/10.5194/nhess-2019-286, 2019
Publication in NHESS not foreseen
Ernesto Tejedor, Martín de Luis, Mariano Barriendos, José María Cuadrat, Jürg Luterbacher, and Miguel Ángel Saz
Clim. Past, 15, 1647–1664, https://doi.org/10.5194/cp-15-1647-2019, https://doi.org/10.5194/cp-15-1647-2019, 2019
Short summary
Short summary
We developed a new dataset of historical documents by compiling records (rogation ceremonies) from 13 cities in the northeast of the Iberian Peninsula (IP). These records were transformed into quantitative continuous data to develop drought indices (DIs). We regionalized them by creating three DIs (Ebro Valle, Mediterranean, and Mountain), which cover the period from 1650 to 1899 CE. We identified extreme drought years and periods which help to understand climate variability in the IP.
Thomas Labbé, Christian Pfister, Stefan Brönnimann, Daniel Rousseau, Jörg Franke, and Benjamin Bois
Clim. Past, 15, 1485–1501, https://doi.org/10.5194/cp-15-1485-2019, https://doi.org/10.5194/cp-15-1485-2019, 2019
Short summary
Short summary
In this paper we present the longest grape harvest date (GHD) record reconstructed to date, i.e. Beaune (France, Burgundy) 1354–2018. Drawing on unedited archive material, the series is validated using the long Paris temperature series that goes back to 1658 and was used to assess April-to-July temperatures from 1354 to 2018. The distribution of extremely early GHD is uneven over the 664-year-long period of the series and mirrors the rapid global warming from 1988 to 2018.
Olli Peltola, Timo Vesala, Yao Gao, Olle Räty, Pavel Alekseychik, Mika Aurela, Bogdan Chojnicki, Ankur R. Desai, Albertus J. Dolman, Eugenie S. Euskirchen, Thomas Friborg, Mathias Göckede, Manuel Helbig, Elyn Humphreys, Robert B. Jackson, Georg Jocher, Fortunat Joos, Janina Klatt, Sara H. Knox, Natalia Kowalska, Lars Kutzbach, Sebastian Lienert, Annalea Lohila, Ivan Mammarella, Daniel F. Nadeau, Mats B. Nilsson, Walter C. Oechel, Matthias Peichl, Thomas Pypker, William Quinton, Janne Rinne, Torsten Sachs, Mateusz Samson, Hans Peter Schmid, Oliver Sonnentag, Christian Wille, Donatella Zona, and Tuula Aalto
Earth Syst. Sci. Data, 11, 1263–1289, https://doi.org/10.5194/essd-11-1263-2019, https://doi.org/10.5194/essd-11-1263-2019, 2019
Short summary
Short summary
Here we develop a monthly gridded dataset of northern (> 45 N) wetland methane (CH4) emissions. The data product is derived using a random forest machine-learning technique and eddy covariance CH4 fluxes from 25 wetland sites. Annual CH4 emissions from these wetlands calculated from the derived data product are comparable to prior studies focusing on these areas. This product is an independent estimate of northern wetland CH4 emissions and hence could be used, e.g. for process model evaluation.
Florie Giacona, Brice Martin, Benjamin Furst, Rüdiger Glaser, Nicolas Eckert, Iso Himmelsbach, and Charlotte Edelblutte
Nat. Hazards Earth Syst. Sci., 19, 1653–1683, https://doi.org/10.5194/nhess-19-1653-2019, https://doi.org/10.5194/nhess-19-1653-2019, 2019
Short summary
Short summary
The article presents the Alsatian regional flood risk observatory ORRION, a participative online platform on which information is shared between individuals, stakeholders, engineers, and scientists. This maximizes knowledge capitalization and contributes to building a common knowledge base for flood risk. From this information, long chronicles of floods are derived for the Rhine, and most of its main Alsatian tributaries and their main characteristics are identified and analysed.
Veronika Valler, Jörg Franke, and Stefan Brönnimann
Clim. Past, 15, 1427–1441, https://doi.org/10.5194/cp-15-1427-2019, https://doi.org/10.5194/cp-15-1427-2019, 2019
Short summary
Short summary
In recent years, the data assimilation approach was adapted to the field of paleoclimatology to reconstruct past climate fields by combining model simulations and observations.
To improve the performance of our paleodata assimilation system, we tested various techniques that are well established in weather forecasting and evaluated their impact on assimilating instrumental data and proxy records (tree rings).
Stefan Brönnimann, Luca Frigerio, Mikhaël Schwander, Marco Rohrer, Peter Stucki, and Jörg Franke
Clim. Past, 15, 1395–1409, https://doi.org/10.5194/cp-15-1395-2019, https://doi.org/10.5194/cp-15-1395-2019, 2019
Short summary
Short summary
During the 19th century flood frequency was high in central Europe, but it was low in the mid-20th century. This paper tracks these decadal changes in flood frequency for the case of Switzerland from peak discharge data back to precipitation data and daily weather reconstructions. We find an increased frequency in flood-prone weather types during large parts of the 19th century and decreased frequency in the mid-20th century. Sea-surface temperature anomalies can only explain a small part of it.
Lucas Pfister, Franziska Hupfer, Yuri Brugnara, Lukas Munz, Leonie Villiger, Lukas Meyer, Mikhaël Schwander, Francesco Alessandro Isotta, Christian Rohr, and Stefan Brönnimann
Clim. Past, 15, 1345–1361, https://doi.org/10.5194/cp-15-1345-2019, https://doi.org/10.5194/cp-15-1345-2019, 2019
Short summary
Short summary
The 18th and early 19th centuries saw pronounced climatic variations with impacts on the environment and society. Although instrumental meteorological data for that period exist, only a small fraction has been the subject of research. This study provides an overview of early instrumental meteorological records in Switzerland resulting from an archive survey and demonstrates the great potential of such data. It is accompanied by the online publication of the imaged data series and metadata.
Rudolf Brázdil, Hubert Valášek, Kateřina Chromá, Lukáš Dolák, Ladislava Řezníčková, Monika Bělínová, Adam Valík, and Pavel Zahradníček
Clim. Past, 15, 1205–1222, https://doi.org/10.5194/cp-15-1205-2019, https://doi.org/10.5194/cp-15-1205-2019, 2019
Short summary
Short summary
The paper analyses a weather diary of the Reverend Šimon Hausner from Buchlovice in south-east Moravia, Czech Republic, in the 1803–1831 period. From daily weather records, series of numbers of precipitation days, cloudiness, strong winds, fogs, and thunderstorms were created. These records were further used to interpret weighted temperature and precipitation indices. Records of Šimon Hausner represent an important contribution to the study of climate fluctuations on the central European scale.
Stefanie Talento, Lea Schneider, Johannes Werner, and Jürg Luterbacher
Earth Syst. Dynam., 10, 347–364, https://doi.org/10.5194/esd-10-347-2019, https://doi.org/10.5194/esd-10-347-2019, 2019
Short summary
Short summary
Quantifying hydroclimate variability beyond the instrumental period is essential for putting fluctuations into long-term perspective and providing a validation for climate models. We evaluate, in a virtual setup, the potential for generating millennium-long summer precipitation reconstructions over south-eastern Asia.
We find that performing a real-world reconstruction with the current available proxy network is indeed feasible, as virtual-world reconstructions are skilful in most areas.
Aurich Jeltsch-Thömmes, Gianna Battaglia, Olivier Cartapanis, Samuel L. Jaccard, and Fortunat Joos
Clim. Past, 15, 849–879, https://doi.org/10.5194/cp-15-849-2019, https://doi.org/10.5194/cp-15-849-2019, 2019
Short summary
Short summary
A long-standing question in climate science is concerned with what processes contributed to the increase in atmospheric CO2 after the last ice age. From the range of possible processes we try to constrain the change in carbon storage in the land biosphere. By combining ice core and marine sediment data in a modeling framework we show that the carbon storage in the land biosphere increased largely after the last ice age. This will help to further understand processes at work in the Earth system.
Jiří Mikšovský, Rudolf Brázdil, Miroslav Trnka, and Petr Pišoft
Clim. Past, 15, 827–847, https://doi.org/10.5194/cp-15-827-2019, https://doi.org/10.5194/cp-15-827-2019, 2019
Short summary
Short summary
To reveal sources of variability imprinted in central European drought records, regression and wavelet analysis were applied to 5 centuries of reconstructed data characterizing Czech climate. Mid- to long-term changes in temperature in the North Atlantic and North Pacific were identified as one of the potential sources of drought variations; transient colder and wetter episodes were linked to the effects of large volcanic eruptions.
Angélique Hameau, Juliette Mignot, and Fortunat Joos
Biogeosciences, 16, 1755–1780, https://doi.org/10.5194/bg-16-1755-2019, https://doi.org/10.5194/bg-16-1755-2019, 2019
Short summary
Short summary
The observed decrease of oxygen and warming in the ocean may adversely affect marine ecosystems and their services. We analyse results from an Earth system model for the last millennium and the 21st century. We find changes in temperature and oxygen due to fossil fuel burning and other human activities to exceed natural variations in many ocean regions already today. Natural variability is biased low in earlier studies neglecting forcing from past volcanic eruptions and solar change.
Marcelo Zamuriano, Andrey Martynov, Luca Panziera, and Stefan Brönnimann
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2019-27, https://doi.org/10.5194/nhess-2019-27, 2019
Publication in NHESS not foreseen
Short summary
Short summary
This work investigates the formation of a hailstorm over the Tropical Bolivian Andes. Using the WRF atmospheric model, we are able to numerically reconstruct it and we assess the main factors (mountains, lake and surface heating) in the storm formation. We propose physical mechanisms that have the potential to improve the forecasting of similar events; which are known to have a big impact over the Bolivian Altiplano, especially the region near Titicaca lake.
Rudolf Brázdil, Petr Dobrovolný, Miroslav Trnka, Ladislava Řezníčková, Lukáš Dolák, and Oldřich Kotyza
Clim. Past, 15, 1–24, https://doi.org/10.5194/cp-15-1-2019, https://doi.org/10.5194/cp-15-1-2019, 2019
Short summary
Short summary
The paper analyses extreme droughts of the pre-instrumental period (1501–1803) over the territory of the recent Czech Republic. In total, 16 droughts were selected for spring, summer and autumn each and 14 droughts for summer half-year (Apr–Sep). They are characterized by very low values of drought indices, high temperatures, low precipitation and by the influence of high-pressure situations. Selected extreme droughts are described in more detail. Effect of droughts on grain prices are studied.
Rudolf Brázdil, Andrea Kiss, Jürg Luterbacher, David J. Nash, and Ladislava Řezníčková
Clim. Past, 14, 1915–1960, https://doi.org/10.5194/cp-14-1915-2018, https://doi.org/10.5194/cp-14-1915-2018, 2018
Short summary
Short summary
The paper presents a worldwide state of the art of droughts fluctuations based on documentary data. It gives an overview of achievements related to different kinds of documentary evidence with their examples and an overview of papers presenting long-term drought chronologies over the individual continents, analysis of the most outstanding drought events, the influence of external forcing and large-scale climate drivers, and human impacts and responses. It recommends future research directions.
Petr Dobrovolný, Rudolf Brázdil, Miroslav Trnka, Michal Rybníček, Tomáš Kolář, Martin Možný, Tomáš Kyncl, and Ulf Büntgen
Clim. Past Discuss., https://doi.org/10.5194/cp-2018-160, https://doi.org/10.5194/cp-2018-160, 2018
Preprint withdrawn
Short summary
Short summary
Careful selection of available moisture-sensitive proxies resulted in a new reconstruction of short-term drought over the Czech Republic during the last 500 years. It consists of a synthesis of four different proxies and its high reconstruction skill demonstrates the clear advantage of a multi-proxy approach. The new chronology of Z-index shows that central Europe experienced the most severe 30-year late spring–early summer period of drought for the last 500 years.
Peter Stucki, Moritz Bandhauer, Ulla Heikkilä, Ole Rössler, Massimiliano Zappa, Lucas Pfister, Melanie Salvisberg, Paul Froidevaux, Olivia Martius, Luca Panziera, and Stefan Brönnimann
Nat. Hazards Earth Syst. Sci., 18, 2717–2739, https://doi.org/10.5194/nhess-18-2717-2018, https://doi.org/10.5194/nhess-18-2717-2018, 2018
Short summary
Short summary
A catastrophic flood south of the Alps in 1868 is assessed using documents and the earliest example of high-resolution weather simulation. Simulated weather dynamics agree well with observations and damage reports. Simulated peak water levels are biased. Low forest cover did not cause the flood, but such a paradigm was used to justify afforestation. Supported by historical methods, such numerical simulations allow weather events from past centuries to be used for modern hazard and risk analyses.
Christoph C. Raible, Martina Messmer, Flavio Lehner, Thomas F. Stocker, and Richard Blender
Clim. Past, 14, 1499–1514, https://doi.org/10.5194/cp-14-1499-2018, https://doi.org/10.5194/cp-14-1499-2018, 2018
Short summary
Short summary
Extratropical cyclones in winter and their characteristics are investigated in depth for the Atlantic European region from 850 to 2100 CE. During the Common Era, cyclone characteristics show pronounced variations mainly caused by internal variability of the coupled climate system. When anthropogenic forcing becomes dominant, a strong increase of extreme cyclone-related precipitation is found due to thermodynamics, though dynamical processes can play an important role during the last millennium.
Stefan Brönnimann, Jan Rajczak, Erich M. Fischer, Christoph C. Raible, Marco Rohrer, and Christoph Schär
Nat. Hazards Earth Syst. Sci., 18, 2047–2056, https://doi.org/10.5194/nhess-18-2047-2018, https://doi.org/10.5194/nhess-18-2047-2018, 2018
Short summary
Short summary
Heavy precipitation events in Switzerland are expected to become more intense, but the seasonality also changes. Analysing a large set of model simulations, we find that annual maximum rainfall events become less frequent in late summer and more frequent in early summer and early autumn. The seasonality shift is arguably related to summer drying. Results suggest that changes in the seasonal cycle need to be accounted for when preparing for moderately extreme precipitation events.
