Articles | Volume 19, issue 12
https://doi.org/10.5194/cp-19-2463-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-19-2463-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Climatic signatures in early modern European grain harvest yields
Fredrik Charpentier Ljungqvist
CORRESPONDING AUTHOR
Department of History, Stockholm University, 106 91 Stockholm, Sweden
Bolin Centre for Climate Research, Stockholm University, 106 91 Stockholm, Sweden
Swedish Collegium for Advanced Study, Linneanum, Thunbergsvägen 2, 752 38 Uppsala, Sweden
Bo Christiansen
Danish Meteorological Institute, Sankt Kjelds Plads 11, 2100 Copenhagen Ø, Denmark
Jan Esper
Department of Geography, Johannes Gutenberg University, 55128 Mainz, Germany
Global Change Research Institute (CzechGlobe), Czech Academy of Sciences, 603 00, Brno, Czech Republic
Heli Huhtamaa
Institute of History, University of Bern, 3012 Bern, Switzerland
Oeschger Centre for Climate Change Research, University of Bern, 3012 Bern, Switzerland
Lotta Leijonhufvud
Department of Historical Studies, University of Gothenburg, Box 100, 405 30 Gothenburg, Sweden
currently at: Upplands-Bro Municipality, 196 81 Kungsängen, Sweden
Christian Pfister
Institute of History, University of Bern, 3012 Bern, Switzerland
Oeschger Centre for Climate Change Research, University of Bern, 3012 Bern, Switzerland
Andrea Seim
Chair of Forest Growth and Dendroecology, Institute of Forest Sciences, University of Freiburg, 79106 Freiburg, Germany
Department of Botany, University of Innsbruck, 6020 Innsbruck, Austria
Martin Karl Skoglund
Division of Agrarian History, Department of Urban and Rural Development, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
Peter Thejll
Danish Meteorological Institute, Sankt Kjelds Plads 11, 2100 Copenhagen Ø, Denmark
Related authors
Christian Pfister, Stefan Brönnimann, Laurent Litzenburger, Peter Thejll, Andres Altwegg, Rudolf Brázdil, Andrea Kiss, Erich Landsteiner, Fredrik Charpentier Ljungqvist, and Thomas Pliemon
EGUsphere, https://doi.org/10.5194/egusphere-2025-3242, https://doi.org/10.5194/egusphere-2025-3242, 2025
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
Narrative historical records of wine production in Central Europe date back to 1200. A study of taxes paid to authorities in the French-Luxembourg Moselle region, Germany, and the Swiss Plateau over the last few centuries shows that wine yields provide indirect indications of summer temperatures when the impact of heavy frosts is taken into account. This enables climate reconstructions based on tree rings to be refined and confirmed. Occasionally, poor harvests gave rise to witch hunts.
Fredrik Charpentier Ljungqvist, Bo Christiansen, Lea Schneider, and Peter Thejll
Clim. Past, 21, 327–342, https://doi.org/10.5194/cp-21-327-2025, https://doi.org/10.5194/cp-21-327-2025, 2025
Short summary
Short summary
We study the climatic signal, with a focus on volcanic-induced shocks, in two long annual records of wine production quantity (spanning 1444–1786) from present-day Luxembourg, close to the northern limit of viticulture in Europe. Highly significant wine production declines are found during years following major volcanic events. Furthermore, warmer and drier climate conditions favoured wine production, with spring and summer conditions being the most important ones.
Tzu Tung Chen, Rodney Edvinsson, Karin Modig, Hans W. Linderholm, and Fredrik Charpentier Ljungqvist
Clim. Past, 21, 185–210, https://doi.org/10.5194/cp-21-185-2025, https://doi.org/10.5194/cp-21-185-2025, 2025
Short summary
Short summary
We study the climate effects on mortality, using annual mortality records and meteorological data, in Sweden between 1749 and 1859. It is found that colder winter and spring temperatures increased mortality, while no statistically significant associations were observed between summer or autumn temperatures and mortality, and only weak associations existed with hydroclimate. Further research is needed about which specific diseases caused the mortality increase following cold winters and springs.
Christian Pfister, Stefan Brönnimann, Laurent Litzenburger, Peter Thejll, Andres Altwegg, Rudolf Brázdil, Andrea Kiss, Erich Landsteiner, Fredrik Charpentier Ljungqvist, and Thomas Pliemon
EGUsphere, https://doi.org/10.5194/egusphere-2025-3242, https://doi.org/10.5194/egusphere-2025-3242, 2025
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
Narrative historical records of wine production in Central Europe date back to 1200. A study of taxes paid to authorities in the French-Luxembourg Moselle region, Germany, and the Swiss Plateau over the last few centuries shows that wine yields provide indirect indications of summer temperatures when the impact of heavy frosts is taken into account. This enables climate reconstructions based on tree rings to be refined and confirmed. Occasionally, poor harvests gave rise to witch hunts.
Sofie Hedetoft, Olivia Bang Brinck, Ruth Mottram, Andrea M. U. Gierisch, Steffen Malskær Olsen, Martin Olesen, Nicolaj Hansen, Anders Anker Bjørk, Erik Loebel, Anne Solgaard, and Peter Thejll
EGUsphere, https://doi.org/10.5194/egusphere-2025-1907, https://doi.org/10.5194/egusphere-2025-1907, 2025
Short summary
Short summary
Iceberg mélange is the jumble of icebergs in front of some glaciers that calve into the sea. Some studies suggest mélange might help to control the retreat of glaciers. We studied 3 glaciers in NW Greenland where we used GPS sensors and satellites to track ice movement. We found that glaciers push forward and calve all year, including when mélange and landfast sea ice are present, suggesting mélange is not important in supporting glaciers, but may influence the seasonal calving cycle.
Marcos Marín-Martín, Ernesto Tejedor, Gerardo Benito, Miguel A. Saz, Mariano Barriendos, Edurne Martínez del Castillo, Jan Esper, and Martín de Luis
EGUsphere, https://doi.org/10.5194/egusphere-2025-2530, https://doi.org/10.5194/egusphere-2025-2530, 2025
Short summary
Short summary
The Mediterranean faces more extreme weather. To understand these changes beyond short modern records, we studied Spanish pine tree rings, reconstructing over 500 years of rainfall. Our findings show that while past centuries had wet and dry periods, recent decades have experienced an unprecedented surge in both severe droughts and extreme wet events. This long-term view helps assess current climate shifts and their impact on ecosystems and water resources, highlighting the need for adaptation.
Rudolf Brázdil, Jan Lhoták, Kateřina Chromá, Dominik Collet, Petr Dobrovolný, and Heli Huhtamaa
Clim. Past, 21, 547–570, https://doi.org/10.5194/cp-21-547-2025, https://doi.org/10.5194/cp-21-547-2025, 2025
Short summary
Short summary
Public granaries served as key infrastructure to improve food security in agrarian societies. Granary data from 15 domains at the Sušice region (southwestern Bohemia) in the period 1789–1849 CE are used here to identify years with bad and good grain harvests, which have been further analysed using documentary data and climatic reconstructions. The data used represent a new source of proxy data for historical–climatological research.
Fredrik Charpentier Ljungqvist, Bo Christiansen, Lea Schneider, and Peter Thejll
Clim. Past, 21, 327–342, https://doi.org/10.5194/cp-21-327-2025, https://doi.org/10.5194/cp-21-327-2025, 2025
Short summary
Short summary
We study the climatic signal, with a focus on volcanic-induced shocks, in two long annual records of wine production quantity (spanning 1444–1786) from present-day Luxembourg, close to the northern limit of viticulture in Europe. Highly significant wine production declines are found during years following major volcanic events. Furthermore, warmer and drier climate conditions favoured wine production, with spring and summer conditions being the most important ones.
