Articles | Volume 12, issue 3
https://doi.org/10.5194/cp-12-749-2016
https://doi.org/10.5194/cp-12-749-2016
Research article
 | 
23 Mar 2016
Research article |  | 23 Mar 2016

Arctic sea ice simulation in the PlioMIP ensemble

Fergus W. Howell, Alan M. Haywood, Bette L. Otto-Bliesner, Fran Bragg, Wing-Le Chan, Mark A. Chandler, Camille Contoux, Youichi Kamae, Ayako Abe-Ouchi, Nan A. Rosenbloom, Christian Stepanek, and Zhongshi Zhang

Related authors

The Tipping Points Modelling Intercomparison Project (TIPMIP): Assessing tipping point risks in the Earth system
Ricarda Winkelmann, Donovan P. Dennis, Jonathan F. Donges, Sina Loriani, Ann Kristin Klose, Jesse F. Abrams, Jorge Alvarez-Solas, Torsten Albrecht, David Armstrong McKay, Sebastian Bathiany, Javier Blasco Navarro, Victor Brovkin, Eleanor Burke, Gokhan Danabasoglu, Reik V. Donner, Markus Drüke, Goran Georgievski, Heiko Goelzer, Anna B. Harper, Gabriele Hegerl, Marina Hirota, Aixue Hu, Laura C. Jackson, Colin Jones, Hyungjun Kim, Torben Koenigk, Peter Lawrence, Timothy M. Lenton, Hannah Liddy, José Licón-Saláiz, Maxence Menthon, Marisa Montoya, Jan Nitzbon, Sophie Nowicki, Bette Otto-Bliesner, Francesco Pausata, Stefan Rahmstorf, Karoline Ramin, Alexander Robinson, Johan Rockström, Anastasia Romanou, Boris Sakschewski, Christina Schädel, Steven Sherwood, Robin S. Smith, Norman J. Steinert, Didier Swingedouw, Matteo Willeit, Wilbert Weijer, Richard Wood, Klaus Wyser, and Shuting Yang
EGUsphere, https://doi.org/10.5194/egusphere-2025-1899,https://doi.org/10.5194/egusphere-2025-1899, 2025
This preprint is open for discussion and under review for Earth System Dynamics (ESD).
Short summary
Climate and ocean circulation changes toward a modern snowball Earth
Takashi Obase, Takanori Kodama, Takao Kawasaki, Sam Sherriff-Tadano, Daisuke Takasuka, Ayako Abe-Ouchi, and Masakazu Fujii
EGUsphere, https://doi.org/10.5194/egusphere-2025-1484,https://doi.org/10.5194/egusphere-2025-1484, 2025
Short summary
ROCKE-3D 2.0: An updated general circulation model for simulating the climates of rocky planets
Kostas Tsigaridis, Andrew S. Ackerman, Igor Aleinov, Mark A. Chandler, Thomas L. Clune, Christopher M. Colose, Anthony D. Del Genio, Maxwell Kelley, Nancy Y. Kiang, Anthony Leboissetier, Jan P. Perlwitz, Reto A. Ruedy, Gary L. Russell, Linda E. Sohl, Michael J. Way, and Eric T. Wolf
EGUsphere, https://doi.org/10.5194/egusphere-2025-925,https://doi.org/10.5194/egusphere-2025-925, 2025
Short summary
Assessment of the southern polar and subpolar warming in the PMIP4 last interglacial simulations using paleoclimate data syntheses
Qinggang Gao, Emilie Capron, Louise C. Sime, Rachael H. Rhodes, Rahul Sivankutty, Xu Zhang, Bette L. Otto-Bliesner, and Martin Werner
Clim. Past, 21, 419–440, https://doi.org/10.5194/cp-21-419-2025,https://doi.org/10.5194/cp-21-419-2025, 2025
Short summary
Last-millennium volcanic forcing and climate response using SO2 emissions
Lauren R. Marshall, Anja Schmidt, Andrew P. Schurer, Nathan Luke Abraham, Lucie J. Lücke, Rob Wilson, Kevin J. Anchukaitis, Gabriele C. Hegerl, Ben Johnson, Bette L. Otto-Bliesner, Esther C. Brady, Myriam Khodri, and Kohei Yoshida
Clim. Past, 21, 161–184, https://doi.org/10.5194/cp-21-161-2025,https://doi.org/10.5194/cp-21-161-2025, 2025
Short summary