Juan José Gómez-Navarro, Christoph C. Raible, Denica Bozhinova, Olivia Martius, Juan Andrés García Valero, and Juan Pedro Montávez
Geosci. Model Dev., 11, 2231–2247, https://doi.org/10.5194/gmd-11-2231-2018, https://doi.org/10.5194/gmd-11-2231-2018, 2018
Short summary
Short summary
We carry out and compare two high-resolution simulations of the Alpine region in the period 1979–2005. We aim to improve the understanding of the local mechanisms leading to extreme events in this complex region. We compare both simulations to precipitation observations to assess the model performance, and attribute major biases to either model or boundary conditions. Further, we develop a new bias correction technique to remove systematic errors in simulated precipitation for impact studies.
Gianna Battaglia and Fortunat Joos
Earth Syst. Dynam., 9, 797–816, https://doi.org/10.5194/esd-9-797-2018, https://doi.org/10.5194/esd-9-797-2018, 2018
Short summary
Short summary
Human-caused, climate change hazards in the ocean continue to aggravate over a very long time. For business as usual, we project the ocean oxygen content to decrease by 40 % over the next thousand years. This would likely have severe consequences for marine life. Global warming and oxygen loss are linked, and meeting the warming target of the Paris Climate Agreement effectively limits related marine hazards. Developments over many thousands of years should be considered to assess marine risks.
Fortunat Joos and Brigitte Buchmann
Atmos. Chem. Phys., 18, 7841–7842, https://doi.org/10.5194/acp-18-7841-2018, https://doi.org/10.5194/acp-18-7841-2018, 2018
Kuno M. Strassmann and Fortunat Joos
Geosci. Model Dev., 11, 1887–1908, https://doi.org/10.5194/gmd-11-1887-2018, https://doi.org/10.5194/gmd-11-1887-2018, 2018
Short summary
Short summary
The Bern Simple Climate Model (BernSCM) is a free open-source re-implementation of a reduced-form carbon cycle–climate model widely used in science and IPCC assessments. BernSCM supports up to decadal time steps with high accuracy and is suitable for studies with high computational load, e.g., integrated assessment models (IAMs). Further applications include climate risk assessment in a business, public, or educational context and the estimation of benefits of emission mitigation options.
Sebastian Lienert and Fortunat Joos
Biogeosciences, 15, 2909–2930, https://doi.org/10.5194/bg-15-2909-2018, https://doi.org/10.5194/bg-15-2909-2018, 2018
Short summary
Short summary
Deforestation, shifting cultivation and wood harvesting cause large carbon emissions, altering climate. We apply a dynamic global vegetation model in a probabilistic framework. Diverse observations are assimilated to establish an optimally performing model and a large ensemble of model versions. Land-use carbon emissions are reported for individual countries, regions and the world. We find that parameter-related uncertainties are on the same order of magnitude as process-related effects.
Masa Kageyama, Pascale Braconnot, Sandy P. Harrison, Alan M. Haywood, Johann H. Jungclaus, Bette L. Otto-Bliesner, Jean-Yves Peterschmitt, Ayako Abe-Ouchi, Samuel Albani, Patrick J. Bartlein, Chris Brierley, Michel Crucifix, Aisling Dolan, Laura Fernandez-Donado, Hubertus Fischer, Peter O. Hopcroft, Ruza F. Ivanovic, Fabrice Lambert, Daniel J. Lunt, Natalie M. Mahowald, W. Richard Peltier, Steven J. Phipps, Didier M. Roche, Gavin A. Schmidt, Lev Tarasov, Paul J. Valdes, Qiong Zhang, and Tianjun Zhou
Geosci. Model Dev., 11, 1033–1057, https://doi.org/10.5194/gmd-11-1033-2018, https://doi.org/10.5194/gmd-11-1033-2018, 2018
Short summary
Short summary
The Paleoclimate Modelling Intercomparison Project (PMIP) takes advantage of the existence of past climate states radically different from the recent past to test climate models used for climate projections and to better understand these climates. This paper describes the PMIP contribution to CMIP6 (Coupled Model Intercomparison Project, 6th phase) and possible analyses based on PMIP results, as well as on other CMIP6 projects.
Stefan Hunziker, Stefan Brönnimann, Juan Calle, Isabel Moreno, Marcos Andrade, Laura Ticona, Adrian Huerta, and Waldo Lavado-Casimiro
Clim. Past, 14, 1–20, https://doi.org/10.5194/cp-14-1-2018, https://doi.org/10.5194/cp-14-1-2018, 2018
Short summary
Short summary
Many data quality problems occurring in manned weather station observations are hardly detected with common data quality control methods. We investigated the effects of undetected data quality issues and found that they may reduce the correlation coefficients of station pairs, deteriorate the performance of data homogenization methods, increase the spread of individual station trends, and significantly bias regional trends. Applying adequate quality control approaches is of utmost importance.
PAGES Hydro2k Consortium
Clim. Past, 13, 1851–1900, https://doi.org/10.5194/cp-13-1851-2017, https://doi.org/10.5194/cp-13-1851-2017, 2017
Short summary
Short summary
Water availability is fundamental to societies and ecosystems, but our understanding of variations in hydroclimate (including extreme events, flooding, and decadal periods of drought) is limited due to a paucity of modern instrumental observations. We review how proxy records of past climate and climate model simulations can be used in tandem to understand hydroclimate variability over the last 2000 years and how these tools can also inform risk assessments of future hydroclimatic extremes.
Oliver Wetter
Hydrol. Earth Syst. Sci., 21, 5781–5803, https://doi.org/10.5194/hess-21-5781-2017, https://doi.org/10.5194/hess-21-5781-2017, 2017
Short summary
Short summary
This paper aims to describe the strengths and weaknesses of the available historical hydrological evidence, to shed light on the existing basic methodologies leading to long-term frequency, seasonality and magnitude reconstructions of pre-instrumental hydrological events, to discuss the comparability of reconstructed pre-instrumental flood events compared to current events and to provide an outlook for future analysis with a focus on the situation in Switzerland.
Rüdiger Glaser, Iso Himmelsbach, and Annette Bösmeier
Clim. Past, 13, 1573–1592, https://doi.org/10.5194/cp-13-1573-2017, https://doi.org/10.5194/cp-13-1573-2017, 2017
Short summary
Short summary
This paper presents the extent to which climate, harvest and prices influenced the major migration waves from southwest Germany into North America during the 19th century, a century of dramatic climatic and societal changes.
Johann H. Jungclaus, Edouard Bard, Mélanie Baroni, Pascale Braconnot, Jian Cao, Louise P. Chini, Tania Egorova, Michael Evans, J. Fidel González-Rouco, Hugues Goosse, George C. Hurtt, Fortunat Joos, Jed O. Kaplan, Myriam Khodri, Kees Klein Goldewijk, Natalie Krivova, Allegra N. LeGrande, Stephan J. Lorenz, Jürg Luterbacher, Wenmin Man, Amanda C. Maycock, Malte Meinshausen, Anders Moberg, Raimund Muscheler, Christoph Nehrbass-Ahles, Bette I. Otto-Bliesner, Steven J. Phipps, Julia Pongratz, Eugene Rozanov, Gavin A. Schmidt, Hauke Schmidt, Werner Schmutz, Andrew Schurer, Alexander I. Shapiro, Michael Sigl, Jason E. Smerdon, Sami K. Solanki, Claudia Timmreck, Matthew Toohey, Ilya G. Usoskin, Sebastian Wagner, Chi-Ju Wu, Kok Leng Yeo, Davide Zanchettin, Qiong Zhang, and Eduardo Zorita
Geosci. Model Dev., 10, 4005–4033, https://doi.org/10.5194/gmd-10-4005-2017, https://doi.org/10.5194/gmd-10-4005-2017, 2017
Short summary
Short summary
Climate model simulations covering the last millennium provide context for the evolution of the modern climate and for the expected changes during the coming centuries. They can help identify plausible mechanisms underlying palaeoclimatic reconstructions. Here, we describe the forcing boundary conditions and the experimental protocol for simulations covering the pre-industrial millennium. We describe the PMIP4 past1000 simulations as contributions to CMIP6 and additional sensitivity experiments.
Bette L. Otto-Bliesner, Pascale Braconnot, Sandy P. Harrison, Daniel J. Lunt, Ayako Abe-Ouchi, Samuel Albani, Patrick J. Bartlein, Emilie Capron, Anders E. Carlson, Andrea Dutton, Hubertus Fischer, Heiko Goelzer, Aline Govin, Alan Haywood, Fortunat Joos, Allegra N. LeGrande, William H. Lipscomb, Gerrit Lohmann, Natalie Mahowald, Christoph Nehrbass-Ahles, Francesco S. R. Pausata, Jean-Yves Peterschmitt, Steven J. Phipps, Hans Renssen, and Qiong Zhang
Geosci. Model Dev., 10, 3979–4003, https://doi.org/10.5194/gmd-10-3979-2017, https://doi.org/10.5194/gmd-10-3979-2017, 2017
Short summary
Short summary
The PMIP4 and CMIP6 mid-Holocene and Last Interglacial simulations provide an opportunity to examine the impact of two different changes in insolation forcing on climate at times when other forcings were relatively similar to present. This will allow exploration of the role of feedbacks relevant to future projections. Evaluating these simulations using paleoenvironmental data will provide direct out-of-sample tests of the reliability of state-of-the-art models to simulate climate changes.
Mikhaël Schwander, Marco Rohrer, Stefan Brönnimann, and Abdul Malik
Clim. Past, 13, 1199–1212, https://doi.org/10.5194/cp-13-1199-2017, https://doi.org/10.5194/cp-13-1199-2017, 2017
Short summary
Short summary
We used a new classification of daily weather patterns to analyse the influence of solar variability (11-year cycle) on European climate from 1763 to 2009. The analysis of the weather patterns occurrences shows a reduction in the number of days with a westerly flow over Europe under low solar activity during late winter. In parallel, the number of days with an easterly flow increases. Based on these results we expect colder winter over Europe under low solar activity.
Marielle Saunois, Philippe Bousquet, Ben Poulter, Anna Peregon, Philippe Ciais, Josep G. Canadell, Edward J. Dlugokencky, Giuseppe Etiope, David Bastviken, Sander Houweling, Greet Janssens-Maenhout, Francesco N. Tubiello, Simona Castaldi, Robert B. Jackson, Mihai Alexe, Vivek K. Arora, David J. Beerling, Peter Bergamaschi, Donald R. Blake, Gordon Brailsford, Lori Bruhwiler, Cyril Crevoisier, Patrick Crill, Kristofer Covey, Christian Frankenberg, Nicola Gedney, Lena Höglund-Isaksson, Misa Ishizawa, Akihiko Ito, Fortunat Joos, Heon-Sook Kim, Thomas Kleinen, Paul Krummel, Jean-François Lamarque, Ray Langenfelds, Robin Locatelli, Toshinobu Machida, Shamil Maksyutov, Joe R. Melton, Isamu Morino, Vaishali Naik, Simon O'Doherty, Frans-Jan W. Parmentier, Prabir K. Patra, Changhui Peng, Shushi Peng, Glen P. Peters, Isabelle Pison, Ronald Prinn, Michel Ramonet, William J. Riley, Makoto Saito, Monia Santini, Ronny Schroeder, Isobel J. Simpson, Renato Spahni, Atsushi Takizawa, Brett F. Thornton, Hanqin Tian, Yasunori Tohjima, Nicolas Viovy, Apostolos Voulgarakis, Ray Weiss, David J. Wilton, Andy Wiltshire, Doug Worthy, Debra Wunch, Xiyan Xu, Yukio Yoshida, Bowen Zhang, Zhen Zhang, and Qiuan Zhu
Atmos. Chem. Phys., 17, 11135–11161, https://doi.org/10.5194/acp-17-11135-2017, https://doi.org/10.5194/acp-17-11135-2017, 2017
Short summary
Short summary
Following the Global Methane Budget 2000–2012 published in Saunois et al. (2016), we use the same dataset of bottom-up and top-down approaches to discuss the variations in methane emissions over the period 2000–2012. The changes in emissions are discussed both in terms of trends and quasi-decadal changes. The ensemble gathered here allows us to synthesise the robust changes in terms of regional and sectorial contributions to the increasing methane emissions.
Benjamin M. Sanderson, Yangyang Xu, Claudia Tebaldi, Michael Wehner, Brian O'Neill, Alexandra Jahn, Angeline G. Pendergrass, Flavio Lehner, Warren G. Strand, Lei Lin, Reto Knutti, and Jean Francois Lamarque
Earth Syst. Dynam., 8, 827–847, https://doi.org/10.5194/esd-8-827-2017, https://doi.org/10.5194/esd-8-827-2017, 2017
Short summary
Short summary
We present the results of a set of climate simulations designed to simulate futures in which the Earth's temperature is stabilized at the levels referred to in the 2015 Paris Agreement. We consider the necessary future emissions reductions and the aspects of extreme weather which differ significantly between the 2 and 1.5 °C climate in the simulations.
Martina Messmer, Juan José Gómez-Navarro, and Christoph C. Raible
Earth Syst. Dynam., 8, 477–493, https://doi.org/10.5194/esd-8-477-2017, https://doi.org/10.5194/esd-8-477-2017, 2017
Short summary
Short summary
Low-pressure systems of type Vb may trigger heavy rainfall events over central Europe. This study aims at analysing the relative role of their moisture sources. For this, a set of sensitivity experiments encompassing changes in soil moisture and Atlantic Ocean and Mediterranean Sea SSTs are carried out with WRF. The latter moisture source stands out as the most relevant one. Furthermore, the regions most affected by Vb events in the future might be shifted from the Alps to the Balkan Peninsula.
