Articles | Volume 17, issue 1
https://doi.org/10.5194/cp-17-507-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-17-507-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Lower oceanic δ13C during the last interglacial period compared to the Holocene
Shannon A. Bengtson
CORRESPONDING AUTHOR
Climate Change Research Centre, The University of New South Wales, Sydney, Australia
The Australian Research Council Centre of Excellence for Climate Extremes, Sydney, Australia
Laurie C. Menviel
Climate Change Research Centre, The University of New South Wales, Sydney, Australia
Katrin J. Meissner
Climate Change Research Centre, The University of New South Wales, Sydney, Australia
The Australian Research Council Centre of Excellence for Climate Extremes, Sydney, Australia
Lise Missiaen
Climate Change Research Centre, The University of New South Wales, Sydney, Australia
Carlye D. Peterson
Earth Sciences, University of California, Riverside, California, USA
Lorraine E. Lisiecki
Department of Earth Science, University of California, Santa Barbara, California, USA
Fortunat Joos
Climate and Environmental Physics, Physics Institute, University of Bern, Bern, Switzerland
Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
Related authors
No articles found.
Yuxin Zhou, Lorraine E. Lisiecki, Stephen R. Meyers, Taehee Lee, and Charles Lawrence
EGUsphere, https://doi.org/10.5194/egusphere-2025-3741, https://doi.org/10.5194/egusphere-2025-3741, 2025
This preprint is open for discussion and under review for Geochronology (GChron).
Short summary
Short summary
Marine sediments contain valuable information about past climate changes. However, dating Pleistocene marine sediments can be difficult, and the accuracy of the age model depends on the quality of the stratigraphic alignment target. We introduce three targets – Atlantic, Pacific, and global – with three distinct chronologies for the global target that incorporate astronomical forcing constraints to various degrees. This suite of targets offers flexibility in age model construction.
Takashi Obase, Laurie Menviel, Ayako Abe-Ouchi, Tristan Vadsaria, Ruza Ivanovic, Brooke Snoll, Sam Sherriff-Tadano, Paul J. Valdes, Lauren Gregoire, Marie-Luise Kapsch, Uwe Mikolajewicz, Nathaelle Bouttes, Didier Roche, Fanny Lhardy, Chengfei He, Bette Otto-Bliesner, Zhengyu Liu, and Wing-Le Chan
Clim. Past, 21, 1443–1463, https://doi.org/10.5194/cp-21-1443-2025, https://doi.org/10.5194/cp-21-1443-2025, 2025
Short summary
Short summary
This study analyses transient simulations of the last deglaciation performed by six climate models to understand the processes driving high-southern-latitude temperature changes. We find that atmospheric CO2 and AMOC (Atlantic Meridional Overturning Circulation) changes are the primary drivers of the warming and cooling during the middle stage of the deglaciation. The analysis highlights the model's sensitivity of CO2 and AMOC to meltwater and the meltwater history of temperature changes at high southern latitudes.
Zanna Chase, Karen E. Kohfeld, Amy Leventer, David Lund, Xavier Crosta, Laurie Menviel, Helen C. Bostock, Matthew Chadwick, Samuel L. Jaccard, Jacob Jones, Alice Marzocchi, Katrin J. Meissner, Elisabeth Sikes, Louise C. Sime, and Luke Skinner
EGUsphere, https://doi.org/10.5194/egusphere-2025-3504, https://doi.org/10.5194/egusphere-2025-3504, 2025
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
The impact of recent dramatic declines in Antarctic sea ice on the Earth system are uncertain. We reviewed how sea ice affects ocean circulation, ice sheets, winds, and the carbon cycle by considering theory and modern observations alongside paleo-proxy reconstructions. We found evidence for connections between sea ice and these systems but also conflicting results, which point to missing knowledge. Our work highlights the complex role of sea ice in the Earth system.
Bartholomé Duboc, Katrin J. Meissner, Laurie Menviel, Nicholas K. H. Yeung, Babette Hoogakker, Tilo Ziehn, and Matthew Chamberlain
Clim. Past, 21, 1093–1122, https://doi.org/10.5194/cp-21-1093-2025, https://doi.org/10.5194/cp-21-1093-2025, 2025
Short summary
Short summary
We use an earth system model to simulate ocean oxygen during two past warm periods, the Last Interglacial (∼ 129–115 ka) and Marine Isotope Stage (MIS) 9e (∼ 336–321 ka). The global ocean is overall less oxygenated compared to the preindustrial simulation. Large regions in the Mediterranean Sea are oxygen deprived in the Last Interglacial simulation, and to a lesser extent in the MIS 9e simulation, due to an intensification and expansion of the African monsoon and enhanced river runoff.
