Articles | Volume 19, issue 4
https://doi.org/10.5194/cp-19-851-2023
https://doi.org/10.5194/cp-19-851-2023
Research article
 | 
27 Apr 2023
Research article |  | 27 Apr 2023

The ST22 chronology for the Skytrain Ice Rise ice core – Part 2: An age model to the last interglacial and disturbed deep stratigraphy

Robert Mulvaney, Eric W. Wolff, Mackenzie M. Grieman, Helene H. Hoffmann, Jack D. Humby, Christoph Nehrbass-Ahles, Rachael H. Rhodes, Isobel F. Rowell, Frédéric Parrenin, Loïc Schmidely, Hubertus Fischer, Thomas F. Stocker, Marcus Christl, Raimund Muscheler, Amaelle Landais, and Frédéric Prié

Related authors

Laser ablation inductively coupled plasma mass spectrometry measurements for high-resolution chemical ice core analyses with a first application to an ice core from Skytrain Ice Rise (Antarctica)
Helene Hoffmann, Jason Day, Rachael H. Rhodes, Mackenzie Grieman, Jack Humby, Isobel Rowell, Christoph Nehrbass-Ahles, Robert Mulvaney, Sally Gibson, and Eric Wolff
The Cryosphere, 18, 4993–5013, https://doi.org/10.5194/tc-18-4993-2024,https://doi.org/10.5194/tc-18-4993-2024, 2024
Short summary
On the relationship between δO2∕N2 variability and ice sheet surface conditions in Antarctica
Romilly Harris Stuart, Amaëlle Landais, Laurent Arnaud, Christo Buizert, Emilie Capron, Marie Dumont, Quentin Libois, Robert Mulvaney, Anaïs Orsi, Ghislain Picard, Frédéric Prié, Jeffrey Severinghaus, Barbara Stenni, and Patricia Martinerie
The Cryosphere, 18, 3741–3763, https://doi.org/10.5194/tc-18-3741-2024,https://doi.org/10.5194/tc-18-3741-2024, 2024
Short summary
Age, thinning and spatial origin of the Beyond EPICA ice from a 2.5D ice flow model
Ailsa Chung, Frédéric Parrenin, Robert Mulvaney, Luca Vittuari, Massimo Frezzotti, Antonio Zanutta, David A. Lilien, Marie G. P. Cavitte, and Olaf Eisen
EGUsphere, https://doi.org/10.5194/egusphere-2024-1650,https://doi.org/10.5194/egusphere-2024-1650, 2024
Short summary
Drivers of late Holocene ice core chemistry in Dronning Maud Land: the context for the ISOL-ICE project
V. Holly L. Winton, Robert Mulvaney, Joel Savarino, Kyle R. Clem, and Markus M. Frey
Clim. Past, 20, 1213–1232, https://doi.org/10.5194/cp-20-1213-2024,https://doi.org/10.5194/cp-20-1213-2024, 2024
Short summary
The Paleochrono-1.1 probabilistic model to derive optimized and consistent chronologies for several paleoclimatic sites
Frédéric Parrenin, Marie Bouchet, Christo Buizert, Emilie Capron, Ellen Corrick, Russell Drysdale, Kenji Kawamura, Amaëlle Landais, Robert Mulvaney, Ikumi Oyabu, and Sune Rasmussen
EGUsphere, https://doi.org/10.5194/egusphere-2023-2911,https://doi.org/10.5194/egusphere-2023-2911, 2024
Short summary