James C. Orr, Raymond G. Najjar, Olivier Aumont, Laurent Bopp, John L. Bullister, Gokhan Danabasoglu, Scott C. Doney, John P. Dunne, Jean-Claude Dutay, Heather Graven, Stephen M. Griffies, Jasmin G. John, Fortunat Joos, Ingeborg Levin, Keith Lindsay, Richard J. Matear, Galen A. McKinley, Anne Mouchet, Andreas Oschlies, Anastasia Romanou, Reiner Schlitzer, Alessandro Tagliabue, Toste Tanhua, and Andrew Yool
Geosci. Model Dev., 10, 2169–2199, https://doi.org/10.5194/gmd-10-2169-2017, https://doi.org/10.5194/gmd-10-2169-2017, 2017
Short summary
Short summary
The Ocean Model Intercomparison Project (OMIP) is a model comparison effort under Phase 6 of the Coupled Model Intercomparison Project (CMIP6). Its physical component is described elsewhere in this special issue. Here we describe its ocean biogeochemical component (OMIP-BGC), detailing simulation protocols and analysis diagnostics. Simulations focus on ocean carbon, other biogeochemical tracers, air-sea exchange of CO2 and related gases, and chemical tracers used to evaluate modeled circulation.
Juan José Gómez-Navarro, Eduardo Zorita, Christoph C. Raible, and Raphael Neukom
Clim. Past, 13, 629–648, https://doi.org/10.5194/cp-13-629-2017, https://doi.org/10.5194/cp-13-629-2017, 2017
Short summary
Short summary
This contribution aims at assessing to what extent the analogue method, a classic technique used in other branches of meteorology and climatology, can be used to perform gridded reconstructions of annual temperature based on the limited information from available but un-calibrated proxies spread across different locations of the world. We conclude that it is indeed possible, albeit with certain limitations that render the method comparable to more classic techniques.
Kathrin M. Keller, Sebastian Lienert, Anil Bozbiyik, Thomas F. Stocker, Olga V. Churakova (Sidorova), David C. Frank, Stefan Klesse, Charles D. Koven, Markus Leuenberger, William J. Riley, Matthias Saurer, Rolf Siegwolf, Rosemarie B. Weigt, and Fortunat Joos
Biogeosciences, 14, 2641–2673, https://doi.org/10.5194/bg-14-2641-2017, https://doi.org/10.5194/bg-14-2641-2017, 2017
Martin Wegmann, Yvan Orsolini, Emanuel Dutra, Olga Bulygina, Alexander Sterin, and Stefan Brönnimann
The Cryosphere, 11, 923–935, https://doi.org/10.5194/tc-11-923-2017, https://doi.org/10.5194/tc-11-923-2017, 2017
Short summary
Short summary
We investigate long-term climate reanalyses datasets to infer their quality in reproducing snow depth values compared to in situ measured data from meteorological stations that go back to 1900. We found that the long-term reanalyses do a good job in reproducing snow depths but have some questionable snow states early in the 20th century. Thus, with care, climate reanalyses can be a valuable tool to investigate spatial snow evolution in global warming and climate change studies.
Sifan Gu, Zhengyu Liu, Alexandra Jahn, Johannes Rempfer, Jiaxu Zhang, and Fortunat Joos
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2017-40, https://doi.org/10.5194/gmd-2017-40, 2017
Revised manuscript not accepted
Short summary
Short summary
This paper is the documentation of the implementation of neodymium (Nd) isotopes in the ocean model of CESM. Our model can simulate both Nd concentration and Nd isotope ratio in good agreement with observations. Our Nd-enabled ocean model makes it possible for direct model-data comparison in paleoceanographic studies, which can help to resolve some uncertainties and controversies in our understanding of past ocean evolution. Therefore, our model provides a useful tool for paleoclimate studies.
Stefan Brönnimann, Abdul Malik, Alexander Stickler, Martin Wegmann, Christoph C. Raible, Stefan Muthers, Julien Anet, Eugene Rozanov, and Werner Schmutz
Atmos. Chem. Phys., 16, 15529–15543, https://doi.org/10.5194/acp-16-15529-2016, https://doi.org/10.5194/acp-16-15529-2016, 2016
Short summary
Short summary
The Quasi-Biennial Oscillation is a wind oscillation in the equatorial stratosphere. Effects on climate have been found, which is relevant for seasonal forecasts. However, up to now only relatively short records were available, and even within these the climate imprints were intermittent. Here we analyze a 108-year long reconstruction as well as four 405-year long simulations. We confirm most of the claimed QBO effects on climate, but they are small, which explains apparently variable effects.
Marielle Saunois, Philippe Bousquet, Ben Poulter, Anna Peregon, Philippe Ciais, Josep G. Canadell, Edward J. Dlugokencky, Giuseppe Etiope, David Bastviken, Sander Houweling, Greet Janssens-Maenhout, Francesco N. Tubiello, Simona Castaldi, Robert B. Jackson, Mihai Alexe, Vivek K. Arora, David J. Beerling, Peter Bergamaschi, Donald R. Blake, Gordon Brailsford, Victor Brovkin, Lori Bruhwiler, Cyril Crevoisier, Patrick Crill, Kristofer Covey, Charles Curry, Christian Frankenberg, Nicola Gedney, Lena Höglund-Isaksson, Misa Ishizawa, Akihiko Ito, Fortunat Joos, Heon-Sook Kim, Thomas Kleinen, Paul Krummel, Jean-François Lamarque, Ray Langenfelds, Robin Locatelli, Toshinobu Machida, Shamil Maksyutov, Kyle C. McDonald, Julia Marshall, Joe R. Melton, Isamu Morino, Vaishali Naik, Simon O'Doherty, Frans-Jan W. Parmentier, Prabir K. Patra, Changhui Peng, Shushi Peng, Glen P. Peters, Isabelle Pison, Catherine Prigent, Ronald Prinn, Michel Ramonet, William J. Riley, Makoto Saito, Monia Santini, Ronny Schroeder, Isobel J. Simpson, Renato Spahni, Paul Steele, Atsushi Takizawa, Brett F. Thornton, Hanqin Tian, Yasunori Tohjima, Nicolas Viovy, Apostolos Voulgarakis, Michiel van Weele, Guido R. van der Werf, Ray Weiss, Christine Wiedinmyer, David J. Wilton, Andy Wiltshire, Doug Worthy, Debra Wunch, Xiyan Xu, Yukio Yoshida, Bowen Zhang, Zhen Zhang, and Qiuan Zhu
Earth Syst. Sci. Data, 8, 697–751, https://doi.org/10.5194/essd-8-697-2016, https://doi.org/10.5194/essd-8-697-2016, 2016
Short summary
Short summary
An accurate assessment of the methane budget is important to understand the atmospheric methane concentrations and trends and to provide realistic pathways for climate change mitigation. The various and diffuse sources of methane as well and its oxidation by a very short lifetime radical challenge this assessment. We quantify the methane sources and sinks as well as their uncertainties based on both bottom-up and top-down approaches provided by a broad international scientific community.
Stefan Muthers, Christoph C. Raible, Eugene Rozanov, and Thomas F. Stocker
Earth Syst. Dynam., 7, 877–892, https://doi.org/10.5194/esd-7-877-2016, https://doi.org/10.5194/esd-7-877-2016, 2016
Short summary
Short summary
The Atlantic Meridional Overturning Circulation (AMOC) is an important oceanic circulation system which transports large amounts of heat from the tropics to the north. This circulation is strengthened when less solar irradiance reaches the Earth, e.g. due to reduced solar activity or geoengineering techniques. In climate models, however, this response is overestimated when chemistry–climate interactions and the following shift in the atmospheric circulation systems are not considered.
Niklaus Merz, Andreas Born, Christoph C. Raible, and Thomas F. Stocker
Clim. Past, 12, 2011–2031, https://doi.org/10.5194/cp-12-2011-2016, https://doi.org/10.5194/cp-12-2011-2016, 2016
Short summary
Short summary
The last (Eemian) interglacial is studied with a global climate model focusing on Greenland and the adjacent high latitudes. A set of model experiments demonstrates the crucial role of changes in sea ice and sea surface temperatures for the magnitude of Eemian atmospheric warming. Greenland temperatures are found highly sensitive to sea ice changes in the Nordic Seas but rather insensitive to changes in the Labrador Sea. This behavior has important implications for Greenland ice core signals.
Bette L. Otto-Bliesner, Pascale Braconnot, Sandy P. Harrison, Daniel J. Lunt, Ayako Abe-Ouchi, Samuel Albani, Patrick J. Bartlein, Emilie Capron, Anders E. Carlson, Andrea Dutton, Hubertus Fischer, Heiko Goelzer, Aline Govin, Alan Haywood, Fortunat Joos, Allegra N. Legrande, William H. Lipscomb, Gerrit Lohmann, Natalie Mahowald, Christoph Nehrbass-Ahles, Jean-Yves Peterschmidt, Francesco S.-R. Pausata, Steven Phipps, and Hans Renssen
Clim. Past Discuss., https://doi.org/10.5194/cp-2016-106, https://doi.org/10.5194/cp-2016-106, 2016
Preprint retracted
Amaelle Landais, Valérie Masson-Delmotte, Emilie Capron, Petra M. Langebroek, Pepijn Bakker, Emma J. Stone, Niklaus Merz, Christoph C. Raible, Hubertus Fischer, Anaïs Orsi, Frédéric Prié, Bo Vinther, and Dorthe Dahl-Jensen
Clim. Past, 12, 1933–1948, https://doi.org/10.5194/cp-12-1933-2016, https://doi.org/10.5194/cp-12-1933-2016, 2016
Short summary
Short summary
The last lnterglacial (LIG; 116 000 to 129 000 years before present) surface temperature at the upstream Greenland NEEM deposition site is estimated to be warmer by +7 to +11 °C compared to the preindustrial period. We show that under such warm temperatures, melting of snow probably led to a significant surface melting. There is a paradox between the extent of the Greenland ice sheet during the LIG and the strong warming during this period that models cannot solve.
Philip Brohan, Gilbert P. Compo, Stefan Brönnimann, Robert J. Allan, Renate Auchmann, Yuri Brugnara, Prashant D. Sardeshmukh, and Jeffrey S. Whitaker
Clim. Past Discuss., https://doi.org/10.5194/cp-2016-78, https://doi.org/10.5194/cp-2016-78, 2016
Preprint withdrawn
Short summary
Short summary
We have used modern weather forecasting tools to reconstruct the dreadful European weather of 200 years ago – 1816 was the ‘year without a summer’; harvests failed, and people starved. We can show that 1816’s extreme climate was caused by the eruption of the Tambora volcano the previous year. This means we have some chance of predicting such extreme summers if they occur in future, though this is still a challenge to today’s forecast models.
Sonja G. Keel, Fortunat Joos, Renato Spahni, Matthias Saurer, Rosemarie B. Weigt, and Stefan Klesse
Biogeosciences, 13, 3869–3886, https://doi.org/10.5194/bg-13-3869-2016, https://doi.org/10.5194/bg-13-3869-2016, 2016
Short summary
Short summary
Records of stable oxygen isotope ratios in tree rings are valuable tools for reconstructing past climatic conditions. So far, they have not been used in global dynamic vegetation models. Here we present a model that simulates oxygen isotope ratios in tree rings. Our results compare well with measurements performed in European forests. The model is useful for studying oxygen isotope patterns of tree ring cellulose at large spatial and temporal scales.
Martin Možný, Rudolf Brázdil, Petr Dobrovolný, and Miroslav Trnka
Clim. Past, 12, 1421–1434, https://doi.org/10.5194/cp-12-1421-2016, https://doi.org/10.5194/cp-12-1421-2016, 2016
Short summary
Short summary
April–August temperature reconstruction for the Czech Lands based on grape-harvest dates in the 1499–2012 period constitutes a further important contribution to the better understanding of long-term spatiotemporal temperature variability in central Europe and includes the very long overlap period (1801–2012) used for calibration and verification, the consistent dominance of Pinot varieties through time, and the stability of vineyard management throughout the period reconstructed.
Rudolf Brázdil, Ladislava Řezníčková, Hubert Valášek, Lukáš Dolák, and Oldřich Kotyza
Clim. Past, 12, 1361–1374, https://doi.org/10.5194/cp-12-1361-2016, https://doi.org/10.5194/cp-12-1361-2016, 2016
Short summary
Short summary
The paper deals with climatic and human impacts of the strong Tambora (Indonesia) volcanic eruption in April 1815 over the Czech Lands territory based on analysis of documentary data and instrumental records. While climatic effects were related particularly to summers 1815 and 1816 (1816 is known as "a Year Without Summer"), quite important were societal impacts represented after bad harvest by steep increase in prices and shortages of food.
Gianna Battaglia, Marco Steinacher, and Fortunat Joos
Biogeosciences, 13, 2823–2848, https://doi.org/10.5194/bg-13-2823-2016, https://doi.org/10.5194/bg-13-2823-2016, 2016
Short summary
Short summary
The marine cycle of calcium carbonate (CaCO3) influences the distribution of CO2 between atmosphere and ocean, and thereby climate. We constrain export of biogenic CaCO3 (globally: 0.72–1.05 Gt C yr−1) and dissolution within the water column (~ 80 %) in a novel Monte Carlo set-up with the Bern3D model based on alkalinity data. Whether CaCO3 dissolves in the upper ocean remains unresolved. We recommend using constant (saturation-independent) dissolution rates in Earth system models.