Related subject area

Subject: Climate Modelling | Archive: Modelling only | Timescale: Cenozoic
Sustainability of regional Antarctic ice sheets under late Eocene seasonal atmospheric conditions
Dennis H. A. Vermeulen, Michiel L. J. Baatsen, and Anna S. von der Heydt
Clim. Past, 21, 95–114, https://doi.org/10.5194/cp-21-95-2025,https://doi.org/10.5194/cp-21-95-2025, 2025
Short summary
The geometry of sea-level change across a mid-Pliocene glacial cycle
Meghan E. King, Jessica R. Creveling, and Jerry X. Mitrovica
Clim. Past, 21, 53–65, https://doi.org/10.5194/cp-21-53-2025,https://doi.org/10.5194/cp-21-53-2025, 2025
Short summary
Using a multi-layer snow model for transient paleo-studies: surface mass balance evolution during the Last Interglacial
Thi-Khanh-Dieu Hoang, Aurélien Quiquet, Christophe Dumas, Andreas Born, and Didier M. Roche
Clim. Past, 21, 27–51, https://doi.org/10.5194/cp-21-27-2025,https://doi.org/10.5194/cp-21-27-2025, 2025
Short summary
South Asian summer monsoon enhanced by the uplift of the Iranian Plateau in Middle Miocene
Meng Zuo, Yong Sun, Yan Zhao, Gilles Ramstein, Lin Ding, and Tianjun Zhou
Clim. Past, 20, 1817–1836, https://doi.org/10.5194/cp-20-1817-2024,https://doi.org/10.5194/cp-20-1817-2024, 2024
Short summary
Aerosol uncertainties in tropical precipitation changes for the mid-Pliocene warm period
Anni Zhao, Ran Feng, Chris M. Brierley, Jian Zhang, and Yongyun Hu
Clim. Past, 20, 1195–1211, https://doi.org/10.5194/cp-20-1195-2024,https://doi.org/10.5194/cp-20-1195-2024, 2024
Short summary

Cited articles

Arzel, O., Fichefet, T., and Goosse, H.: Sea ice evolution over the 20th and 21st centuries as simulated by current AOGCMs, Ocean Model., 12, 401–415, https://doi.org/10.1016/j.ocemod.2005.08.002, 2006.
Belt, S. and Müller, J.: The Arctic sea ice biomarker IP25: a review of current understanding, recommendations for future research and applications in palaeo sea ice reconstructions, Quaternary Sci. Rev., 79, 9–25, 2013.
Berger, M., Brandefelt, J., and Nilsson, J.: The sensitivity of the Arctic sea ice to orbitally induced insolation changes: a study of the mid-Holocene Paleoclimate Modelling Intercomparison Project 2 and 3 simulations, Clim. Past, 9, 969–982, https://doi.org/10.5194/cp-9-969-2013, 2013.
Blanchard-Wrigglesworth, E. and Bitz, C.: Characteristics of Arctic Sea-Ice Thickness Variability in GCMs, J. Climate, 27, 8244–8258, https://doi.org/10.1175/JCLI-D-14-00345.1, 2014.
Boé, J. L., Hall, A., and Qu, X.: September sea-ice cover in the Arctic Ocean projected to vanish by 2100, Nat. Geosci., 2, 341–343, https://doi.org/10.1038/ngeo467, 2009.
Download
Short summary
Simulations of pre-industrial and mid-Pliocene Arctic sea ice by eight GCMs are analysed. Ensemble variability in sea ice extent is greater in the mid-Pliocene summer, when half of the models simulate sea-ice-free conditions. Weaker correlations are seen between sea ice extent and temperatures in the pre-industrial era compared to the mid-Pliocene. The need for more comprehensive sea ice proxy data is highlighted, in order to better compare model performances.
Share