Tzu Tung Chen, Rodney Edvinsson, Karin Modig, Hans W. Linderholm, and Fredrik Charpentier Ljungqvist
Clim. Past, 21, 185–210, https://doi.org/10.5194/cp-21-185-2025, https://doi.org/10.5194/cp-21-185-2025, 2025
Short summary
Short summary
We study the climate effects on mortality, using annual mortality records and meteorological data, in Sweden between 1749 and 1859. It is found that colder winter and spring temperatures increased mortality, while no statistically significant associations were observed between summer or autumn temperatures and mortality, and only weak associations existed with hydroclimate. Further research is needed about which specific diseases caused the mortality increase following cold winters and springs.
Richard Warren, Niklaus Emanuel Bartlome, Noémie Wellinger, Jörg Franke, Ralf Hand, Stefan Brönnimann, and Heli Huhtamaa
Clim. Past, 20, 2645–2662, https://doi.org/10.5194/cp-20-2645-2024, https://doi.org/10.5194/cp-20-2645-2024, 2024
Short summary
Short summary
This paper introduces the ClimeApp web application. The app provides quick access to the ModE-RA global climate reanalysis. Users can calculate and plot anomalies, composites, correlations, regressions and annual cycles across three different datasets and four climate variables. By re-examining the 1815 Tambora eruption, we demonstrate how combining results from different datasets and sources can help us investigate the historical palaeoclimate and integrate it into human history.
Christian Pfister, Stefan Brönnimann, Andres Altwegg, Rudolf Brázdil, Laurent Litzenburger, Daniele Lorusso, and Thomas Pliemon
Clim. Past, 20, 1387–1399, https://doi.org/10.5194/cp-20-1387-2024, https://doi.org/10.5194/cp-20-1387-2024, 2024
Short summary
Short summary
This bottle of Riesling from the traditional Bassermann Jordan winery in Deidesheim (Germany) is a relic of the premium wine harvested in 1811. It was named “Comet Wine” after the bright comet that year. The study shows that wine quality can be used to infer summer weather conditions over the past 600 years. After rainy summers with cold winds, wines turned sour, while long periods of high pressure led to excellent qualities. Since 1990, only good wines have been produced due to rapid warming.
Thomas Pliemon, Ulrich Foelsche, Christian Rohr, and Christian Pfister
Clim. Past, 19, 2237–2256, https://doi.org/10.5194/cp-19-2237-2023, https://doi.org/10.5194/cp-19-2237-2023, 2023
Short summary
Short summary
Louis Morin consistently recorded precipitation intensity and duration between 1665 and 1713. We use these records to reconstruct precipitation totals. This reconstruction is validated by several methods and then presented using precipitation indexes. What is exceptional about this dataset is the availability of a sub-daily resolution and the low number of missing data points over the entire observation period.
Rudolf Brázdil, Petr Dobrovolný, Christian Pfister, Katrin Kleemann, Kateřina Chromá, Péter Szabó, and Piotr Olinski
Clim. Past, 19, 1863–1890, https://doi.org/10.5194/cp-19-1863-2023, https://doi.org/10.5194/cp-19-1863-2023, 2023
Short summary
Short summary
The Thirty Years' War (from 1618 to 1648 CE), an armed military conflict in Europe, brought extensive devastation to Europe. The paper analyses annual and seasonal temperature, precipitation, and drought patterns, as well as severe weather extremes, based particularly on documentary data, during this event in central Europe to demonstrate their broad impacts on human society and human responses in coincidence with weather and climate during this period of hardship.
Anne Dallmeyer, Anneli Poska, Laurent Marquer, Andrea Seim, and Marie-José Gaillard
Clim. Past, 19, 1531–1557, https://doi.org/10.5194/cp-19-1531-2023, https://doi.org/10.5194/cp-19-1531-2023, 2023
Short summary
Short summary
We compare past tree cover changes in Europe during the last 8000 years simulated with two dynamic global vegetation models and inferred from pollen data. The major model–data mismatch is related to the much earlier onset of anthropogenic deforestation in the data compared to the prescribed land use in the models. We show that land use, and not climate, is the main driver of the Holocene forest decline. The model–data agreement depends on the model tuning, challenging model–data comparisons.
Heli Huhtamaa, Markus Stoffel, and Christophe Corona
Clim. Past, 18, 2077–2092, https://doi.org/10.5194/cp-18-2077-2022, https://doi.org/10.5194/cp-18-2077-2022, 2022
Short summary
Short summary
Tree-ring data and written sources from northern Fennoscandia reveal that large 17th century eruptions had considerable climatic, agricultural, and socioeconomic impacts far away from the eruption locations. Yet, micro-regional investigation shows that the human consequences were commonly indirect, as various factors, like agro-ecosystems, resource availability, institutions, and personal networks, dictated how the volcanic cold pulses and related crop failures materialized on a societal level.
Anna Wieland, Markus Greule, Philipp Roemer, Jan Esper, and Frank Keppler
Clim. Past, 18, 1849–1866, https://doi.org/10.5194/cp-18-1849-2022, https://doi.org/10.5194/cp-18-1849-2022, 2022
Short summary
Short summary
We examined annually resolved stable carbon and hydrogen isotope ratios of wood lignin methoxy groups of beech trees growing in temperate, low elevation environments. Here, carbon isotope ratios reveal highest correlations with regional summer temperatures while hydrogen isotope ratios correlate more strongly with large-scale temperature changes. By combining the dual isotope ratios of wood lignin methoxy groups, a proxy for regional- to subcontinental-scale temperature patterns can be applied.
Thomas Pliemon, Ulrich Foelsche, Christian Rohr, and Christian Pfister
Clim. Past, 18, 1685–1707, https://doi.org/10.5194/cp-18-1685-2022, https://doi.org/10.5194/cp-18-1685-2022, 2022
Short summary
Short summary
We have digitized and analyzed meteorological variables (temperature, direction of the movement of the clouds, and cloud cover), which were noted by Louis Morin in the period 1665–1713 in Paris. This time period is characterized by cold winters and autumns and moderate springs and summers. A low frequency of westerlies in the winter months leads to a cooling. Morin's measurements seem to be trustworthy. Only cloud cover in quantitative terms should be taken with caution.
Markus Stoffel, Christophe Corona, Francis Ludlow, Michael Sigl, Heli Huhtamaa, Emmanuel Garnier, Samuli Helama, Sébastien Guillet, Arlene Crampsie, Katrin Kleemann, Chantal Camenisch, Joseph McConnell, and Chaochao Gao
Clim. Past, 18, 1083–1108, https://doi.org/10.5194/cp-18-1083-2022, https://doi.org/10.5194/cp-18-1083-2022, 2022
Short summary
Short summary
The mid-17th century saw several volcanic eruptions, deteriorating climate, political instability, and famine in Europe, China, and Japan. We analyze impacts of the eruptions on climate but also study their socio-political context. We show that an unambiguous distinction of volcanic cooling or wetting from natural climate variability is not straightforward. It also shows that political instability, poor harvest, and famine cannot only be attributed to volcanic climatic impacts.
Sam White, Eduardo Moreno-Chamarro, Davide Zanchettin, Heli Huhtamaa, Dagomar Degroot, Markus Stoffel, and Christophe Corona
Clim. Past, 18, 739–757, https://doi.org/10.5194/cp-18-739-2022, https://doi.org/10.5194/cp-18-739-2022, 2022
Short summary
Short summary
This study examines whether the 1600 Huaynaputina volcano eruption triggered persistent cooling in the North Atlantic. It compares previous paleoclimate simulations with new climate reconstructions from natural proxies and historical documents and finds that the reconstructions are consistent with, but do not support, an eruption trigger for persistent cooling. The study also analyzes societal impacts of climatic change in ca. 1600 and the use of historical observations in model–data comparison.
Martin Karl Skoglund
Clim. Past, 18, 405–433, https://doi.org/10.5194/cp-18-405-2022, https://doi.org/10.5194/cp-18-405-2022, 2022
Short summary
Short summary
This article finds that grain farming in historical Scania (ca. 1700–1900) was adapted to wet and cold summers, while being resilient to frost and climate variability in the spring and autumn. These relationships started to change in the late 19th century with the introduction of new grain varieties, particularly autumn grain varieties. Nonetheless, historical farmers faced a threat in common with contemporary farmers, namely summer droughts, like the summer drought of 2018.