Melanie Salvisberg
Geogr. Helv., 71, 57–59, https://doi.org/10.5194/gh-71-57-2016, https://doi.org/10.5194/gh-71-57-2016, 2016
M. Steinacher and F. Joos
Biogeosciences, 13, 1071–1103, https://doi.org/10.5194/bg-13-1071-2016, https://doi.org/10.5194/bg-13-1071-2016, 2016
O. Böhm, J. Jacobeit, R. Glaser, and K.-F. Wetzel
Hydrol. Earth Syst. Sci., 19, 4721–4734, https://doi.org/10.5194/hess-19-4721-2015, https://doi.org/10.5194/hess-19-4721-2015, 2015
B. D. Stocker and F. Joos
Earth Syst. Dynam., 6, 731–744, https://doi.org/10.5194/esd-6-731-2015, https://doi.org/10.5194/esd-6-731-2015, 2015
Short summary
Short summary
Estimates for land use change CO2 emissions (eLUC) rely on different approaches, implying conceptual differences of what eLUC represents. We use an Earth System Model and quantify differences between two commonly applied methods to be ~20% for historical eLUC but increasing under a future scenario. We decompose eLUC into component fluxes, quantify them, and discuss best practices for global carbon budget accountings and model-data intercomparisons relying on different methods to estimate eLUC.
P. Dobrovolný, M. Rybníček, T. Kolář, R. Brázdil, M. Trnka, and U. Büntgen
Clim. Past, 11, 1453–1466, https://doi.org/10.5194/cp-11-1453-2015, https://doi.org/10.5194/cp-11-1453-2015, 2015
Short summary
Short summary
A new data set of 3194 oak (Quercus spp.) ring width samples collected across the Czech Republic and covering the past 1250 years was analysed. The temporal distribution of negative and positive TRW extremes occurring is regular with no indication of clustering. Negative TRW extremes coincided with above-average March-May and June-August temperature means and below-average precipitation totals. Positive extremes coincided with higher summer precipitation, while temperatures were mostly normal.
J. J. Gómez-Navarro, C. C. Raible, and S. Dierer
Geosci. Model Dev., 8, 3349–3363, https://doi.org/10.5194/gmd-8-3349-2015, https://doi.org/10.5194/gmd-8-3349-2015, 2015
S. Muthers, F. Arfeuille, C. C. Raible, and E. Rozanov
Atmos. Chem. Phys., 15, 11461–11476, https://doi.org/10.5194/acp-15-11461-2015, https://doi.org/10.5194/acp-15-11461-2015, 2015
Short summary
Short summary
After volcanic eruptions different radiative and chemical processes take place in the stratosphere which perturb the ozone layer and cause pronounced dynamical changes. In idealized chemistry-climate model simulations the importance of these processes and the modulating role of the climate state is analysed. The chemical effect strongly differs between a preindustrial and present-day climate, but the effect on the dynamics is weak. Radiative processes dominate the dynamics in all climate states.
I. Himmelsbach, R. Glaser, J. Schoenbein, D. Riemann, and B. Martin
Hydrol. Earth Syst. Sci., 19, 4149–4164, https://doi.org/10.5194/hess-19-4149-2015, https://doi.org/10.5194/hess-19-4149-2015, 2015
Short summary
Short summary
The article presents a long-term analysis of flood occurrence along the southern part of the Upper Rhine River system and of 14 of its tributaries in France and Germany since 1480 BC. Special focus is given to temporal and spatial variations of flood events and their underlying meteorological causes over time, knowledge about the historical aspects of flood protection and flood vulnerability, while comparing selected historical and modern extreme events, establishing a common evaluation scheme.
M. Messmer, J. J. Gómez-Navarro, and C. C. Raible
Earth Syst. Dynam., 6, 541–553, https://doi.org/10.5194/esd-6-541-2015, https://doi.org/10.5194/esd-6-541-2015, 2015
J. J. Gómez-Navarro, O. Bothe, S. Wagner, E. Zorita, J. P. Werner, J. Luterbacher, C. C. Raible, and J. P Montávez
Clim. Past, 11, 1077–1095, https://doi.org/10.5194/cp-11-1077-2015, https://doi.org/10.5194/cp-11-1077-2015, 2015
C. Camenisch
Clim. Past, 11, 1049–1066, https://doi.org/10.5194/cp-11-1049-2015, https://doi.org/10.5194/cp-11-1049-2015, 2015
Short summary
Short summary
This paper applies the methods of historical climatology to present a climate reconstruction for the area of the Burgundian Low Countries during the 15th century. The results are based on documentary evidence. Approximately 3000 written records derived from about 100 different sources were examined and converted into seasonal seven-degree indices of temperature and precipitation.
G. Benito, R. Brázdil, J. Herget, and M. J. Machado
Hydrol. Earth Syst. Sci., 19, 3517–3539, https://doi.org/10.5194/hess-19-3517-2015, https://doi.org/10.5194/hess-19-3517-2015, 2015
Short summary
Short summary
Historical hydrology combines documentary data with hydrological methods to lengthen flow records to the past centuries. We describe the methodological evolution of historical hydrology under the influence of developments in hydraulics and statistics. Analysis of 45 case studies in Europe show that present flood magnitudes are not unusual in the context of the past, whereas flood frequency has decreased, although some rivers show a reactivation of rare floods over the last two decades.
Y. Brugnara, R. Auchmann, S. Brönnimann, R. J. Allan, I. Auer, M. Barriendos, H. Bergström, J. Bhend, R. Brázdil, G. P. Compo, R. C. Cornes, F. Dominguez-Castro, A. F. V. van Engelen, J. Filipiak, J. Holopainen, S. Jourdain, M. Kunz, J. Luterbacher, M. Maugeri, L. Mercalli, A. Moberg, C. J. Mock, G. Pichard, L. Řezníčková, G. van der Schrier, V. Slonosky, Z. Ustrnul, M. A. Valente, A. Wypych, and X. Yin
Clim. Past, 11, 1027–1047, https://doi.org/10.5194/cp-11-1027-2015, https://doi.org/10.5194/cp-11-1027-2015, 2015
Short summary
Short summary
A data set of instrumental pressure and temperature observations for the early instrumental period (before ca. 1850) is described. This is the result of a digitisation effort involving the period immediately after the eruption of Mount Tambora in 1815, combined with the collection of already available sub-daily time series. The highest data availability is therefore for the years 1815 to 1817. An analysis of pressure variability and of case studies in Europe is performed for that period.
F. Lehner, F. Joos, C. C. Raible, J. Mignot, A. Born, K. M. Keller, and T. F. Stocker
Earth Syst. Dynam., 6, 411–434, https://doi.org/10.5194/esd-6-411-2015, https://doi.org/10.5194/esd-6-411-2015, 2015
Short summary
Short summary
We present the first last-millennium simulation with the Community Earth System Model (CESM) including an interactive carbon cycle in both ocean and land component. Volcanic eruptions emerge as the strongest forcing factor for the preindustrial climate and carbon cycle. We estimate the climate-carbon-cycle feedback in CESM to be at the lower bounds of empirical estimates (1.3ppm/°C). The time of emergence for interannual global land and ocean carbon uptake rates are 1947 and 1877, respectively.
D. R. Schmatz, J. Luterbacher, N. E. Zimmermann, and P. B. Pearman
Clim. Past Discuss., https://doi.org/10.5194/cpd-11-2585-2015, https://doi.org/10.5194/cpd-11-2585-2015, 2015
Revised manuscript not accepted
Short summary
Short summary
Global climate model output for the Last Glacial Maximum (LGM) is downscaled to a very high resolution using the change factor method. We develop two new methods to extend current baseline climate to the LGM coastline so that the final data cover all terrestrial area at LGM. Results are gridded data for temperature, precipitation and 19 bioclimatic variables which are often used in studies on climate change impact on biological diversity, glacial refugia or migration during Holocene warming.
D. Zanchettin, O. Bothe, F. Lehner, P. Ortega, C. C. Raible, and D. Swingedouw
Clim. Past, 11, 939–958, https://doi.org/10.5194/cp-11-939-2015, https://doi.org/10.5194/cp-11-939-2015, 2015
Short summary
Short summary
A discrepancy exists between reconstructed and simulated Pacific North American pattern (PNA) features during the early 19th century. Pseudo-reconstructions demonstrate that the available PNA reconstruction is potentially skillful but also potentially affected by a number of sources of uncertainty and deficiencies especially at multidecadal and centennial timescales. Simulations and reconstructions can be reconciled by attributing the reconstructed PNA features to internal variability.
F. Spadin, D. Marti, R. Hidalgo-Staub, J. Rička, D. Fleitmann, and M. Frenz
Clim. Past, 11, 905–913, https://doi.org/10.5194/cp-11-905-2015, https://doi.org/10.5194/cp-11-905-2015, 2015
Short summary
Short summary
Fluid inclusions inside stalagmites retain information on the cave temperature at the time they formed and thus can be used to reconstruct the continental climate of the past. A method for extracting this information based on a thermodynamic model and size measurements of femtosecond-laser-induced vapour bubbles is presented. Applying our method to stalagmites taken from the Milandre cave in the Swiss Jura Mountains demonstrate that palaeotemperatures can be determined with an accuracy of ±1°C.
J. Hall, B. Arheimer, G. T. Aronica, A. Bilibashi, M. Boháč, O. Bonacci, M. Borga, P. Burlando, A. Castellarin, G. B. Chirico, P. Claps, K. Fiala, L. Gaál, L. Gorbachova, A. Gül, J. Hannaford, A. Kiss, T. Kjeldsen, S. Kohnová, J. J. Koskela, N. Macdonald, M. Mavrova-Guirguinova, O. Ledvinka, L. Mediero, B. Merz, R. Merz, P. Molnar, A. Montanari, M. Osuch, J. Parajka, R. A. P. Perdigão, I. Radevski, B. Renard, M. Rogger, J. L. Salinas, E. Sauquet, M. Šraj, J. Szolgay, A. Viglione, E. Volpi, D. Wilson, K. Zaimi, and G. Blöschl
Proc. IAHS, 370, 89–95, https://doi.org/10.5194/piahs-370-89-2015, https://doi.org/10.5194/piahs-370-89-2015, 2015
B. D. Stocker, R. Spahni, and F. Joos
Geosci. Model Dev., 7, 3089–3110, https://doi.org/10.5194/gmd-7-3089-2014, https://doi.org/10.5194/gmd-7-3089-2014, 2014
Short summary
Short summary
Simulating the spatio-temporal dynamics of inundation is key to understanding the role of wetlands under past and future climate change. Here, we describe and assess the DYPTOP model that predicts the extent of inundation and the global spatial distribution of peatlands. DYPTOP makes use of high-resolution topography information and uses ecosystem water balance and peatland soil C balance criteria to simulate peatland spatial dynamics and carbon accumulation.
M. Gehlen, R. Séférian, D. O. B. Jones, T. Roy, R. Roth, J. Barry, L. Bopp, S. C. Doney, J. P. Dunne, C. Heinze, F. Joos, J. C. Orr, L. Resplandy, J. Segschneider, and J. Tjiputra
Biogeosciences, 11, 6955–6967, https://doi.org/10.5194/bg-11-6955-2014, https://doi.org/10.5194/bg-11-6955-2014, 2014
Short summary
Short summary
This study evaluates potential impacts of pH reductions on North Atlantic deep-sea ecosystems in response to latest IPCC scenarios.Multi-model projections of pH changes over the seafloor are analysed with reference to a critical threshold based on palaeo-oceanographic studies, contemporary observations and model results. By 2100 under the most severe IPCC CO2 scenario, pH reductions occur over ~23% of deep-sea canyons and ~8% of seamounts – including seamounts proposed as marine protected areas.
P. Stucki, S. Brönnimann, O. Martius, C. Welker, M. Imhof, N. von Wattenwyl, and N. Philipp
Nat. Hazards Earth Syst. Sci., 14, 2867–2882, https://doi.org/10.5194/nhess-14-2867-2014, https://doi.org/10.5194/nhess-14-2867-2014, 2014
Short summary
Short summary
This catalog contains 240 (8 extreme) high-impact windstorms in Switzerland since 1859 in 3 severity classes. Validation with independent wind and damage data reveals that the most hazardous winter storms are captured, while too few moderate windstorms may be detected. We find evidence of high winter storm activity in the early and late 20th century compared to the mid-20th century in both damage and wind data. This indicates a covariability of hazard and related damages on decadal timescales.