Related subject area

Subject: Ice Dynamics | Archive: Ice Cores | Timescale: Millenial/D-O
Comprehensive uncertainty estimation of the timing of Greenland warmings in the Greenland ice core records
Eirik Myrvoll-Nilsen, Keno Riechers, Martin Wibe Rypdal, and Niklas Boers
Clim. Past, 18, 1275–1294, https://doi.org/10.5194/cp-18-1275-2022,https://doi.org/10.5194/cp-18-1275-2022, 2022
Short summary
Advection and non-climate impacts on the South Pole Ice Core
Tyler J. Fudge, David A. Lilien, Michelle Koutnik, Howard Conway, C. Max Stevens, Edwin D. Waddington, Eric J. Steig, Andrew J. Schauer, and Nicholas Holschuh
Clim. Past, 16, 819–832, https://doi.org/10.5194/cp-16-819-2020,https://doi.org/10.5194/cp-16-819-2020, 2020
Short summary
Objective extraction and analysis of statistical features of Dansgaard–Oeschger events
Johannes Lohmann and Peter D. Ditlevsen
Clim. Past, 15, 1771–1792, https://doi.org/10.5194/cp-15-1771-2019,https://doi.org/10.5194/cp-15-1771-2019, 2019
Short summary
Interpolation methods for Antarctic ice-core timescales: application to Byrd, Siple Dome and Law Dome ice cores
T. J. Fudge, E. D. Waddington, H. Conway, J. M. D. Lundin, and K. Taylor
Clim. Past, 10, 1195–1209, https://doi.org/10.5194/cp-10-1195-2014,https://doi.org/10.5194/cp-10-1195-2014, 2014
The Antarctic ice core chronology (AICC2012): an optimized multi-parameter and multi-site dating approach for the last 120 thousand years
D. Veres, L. Bazin, A. Landais, H. Toyé Mahamadou Kele, B. Lemieux-Dudon, F. Parrenin, P. Martinerie, E. Blayo, T. Blunier, E. Capron, J. Chappellaz, S. O. Rasmussen, M. Severi, A. Svensson, B. Vinther, and E. W. Wolff
Clim. Past, 9, 1733–1748, https://doi.org/10.5194/cp-9-1733-2013,https://doi.org/10.5194/cp-9-1733-2013, 2013

Cited articles

Adolphi, F. and Muscheler, R.: Synchronizing the Greenland ice core and radiocarbon timescales over the Holocene – Bayesian wiggle-matching of cosmogenic radionuclide records, Clim. Past, 12, 15–30, https://doi.org/10.5194/cp-12-15-2016, 2016. 
Adolphi, F., Bronk Ramsey, C., Erhardt, T., Edwards, R. L., Cheng, H., Turney, C. S. M., Cooper, A., Svensson, A., Rasmussen, S. O., Fischer, H., and Muscheler, R.: Connecting the Greenland ice-core and U / Th timescales via cosmogenic radionuclides: testing the synchroneity of Dansgaard–Oeschger events, Clim. Past, 14, 1755–1781, https://doi.org/10.5194/cp-14-1755-2018, 2018. 
Ahn, J. and Brook, E. J.: Atmospheric CO2 and climate on millennial time scales during the last glacial period, Science, 322, 83–85, https://doi.org/10.1126/science.1160832, 2008. 
Baggenstos, D., Severinghaus, J. P., Mulvaney, R., McConnell, J. R., Sigl, M., Maselli, O., Petit, J. R., Grente, B., and Steig, E. J.: A Horizontal Ice Core From Taylor Glacier, Its Implications for Antarctic Climate History, and an Improved Taylor Dome Ice Core Time Scale, Paleoceanography and Paleoclimatology, 33, 778–794, https://doi.org/10.1029/2017pa003297, 2018. 
Baumgartner, M., Kindler, P., Eicher, O., Floch, G., Schilt, A., Schwander, J., Spahni, R., Capron, E., Chappellaz, J., Leuenberger, M., Fischer, H., and Stocker, T. F.: NGRIP CH4 concentration from 120 to 10 kyr before present and its relation to a δ15N temperature reconstruction from the same ice core, Clim. Past, 10, 903–920, https://doi.org/10.5194/cp-10-903-2014, 2014. 
Short summary
We present an age scale for a new ice core drilled at Skytrain Ice Rise, an ice rise facing the Ronne Ice Shelf in Antarctica. Various measurements in the ice and air phases are used to match the ice core to other Antarctic cores that have already been dated, and a new age scale is constructed. The 651 m ice core includes ice that is confidently dated to 117 000–126 000 years ago, in the last interglacial. Older ice is found deeper down, but there are flow disturbances in the deeper ice.