Lotta Leijonhufvud and Dag Retsö
Clim. Past, 17, 2015–2029, https://doi.org/10.5194/cp-17-2015-2021, https://doi.org/10.5194/cp-17-2015-2021, 2021
Short summary
Short summary
Over the last 600 years, Sweden has occasionally suffered from severe summer droughts. But droughts caused by extreme heat are uncommon. They are instead usually caused by lack of rain. From historical documents it can be confirmed that such drought periods, with substantial consequences for agriculture and mining activities, have occurred on repeated occasions between the Middle Ages and 1800 CE, coinciding with a slightly colder climate and other social strains in the 17th and 18th centuries.
Nicolaj Hansen, Peter L. Langen, Fredrik Boberg, Rene Forsberg, Sebastian B. Simonsen, Peter Thejll, Baptiste Vandecrux, and Ruth Mottram
The Cryosphere, 15, 4315–4333, https://doi.org/10.5194/tc-15-4315-2021, https://doi.org/10.5194/tc-15-4315-2021, 2021
Short summary
Short summary
We have used computer models to estimate the Antarctic surface mass balance (SMB) from 1980 to 2017. Our estimates lies between 2473.5 ± 114.4 Gt per year and 2564.8 ± 113.7 Gt per year. To evaluate our models, we compared the modelled snow temperatures and densities to in situ measurements. We also investigated the spatial distribution of the SMB. It is very important to have estimates of the Antarctic SMB because then it is easier to understand global sea level changes.
Bo Christiansen
Nonlin. Processes Geophys., 28, 409–422, https://doi.org/10.5194/npg-28-409-2021, https://doi.org/10.5194/npg-28-409-2021, 2021
Short summary
Short summary
In geophysics we often need to analyse large samples of high-dimensional fields. Fortunately but counterintuitively, such high dimensionality can be a blessing, and we demonstrate how this allows simple analytical results to be derived. These results include estimates of correlations between sample members and how the sample mean depends on the sample size. We show that the properties of high dimensionality with success can be applied to climate fields, such as those from ensemble modelling.
Torben Schmith, Peter Thejll, Peter Berg, Fredrik Boberg, Ole Bøssing Christensen, Bo Christiansen, Jens Hesselbjerg Christensen, Marianne Sloth Madsen, and Christian Steger
Hydrol. Earth Syst. Sci., 25, 273–290, https://doi.org/10.5194/hess-25-273-2021, https://doi.org/10.5194/hess-25-273-2021, 2021
Short summary
Short summary
European extreme precipitation is expected to change in the future; this is based on climate model projections. But, since climate models have errors, projections are uncertain. We study this uncertainty in the projections by comparing results from an ensemble of 19 climate models. Results can be used to give improved estimates of future extreme precipitation for Europe.
Cited articles
Adamson, G. C. D., Nash, D. J., and Grab, S. W.: Quantifying and reducing researcher subjectivity in the generation of climate indices from documentary sources, Clim. Past, 18, 1071–1081, https://doi.org/10.5194/cp-18-1071-2022, 2022. a, b, c
Ågren, K.: Adelns bönder och kronans: Skatter och besvär i Uppland 1650–1680, PhD thesis, Uppsala University, Uppsala, 1964. a
Albers, H., Gornott, C., and Hüttel, S.: How do inputs and weather drive wheat yield volatility? The example of Germany, Food Policy, 70, 50–61, https://doi.org/10.1016/j.foodpol.2017.05.001, 2017. a
Alfani, G. and Ó Gráda, C. (Eds.): Famine in European History, Cambridge University Press, Cambridge, https://doi.org/10.1017/9781316841235, 2017. a, b
Alfani, G. and Ó Gráda, C.: The timing and causes of famines in Europe, Nat. Sustain., 1, 283–288, https://doi.org/10.1038/s41893-018-0078-0, 2018. a
Allen, R. C.: Economic structure and agricultural productivity in Europe, 1300–1800, Eur. Rev. Econ. Hist., 4, 1–25, https://doi.org/10.1017/S1361491600000125, 2000. a
Allen, R. C. and Unger, R. W.: The Allen-Unger Global Commodity Prices Database, Res. Data J. Hum. Soc. Sci., 4, 81–90, https://doi.org/10.1163/24523666-00401006, 2019a. a
Allen, R. C. and Unger, R. W.: The Allen-Unger Global Commodity Prices Database, GCPDB [data set], http://www.gcpdb.info/data.html (last access: 28 November 2023), 2019b. a
Appleby, A. B.: Grain prices and subsistence crises in England and France, 1590–1740, J. Econ. Hist., 39, 865–887, https://doi.org/10.1017/S002205070009865X, 1979. a
Barquín, R.: The demand elasticity for wheat in the 14th to 18th centuries, Rev. Hist. Econ., 23, 241–267, 2005. a
Barriendos, M.: Climate and culture in Spain, religious responses to extreme climatic events in the Hispanic Kingdoms (16th–19th centuries), in: Kulturelle Konsequenzen der “Kleinen Eiszeit”, edited by: Behringer, W., Lehmann, H., and Pfister, C., 379–414, Vandenhoeck & Ruprecht, Göttingen, ISBN 9783525358641, 2005. a, b
Bartlett, M. S.: Some aspects of the time-correlation problem in regard to tests of significance, J. Royal Stat. Soc., 98, 536–543, https://doi.org/10.1111/j.2397-2335.1935.tb04277.x, 1935. a
Bauernfeind, W. and Woitek, U.: Cyclical characteristics of tithe series in Mid Franconia and Switzerland 1339–1708: An application of maximum entropy spectral analysis, Hist. Soc. Res., 21, 122–150, 1996. a
Beck, H. E., Zimmermann, N. E., McVicar, T. R., Vergopolan, N., Berg, A., and Wood, E. F.: Present and future Köppen-Geiger climate classification maps at 1-km resolution, Sci. Data, 5, 1–12, https://doi.org/10.1038/sdata.2018.214, 2018. a, b
Beillouin, D., Schauberger, B., Bastos, A., Ciais, P., and Makowski, D.: Impact of extreme weather conditions on European crop production in 2018, Philos. Trans. R. Soc. B, 375, 20190510, https://doi.org/10.1098/rstb.2019.0510, 2020. a, b, c
Bekar, C. T.: The persistence of harvest shocks in medieval England, J. Econ. Hist., 79, 954–988, https://doi.org/10.1017/S0022050719000524, 2019. a, b
Beveridge, W. H.: Weather and harvest cycles, Econ. J., 31, 429–452, https://doi.org/10.2307/2223104, 1921. a
Beveridge, W. H.: Wheat prices and rainfall in western Europe, J. Roy. Stat. Soc., 85, 412–475, https://doi.org/10.1111/j.2397-2335.1922.tb00808.x, 1922. a
Brasch, E.: Ekonomikommissionen 1725–1731: Sveriges första jordbruksutredning och preludium till den agrara revolutionen, Licentiate thesis, Lund University, Lund, 2016. a
Brázdil, R., Dobrovolný, P., Trnka, M., Řezníčková, L., Dolák, L., and Kotyza, O.: Extreme droughts and human responses to them: the Czech Lands in the pre-instrumental period, Clim. Past, 15, 1–24, https://doi.org/10.5194/cp-15-1-2019, 2019. a, b, c, d
