Articles | Volume 17, issue 1
https://doi.org/10.5194/cp-17-317-2021
https://doi.org/10.5194/cp-17-317-2021
Research article
 | Highlight paper
 | 
29 Jan 2021
Research article | Highlight paper |  | 29 Jan 2021

Greenland climate simulations show high Eemian surface melt which could explain reduced total air content in ice cores

Andreas Plach, Bo M. Vinther, Kerim H. Nisancioglu, Sindhu Vudayagiri, and Thomas Blunier

Related authors

A global re-analysis of regionally resolved emissions and atmospheric mole fractions of SF6 for the period 2005–2021
Martin Vojta, Andreas Plach, Saurabh Annadate, Sunyong Park, Gawon Lee, Pallav Purohit, Florian Lindl, Xin Lan, Jens Mühle, Rona L. Thompson, and Andreas Stohl
EGUsphere, https://doi.org/10.5194/egusphere-2024-811,https://doi.org/10.5194/egusphere-2024-811, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Consistent histories of anthropogenic western European air pollution preserved in different Alpine ice cores
Anja Eichler, Michel Legrand, Theo M. Jenk, Susanne Preunkert, Camilla Andersson, Sabine Eckhardt, Magnuz Engardt, Andreas Plach, and Margit Schwikowski
The Cryosphere, 17, 2119–2137, https://doi.org/10.5194/tc-17-2119-2023,https://doi.org/10.5194/tc-17-2119-2023, 2023
Short summary
Analysis of high gas concentration and flux measurements at Swiss Beromünster tall tower
Andreas Plach, Rolf Rüfenacht, Simone Kotthaus, and Markus Leuenberger
EGUsphere, https://doi.org/10.5194/egusphere-2022-1019,https://doi.org/10.5194/egusphere-2022-1019, 2022
Preprint archived
Short summary
A comprehensive evaluation of the use of Lagrangian particle dispersion models for inverse modeling of greenhouse gas emissions
Martin Vojta, Andreas Plach, Rona L. Thompson, and Andreas Stohl
Geosci. Model Dev., 15, 8295–8323, https://doi.org/10.5194/gmd-15-8295-2022,https://doi.org/10.5194/gmd-15-8295-2022, 2022
Short summary
Eemian Greenland ice sheet simulated with a higher-order model shows strong sensitivity to surface mass balance forcing
Andreas Plach, Kerim H. Nisancioglu, Petra M. Langebroek, Andreas Born, and Sébastien Le clec'h
The Cryosphere, 13, 2133–2148, https://doi.org/10.5194/tc-13-2133-2019,https://doi.org/10.5194/tc-13-2133-2019, 2019
Short summary

Related subject area

Subject: Climate Modelling | Archive: Modelling only | Timescale: Milankovitch
Toward generalized Milankovitch theory (GMT)
Andrey Ganopolski
Clim. Past, 20, 151–185, https://doi.org/10.5194/cp-20-151-2024,https://doi.org/10.5194/cp-20-151-2024, 2024
Short summary
Unraveling the complexities of the Last Glacial Maximum climate: the role of individual boundary conditions and forcings
Xiaoxu Shi, Martin Werner, Hu Yang, Roberta D'Agostino, Jiping Liu, Chaoyuan Yang, and Gerrit Lohmann
Clim. Past, 19, 2157–2175, https://doi.org/10.5194/cp-19-2157-2023,https://doi.org/10.5194/cp-19-2157-2023, 2023
Short summary
Do phenomenological dynamical paleoclimate models have physical similarity with Nature? Seemingly, not all of them do
Mikhail Y. Verbitsky and Michel Crucifix
Clim. Past, 19, 1793–1803, https://doi.org/10.5194/cp-19-1793-2023,https://doi.org/10.5194/cp-19-1793-2023, 2023
Short summary
Deglacial climate changes as forced by different ice sheet reconstructions
Nathaelle Bouttes, Fanny Lhardy, Aurélien Quiquet, Didier Paillard, Hugues Goosse, and Didier M. Roche
Clim. Past, 19, 1027–1042, https://doi.org/10.5194/cp-19-1027-2023,https://doi.org/10.5194/cp-19-1027-2023, 2023
Short summary
The coupled system response to 250 years of freshwater forcing: Last Interglacial CMIP6–PMIP4 HadGEM3 simulations
Maria Vittoria Guarino, Louise C. Sime, Rachel Diamond, Jeff Ridley, and David Schroeder
Clim. Past, 19, 865–881, https://doi.org/10.5194/cp-19-865-2023,https://doi.org/10.5194/cp-19-865-2023, 2023
Short summary

Cited articles

Alley, R. B. and Anandakrishnan, S.: Variations in melt-Iayer frequency in the GISP2 ice core: implications for Holocene summer temperatures in central Greenland, available at: https://www.igsoc.org/annals/21/igs_annals_vol21_year1995_pg64-70.pdf (last access: 13 January 2021), 1995. a
Alley, R. B. and Koci, B. R.: Ice-Core Analysis at Site A, Greenland: Preliminary Results, Ann. Glaciol., 10, 1–4, https://doi.org/10.3189/S0260305500004067, 1988. a
Brun, E., David, P., Sudul, M., and Brunot, G.: A numerical model to simulate snow-cover stratigraphy for operational avalanche forecasting, J. Glaciol., 38, 13–22, https://doi.org/10.3189/S0022143000009552, 1992. a
CAPE Last Interglacial Project Members: Last Interglacial Arctic warmth confirms polar amplification of climate change, Quaternary Sci. Rev., 25, 1383–1400, https://doi.org/10.1016/j.quascirev.2006.01.033, 2006. a, b
Capron, E., Govin, A., Stone, E. J., Masson-Delmotte, V., Mulitza, S., Otto-Bliesner, B., Rasmussen, T. L., Sime, L. C., Waelbroeck, C., and Wolff, E. W.: Temporal and spatial structure of multi-millennial temperature changes at high latitudes during the Last Interglacial, Quaternary Sci. Rev., 103, 116–133, https://doi.org/10.1016/j.quascirev.2014.08.018, 2014. a, b
Short summary
In light of recent large-scale melting of the Greenland ice sheet (GrIS), e.g., in the summer of 2012 several days with surface melt on the entire ice sheet (including elevations above 3000 m), we use computer simulations to estimate the amount of melt during a warmer-than-present period of the past. Our simulations show more extensive melt than today. This is important for the interpretation of ice cores which are used to reconstruct the evolution of the ice sheet and the climate.