R. Roth, S. P. Ritz, and F. Joos
Earth Syst. Dynam., 5, 321–343, https://doi.org/10.5194/esd-5-321-2014, https://doi.org/10.5194/esd-5-321-2014, 2014
R. Brázdil, K. Chromá, L. Řezníčková, H. Valášek, L. Dolák, Z. Stachoň, E. Soukalová, and P. Dobrovolný
Hydrol. Earth Syst. Sci., 18, 3873–3889, https://doi.org/10.5194/hess-18-3873-2014, https://doi.org/10.5194/hess-18-3873-2014, 2014
K. Willett, C. Williams, I. T. Jolliffe, R. Lund, L. V. Alexander, S. Brönnimann, L. A. Vincent, S. Easterbrook, V. K. C. Venema, D. Berry, R. E. Warren, G. Lopardo, R. Auchmann, E. Aguilar, M. J. Menne, C. Gallagher, Z. Hausfather, T. Thorarinsdottir, and P. W. Thorne
Geosci. Instrum. Method. Data Syst., 3, 187–200, https://doi.org/10.5194/gi-3-187-2014, https://doi.org/10.5194/gi-3-187-2014, 2014
S. Muthers, J. G. Anet, A. Stenke, C. C. Raible, E. Rozanov, S. Brönnimann, T. Peter, F. X. Arfeuille, A. I. Shapiro, J. Beer, F. Steinhilber, Y. Brugnara, and W. Schmutz
Geosci. Model Dev., 7, 2157–2179, https://doi.org/10.5194/gmd-7-2157-2014, https://doi.org/10.5194/gmd-7-2157-2014, 2014
C. S. Zerefos, K. Tourpali, P. Zanis, K. Eleftheratos, C. Repapis, A. Goodman, D. Wuebbles, I. S. A. Isaksen, and J. Luterbacher
Atmos. Chem. Phys., 14, 7705–7720, https://doi.org/10.5194/acp-14-7705-2014, https://doi.org/10.5194/acp-14-7705-2014, 2014
J. Hall, B. Arheimer, M. Borga, R. Brázdil, P. Claps, A. Kiss, T. R. Kjeldsen, J. Kriaučiūnienė, Z. W. Kundzewicz, M. Lang, M. C. Llasat, N. Macdonald, N. McIntyre, L. Mediero, B. Merz, R. Merz, P. Molnar, A. Montanari, C. Neuhold, J. Parajka, R. A. P. Perdigão, L. Plavcová, M. Rogger, J. L. Salinas, E. Sauquet, C. Schär, J. Szolgay, A. Viglione, and G. Blöschl
Hydrol. Earth Syst. Sci., 18, 2735–2772, https://doi.org/10.5194/hess-18-2735-2014, https://doi.org/10.5194/hess-18-2735-2014, 2014
K. M. Keller, F. Joos, and C. C. Raible
Biogeosciences, 11, 3647–3659, https://doi.org/10.5194/bg-11-3647-2014, https://doi.org/10.5194/bg-11-3647-2014, 2014
S. Affolter, D. Fleitmann, and M. Leuenberger
Clim. Past, 10, 1291–1304, https://doi.org/10.5194/cp-10-1291-2014, https://doi.org/10.5194/cp-10-1291-2014, 2014
N. Merz, A. Born, C. C. Raible, H. Fischer, and T. F. Stocker
Clim. Past, 10, 1221–1238, https://doi.org/10.5194/cp-10-1221-2014, https://doi.org/10.5194/cp-10-1221-2014, 2014
I. Mariani, A. Eichler, T. M. Jenk, S. Brönnimann, R. Auchmann, M. C. Leuenberger, and M. Schwikowski
Clim. Past, 10, 1093–1108, https://doi.org/10.5194/cp-10-1093-2014, https://doi.org/10.5194/cp-10-1093-2014, 2014
L. Ramella Pralungo, L. Haimberger, A. Stickler, and S. Brönnimann
Earth Syst. Sci. Data, 6, 185–200, https://doi.org/10.5194/essd-6-185-2014, https://doi.org/10.5194/essd-6-185-2014, 2014
L. S. Shumilovskikh, D. Fleitmann, N. R. Nowaczyk, H. Behling, F. Marret, A. Wegwerth, and H. W. Arz
Clim. Past, 10, 939–954, https://doi.org/10.5194/cp-10-939-2014, https://doi.org/10.5194/cp-10-939-2014, 2014
J. G. Anet, S. Muthers, E. V. Rozanov, C. C. Raible, A. Stenke, A. I. Shapiro, S. Brönnimann, F. Arfeuille, Y. Brugnara, J. Beer, F. Steinhilber, W. Schmutz, and T. Peter
Clim. Past, 10, 921–938, https://doi.org/10.5194/cp-10-921-2014, https://doi.org/10.5194/cp-10-921-2014, 2014
C. S. Zerefos, P. Tetsis, A. Kazantzidis, V. Amiridis, S. C. Zerefos, J. Luterbacher, K. Eleftheratos, E. Gerasopoulos, S. Kazadzis, and A. Papayannis
Atmos. Chem. Phys., 14, 2987–3015, https://doi.org/10.5194/acp-14-2987-2014, https://doi.org/10.5194/acp-14-2987-2014, 2014
B. Ringeval, S. Houweling, P. M. van Bodegom, R. Spahni, R. van Beek, F. Joos, and T. Röckmann
Biogeosciences, 11, 1519–1558, https://doi.org/10.5194/bg-11-1519-2014, https://doi.org/10.5194/bg-11-1519-2014, 2014
C. C. Raible, F. Lehner, J. F. González-Rouco, and L. Fernández-Donado
Clim. Past, 10, 537–550, https://doi.org/10.5194/cp-10-537-2014, https://doi.org/10.5194/cp-10-537-2014, 2014
P. Breitenmoser, S. Brönnimann, and D. Frank
Clim. Past, 10, 437–449, https://doi.org/10.5194/cp-10-437-2014, https://doi.org/10.5194/cp-10-437-2014, 2014
F. Arfeuille, D. Weisenstein, H. Mack, E. Rozanov, T. Peter, and S. Brönnimann
Clim. Past, 10, 359–375, https://doi.org/10.5194/cp-10-359-2014, https://doi.org/10.5194/cp-10-359-2014, 2014
A. Stickler, S. Brönnimann, S. Jourdain, E. Roucaute, A. Sterin, D. Nikolaev, M. A. Valente, R. Wartenburger, H. Hersbach, L. Ramella-Pralungo, and D. Dee
Earth Syst. Sci. Data, 6, 29–48, https://doi.org/10.5194/essd-6-29-2014, https://doi.org/10.5194/essd-6-29-2014, 2014
F. Arfeuille, B. P. Luo, P. Heckendorn, D. Weisenstein, J. X. Sheng, E. Rozanov, M. Schraner, S. Brönnimann, L. W. Thomason, and T. Peter
Atmos. Chem. Phys., 13, 11221–11234, https://doi.org/10.5194/acp-13-11221-2013, https://doi.org/10.5194/acp-13-11221-2013, 2013
J. G. Anet, S. Muthers, E. Rozanov, C. C. Raible, T. Peter, A. Stenke, A. I. Shapiro, J. Beer, F. Steinhilber, S. Brönnimann, F. Arfeuille, Y. Brugnara, and W. Schmutz
Atmos. Chem. Phys., 13, 10951–10967, https://doi.org/10.5194/acp-13-10951-2013, https://doi.org/10.5194/acp-13-10951-2013, 2013
R. Schneider, J. Schmitt, P. Köhler, F. Joos, and H. Fischer
Clim. Past, 9, 2507–2523, https://doi.org/10.5194/cp-9-2507-2013, https://doi.org/10.5194/cp-9-2507-2013, 2013
N. Merz, C. C. Raible, H. Fischer, V. Varma, M. Prange, and T. F. Stocker
Clim. Past, 9, 2433–2450, https://doi.org/10.5194/cp-9-2433-2013, https://doi.org/10.5194/cp-9-2433-2013, 2013
A. Stenke, C. R. Hoyle, B. Luo, E. Rozanov, J. Gröbner, L. Maag, S. Brönnimann, and T. Peter
Atmos. Chem. Phys., 13, 9713–9729, https://doi.org/10.5194/acp-13-9713-2013, https://doi.org/10.5194/acp-13-9713-2013, 2013
S. Brönnimann, J. Bhend, J. Franke, S. Flückiger, A. M. Fischer, R. Bleisch, G. Bodeker, B. Hassler, E. Rozanov, and M. Schraner
Atmos. Chem. Phys., 13, 9623–9639, https://doi.org/10.5194/acp-13-9623-2013, https://doi.org/10.5194/acp-13-9623-2013, 2013
S. Brönnimann, I. Mariani, M. Schwikowski, R. Auchmann, and A. Eichler
Clim. Past, 9, 2013–2022, https://doi.org/10.5194/cp-9-2013-2013, https://doi.org/10.5194/cp-9-2013-2013, 2013
R. Brázdil, P. Dobrovolný, M. Trnka, O. Kotyza, L. Řezníčková, H. Valášek, P. Zahradníček, and P. Štěpánek
Clim. Past, 9, 1985–2002, https://doi.org/10.5194/cp-9-1985-2013, https://doi.org/10.5194/cp-9-1985-2013, 2013
R. Roth and F. Joos
Clim. Past, 9, 1879–1909, https://doi.org/10.5194/cp-9-1879-2013, https://doi.org/10.5194/cp-9-1879-2013, 2013
Y. Brugnara, S. Brönnimann, J. Luterbacher, and E. Rozanov
Atmos. Chem. Phys., 13, 6275–6288, https://doi.org/10.5194/acp-13-6275-2013, https://doi.org/10.5194/acp-13-6275-2013, 2013
R. Spahni, F. Joos, B. D. Stocker, M. Steinacher, and Z. C. Yu
Clim. Past, 9, 1287–1308, https://doi.org/10.5194/cp-9-1287-2013, https://doi.org/10.5194/cp-9-1287-2013, 2013
M. Eby, A. J. Weaver, K. Alexander, K. Zickfeld, A. Abe-Ouchi, A. A. Cimatoribus, E. Crespin, S. S. Drijfhout, N. R. Edwards, A. V. Eliseev, G. Feulner, T. Fichefet, C. E. Forest, H. Goosse, P. B. Holden, F. Joos, M. Kawamiya, D. Kicklighter, H. Kienert, K. Matsumoto, I. I. Mokhov, E. Monier, S. M. Olsen, J. O. P. Pedersen, M. Perrette, G. Philippon-Berthier, A. Ridgwell, A. Schlosser, T. Schneider von Deimling, G. Shaffer, R. S. Smith, R. Spahni, A. P. Sokolov, M. Steinacher, K. Tachiiri, K. Tokos, M. Yoshimori, N. Zeng, and F. Zhao
Clim. Past, 9, 1111–1140, https://doi.org/10.5194/cp-9-1111-2013, https://doi.org/10.5194/cp-9-1111-2013, 2013
S. Zürcher, R. Spahni, F. Joos, M. Steinacher, and H. Fischer
Biogeosciences, 10, 1963–1981, https://doi.org/10.5194/bg-10-1963-2013, https://doi.org/10.5194/bg-10-1963-2013, 2013
V. Cocco, F. Joos, M. Steinacher, T. L. Frölicher, L. Bopp, J. Dunne, M. Gehlen, C. Heinze, J. Orr, A. Oschlies, B. Schneider, J. Segschneider, and J. Tjiputra
Biogeosciences, 10, 1849–1868, https://doi.org/10.5194/bg-10-1849-2013, https://doi.org/10.5194/bg-10-1849-2013, 2013
F. Joos, R. Roth, J. S. Fuglestvedt, G. P. Peters, I. G. Enting, W. von Bloh, V. Brovkin, E. J. Burke, M. Eby, N. R. Edwards, T. Friedrich, T. L. Frölicher, P. R. Halloran, P. B. Holden, C. Jones, T. Kleinen, F. T. Mackenzie, K. Matsumoto, M. Meinshausen, G.-K. Plattner, A. Reisinger, J. Segschneider, G. Shaffer, M. Steinacher, K. Strassmann, K. Tanaka, A. Timmermann, and A. J. Weaver
Atmos. Chem. Phys., 13, 2793–2825, https://doi.org/10.5194/acp-13-2793-2013, https://doi.org/10.5194/acp-13-2793-2013, 2013
L. Fernández-Donado, J. F. González-Rouco, C. C. Raible, C. M. Ammann, D. Barriopedro, E. García-Bustamante, J. H. Jungclaus, S. J. Lorenz, J. Luterbacher, S. J. Phipps, J. Servonnat, D. Swingedouw, S. F. B. Tett, S. Wagner, P. Yiou, and E. Zorita
Clim. Past, 9, 393–421, https://doi.org/10.5194/cp-9-393-2013, https://doi.org/10.5194/cp-9-393-2013, 2013
O. Wetter and C. Pfister
Clim. Past, 9, 41–56, https://doi.org/10.5194/cp-9-41-2013, https://doi.org/10.5194/cp-9-41-2013, 2013
N. Vogel, Y. Scheidegger, M. S. Brennwald, D. Fleitmann, S. Figura, R. Wieler, and R. Kipfer
Clim. Past, 9, 1–12, https://doi.org/10.5194/cp-9-1-2013, https://doi.org/10.5194/cp-9-1-2013, 2013
Related subject area
Subject: Climate Modelling | Archive: Historical Records | Timescale: Decadal-Seasonal
A major midlatitude hurricane in the Little Ice Age
ClimeApp: Opening Doors to the Past Global Climate. New Data Processing Tool for the ModE-RA Climate Reanalysis
Wet season rainfall characteristics and temporal changes for Cape Town, South Africa, 1841–2018
Evaluating the utility of qualitative personal diaries in precipitation reconstruction in the eighteenth and nineteenth centuries
The Irish famine of 1740–1741: famine vulnerability and "climate migration"
John Dickie and Grant Wach
Clim. Past, 20, 1141–1160, https://doi.org/10.5194/cp-20-1141-2024, https://doi.org/10.5194/cp-20-1141-2024, 2024
Short summary
Short summary
A Little Ice Age (LIA) hurricane was characterized using key storm intensity metrics from historical naval records. Its unusual intensity was driven by a higher temperature gradient between continental and coastal atmospheric circulation that drove intense midlatitude extratropical transition. Quantitative attributes embedded in historical records allow multidisciplinary research to extend our understanding of climate processes through the historical period.
Richard Warren, Niklaus Emanuel Bartlome, Noémie Wellinger, Jörg Franke, Ralf Hand, Stefan Brönnimann, and Heli Huhtamaa
EGUsphere, https://doi.org/10.5194/egusphere-2024-743, https://doi.org/10.5194/egusphere-2024-743, 2024
Short summary
Short summary
This paper introduces the ClimeApp web application. The app provides quick access to the ModE-RA global climate reanalysis. Users can calculate and plot anomalies, composites, correlations, regressions and annual cycles across three different datasets and four climate variables. By re-examining the 1815 Tambora eruption, we demonstrate how combining results from different datasets and sources can help us investigate the historical palaeoclimate and integrate it into human history.
Nothabo Elizabeth Ndebele, Stefan Grab, and Herbert Hove
Clim. Past, 18, 2463–2482, https://doi.org/10.5194/cp-18-2463-2022, https://doi.org/10.5194/cp-18-2463-2022, 2022
Short summary
Short summary
An investigation of the wet season characteristics including wet day frequencies, wet–dry spells, and season onset, end and length is done for Cape Town, South Africa. The temporal changes since 1841 in these characteristics indicate an increased incidence of shorter wet seasons and long dry spells in the most recent 3 decades compared to previous years. There is evidence of some associations between solar cycles and the Southern Oscillation index cycles with the wet season characteristics.