Brázdil, R., Dobrovolný, P., Bauch, M., Camenisch, C., Kiss, A., Kotyza, O., Oliński, P., and Řezníčková, L.: Central Europe, 1531–1540 CE: The driest summer decade of the past five centuries?, Clim. Past, 16, 2125–2151, https://doi.org/10.5194/cp-16-2125-2020, 2020. a
Briffa, K., van der Schrier, G., and Jones, P.: Wet and dry summers in Europe since 1750: evidence of increasing drought, Int. J. Climatol., 29, 1894–1905, https://doi.org/10.1002/joc.1836, 2009. a
Brönnimann, S., Allan, R., Ashcroft, L., Baer, S., Barriendos, M., Brázdil, R., Brugnara, Y., Brunet, M., Brunetti, M., Chimani, B., Cornes, R., Domínguez-Castro, F., Filipiak, J., Founda, D., Herrera, R. G., Gergis, J., Grab, S., Hannak, L., Huhtamaa, H., Jacobsen, K. S., Jones, P., Jourdain, S., Kiss, A., Lin, K. E., Lorrey, A., Lundstad, E., Luterbacher, J., Mauelshagen, F., Maugeri, M., Moberg, A., Neukom, R., Nicholson, S., Noone, S., Nordli, Ø., Ólafsdóttir, K. B., Pearce, P. R., Pfister, L., Pribyl, K., Przybylak, R., Pudmenzky, C., Rasol, D., Reichenbach, D., Řezníčková, L., Rodrigo, F. S., Rohr, C., Skrynyk, O., Slonosky, V., Thorne, P., Valente, M. A., Vaquero, J. M., Westcottt, N. E., Williamson, F., and Wyszyński, P.: Unlocking pre-1850 instrumental meteorological records: A global inventory, B. Am. Meteorol. Soc., 100, ES389–ES413, https://doi.org/10.1175/BAMS-D-19-0040.1, 2019. a
Brückner, E.: Der Einfluß der Klimaschwankungen auf die Ernteerträge und Getreidepreise in Europa, Geogr. Z., 1, 39–51, 100–108, 1895. a
Brunt, L.: Weather shocks and English wheat yields, 1690–1871, Explor. Econ. Hist., 57, 50–58, https://doi.org/10.1016/j.eeh.2014.12.001, 2015. a
Bunde, A., Büntgen, U., Ludescher, J., Luterbacher, J., and von Storch, H.: Is there memory in precipitation?, Nat. Clim. Change, 3, 174–175, https://doi.org/10.1038/nclimate1830, 2013. a
Büntgen, U., Frank, D. C., Nievergelt, D., and Esper, J.: Summer temperature variations in the European Alps, AD 755–2004, J. Climate, 19, 5606–5623, https://doi.org/10.1175/JCLI3917.1, 2006. a, b
Büntgen, U., Franke, J., Frank, D., Wilson, R., González-Rouco, F., and Esper, J.: Assessing the spatial signature of European climate reconstructions, Clim. Res., 41, 125–130, https://doi.org/10.3354/cr00848, 2010. a
Büntgen, U., Urban, O., Krusic, P. J., Rybníček, M., Kolář, T., Kyncl, T., Ač, A., Koňasová, E., Čáslavský, J., Esper, J., Wagner, S., Saurer, M., Tegel, W., Dobrovolný, P., Cherubini, P., Reinig, F., and Trnka, M.: Recent European drought extremes beyond Common Era background variability, Nat. Geosci., 14, 190–196, https://doi.org/10.1038/s41561-021-00698-0, 2021. a
Camenisch, C.: Endlose Kälte: Witterungsverlauf und Getreidepreise in den Burgundischen Niederlanden im 15. Jahrhundert, Schwabe, Basel, https://doi.org/10.24894/978-3-7965-3474-4, 2015. a
Camenisch, C., Keller, K. M., Salvisberg, M., Amann, B., Bauch, M., Blumer, S., Brázdil, R., Brönnimann, S., Büntgen, U., Campbell, B. M. S., Fernández-Donado, L., Fleitmann, D., Glaser, R., González-Rouco, F., Grosjean, M., Hoffmann, R. C., Huhtamaa, H., Joos, F., Kiss, A., Kotyza, O., Lehner, F., Luterbacher, J., Maughan, N., Neukom, R., Novy, T., Pribyl, K., Raible, C. C., Riemann, D., Schuh, M., Slavin, P., Werner, J. P., and Wetter, O.: The 1430s: a cold period of extraordinary internal climate variability during the early Spörer Minimum with social and economic impacts in north-western and central Europe, Clim. Past, 12, 2107–2126, https://doi.org/10.5194/cp-12-2107-2016, 2016. a
Campbell, B. M.: Nature as historical protagonist: environment and society in pre-industrial England, Econ. Hist. Rev., 63, 281–314, https://doi.org/10.1111/j.1468-0289.2009.00492.x, 2010. a
Campbell, B. M.: The Great Transition: Climate, Disease and Society in the Late-Medieval World, Cambridge University Press, Cambridge, https://doi.org/10.1017/CBO9781139031110, 2016. a, b, c
Campbell, B. M. and Ó Gráda, C.: Harvest shortfalls, grain prices, and famines in preindustrial England, J. Econ. Hist., 71, 859–886, https://doi.org/10.1017/S0022050711002178, 2011. a
Cantelaube, P. and Terres, J.-M.: Seasonal weather forecasts for crop yield modelling in Europe, Tellus A, 57, 476–487, https://doi.org/10.3402/tellusa.v57i3.14669, 2005. a
Collet, D.: Die doppelte Katastrophe: Klima und Kultur in der europäischen Hungerkrise 1770–1772, Vandenhoeck & Ruprecht, Göttingen, ISBN 978-3-525-35592-3, 2019. a
Cook, E. R., Seager, R., Kushnir, Y., Briffa, K. R., Büntgen, U., Frank, D., Krusic, P. J., Tegel, W., van der Schrier, G., Andreu-Hayles, L., Baillie, M., Baittinger, C., Bleicher, N., Bonde, N., Brown, D., Carrer, M., Cooper, R., Čufar, K., Dittmar, C., Esper, J., Griggs, C., Gunnarson, B., Günther, B., Gutierrez, E., Haneca, K., Helama, S., Herzig, F., Heussner, K.-U., Hofmann, J., Janda, P., Kontic, R., Köse, N., Kyncl, T., Levanič, T., Linderholm, H., Manning, S., Melvin, T. M., Miles, D., Neuwirth, B., Nicolussi, K., Nola, P., Panayotov, M., Popa, I., Rothe, A., Seftigen, K., Seim, A., Svarva, H., Svoboda, M., Thun, T., Timonen, M., Touchan, R., Trotsiuk, V., Trouet, V., Walder, F., Ważny, T., Wilson, R., and Zang, C.: Old World megadroughts and pluvials during the Common Era, Sci. Adv., 1, e1500561, https://doi.org/10.1126/sciadv.1500561, 2015. a, b, c, d, e
Cook, E. R., Solomina, O., Matskovsky, V., Cook, B. I., Agafonov, L., Berdnikova, A., Dolgova, E., Karpukhin, A., Knysh, N., Kulakova, M., Kuznetsova, V., Kyncl, T., Kyncl, J., Maximova, O., Panyushkina, I., Seim, A., Tishin, D., Ważny, T., and Yermokhin, M.: The European Russia Drought Atlas (1400–2016 CE), Clim. Dynam., 54, 2317–2335, https://doi.org/10.1007/s00382-019-05115-2, 2020. a
Costello, E., Kearney, K., and Gearey, B.: Adapting to the Little Ice Age in pastoral regions: An interdisciplinary approach to climate history in north-west Europe, Hist. Methods, 56, 77–96, https://doi.org/10.1080/01615440.2022.2156958, 2023. a
D'Arrigo, R., Klinger, P., Newfield, T., Rydval, M., and Wilson, R.: Complexity in crisis: The volcanic cold pulse of the 1690s and the consequences of Scotland's failure to cope, J. Volcanol. Geotherm. Res., 389, 106746, https://doi.org/10.1016/j.jvolgeores.2019.106746, 2020. a, b
Degroot, D., Anchukaitis, K., Bauch, M., Burnham, J., Carnegy, F., Cui, J., de Luna, K., Guzowski, P., Hambrecht, G., Huhtamaa, H., Izdebski, A., Kleemann, K., Moesswilde, E., Neupane, N., Newfield, T., Pei, Q., Xoplaki, E., and Zappia, N.: Towards a rigorous understanding of societal responses to climate change, Nature, 591, 539–550, https://doi.org/10.1038/s41586-021-03190-2, 2021. a
Dell, M., Jones, B. F., and Olken, B. A.: What do we learn from the weather? The new climate–economy literature, J. Econ. Lit., 52, 740–798, https://doi.org/10.1257/jel.52.3.740, 2014. a
