Articles | Volume 16, issue 4
Clim. Past, 16, 1599–1615, 2020
https://doi.org/10.5194/cp-16-1599-2020

Special issue: PlioMIP Phase 2: experimental design, implementation and scientific...

Clim. Past, 16, 1599–1615, 2020
https://doi.org/10.5194/cp-16-1599-2020

Research article 27 Aug 2020

Research article | 27 Aug 2020

Lessons from a high-CO2 world: an ocean view from  ∼ 3 million years ago

Erin L. McClymont et al.

Related authors

Archaeal intact polar lipids in polar waters: a comparison between the Amundsen and Scotia seas
Charlotte L. Spencer-Jones, Erin L. McClymont, Nicole J. Bale, Ellen C. Hopmans, Stefan Schouten, Juliane Müller, E. Povl Abrahamsen, Claire Allen, Torsten Bickert, Claus-Dieter Hillenbrand, Elaine Mawbey, Victoria Peck, Aleksandra Svalova, and James A. Smith
Biogeosciences, 18, 3485–3504, https://doi.org/10.5194/bg-18-3485-2021,https://doi.org/10.5194/bg-18-3485-2021, 2021
Short summary
Late Pliocene Cordilleran Ice Sheet development with warm northeast Pacific sea surface temperatures
Maria Luisa Sánchez-Montes, Erin L. McClymont, Jeremy M. Lloyd, Juliane Müller, Ellen A. Cowan, and Coralie Zorzi
Clim. Past, 16, 299–313, https://doi.org/10.5194/cp-16-299-2020,https://doi.org/10.5194/cp-16-299-2020, 2020
Short summary
Highly variable Pliocene sea surface conditions in the Norwegian Sea
Paul E. Bachem, Bjørg Risebrobakken, Stijn De Schepper, and Erin L. McClymont
Clim. Past, 13, 1153–1168, https://doi.org/10.5194/cp-13-1153-2017,https://doi.org/10.5194/cp-13-1153-2017, 2017
Short summary

Related subject area

Subject: Ocean Dynamics | Archive: Marine Archives | Timescale: Cenozoic
Temperate Oligocene surface ocean conditions offshore of Cape Adare, Ross Sea, Antarctica
Frida S. Hoem, Luis Valero, Dimitris Evangelinos, Carlota Escutia, Bella Duncan, Robert M. McKay, Henk Brinkhuis, Francesca Sangiorgi, and Peter K. Bijl
Clim. Past, 17, 1423–1442, https://doi.org/10.5194/cp-17-1423-2021,https://doi.org/10.5194/cp-17-1423-2021, 2021
Short summary
A revised mid-Pliocene composite section centered on the M2 glacial event for ODP Site 846
Timothy D. Herbert, Rocio Caballero-Gill, and Joseph B. Novak
Clim. Past, 17, 1385–1394, https://doi.org/10.5194/cp-17-1385-2021,https://doi.org/10.5194/cp-17-1385-2021, 2021
Short summary
Late Pliocene Cordilleran Ice Sheet development with warm northeast Pacific sea surface temperatures
Maria Luisa Sánchez-Montes, Erin L. McClymont, Jeremy M. Lloyd, Juliane Müller, Ellen A. Cowan, and Coralie Zorzi
Clim. Past, 16, 299–313, https://doi.org/10.5194/cp-16-299-2020,https://doi.org/10.5194/cp-16-299-2020, 2020
Short summary
Understanding the mechanisms behind high glacial productivity in the southern Brazilian margin
Rodrigo da Costa Portilho-Ramos, Tainã Marcos Lima Pinho, Cristiano Mazur Chiessi, and Cátia Fernandes Barbosa
Clim. Past, 15, 943–955, https://doi.org/10.5194/cp-15-943-2019,https://doi.org/10.5194/cp-15-943-2019, 2019
Short summary
Paleoceanography and ice sheet variability offshore Wilkes Land, Antarctica – Part 3: Insights from Oligocene–Miocene TEX86-based sea surface temperature reconstructions
Julian D. Hartman, Francesca Sangiorgi, Ariadna Salabarnada, Francien Peterse, Alexander J. P. Houben, Stefan Schouten, Henk Brinkhuis, Carlota Escutia, and Peter K. Bijl
Clim. Past, 14, 1275–1297, https://doi.org/10.5194/cp-14-1275-2018,https://doi.org/10.5194/cp-14-1275-2018, 2018
Short summary

Cited articles

Ahn, S., Khider, D., Lisiecki, L. E., and Lawrence, C. E.: A probabilistic Pliocene–Pleistocene stack of benthic δ18O using a profile hidden Markov model, Dynamics and Statistics of the Climate System, 2, dzx002, https://doi.org/10.1093/climsys/dzx002, 2017. 
Badger, M. P. S., Chalk, T. B., Foster, G. L., Bown, P. R., Gibbs, S. J., Sexton, P. F., Schmidt, D. N., Pälike, H., Mackensen, A., and Pancost, R. D.: Insensitivity of alkenone carbon isotopes to atmospheric CO2 at low to moderate CO2 levels, Clim. Past, 15, 539–554, https://doi.org/10.5194/cp-15-539-2019, 2019. 
Bolton, C. T., Bailey, I., Friedrich, O., Tachikawa, K., de Garidel-Thoron, T., Vidal, L., Sonzogni, C., Marino, G., Rohling, E. J., Robinson, M. M., Ermini, M., Koch, M., Cooper, M. J., and Wilson, P. A.: North Atlantic Midlatitude Surface-Circulation Changes Through the Plio-Pleistocene Intensification of Northern Hemisphere Glaciation, Paleoceanography and Paleoclimatology, 33, 1186–1205, https://doi.org/10.1029/2018pa003412, 2018. 
Boyer, T. P., Antonov, J. I., Baranova, O. K., Coleman, C., Garcia, H. E., Grodsky, A., Johnson, D. R., Locarnini, R. A., Mishonov, A. V., O’Brien, T. D., Paver, C. R., Reagan, J. R., Seidov, D., Smolyar, I. V., and Zweng, M. M.: World Ocean Database 2013, in: NOAA Atlas NESDIS 72, edited by: Levitus, S. and Mishonov, A., National Oceanic and Atmospheric Administration Ocean Climate Laboratory, Silver Spring, MD, 209 pp., https://doi.org/10.7289/V5NZ85MT, 2013. 
Brennan, S. T., Lowenstein, T. K., and Cendón, D. I.: The major-ion composition of Cenozoic seawater: The past 36 million years from fluid inclusions in marine halite, Am. J. Sci., 313, 713–775, https://doi.org/10.2475/08.2013.01, 2013. 
Download
Short summary
We examine the sea-surface temperature response to an interval of climate ~ 3.2 million years ago, when CO2 concentrations were similar to today and the near future. Our geological data and climate models show that global mean sea-surface temperatures were 2.3 to 3.2 ºC warmer than pre-industrial climate, that the mid-latitudes and high latitudes warmed more than the tropics, and that the warming was particularly enhanced in the North Atlantic Ocean.