Alice Harvey-Fishenden and Neil Macdonald
Clim. Past, 17, 133–149, https://doi.org/10.5194/cp-17-133-2021, https://doi.org/10.5194/cp-17-133-2021, 2021
Short summary
Short summary
This paper evaluates the utility of personal diaries in precipitation reconstruction and value of multiple overlapping diaries for producing a more objective record. Through analysis of >27 500 daily weather descriptions, we demonstrate that indices derived from such qualitative sources can create valuable precipitation records, with potential for this methodology to be applied to earlier material or in areas without extant instrumental records to address spatial and temporal gaps in knowledge.
S. Engler, F. Mauelshagen, J. Werner, and J. Luterbacher
Clim. Past, 9, 1161–1179, https://doi.org/10.5194/cp-9-1161-2013, https://doi.org/10.5194/cp-9-1161-2013, 2013
Cited articles
Achilles, W.: Getreidepreise und Getreidehandelsbeziehungen europäischer Räume im 16. und 17. Jahrhundert, Zeitschrift für Agrargeschichte und Agrarsoziologie, 7, 32–55, 1959 (in German).
Allen, R. C.: The great divergence in European wages and prices from the Middle Ages to the First World War, Explor. Econ. Hist., 38, 411–447, https://doi.org/10.1006/exeh.2001.0775, 2001.
Amann, B., Szidat, S., and Grosjean, M.: A millennial-long record of warm season precipitation and flood frequency for the North-western Alps inferred from varved lake sediments: Implications for the future, Quaternary Sci. Rev., 115, 89–100, https://doi.org/10.1016/j.quascirev.2015.03.002, 2015.
Ammann, C. M., Joos, F., Schimel, D. S., Otto-Bliesner, B. L., and Tomas, R. A.: Solar influence on climate during the past millennium: Results from transient simulations with the NCAR Climate System Model, P. Nal. Acad. Sci. USA, 104, 3713–3718, https://doi.org/10.1073/pnas.0605064103, 2007.
Andersson, M. E., Verronen, P. T., Rodger, C. J., Clilverd, M. A., and Seppälä, A.: Missing driver in the Sun–Earth connection from energetic electron precipitation impacts mesospheric ozone, Nat. Commun., 5, 5197, https://doi.org/10.1038/ncomms6197, 2014.
Audouin-Rouzeau, F.: Les chemins de la peste, Le rat, la puce et l'homme, Presses Universitaires de Rennes, Rennes, 2003 (in French).
Bao, Q., Lin, P., Zhou, T., Liu, Y., Yu, Y., Wu, G., He, B., He, J., Li, L., Li, J., Li, Y., Liu, H., Qiao, F., Song, Z., Wang, B., Wang, J., Wang, P., Wang, X., Wang, Z., Wu, B., Wu, T., Xu, Y., Yu, H., Zhao, W., Zheng, W., and Zhou, L.: The flexible global ocean-atmosphere-land system model, spectral version 2: FGOALS-s2, Adv. Atmos. Sci., 30, 561–576, https://doi.org/10.1007/s00376-012-2113-9, 2013.
Barron, C.: Introduction, England and the Low Countries 1327–1477, in: England and the Low Countries in the Late Middle Ages, edited by: Barron, C. and Saul, N., Sutton Publishing, Stroud, 1–28, 1998.
Bauch, M.: Der Regen, das Korn und das Salz: die Madonna di San Luca und das Wettermirakel von 1433. Eine klimahistorische Fallstudie zu Bologna und Italien in den 1430er Jahren, Quellen und Forschungen aus italienischen Archiven und Bibliotheken, 95, 188–217, 2015 (in German).
Bauch, M.: The day the sun turned blue, A volcanic eruption in the early 1460s and its putative climatic impact – a globally perceived volcanic disaster in the Late Middle Ages? in: Historical Disaster Experiences, A Comparative and Transcultural Survey between Asia and Europe, edited by: Schenk, G. J., Springer, Heidelberg, 2016.
Bauernfeind, W.: Materielle Grundstrukturen im Spätmittelalter und der Frühen Neuzeit, Preisentwicklung und Agrarkonjunktur am Nürnberger Getreidemarkt von 1339 bis 1670, Nürnberger Werkstücke zur Stadt- und Landesgeschichte, Korn und Berg, Nuremberg, 50, 1993 (in German).
Beaune, C. (Ed.): Bourgeois de Paris: Journal de 1405 à 1449, Livre de poche, Paris, 1990 (in French).
Behringer, W.: Climatic change and witch-hunting: the impact of the Little Ice Age on mentalities, Climatic Change, 43, 335–351, 1999.
Bell, D. P.: The Little Ice Age and the Jews: Environmental history and the mercurial nature of Jewish-Christian relations in early modern Germany, AJS Review, 32/1, 1–27, 2008.
Billen, C.: L'ergot, le seigle et la ville. In: Le interazioni fra economia e ambiente biologico nell'Europa preindustriale, secc. XIII–XVIII, Atti della “Quarantunesima settimana di studi”, 26–30 aprile 2009/Economic and Biological Interactions in Pre-industrial Europe from the 13th to the 18th Centuries, edited by: Cavaciocchi, S., Istituto internazionale di storia economica “F. Datini”, Prato, Serie 2, Atti delle “Settimane di Studi” e altri convegni 41, Firenze University Press, Florence, 81–90, 2010 (in French).
Biraben, J.-N.: Les hommes et la peste en France et dans les pays européens et méditerranéens, 1: La peste dans l'histoire, Mouton, Paris and The Hague, 1975 (in French).
Blockmans, W. P.: Vlaanderen 1384–1482, in: Algemene Geschiedenis der Nederlanden, 4: Middeleeuwen, Sociaal-economische geschiedenis 1300–1482, politieke ontentwikkeling, instellingen en recht 1384–1482, socioculturele en intellectuele ontwikkeling 1384–1520, kerkelijk en godsdienstig leven 1384–1520, edited by: Blok, D. P., Verhulst, A., Jansen, H. P. H., van Caenegem, R. C., Weiler, A. G., and Prevenier, W., Fibula-van Dishoeck, Haarlem, 201–223, 1980 (in Dutch).
Bothe, O., Jungclaus, J. H., and Zanchettin, D.: Consistency of the multi-model CMIP5/PMIP3-past1000 ensemble, Clim. Past, 9, 2471–2487, https://doi.org/10.5194/cp-9-2471-2013, 2013.
Brázdil, R. and Kotyza, O.: History of weather and climate in the Czech Lands, 1 (Period 1000–1500), Zürcher Geographische Schriften, 62, ETH, Zurich, 1995.
Brázdil, R., Pfister, C., Wanner, H., von Storch, H., and Luterbacher, J.: Historical climatology in Europe – The state of the art, Climatic Change, 70, 363–430, https://doi.org/10.1007/s10584-005-5924-1, 2005.
Brázdil, R., Kotyza, O., and Dobrovolný, P.: July 1432 and August 2002 – two millennial floods in Bohemia?, Hydrolog. Sci. J., 51, 848–863, https://doi.org/10.1623/hysj.51.5.848, 2006.
Brie, F. W. D. (Ed.): Continuation of the Brut from 1430–1446, in: The Brut or the Chronicles of England, Kegan, Trench, Trübner & Co., London, UK, 456–490, 1906a.
Brie, F. W. D. (Ed.): From the capture of Rouen (1419) to the accession of Edward IV (1461), in: The Brut or The Chronicles of England, Kegan, Trench, Trübner & Co., London, UK, 491–533, 1906b.
Broadberry, S. N., Campbell, B. M. S., Klein, A., van Leeuwen, B., and Overton, M.: British Economic Growth 1270–1870, Cambridge University Press, Cambridge, 2015.
Brugnara, Y., Brönnimann, S., Luterbacher, J., and Rozanov, E.: Influence of the sunspot cycle on the Northern Hemisphere wintertime circulation from long upper-air data sets, Atmos. Chem. Phys., 13, 6275–6288, https://doi.org/10.5194/acp-13-6275-2013, 2013.
Brunner, K.: Die Seegfrörnen des Bodensees, Eine Dokumentation in Bilddarstellungen, Schriften des Vereins für Geschichte des Bodensees und seiner Umgebung, 122, 71–84, 2004 (in German).
Buisman, J.: Extreem weer! Een canon van weergaloze winters & zinderende zomers, hagel & hozen, stormen & wazersnoden, van Wijnen, Franeker, 2011 (in Dutch).
Büntgen, U., Frank, D. C., Nievergelt, D., and Esper, J.: Summer temperature variations in the European Alps, A. D. 755–2004, J. Climate, 19, 5606–5623, https://doi.org/10.1175/JCLI3917.1, 2006.
Büntgen, U., Tegel, W., Nicolussi, K., McCormick, M., Frank, D., Trouet, V., Kaplan, J. O., Herzig, F., Heussner, K.-U., Wanner, H., Luterbacher, J., and Esper, J.: 2500 years of European climate variability and human susceptibility, Science, 331, 578–582, https://doi.org/10.1126/science.1197175, 2011.
Calendar of the Close Rolls Henry VI: vol. 3, 1435–1441, Public Record Office, London, 1937.
Camenisch, C.: Two decades of crisis, famine and dearth during the 1480s and 1490 in western and central europe [...] Socio-natural entaglements in historical societies, edited by: David, T., Mathieu, J., Schaufelbuehl, J. M., and Straumann, T., Schweizerisches Jahrbuch für Wirtschafts- und Sozialgeschichte, 27, Chronos, Zurich, 65–77, 2012 (in German).
Camenisch, C.: Endless cold: a seasonal reconstruction of temperature and precipitation in the Burgundian Low Countries during the 15th century based on documentary evidence, Clim. Past, 11, 1049–1066, https://doi.org/10.5194/cp-11-1049-2015, 2015a.
Camenisch, C.: Endlose Kälte, Witterungsverlauf und Getreidepreise in den Burgundischen Niederlanden im 15. Jahrhundert, Wirtschafts-, Sozial- und Umweltgeschichte (WSU), 5, Schwabe, Basel, 2015b (in German).
Camenisch, C.: Two Decades of Crisis, Famine and Dearth during the 1480s and 1490s in Western and Central Europe, in: Famines in the Premodern World (1300–1800), edited by: Collet, D. and Schuh, M., Socio-natural Entanglements in Historical Societies, Springer Science, in press, 2016.
Campbell, B. M. S.: Four famines and a pestilence: harvest, price, and wage variations in England, 13th to 19th centuries, Agrarhistoria på många sätt; 28 studier om manniskan och jorden, Festskrift till Janken Myrdal på hans 60-årsdag (Agrarian History Many Ways: 28 Studies on Humans and the Land, Festschrift to Janken Myrdal 2009), edited by: Liljewall, B., Flygare, I. A., Lange, U., Ljunggren, L., and Söderberg, J., Kungl. Skogs- och Lantbruksakademien, Stockholm, 23–56, 2009.
Campbell, B. M. S.: Grain yields on English demesnes after the Black Death, In: Town and countryside in the age of the Black Death: Essays in Honour of John Hatcher, edited by: Bailey, M. and Rigby, S., Turnhout, Brepols, 121–174, 2012.
Campbell, B. M. S.: The great transition. Climate, disease and society in the Late-Medieval world, Cambridge University Press, Cambridge, 2016.
Cardauns, H., Hegel, K., Schröder, K. G. T., and Birlinger, A. (Eds.): Cölner Jahrbücher des 14. und 15. Jahrhunderts, Die Chroniken der niederrheinischen Städte, Cöln, 2, Chroniken der Deutschen Städte, 13, S. Hirzel, Leipzig, 1–203, 1876 (in German).
Carus-Wilson, E. M. and Coleman, O.: England's Export Trade, 1275–1547, Claredon Press, Oxford, 1963.
Contamine, P., Bompaire, M., Lebecq, S., and Sarrazin, J.-L.: L'économie médiévale, Armand Colin, Paris, 1993 (in French).
Curry, A.: Der Hundertjährige Krieg, 1337–1453, Primus, Darmstadt, 2012 (in German).
Dawson, A.: So Foul and Fair a Day, A history of Scotland's weather and climate, Birlinn, Edinburgh, 2009.
Day, J.: The medieval market economy, Basil Blackwell, Oxford, 1987.
de Jong, R., Kamenik, C., and Grosjean, M.: Cold-season temperatures in the European Alps during the past millennium: Variability, seasonality and recent trends, Quaternary Sci. Rev., 82, 1–12, https://doi.org/10.1016/j.quascirev.2013.10.007, 2013.
Derville, A.: Les villes de Flandre et d'Artois 900–1500, Presses Universitaires du Septentrion, Villeneuve d'Ascq, 2002 (in French).
Dirlmeier, U.: Lebensmittel- und Versorgungspolitik mittelalterlicher Städte als demographisch relevanter Faktor? Saeculum – Jahrbuch für Universalgeschichte, 39/2, 149–153, 1988 (in German).
Dong, L., Zhou, T., and Wu, B.: Indian Ocean warming during 1958–2004 simulated by a climate system model and its mechanism, Clim. Dynam., 42, 203–217, https://doi.org/10.1007/s00382-013-1722-z, 2014.
Dufresne, J.-L., Foujols, M.-A., Denvil, S., Caubel, A., Marti, O., Aumont, O., Balkanski, Y., Bekki, S., Bellenger, H., Benshila, R., Bony, S., Bopp, L., Braconnot, P., Brockmann, P., Cadule, P., Cheruy, F., Codron, F., Cozic, A., Cugnet, D., de Noblet, N., Duvel, J.-P., Ethé, C., Fairhead, L., Fichefet, T., Flavoni, S., Friedlingstein, P., Grandpeix, J.-Y., Guez, L., Guilyardi, E., Hauglustaine, D., Hourdin, F., Idelkadi, A., Ghattas, J., Joussaume, S., Kageyama, M., Krinner, G., Labetoulle, S., Lahellec, A., Lefebvre, M.-P., Lefevre, F., Levy, C., Li, Z., Lloyd, J., Lott, F., Madec, G., Mancip, M., Marchand, M., Masson, S., Meurdesoif, Y., Mignot, J., Musat, I., Parouty, S., Polcher, J., Rio, C., Schulz, M., Swingedouw, D., Szopa, S., Talandier, C., Terray, P., Viovy, N., and Vuichard, N.: Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5, Clim. Dynam., 40, 2123–2165, https://doi.org/10.1007/s00382-012-1636-1, 2013.