Diggle, P., Diggle, P. J., Heagerty, P., Liang, K.-Y., and Zeger, S.: Analysis of Longitudinal Data, Oxford University Press, Oxford, ISBN 9780198524847, 2002. a
Dobrovolný, P., Moberg, A., Brázdil, R., Pfister, C., Glaser, R., Wilson, R., van Engelen, A., Limanówka, D., Kiss, A., Halíčková, M., Macková, J., Riemann, D., Luterbacher, J., and Böhm, R.: Monthly, seasonal and annual temperature reconstructions for Central Europe derived from documentary evidence and instrumental records since AD 1500, Clim. Change, 101, 69–107, https://doi.org/10.1007/s10584-009-9724-x, 2010. a, b, c, d, e, f, g, h, i, j, k
Edvinsson, R., Leijonhufvud, L., and Söderberg, J.: Väder, skördar och priser i Sverige, in: Agrarhistoria på många sätt: 28 studier om människan och jorden. Festskrift till Janken Myrdal på hans 60-årsdag, edited by: Liljewall, B., Flygare, I. A., Lange, U., Ljunggren, L., and Söderberg, J., 115–136, The Royal Swedish Academy of Agriculture and Forestry, Stockholm, ISBN 978-91-85205-91-2, 2009. a, b, c, d, e
Esper, J., Krusic, P. J., Ljungqvist, F. C., Luterbacher, J., Carrer, M., Cook, E., Davi, N. K., Hartl-Meier, C., Kirdyanov, A., Konter, O., Myglan, V., Timonen, M., Treydte, K., Trouet, V., Villalba, R., Yang, B., and Büntgen, U.: Ranking of tree-ring based temperature reconstructions of the past millennium, Quat. Sci. Rev., 145, 134–151, https://doi.org/10.1016/j.quascirev.2016.05.009, 2016. a
Esper, J., Büntgen, U., Denzer, S., Krusic, P. J., Luterbacher, J., Schäfer, R., Schreg, R., and Werner, J.: Environmental drivers of historical grain price variations in Europe, Clim. Res., 72, 39–52, https://doi.org/10.3354/cr01449, 2017. a, b, c, d
Feliu, G.: Precios y salarios en la Cataluña moderna, Banco de España, Madrid, https://repositorio.bde.es/handle/123456789/7178 (last access: 2 December 2023), 1991. a
Forsberg, N., Russell, J., Macaulay, M., Leino, M., and Hagenblad, J.: Farmers without borders – genetic structuring in century old barley (Hordeum vulgare), Heredity, 114, 195–206, https://doi.org/10.1038/hdy.2014.83, 2015. a
Forsberg, N. E., Leino, M. W., and Hagenblad, J.: Population structure in landrace barley (Hordeum vulgare L.) during the late 19th century crop failures in Fennoscandia, Heredity, 123, 733–745, https://doi.org/10.1038/s41437-019-0277-0, 2019. a
Forssell, H.: Sverige 1571: Försök till en administrativ-statistisk beskrifning öfver det egentliga Sverige, utan Finland och Estland, Norstedt, Stockholm, http://urn.kb.se/resolve?urn=urn:nbn:se:alvin:portal:record-184519, 1872. a
Franke, J., Frank, D., Raible, C. C., Esper, J., and Brönnimann, S.: Spectral biases in tree-ring climate proxies, Nat. Clim. Change, 3, 360–364, https://doi.org/10.1038/nclimate1816, 2013. a
Gobin, A.: Impact of heat and drought stress on arable crop production in Belgium, Nat. Hazards Earth Syst. Sci., 12, 1911–1922, https://doi.org/10.5194/nhess-12-1911-2012, 2012. a
Granger, C. W. and Elliott, C.: A fresh look at wheat prices and markets in the eighteenth century, Econ. Hist. Rev., 20, 257–265, https://doi.org/10.1111/j.1468-0289.1967.tb00135.x, 1967. a
Granger, C. W. J.: Investigating causal relations by econometric models and cross-spectral methods, Econometrica, 37, 424–438, https://doi.org/10.2307/1912791, 1969. a
Haldon, J., Mordechai, L., Newfield, T. P., Chase, A. F., Izdebski, A., Guzowski, P., Labuhn, I., and Roberts, N.: History meets palaeoscience: Consilience and collaboration in studying past societal responses to environmental change, P. Natl. Acad. Sci. USA, 115, 3210–3218, https://doi.org/10.1073/pnas.1716912115, 2018. a
Hallberg, E., Leijonhufvud, L., Linde, M., and Andersson Palm, L.: Skördar i Sverige före agrarrevolutionen: Statistisk undersökning av det rörliga tiondet fr.o.m. 1665: Introduktion till databaser, Department of Historical Studies, University of Gothenburg, Gothenburg, http://hdl.handle.net/2077/42266 (last access: 1 December 2023), 2016. a, b, c, d, e, f, g, h, i, j, k, l, m
Hamilton, E. J.: Money, Prices, and Wages in Valencia, Aragon, and Navarre, 1351–1500, Harvard University Press, Cambridge, MA, 1936. a
Hanauer, A.: Études économiques sur l'Alsace ancienne et moderne, A. Durand & Pédone-Lauriel, Paris, https://gallica.bnf.fr/ark:/12148/bpt6k1153437.texteImage (last access: 1 December 2023), 1878. a
Hastie, T., Tibshirani, R., and Friedman, J.: The Elements of Statistical Learning, Springer, New York, https://doi.org/10.1007/978-0-387-84858-7, 2001. a
Head-Köenig, A.-L.: Les fluctuations des rendements et du produit décimal céréaliers dans quelques régions du plateau suisse (1500–1800), Revue Suisse d'histoire, 29, 575–604, https://doi.org/10.1515/9783112316047-018, 1979. a, b, c, d
Head-Köenig, A.-L. and Veyrassat-Herren, B.: Les revenus décimaux à Genève de 1540 à 1783, in: Les fluctuations du produit de la dîme: Conjoncture décimale et domaniale de la fin du Moyen Age au 18. siècle, edited by: Goy, J. and Le Roy Ladurie, E., 165–179, École pratique des hautes études, Paris, https://doi.org/10.1515/9783111413822, 1972. a
Hegardt, A.: Akademiens spannmål: uppbörd, handel och priser vid Uppsala universitet 1635–1719, PhD thesis, Uppsala University, 1975. a
Heino, M., Guillaume, J. H. A., Müller, C., Iizumi, T., and Kummu, M.: A multi-model analysis of teleconnected crop yield variability in a range of cropping systems, Earth Syst. Dynam., 11, 113–128, https://doi.org/10.5194/esd-11-113-2020, 2020. a
Herschel, W.: Observations Tending to Investigate the Nature of the Sun, in Order to Find the Causes or Symptoms of Its Variable Emission of Light and Heat; With Remarks on the Use That May Possibly Be Drawn from Solar Observations, Philos. T. R. Soc., 91, 265–318, https://doi.org/10.1098/rstl.1801.0015, 1801. a
Hlavinka, P., Trnka, M., Semerádová, D., Dubrovský, M., Žalud, Z., and Možný, M.: Effect of drought on yield variability of key crops in Czech Republic, Agric. For. Meteorol., 149, 431–442, https://doi.org/10.1016/j.agrformet.2008.09.004, 2009. a
Hoffman, P. T.: Growth in a Traditional Society: The French Countryside, 1450–1815, Princeton University Press, Princeton, ISBN 9780691187204, 1996. a
Holopainen, J., Rickard, I. J., and Helama, S.: Climatic signatures in crops and grain prices in 19th-century Sweden, Holocene, 22, 939–945, https://doi.org/10.1177/0959683611434220, 2012. a
Hoogenboom, G.: Contribution of agrometeorology to the simulation of crop production and its applications, Agric. For. Meteorol., 103, 137–157, https://doi.org/10.1016/S0168-1923(00)00108-8, 2000. a