Eddy, J. A.: The Maunder Minimum, Science, 192, 1189–1202, 1976a.
Eddy, J. A.: The sun since the Bronze Age, in: Physics and solar planetary environments: Proceedings of the international symposium on solar-terrestrial physics, June 7–18, 1976, Boulder, Colorado, Volume II, 958–972, 1976b.
Eddy, J. A.: Climate and the changing sun, Climatic Change, 1, 173–190, 1977.
Engel, P.: The Realm of St Stephen. A history of medieval Hungary, Tauris, London, 276–277, 2001.
Fagan, B.: The Little Ice Age, How climate made history, 1300–1850, Basic Books, New York, 2002.
Fejér, G.: Codex diplomaticus Hungariae ecclesiasticus ac civiles, 10/7, Typis Typogr, Regiae Vniversitatis Vngariae, Budae [Budapest], 1843 (in Latin).
Fernández-Donado, L., González-Rouco, J. F., Raible, C. C., Ammann, C. M., Barriopedro, D., García-Bustamante, E., Jungclaus, J. H., Lorenz, S. J., Luterbacher, J., Phipps, S. J., Servonnat, J., Swingedouw, D., Tett, S. F. B., Wagner, S., Yiou, P., and Zorita, E.: Large–scale temperature response to external forcing in simulations and reconstructions of the last millennium, Clim. Past, 9, 393–421, https://doi.org/10.5194/cp-9-393-2013, 2013.
Fernández-Donado, L., González-Rouco, J. F., Garcia-Bustamante, E., Smerdon, J. S., and Raible, C. C.: Last millennium Northern Hemisphere temperature reconstructions: Ensemble uncertainties and their influence on model-data comparison, Geophys. Res. Lett., submitted, 2016.
Fischer, E. M., Luterbacher, J., Zorita, E., Tett, S., Casty, C., and Wanner, H.: European climate response to tropical volcanic eruptions over the last half millennium, Geophys. Res. Lett., 34, L05707, https://doi.org/10.1029/2006GL027992, 2007.
Galloway, P. R.: Basic patterns in annual variations in fertility, nuptiality, mortality, and prices in pre-industrial Europe, Pop. Stud.-J. Demog., 42, 275–303, 1988.
Glaser, R. and Stangl, H.: Historical floods in the Dutch Rhine Delta, Nat. Hazards Earth Syst. Sci., 3, 605–613, https://doi.org/10.5194/nhess-3-605-2003, 2003.
Glaser, R. and Riemann, D.: A thousand-year record of temperature variations for Germany and Central Europe based on documentary data, J. Quaternary Sci., 24, 437–449, https://doi.org/10.1002/jqs.1302, 2009.
Gray, L. J., Beer, J., Geller, M., Haigh, J. D., Lockwood, M., Matthes, K., Cubasch, U., Fleitmann, D., Harrison, G., Hood, L., Luterbacher, J., Meehl, G. A., Shindell, D., van Geel, B., and White, W.: Solar influences on climate, Rev. Geophys., 48, RG4001, https://doi.org/10.1029/2009RG000282, 2010.
Hasenfratz, A., Fleitmann, D., Häuselmann, A., Lehner, F., Cheng, H., Edwards, R. L., Leuenberger, M., Raible, C. C., Luterbacher, J.: Central European cold-season temperature variations over the past two millennia recorded in stalagmite from the Swiss Jura Mountains, in preparation, 2016.
Hatcher, J.: The Great Slump of the Mid-fifteenth Century, Progress and problems in medieval England: Essays in honour of Edward Miller, edited by: Britnell, R. H. and Hatcher, J., Cambridge University Press, Cambridge, 237–272, 1996.
Herlihy, D.: Outline of population developments in the Middle Ages, edited by: Herrmann, B., Sprandel, R.: Determinanten der Bevölkerungsentwicklung im Mittelalter, VCH Verlagsgesellschaft, Weinheim, 1–23, 1987.
Hernańdez-Almeida, I., Grosjean, M., Przybylak, R., and Tylmann, W.: A chrysophyte-based quantitative reconstruction of winter severity from varved lake sediments in NE Poland during the past millennium and its relationship to natural climate variability, Quaternary Sci. Rev., 122, 74–88, https://doi.org/10.1016/j.quascirev.2015.05.029, 2015.
Höfler, K.: Fontes Rerum Austriacarum. Oesterrechische Geschichts-Quellen, Scriptores, 6, Geschichtsschreiber der Husitischen Bewegung in Böhmen, 2, Kaiserlich-königlichen Hof- und Staatsdruckerei, Wien, 1865 (in German).
Iványi, B.: Bártfa szabad királyi város levéltára (Archives of the free royal town of Bártfa [Bardejov]), 1, Magyar Tudományos Akadémia, Budapest, 1910 (in Hungarian).
Jiang, Y. and Xu, Z.: On the Spörer Minimum, Astrophys. Space Sci., 118, 159–162, 1986.
Jörg, C.: Teure, Hunger, Grosses Sterben, Hungersnöte und Versorgungskrisen in den Städten des Reiches während des 15. Jahrhunderts, Monographien zur Geschichte des Mittelalters 55, Hiersemann, Stuttgart, 2008 (in German).
Jungclaus, J. H., Lohmann, K., and Zanchettin, D.: Enhanced 20th-century heat transfer to the Arctic simulated in the context of climate variations over the last millennium, Clim. Past, 10, 2201–2213, https://doi.org/10.5194/cp-10-2201-2014, 2014.
Kappas, M.: Klimatologie: Klimaforschung im 21. Jahrhundert. Herausforderung für Natur- und Sozialwissenschaften, Spektrum Akademischer Verlag, Heidelberg, 2009 (in German).
Keller, K. M., Joos, F., Lehner, F., and Raible, C. C.: Detecting changes in marine responses to ENSO from 850 to 2100 C.E.: Insights from the ocean carbon cycle, Geophys. Res. Lett., 42, 518–525, https://doi.org/10.1002/2014GL062398, 2015.
Kiss, A.: Árvizek és magas vízszintek a 13–15, századi Magyarországon az egykorú írott források tükrében: Megfoghatók-e és mi alapján foghatók meg rövid, közép és hosszú távú változások? (Floods and high water levels in 13th–15th-century Hungary, in the light of contemporary documentary evidence, Is it possible to detect short-, medium- and long-term changes?), in: Környezettörténet 2 (Environmental History 2), edited by: Kázmér, M. and Hantken K., Budapest, 43–55, 2011 (in Hungarian).
Kiss, A.: Dunai árvizek Magyarországon a középkori írott források tükrében: 1000–1500, Esettanulmányok, forráskritika és elemzési problémák (Danube floods in Hungary in medieval documentary evidence: 1000–1500, Case studies, source critics and analysis problems), in: Középkortörténeti tanulmányok 7 (Research in Medieval Studies 7), edited by: Kiss, A., Piti, F., and Szabados, G., Középkorász Műhely, Szeged, 339–355, 2012 (in Hungarian).
Krämer, D.: “Menschen grasten mit dem Vieh”, Die letzte grosse Hungerkrise der Schweiz 1816/1817, Wirtschafts-, Sozial- und Umweltgeschichte (WSU), 4, Schwabe, Basel, 2015 (in German).
Kuys, J., de Leeuw, L., Paquay, V., and van Schaïk, R. (Eds.): De Tielse kroniek. Een geschiedenis van de Lage Landen van de Volksverhuizingen tot het midden van de vijftiende eeuw, met een vervolg over de jaren 1552–1566, Verloren, Amsterdam, 1983 (in Dutch).
Lamb, H. H.: Climate, history and the modern world, Methuen, London, 1982.
Landrum, L., Otto-Bliesner, B. L., Wahl, E. R., Conley, A., Lawrence, P. J., Rosenbloom, N., and Teng, H.: Last millennium climate and its variability in CCSM4, J. Climate, 26, 1085–1111, https://doi.org/10.1175/JCLI-D-11-00326.1, 2012.
Landsteiner, E.: Wenig Brot und saurer Wein. Kontinuität und Wandel in der zentraleuropäischen Ernährungskultur im letzten Drittel des 16. Jahrhunderts, in: Kulturelle Konsequenzen der “Kleinen Eiszeit”/Cultural Consequences of the “Little Ice Age”, edited by: Behringer, W., Lehmann, H., and Pfister, C., Veröffentlichungen des Max-Planck-Instituts für Geschichte 212, Vandenhoeck & Ruprecht, Göttingen, 87–147, 2005 (in German).
Lehner, F., Born, A., Raible, C. C., and Stocker, T. F.: Amplified inception of European Little Ice Age by sea ice-ocean-atmosphere feedbacks, J. Climate, 26, 7586–7602, https://doi.org/10.1175/JCLI-D-12-00690.1, 2013.
Lehner, F., Joos, F., Raible, C. C., Mignot, J., Born, A., Keller, K. M., and Stocker, T. F.: Climate and carbon cycle dynamics in a CESM simulation from 850 to 2100 CE, Earth Syst. Dynam., 6, 411–434, https://doi.org/10.5194/esd-6-411-2015, 2015.
Le Roy Ladurie, E.: Histoire humaine et comparée du climat, 1, Canicules et glaciers (XIIIe–XVIIIe siècles), Fayard, Paris, 2004 (in French).
Livi-Bacci, M.: A concise history of world population, Blackwell, Cambridge, 1992.
Litzenburger, L.: Une ville face au climat: Metz à la fin du Moyen Âge, 1400–1530, Presses universitaires de Nancy, Nancy, 2015 (in French).
Luterbacher, J. and Pfister, C.: The year without a summer, Nat. Geosci., 8, 246–248, https://doi.org/10.1038/ngeo2404, 2015.
Luterbacher, J., Rickli, R., Tinguely, C., Xoplaki, E., Schüpbach, E., Dietrich, D., Hüsler, J., Ambühl, M., Pfister, C., Beeli, P., Dietrich, U., Dannecker, A., Davies, T. D., Jones, P. D., Slonosky, V., Ogilvie, A. E. J., Maheras, P., Kolyva-Machera, F., Martin-Vide, J., Barriendos, M., Alcoforado, M. J., Nunez, F., Jónsson, T., Glaser, R., Jacobeit, J., Beck, C., Philipp, A., Beyer, U., Kaas, E., Schmith, T., Bärring, L., Jönsson, P., Rácz, L., and Wanner, H.: Reconstruction of monthly mean sea level pressure over Europe for the Late Maunder Minimum period (1675–1715), Int. J. Climatol., 20, 1049–1066, 2000.
Luterbacher, J., Rickli, R., Xoplaki, E., Tinguely, C., Beck, C., Pfister, C., and Wanner, H.: The late maunder minimum (1675–1715) – a key period for studying decadal scale climatic change in Europe, Climatic Change, 49/4, 441–462, https://doi.org/10.1023/A:1010667524422, 2001.
Luterbacher, J., Werner, J. P.; Smerdon, J. E., Fernández-Donado, L., González-Rouco, F. J., Barriopedro, D., Ljungqvist, F. C., Büntgen, U., Zorita, E., Wagner, S., Esper, J., McCarroll, D., Toreti, A., Frank, D., Jungclaus, J. H., Barriendos, M., Bertolin, C., Bothe, O., Brázdil, R., Camuffo, D., Dobrovolný, P., Gagen, M., García-Bustamante, E., Ge, Q., Gómez-Navarro, J. J., Guiot, J., Hao, Z., Hegerl, G. C., Holmgren, K., Klimenko, V. V., Martín-Chivelet, J., Pfister, C., Roberts, N., Schindler, A., Schurer, A., Solomina, O., von Gunten, L., Wahl, E., Wanner, H., Wetter, O., Xoplaki, E., Yuan, N., Zanchettin, D., Zhang, H., and Zerefos, C.: European summer temperatures since Roman times, Environ. Res. Lett., 11, 024001, https://doi.org/10.1088/1748-9326/11/2/024001, 2016.
Maissen, T.: Geschichte der Schweiz, hier + jetzt, Baden, 2010 (in German).
Malanima, P.: The long decline of a leading economy: GDP in central and northern Italy, 1300–1913, Eur. Rev. Econ. Hist., 15, 169–219, https://doi.org/10.1017/S136149161000016X, 2011.
Marx, W. (Ed.): An English Chronicle 1377–1461, A New Edition, Boydell, Woodbridge, UK, 2003.
Maughan, N.: Impact of cooling periods on epidemics during the 15th century in Provence (Southeastern France): Current state of knowledge and perspectives of research, Past Present, forthcoming, 2016.
Miller, G. H., Geirsdóttir, A., Zhong, Y., Larsen, D. J., Otto-Bliesner, B. L., Holland, M. M., Bailey, D. A., Refsnider, K. A., Lehman, S. J., Southon, J. R., Anderson, C., Björnsson, H., and Thordarson, T.: Abrupt onset of the Little Ice Age triggered by volcanism and sustained by sea-ice/ocean feedbacks, Geophys. Res. Lett., 39, L02708, https://doi.org/10.1029/2011GL050168, 2012.
Morgenthaler, H.: Teuerungen und Massnahmen zur Linderung ihrer Not im 15. Jahrhundert, Archiv des Historischen Vereins des Kantons Bern, 26, 1–61, 1921 (in German).
Munro, J. H.: Revisions of the Phelps Brown and Hopkins “basket of consumables” commodity price series, 1264–1700, available at: http://www.economics.utoronto.ca/munro5/ResearchData.html, last access 24 October 2006.