Huhtamaa, H. and Helama, S.: Distant impact: tropical volcanic eruptions and climate-driven agricultural crises in seventeenth-century Ostrobothnia, Finland, J. Hist. Geogr., 57, 40–51, https://doi.org/10.1016/j.jhg.2017.05.011, 2017. a
Huhtamaa, H. and Ljungqvist, F. C.: Climate in Nordic historical research – a research review and future perspectives, Scand. J. Hist., 46, 665–695, https://doi.org/10.1080/03468755.2021.1929455, 2021. a
Huhtamaa, H., Helama, S., Holopainen, J., Rethorn, C., and Rohr, C.: Crop yield responses to temperature fluctuations in 19th century Finland: Provincial variation in relation to climate and tree-rings, Boreal Environ. Res., 20, 707–723, 2015. a
Hulme, M.: Reducing the future to climate: a story of climate determinism and reductionism, Osiris, 26, 245–266, https://doi.org/10.1086/661274, 2011. a
Iizumi, T., Shiogama, H., Imada, Y., Hanasaki, N., Takikawa, H., and Nishimori, M.: Crop production losses associated with anthropogenic climate change for 1981–2010 compared with preindustrial levels, Int. J. Climatol., 38, 5405–5417, https://doi.org/10.1002/joc.5818, 2018. a
Izdebski, A., Mordechai, L., and White, S.: The social burden of resilience: a historical perspective, Hum. Ecol., 46, 291–303, https://doi.org/10.1007/s10745-018-0002-2, 2018. a
Jansson, A., Palm, L. A., and Söderberg, J.: Dagligt bröd i onda tider: Priser och löner i Stockholm och Västsverige 1500–1770, Department of Historical Studies, University of Gothenburg, Gothenburg, ISBN 9188162109, 1993. a
Jones, P. D.: Early European instrumental records, in: History and Climate: Memories of the Future?, edited by: Jones, P. D., Ogilvie, A. E. J., Davies, T., and Briffa, K., 55–77, Springer, Berlin/Heidelberg, https://doi.org/10.1007/978-1-4757-3365-5_4, 2001. a
Kain, R.: Tithe as an index of pre-industrial agricultural production, Agric. Hist. Rev., 27, 73–81, 1979. a
Kiss, A.: Floods and Long-Term Water-Level Changes in Medieval Hungary, Springer, Berlin/Heidelberg, https://doi.org/10.1007/978-3-319-38864-9, 2019. a
Landsteiner, E.: Wenig Brot und saurer Wein. Kontinuität und Wandel in der zentraleuropäischen Ernährungskultur im letzten Drittel des 16. Jahrhunderts, in: Kulturelle Konsequenzen der “Kleinen Eiszeit”, edited by: Behringer, W., Lehmann, H., and Pfister, C., 87–147, Vandenhoeck & Ruprecht, Göttingen, ISBN 9783525358641, 2005. a, b
Le Roy Ladurie, E.: Histoire du climat depuis l'an mil, Flammarion, Paris, ISBN 9782081451988, 1967. a
Lecerf, R., Ceglar, A., López-Lozano, R., Van Der Velde, M., and Baruth, B.: Assessing the information in crop model and meteorological indicators to forecast crop yield over Europe, Agric. Syst., 168, 191–202, https://doi.org/10.1016/j.agsy.2018.03.002, 2019. a
Leijonhufvud, L., Wilson, R., Moberg, A., Söderberg, J., Retsö, D., and Söderlind, U.: Five centuries of Stockholm winter/spring temperatures reconstructed from documentary evidence and instrumental observations, Clim. Change, 101, 109–141, https://doi.org/10.1007/s10584-009-9650-y, 2010. a, b, c
Leino, M. W.: Spannmål: svenska lantsorter, Nordiska museets förlag, Stockholm, ISBN 9789171085948, 2017. a
Lesnoff, M. and Lancelot, R: aod: Analysis of Overdispersed Data, R-project.org [code], https://cran.r-project.org/package=aod (last access: 28 November 2023), 2012. a
Ljungqvist, F. C. and Huhtamaa, H.: Histoire du climat du Royaume de Suède à l'époque modern, Nord. Hist. Rev., 27, 201–226, 2021. a
Ljungqvist, F. C., Seim, A., Krusic, P. J., González-Rouco, J. F., Werner, J. P., Cook, E. R., Zorita, E., Luterbacher, J., Xoplaki, E., Destouni, G., García-Bustamante, E., Aguilar, C. A. M., Seftigen, K., Wang, J., Gagen, M. H., Esper, J., Solomina, O., Fleitmann, D., and Büntgen, U.: European warm-season temperature and hydroclimate since 850 CE, Environ. Res. Lett., 14, 084015, https://doi.org/10.1088/1748-9326/ab2c7e, 2019. a, b, c, d, e, f
Ljungqvist, F. C., Piermattei, A., Seim, A., Krusic, P. J., Büntgen, U., He, M., Kirdyanov, A. V., Luterbacher, J., Schneider, L., Seftigen, K., Stahle, D. W., Villalba, R., Yang, B., and Esper, J.: Ranking of tree-ring based hydroclimate reconstructions of the past millennium, Quat. Sci. Rev., 230, 106074, https://doi.org/10.1016/j.quascirev.2019.106074, 2020. a
Llopis, A. E., Amarilla, J. A. S., Sanz, J. U. B., Sánchez, Á. L. V., and Abarca, V. A.: ?`Descendió el producto agrario por habitante en la Europa moderna? El caso castellano, Investig. Hist. Econ., 14, 69–81, https://doi.org/10.1016/j.ihe.2016.12.002, 2018. a
Luterbacher, J., Werner, J. P., Smerdon, J. E., Fernández-Donado, L., González-Rouco, F., Barriopedro, D., Ljungqvist, F. C., Büntgen, U., Zorita, E., Wagner, S., Esper, J., Frank, D., Barriendos, M., Bertolin, C., Bothe, O., Brázdil, R., Camuffo, D., Dobrovolný, P., Gagen, M., García-Bustamante, E., Ge, Q., Gómez-Navarro, J., Guiot, J., Hao, Z., Hegerl, G., Holmgren, K., Jungclaus, J., Klimenko, V., Martín-Chivelet, J., McCarroll, D., Pfister, C., Roberts, N., Schindler, A., Schurer, A., Solomina, O., Toreti, A., von Gunten, L., Wahl, E., Wanner, H., Wetter, O., Xoplaki, E., Yuan, N., Zanchettin, D., Zhang, H., and Zerefos, C.: European summer temperatures since Roman times, Environ. Res. Lett., 11, 024001, https://doi.org/10.1088/1748-9326/11/2/024001, 2016. a
Martin, P., Brown, T. A., George, T. S., Gunnarson, B., Loader, N. J., Ross, P., Wishart, J., and Wilson, R.: Climatic controls on the survival and loss of ancient types of barley on North Atlantic Islands, Clim. Change, 176, 4, https://doi.org/10.1007/s10584-022-03474-0, 2023. a
Martínez-González, J. L., Suriñach, J., Jover, G., Martín-Vide, J., Barriendos-Vallvé, M., and Tello, E.: Assessing climate impacts on English economic growth (1645–1740): an econometric approach, Clim. Change, 160, 233–249, https://doi.org/10.1007/s10584-019-02633-0, 2020. a
Mauelshagen, F.: Klimageschichte der Neuzeit, Wissenschaftliche Buchgesellschaft, Darmstadt, ISBN 978-3-534-21024-4, 2010. a
Michaelowa, A.: The impact of short-term climate change on British and French agriculture and population in the first half of the 18th century, in: History and Climate: Memories of the Future?, edited by: Jones, P. D., Ogilvie, A. E. J., Davies, T., and Briffa, K., 201–217, Springer, Berlin/Heidelberg, https://doi.org/10.1007/978-1-4757-3365-5_10, 2001. a
Moore, F. C. and Lobell, D. B.: The fingerprint of climate trends on European crop yields, P. Natl. Acad. Sci. USA, 112, 2670–2675, https://doi.org/10.1073/pnas.1409606112, 2015. a
Mørch, H. F.: Mediterranean agriculture – an agro-ecological strategy, Geogr. Tidsskr.-Den., 1, 143–156, 1999. a
Moreda, V. P.: Spain, in: Famine in European History, edited by: Alfani, G. and Ó Gráda, C., 48–72, Cambridge University Press, Cambridge, https://doi.org/10.1017/9781316841235, 2017. a
Moreno, F. M., Solis, I., Barriendos, M., and Tejedor, E.: Correlations between historical climate data and incidents of common bunt in Spanish wheat, 1755–1801, Hist. Agrar., 82, 67–97, https://doi.org/10.26882/histagrar.082e08m, 2020. a, b, c, d
Muigg, B., Seim, A., Tegel, W., Werther, L., Herzig, F., Schmidt, J., Zielhofer, C., Land, A., and Büntgen, U.: Tree rings reveal dry conditions during Charlemagne's Fossa Carolina construction in 793 CE, Quat. Sci. Rev., 227, 106040, https://doi.org/10.1016/j.quascirev.2019.106040, 2020. a, b
National Oceanic and Atmospheric Administration's (NOAA) Paleoclimatology Program: Paleoclimatology, NOAA [data set], https://www.ncei.noaa.gov/products/paleoclimatology, last access: 1 December 2023. a
Newfield, T.: Domesticates, disease and climate in early post-classical Europe: the cattle plague of c. 940 and its environmental context, Post-Class. Archaeol., 5, 95–126, 2015. a
Parry, M.: Secular climatic change and marginal agriculture, Trans. Inst. Br. Geogr., 64, 1–13, https://doi.org/10.2307/621462, 1975. a
Parry, M.: The significance of the variability of summer warmth in upland Britain, Weather, 31, 212–217, https://doi.org/10.1002/j.1477-8696.1976.tb04442.x, 1976. a
Parry, M. L.: Climatic Change, Agriculture and Settlement, Folkestone, Kent, ISBN-13 978-0712907941, 1978. a
Pei, Q., Zhang, D., Lee, H., and Li, G.: Crop management as an agricultural adaptation to climate change in early modern era: A comparative study of eastern and western Europe, Agriculture, 6, 29, https://doi.org/10.3390/agriculture6030029, 2016. a
Peña-Gallardo, M., Vicente-Serrano, S. M., Domínguez-Castro, F., and Beguería, S.: The impact of drought on the productivity of two rainfed crops in Spain, Nat. Hazards Earth Syst. Sci., 19, 1215–1234, https://doi.org/10.5194/nhess-19-1215-2019, 2019. a
Pfister, C.: Getreide-Erntebeginn und Frühsommertemperaturen im schweizerischen Mittelland seit dem 17. Jahrhundert, Geogr. Helv., 34, 23–35, https://doi.org/10.5194/gh-34-23-1979, 1979. a, b, c
Pfister, C.: The early loss of ecological stability in an agrarian region, in: The Silent Countdown, edited by: Brimblecombe, P. and Pfister, C., 37–55, Springer, Berlin, https://doi.org/10.1007/978-3-642-75159-2, 1990. a
Pfister, C.: Monthly temperature and precipitation patterns in Central Europe from 1525 to the present: A methodology for quantifying man-made evidence on weather and climate, in: Climate Since A.D. 1500, edited by: Bradley, R. S. and Jones, P. D., 118–142, Routledge, London, ISBN 0-415-07593-9, 1992. a, b, c, d, e, f, g, h
Pfister, C.: Little Ice Age-type impacts and the mitigation of social vulnerability to climate in the Swiss Canton of Bern prior to 1800, in: Sustainability or Collapse? An Integrated History and Future of People on Earth, edited by: Graumlich, L. and Costanza, R., The Mit Press, Cambridge, MA, ISBN-13 978-0-262-03366-4, 2007. a, b
Pfister, C. and Brázdil, R.: Climatic variability in sixteenth-century Europe and its social dimension: a synthesis, Clim. Change, 43, 5–53, https://doi.org/10.1023/A:1005585931899, 1999. a
Pribyl, K.: Farming, Famine and Plague: The Impact of Climate in Late Medieval England, Springer, Berlin/Heidelberg, https://doi.org/10.1007/978-3-319-55953-7, 2017. a
R Core Team: R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/ (last access: 28 November 2023), 2022. a
Reichel, R., Thejll, P., and Lassen, K.: The cause-and-effect relationship of solar cycle length and the Northern Hemisphere air surface temperature, J. Geophys. Res. Space Phys., 106, 15635–15641, https://doi.org/10.1029/2001JA900027, 2001. a
Rodrigo, F. S. and Barriendos, M.: Reconstruction of seasonal and annual rainfall variability in the Iberian peninsula (16th–20th centuries) from documentary data, Glob. Planet. Change, 63, 243–257, https://doi.org/10.1016/j.gloplacha.2007.09.004, 2008. a, b
Santiago-Caballero, C.: The Rain in Spain? Climate versus urban demand as causes of agricultural stagnation in eighteenth-century Spain, Eur. Rev. Econ. Hist., 17, 452–470, https://doi.org/10.1093/ereh/het017, 2013a. a
Santiago-Caballero, C.: Trapped by nature: Provincial grain yields in Spain in the mid 18th century, Rev. Hist. Econ., 31, 359–386, https://doi.org/10.1017/S0212610913000165, 2013b. a, b
Santiago-Caballero, C.: Tithe series and grain production in central Spain, 1700–1800, Rural Hist., 25, 15–37, https://doi.org/10.1017/S0956793313000186, 2014. a
Scharnweber, T., Heußner, K.-U., Smiljanic, M., Heinrich, I., van der Maaten-Theunissen, M., van der Maaten, E., Struwe, T., Buras, A., and Wilmking, M.: Removing the no-analogue bias in modern accelerated tree growth leads to stronger medieval drought, Sci. Rep., 9, 1–10, https://doi.org/10.1038/s41598-019-39040-5, 2019. a
Schauberger, P. and Walker, A.: openxlsx: Read, Write and Edit xlsx Files, R-project.org [code], https://CRAN.R-project.org/package=openxlsx (last access: 28 November 2023), 2021. a
Schlenker, W. and Roberts, M.: Nonlinear temperature effects indicate severe damages to U.S. crop yields under climate change, P. Natl. Acad. Sci. USA, 106, 15594–15598, https://doi.org/10.1073/pnas.0906865106, 2009. a
Schreiber, T. and Schmitz, A.: Surrogate time series, Physica D, 142, 346–382, https://doi.org/10.1016/S0167-2789(00)00043-9, 2000. a
Scott, S., Duncan, S. R., and Duncan, C. J.: The origins, interactions and causes of the cycles in grain prices in England, 1450–1812, Agric. Hist. Rev., 46, 1–14, 1998. a
Seftigen, K., Goosse, H., Klein, F., and Chen, D.: Hydroclimate variability in Scandinavia over the last millennium – insights from a climate model–proxy data comparison, Clim. Past, 13, 1831–1850, https://doi.org/10.5194/cp-13-1831-2017, 2017. a, b, c
Simpson, J.: Spanish Agriculture: The Long Siesta, 1765–1965, Cambridge University Press, Cambridge, https://doi.org/10.1017/CBO9780511523816, 1996. a, b, c
Skoglund, M. K.: Climate variability and grain production in Scania, 1702–1911, Clim. Past, 18, 405–433, https://doi.org/10.5194/cp-18-405-2022, 2022. a, b, c, d
Svensk Nationell Datatjänst (SND): Swedish tithe data, SND [data set], https://snd.gu.se/sv/catalogue/study/snd0996, last access: 28 November 2023. a
Soens, T.: No second Lord: Agriculture and climatic variability in the late medieval Low Countries, in: Communities, Environment and Regulation in the Premodern World: Essays in Honour of Peter Hoppenbrouwers, edited by: Weeda, C., Stein, R., and Sicking, L., 71–98, Brepols, Turnhout, ISBN 978-2-503-59446-0, 2022. a, b