Muthers, S., Arfeuille, F., Raible, C. C., and Rozanov, E.: The impacts of volcanic aerosol on stratospheric ozone and the Northern Hemisphere polar vortex: separating radiative-dynamical changes from direct effects due to enhanced aerosol heterogeneous chemistry, Atmos. Chem. Phys., 15, 11461–11476, https://doi.org/10.5194/acp-15-11461-2015, 2015.
Neukom, R., Gergis, J., Karoly, D. J., Wanner, H., Curran, M., Elbert, J., Gonzalez-Rouco, F., Linsley, B. K., Moy, A. D., Mundo, I., Raible, C. C., Steig, E. J., van Ommen, T., Vance, T., Villalba, R., Zinke, J., and Frank, D.: Inter-hemispheric temperature variability over the past millennium, Nature Climate Change, 4, 362–367, https://doi.org/10.1038/nclimate2174, 2014.
Neveux, H.: Déclin et reprise, La fluctuation biséculaire, in: L'âge classique des paysans, 1340–1789, edited by: Neveux, H., Jacquart, J., and Le Roy Ladurie, E., Histoire de la France rurale, 2, Seuil, Paris, 11–173, 1975 (in French).
Ortega, P., Lehner, F., Swingedouw, D., Masson-Delmotte, V., Raible, C. C., Casado, M., and Yiou, P.: A multi-proxy model-tested NAO reconstruction for the last millennium, Nature, 523, 71–75, https://doi.org/10.1038/nature14518, 2015.
Ortvay, T.: Pozsony város története (History of Pozsony Town), 2, 3, Stampfel Károly, Pozsony [Bratislava], 1900.
PAGES 2k consortium: Continental-scale temperature variability during the past two millennia, Nat. Geosci., 6, 339–346, https://doi.org/10.1038/ngeo1797, 2013.
PAGES 2k-PMIP3 group: Continental-scale temperature variability in PMIP3 simulations and PAGES 2k regional temperature reconstructions over the past millennium, Clim. Past, 11, 1673–1699, https://doi.org/10.5194/cp-11-1673-2015, 2015.
Pfister, C.: Wetternachhersage, 500 Jahre Klimavariationen und Naturkatastrophen (1496–1995), Haupt, Bern, 1999 (in German).
Pfister, C.: Climatic extremes, recurrent crises and witch hunts: strategies of European societies in coping with exogenous shocks in the late sixteenth and early seventeenth centuries, Mediev. Hist. J., 10, 33–73, https://doi.org/10.1177/097194580701000202, 2007.
Pfister, C. and Brázdil, R.: Social vulnerability to climate in the “Little Ice Age”: an example from Central Europe in the early 1770s, Clim. Past, 2, 115–129, https://doi.org/10.5194/cp-2-115-2006, 2006.
Pichard, G. and Roucaute E.: Sept siècle d'histoire hydroclimatique du Rhône d'Orange à la mer (1300–2000), Climat, crue, inondations, Méditerranée, Hors-série, 2014 (in French).
Raible, C. C., Yoshimori, M., Stocker, T. F., and Casty, C.: Extreme midlatitude cyclones and their implications to precipitation and wind speed extremes in simulations of the Maunder Minimum versus present day conditions, Clim. Dynam., 28, 409–423, https://doi.org/10.1007/s00382-006-0188-7, 2007.
Reinhardt, V.: Die Geschichte der Schweiz, Von den Anfängen bis heute, 2nd Edn., C. H. Beck, München, 2013 (in German).
Riemann, D., Glaser, R., Kahle, M., and Vogt, S.: The CRE tambora.org – new data and tools for collaborative research in climate and environmental history, Geoscience Data Journal, 2, 63–77, https://doi.org/10.1002/gdj3.30, 2015.
Robock, A.: Volcanic eruptions and climate, Rev. Geophys., 38, 191–219, https://doi.org/10.1029/1998RG000054, 2000.
Robock, A. and Mao, J.: The volcanic signal in surface temperature observations, J. Climate, 8, 1086–1103, 1995.
Rohr, C.: Extreme Naturereignisse im Ostalpenraum. Naturerfahrung im Spätmittelalter und am Beginn der Neuzeit, Böhlau Verlag, Cologne, 2007 (in German).
Saluzzo, J.-F. : Des Hommes et des germes, Presses Universitaires de France, Paris, 2004 (in French).
Schmidt, G. A., Jungclaus, J. H., Ammann, C. M., Bard, E., Braconnot, P., Crowley, T. J., Delaygue, G., Joos, F., Krivova, N. A., Muscheler, R., Otto-Bliesner, B. L., Pongratz, J., Shindell, D. T., Solanki, S. K., Steinhilber, F., and Vieira, L. E. A.: Climate forcing reconstructions for use in PMIP simulations of the last millennium (v1.0), Geosci. Model Dev., 4, 33–45, https://doi.org/10.5194/gmd-4-33-2011, 2011.
Schmidt, G. A., Kelley, M., Nazarenko, L., Ruedy, R., Russell, G. L., Aleinov, I., Bauer, M., Bauer, S. E., Bhat, M. K., Bleck, R., Canuto, V., Chen, Y.-H., Cheng, Y., Clune, T. L., Del Genio, A., de Fainchtein, R., Faluvegi, G., Hansen, J. E., Healy, R. J., Kiang, N. Y., Koch, D., Lacis, A. A., LeGrande, A. N., Lerner, J., Lo, K. K., Matthews, E. E., Menon, S., Miller, R. L., Oinas, V., Oloso, A. O., Perlwitz, J. P., Puma, M. J., Putman, W. M., Rind, D., Romanou, A., Sato, M., Shindell, D. T., Sun, S., Syed, R. A., Tausnev, N., Tsigaridis, K., Unger, N., Voulgarakis, A., Yao, M.-S., and Zhang, J.: Configuration and assessment of the GISS ModelE2 contributions to the CMIP5 archive, J. Adv. Model. Earth Syst., 6, 141–184, https://doi.org/10.1002/2013MS000265, 2014.
Schmitz, H.-J.: Faktoren der Preisbildung für Getreide und Wein in der Zeit von 800 bis 1350, Quellen zur Forschung der Agrargeschichte 20, Gustav Fischer Verlag, Stuttgart, 1968 (in German).
Schnyder, W. (Ed.): Quellen zur Zürcher Wirtschaftsgeschichte von den Anfängen bis 1500, 1, Rascher, Zurich, Leipzig, 1937 (in German).
Schurer, A. P., Tett, S. F. B., and Hegerl, G. C.: Small influence of solar variability on climate over the past millennium, Nat. Geosci., 7, 104–108, https://doi.org/10.1038/ngeo2040, 2014.
Shapiro, A. I., Schmutz, W., Rozanov, E., Schoell, M., Haberreiter, M., Shapiro, A. V., and Nyeki, S.: A new approach to the long-term reconstruction of the solar irradiance leads to large historical solar forcing, Astron. Astrophys., 529, A67, https://doi.org/10.1051/0004-6361/201016173, 2011.
Shindell, D. T., Schmidt, G. A., Mann, M. E., Rind, D., and Waple, A.: Solar forcing of regional climate change during the Maunder Minimum, Science, 294, 2149–2152, https://doi.org/10.1126/science.1064363, 2001.
Sigl, M., McConnell, J. R., Layman, L., Maselli, O., McGwire, K., Pasteris, D., Dahl-Jensen, D., Steffensen, J. P., Vinther, B., Edwards, R., Mulvaney, R., and Kipfstuhl, S.: A new bipolar ice core record of volcanism from WAIS Divide and NEEM and implications for climate forcing of the last 2000 years, J. Geophys. Res.-Atmos., 118, 1151–1169, https://doi.org/10.1029/2012JD018603, 2013.
Spufford, P.: Money and its use in medieval Europe, Cambridge University Press, Cambridge, 1989.
Steinhilber, F., Abreu, J. A., Beer, J., and McCracken, K. G.: Interplanetary magnetic field during the past 9300 years inferred from cosmogenic radionuclides, J. Geophys. Res.-Space, 115, A01104, https://doi.org/10.1029/2009JA014193, 2010.
Stephenson, M. J.: Wool yields in the medieval economy, Econ. Hist. Rev., 41, 368–391, https://doi.org/10.1111/j.1468-0289.1988.tb00471.x, 1988.
Stocker, T., Qin, D., Plattner, G.-K., Alexander, L., Allen, S., Bindoff, N., Bréon, F.-M., Church, J., Cubasch, U., Emori, S., Forster, P., Friedlingstein, P., Gillett, N., Gregory, J., Hartmann, D., Jansen, E., Kirtman, B., Knutti, R., Krishna Kumar, K., Lemke, P., Marotzke, J., Masson-Delmotte, V., Meehl, G., Mokhov, I., Piao, S., Ramaswamy, V., Randall, D., Rhein, M., Rojas, M., Sabine, C., Shindell, D., Talley, L., Vaughan, D., and Xie, S.-P.: Technical summary, in: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, UK, 2013.
Timmreck, C.: Modeling the climatic effects of large explosive volcanic eruptions, Wiley Interdisciplinary Reviews: Climate Change, 3, 545–564, https://doi.org/10.1002/wcc.192, 2012.
Tits-Dieuaide, M.-J.: La formation des prix céréaliers en Brabant et en Flandre au XVe siècle, Editions de l'Université, Brussels, 1975 (in French).
Trachsel, M., Grosjean, M., Larocque-Tobler, I., Schwikowski, M., Blass, A., and Sturm, M.: Quantitative summer temperature reconstruction derived from a combined biogenic Si and chironomid record from varved sediments of Lake Silvaplana (south-eastern Swiss Alps) back to AD 1177, Quaternary Sci. Rev., 29, 2719–2730, https://doi.org/10.1016/j.quascirev.2010.06.026, 2010.
Trachsel, M., Kamenik, C., Grosjean, M., McCarroll, D., Moberg, A., Brázdil, R., Büntgen, U., Dobrovolný, P., Esper, J., Frank, D. C., Friedrich, M., Glaser, R., Larocque-Tobler, I., Nicolussi, K., and Riemann, D.: Multi-archive summer temperature reconstruction for the European Alps, AD 1053–1996, Quaternary Sci. Rev., 46, 66–79, https://doi.org/10.1016/j.quascirev.2012.04.021, 2012.
UNFCCC: United Nations Framework Convention in Climate Change, UNCFCCC, http://unfccc.int/key_documents/the_convention/items/2853.php, 1994.
van der Wee, H.: Introduction, The agricultural development of the Low Countries as revealed by the tithe and rent statistics, 1250–1800, in: Productivity of land and agricultural innovation in the Low Countries, 1250–1800, edited by: van der Wee, H. and van Cauwenberghe, E., Leuven University Press, Louvain, 1–23, 1978.
van Engelen, A. F. V., Buisman, J., and Ijnsen, F.: A millennium of weather, winds and water in the Low Countries, History Climate, 101–124, 2001.
van Schaïk, R. W. M.: Drie vijftiende-eeuwse crises in de Nederlanden, Oorzaken, kenmerken en gevolgen, in: Leidschrift, Historisch Tijdschrift, 28, 67–84, 2013 (in Dutch).
van Zanden, J. L. and van Leeuwen, B.: Persistent but not consistent: the growth of national income in Holland 1347–1807, Explor. Econ. Hist., 49, 119–130, https://doi.org/10.1016/j.eeh.2011.11.002, 2012.
Wanner, H., Beer, J., Bütikofer, J., Crowley, T. J., Cubasch, U., Flückiger, J., Goosse, H., Grosjean, M., Joos, F., Kaplan, J. O., Küttel, M., Müller, S. A., Prentice, I. C., Solomina, O., Stocker, T. F., Tarasov, P., Wagner, M., and Widmann, M.: Mid- to late Holocene climate change: an overview, Quaternary Sci. Rev., 27, 1791–1828, https://doi.org/10.1016/j.quascirev.2008.06.013, 2008.
Walter, F.: Hiver, Histoire d'une saison, Éditions Payot & Rivages, Paris, 2014 (in French).
Williams, C. M., Henry, H. A. L., and Sinclair, B. J.: Cold truths: how winter drives responses of terrestrial organisms to climate change, Biol. Rev., 90, 214–235, https://doi.org/10.1111/brv.12105, 2015.
Wilson, R., Miles, D., Loader, N. J., Melvin, T., Cunningham, L., Cooper, R., and Briffa, K.: A millennial long March–July precipitation reconstruction for southern-central England, Clim. Dynam., 40, 997–1017, https://doi.org/10.1007/s00382-012-1318-z, 2013.
Winiwarter, V. and Knoll, M.: Umweltgeschichte, Eine Einführung, Böhlau, Cologne, 2007 (in German).
Winstedt, E. O.: Some records of the gypsies in Germany, 1407–1792, in: Journal of the Gypsy Lore Society, Third Series, XI, 97–141, 1932.
Xoplaki, E., Maheras, P., and Luterbacher, J.: Variability of climate in meridional Balkans during the periods 1675–1715 and 1780–1830 and its impact on human life, Climatic Change, 48/4, 581–614, https://doi.org/10.1023/A:1005616424463, 2001.
Yoshimori, M., Stocker, T. F., Raible, C. C., and Renold, M.: Externally forced and internal variability in ensemble climate simulations of the Maunder Minimum, J. Climate, 18, 4253–4270, https://doi.org/10.1175/JCLI3537.1, 2005.
Short summary
Throughout the last millennium, several cold periods occurred which affected humanity. Here, we investigate an exceptionally cold decade during the 15th century. The cold conditions challenged the food production and led to increasing food prices and a famine in parts of Europe. In contrast to periods such as the “Year Without Summer” after the eruption of Tambora, these extreme climatic conditions seem to have occurred by chance and in relation to the internal variability of the climate system.
Throughout the last millennium, several cold periods occurred which affected humanity. Here, we...