Stauffer, B. and Lüthi, A.: Wirtschaftsgeschichtliche Quellen im Dienste der Klimaforschung, Geogr. Helv., 30, 49–56, https://doi.org/10.5194/gh-30-49-1975, 1975. a
Stoffel, M., Corona, C., Ludlow, F., Sigl, M., Huhtamaa, H., Garnier, E., Helama, S., Guillet, S., Crampsie, A., Kleemann, K., Camenisch, C., McConnell, J., and Gao, C.: Climatic, weather, and socio-economic conditions corresponding to the mid-17th-century eruption cluster, Clim. Past, 18, 1083–1108, https://doi.org/10.5194/cp-18-1083-2022, 2022. a
Studer, R.: The Great Divergence Reconsidered, Cambridge University Press, Cambridge, ISBN 978-1-107-02054-2, 2015. a
Sveriges Riksbank: The Stockholm grain price series, Historical Monetary Statistics of Sweden [data set], https://www.riksbank.se/en-gb/statistics/historical-monetary, 28 November 2023. a
Tegel, W., Seim, A., Skiadaresis, G., Ljungqvist, F. C., Kahle, H.-P., Land, A., Muigg, B., Nicolussi, K., and Büntgen, U.: Higher groundwater levels in western Europe characterize warm periods in the Common Era, Sci. Rep., 10, 1–8, https://doi.org/10.1038/s41598-020-73383-8, 2020. a, b
Torbenson, M. C., Büntgen, U., Esper, J., Urban, O., Balek, J., Reinig, F., Krusic, P. J., Martinez del Castillo, E., Brázdil, R., Semerádová, D., Štěpánek, P., Pernicová, N., Kolář, T., Rybníček, M., Koňasová, E., Arbelaez, J., and Trnka, M.: Central European agroclimate over the past 2000 years, J. Climate, 36, 4429–4441, https://doi.org/10.1175/JCLI-D-22-0831.1, 2023. a
Tornberg, M.: Ilmaston-ja sadonvaihtelut Lounais-Suomessa 1550-luvulta 1860-luvulle, Turun Hist. Ark., 44, 58–87, 1989. a
Trnka, M., Hlavinka, P., and Semenov, M. A.: Adaptation options for wheat in Europe will be limited by increased adverse weather events under climate change, J. R. Soc. Interface, 12, 20150721, https://doi.org/10.1098/rsif.2015.0721, 2015. a
Trnka, M., Olesen, J. E., Kersebaum, K. C., Rötter, R. P., Brázdil, R., Eitzinger, J., Jansen, S., Skjelvåg, A. O., Peltonen-Sainio, P., Hlavinka, P., Balek, J., Eckersten, H., Gobin, A., Vučeti, V., Dalla Marta, A., Orlandini, S., Alexandrov, V., Semerádová, D., Štěpánek, P., Svobodová, E., and Rajdl, K.: Changing regional weather crop yield relationships across Europe between 1901 and 2012, Clim. Res., 70, 195–214, https://doi.org/10.3354/cr01426, 2016. a, b, c
Utterström, G.: Jordbrukets arbetare: Levnadsvillkor och arbetsliv på landsbygden från frihetstiden till mitten av 1800-talet, Tiden, Stockholm, 1957. a
van Bavel, B. J., Curtis, D. R., Hannaford, M. J., Moatsos, M., Roosen, J., and Soens, T.: Climate and society in long-term perspective: Opportunities and pitfalls in the use of historical datasets, WIRES Clim. Change, 10, e611, https://doi.org/10.1002/wcc.611, 2019. a
Vogel, E., Donat, M. G., Alexander, L. V., Meinshausen, M., Deepak, R. K., Karoly, D., Meinshausen, N., and Frieler, K.: The effects of climate extremes on global agricultural yields, Environ. Res. Lett., 14, 1–12, https://doi.org/10.1088/1748-9326/ab154b, 2019. a
von Storch, H. and Zwiers, F.: Statistical Analysis in Climate Research, Cambridge University Press, Cambridge, https://doi.org/10.1017/CBO9780511612336, 1999. a
Wallach, D., Makowski, D., Jones, J. W., and Brun, F.: Working with Dynamic Crop Models: Evaluation, Analysis, Parameterization, and Applications, Elsevier, Amsterdam, ISBN 9780080461939, 2006. a
Wanner, H., Pfister, C., and Neukom, R.: The variable European Little Ice Age, Quat. Sci. Rev., 287, 107531, https://doi.org/10.1016/j.quascirev.2022.107531, 2022. a
Wastenson, L., Raab, B., and Vedin, H.: Sveriges nationalatlas: Klimat, sjöar och vattendrag, Sveriges nationalatlas, Stockholm, ISBN 9187760312, 1995. a
Wei, T. and Simko, V.: R package “corrplot”: Visualization of a Correlation Matrix, GitHub [code], https://github.com/taiyun/corrplot (last access: 28 November 2023), 2021. a
Wetter, O., Pfister, C., Werner, J. P., Zorita, E., Wagner, S., Seneviratne, S. I., Herget, J., Grünewald, U., Luterbacher, J., Alcoforado, M.-J., Barriendos, M., Bieber, U., Brázdil, R., Burmeister, K. H., Camenisch, C., Contino, A., Dobrovolný, P., Glaser, R., Himmelsbach, I., Kiss, A., Kotyza, O., Labbé, T., Limanówka, D., Litzenburger, L., Nordl, Ø., Pribyl, K., Retsö, D., Riemann, D., Rohr, C., Siegfried, W., Söderberg, J., and Spring, J.-L.: The year-long unprecedented European heat and drought of 1540 – a worst case, Clim. Change, 125, 349–363, https://doi.org/10.1007/s10584-014-1184-2, 2014. a, b
White, S.: The real Little Ice Age, J. Interdiscip. Hist., 44, 327–352, https://doi.org/10.1162/JINH_a_00574, 2014. a
White, S., Brooke, J., and Pfister, C.: Climate, Weather, agriculture, and food, in: The Palgrave Handbook of Climate History, edited by: White, S., Pfister, C., and Mauelshagen, F., 331–353, Springer, Berlin/Heidelberg, https://doi.org/10.1057/978-1-137-43020-5, 2018. a, b, c, d
White, S., Pei, Q., Kleemann, K., Dolák, L., Huhtamaa, H., and Camenisch, C.: New perspectives on historical climatology, WIRES Clim. Change, 14, e808, https://doi.org/10.1002/wcc.808, 2023. a
Xoplaki, E., Luterbacher, J., Paeth, H., Dietrich, D., Steiner, N., Grosjean, M., and Wanner, H.: European spring and autumn temperature variability and change of extremes over the last half millennium, Geophys. Res. Lett., 32, L15713, https://doi.org/10.1029/2005GL023424, 2005. a, b
Yin, X., Kropff, M. J., and McLaren, G.: A nonlinear model for crop development as a function of temperature, Agric. For. Meteorol., 77, 1–16, https://doi.org/10.1016/0168-1923(95)02236-Q, 1995. a
Young, M.: Scottish crop yields in the second half of the seventeenth century: evidence from the Mains of Castle Lyon in the Carse of Gowrie, Agric. Hist. Rev., 55, 51–74, 2007. a
Związek, T., Guzowski, P., Poniat, R., Radomski, M. T., Kozłowska-Szyc, M., Panecki, T., Słowińska, S., Kruczkowska, B., Targowski, M., and Adamska, D.: On the economic impact of droughts in central Europe: the decade from 1531 to 1540 from the Polish perspective, Clim. Past, 18, 1541–1561, https://doi.org/10.5194/cp-18-1541-2022, 2022. a
Short summary
We study the climate signal in long harvest series from across Europe between the 16th and 18th centuries. The climate–harvest yield relationship is found to be relatively weak but regionally consistent and similar in strength and sign to modern climate–harvest yield relationships. The strongest climate–harvest yield patterns are a significant summer soil moisture signal in Sweden, a winter temperature and precipitation signal in Switzerland, and spring temperature signals in Spain.
We study the climate signal in long harvest series from across Europe between the 16th and 18th...