Gabriel M. Pontes, Pedro L. da Silva Dias, and Laurie Menviel
Clim. Past, 21, 1079–1091, https://doi.org/10.5194/cp-21-1079-2025, https://doi.org/10.5194/cp-21-1079-2025, 2025
Short summary
Short summary
El Niño events are the main drivers of year-to-year climate variability. Understanding how El Niño activity is affected by different climate states is of great relevance to agriculture, water, ecosystem, and climate risk management. Through analysis of past and future climate simulations, we show that the El Niño–Southern Oscillation (ENSO) sensitivity to mean state changes is nonlinear and, to some extent, shaped by atmospheric CO2 levels.
Himadri Saini, David K. Hutchinson, Josephine R. Brown, Russell N. Drysdale, Yanxuan Du, and Laurie Menviel
EGUsphere, https://doi.org/10.5194/egusphere-2025-1990, https://doi.org/10.5194/egusphere-2025-1990, 2025
Short summary
Short summary
This study examines how large ice sheets during the last Ice Age influenced global weather patterns. We found that the presence of these ice sheets affected rainfall patterns in regions like Eurasia and Australia. By altering wind and weather systems, they shifted the position of the tropical rainbelt and impacted the circulation of air in both the Northern and Southern Hemispheres. Our research helps us understand past climate changes and their potential effects on future climate patterns.
Markus Adloff, Aurich Jeltsch-Thömmes, Frerk Pöppelmeier, Thomas F. Stocker, and Fortunat Joos
Clim. Past, 21, 571–592, https://doi.org/10.5194/cp-21-571-2025, https://doi.org/10.5194/cp-21-571-2025, 2025
Short summary
Short summary
We simulated how different processes affected the carbon cycle over the last eight glacial cycles. We found that the effects of interactive marine sediments enlarge the carbon fluxes that result from these processes, especially in the ocean, and alter various proxy signals. We provide an assessment of the directions of regional and global proxy changes that might be expected in response to different glacial–interglacial Earth system changes in the presence of interactive marine sediments.
Babette A.A. Hoogakker, Catherine Davis, Yi Wang, Stephanie Kusch, Katrina Nilsson-Kerr, Dalton S. Hardisty, Allison Jacobel, Dharma Reyes Macaya, Nicolaas Glock, Sha Ni, Julio Sepúlveda, Abby Ren, Alexandra Auderset, Anya V. Hess, Katrin J. Meissner, Jorge Cardich, Robert Anderson, Christine Barras, Chandranath Basak, Harold J. Bradbury, Inda Brinkmann, Alexis Castillo, Madelyn Cook, Kassandra Costa, Constance Choquel, Paula Diz, Jonas Donnenfield, Felix J. Elling, Zeynep Erdem, Helena L. Filipsson, Sebastián Garrido, Julia Gottschalk, Anjaly Govindankutty Menon, Jeroen Groeneveld, Christian Hallmann, Ingrid Hendy, Rick Hennekam, Wanyi Lu, Jean Lynch-Stieglitz, Lélia Matos, Alfredo Martínez-García, Giulia Molina, Práxedes Muñoz, Simone Moretti, Jennifer Morford, Sophie Nuber, Svetlana Radionovskaya, Morgan Reed Raven, Christopher J. Somes, Anja S. Studer, Kazuyo Tachikawa, Raúl Tapia, Martin Tetard, Tyler Vollmer, Xingchen Wang, Shuzhuang Wu, Yan Zhang, Xin-Yuan Zheng, and Yuxin Zhou
Biogeosciences, 22, 863–957, https://doi.org/10.5194/bg-22-863-2025, https://doi.org/10.5194/bg-22-863-2025, 2025
Short summary
Short summary
Paleo-oxygen proxies can extend current records, constrain pre-anthropogenic baselines, provide datasets necessary to test climate models under different boundary conditions, and ultimately understand how ocean oxygenation responds on longer timescales. Here we summarize current proxies used for the reconstruction of Cenozoic seawater oxygen levels. This includes an overview of the proxy's history, how it works, resources required, limitations, and future recommendations.
Zhen Zhang, Benjamin Poulter, Joe R. Melton, William J. Riley, George H. Allen, David J. Beerling, Philippe Bousquet, Josep G. Canadell, Etienne Fluet-Chouinard, Philippe Ciais, Nicola Gedney, Peter O. Hopcroft, Akihiko Ito, Robert B. Jackson, Atul K. Jain, Katherine Jensen, Fortunat Joos, Thomas Kleinen, Sara H. Knox, Tingting Li, Xin Li, Xiangyu Liu, Kyle McDonald, Gavin McNicol, Paul A. Miller, Jurek Müller, Prabir K. Patra, Changhui Peng, Shushi Peng, Zhangcai Qin, Ryan M. Riggs, Marielle Saunois, Qing Sun, Hanqin Tian, Xiaoming Xu, Yuanzhi Yao, Yi Xi, Wenxin Zhang, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
Biogeosciences, 22, 305–321, https://doi.org/10.5194/bg-22-305-2025, https://doi.org/10.5194/bg-22-305-2025, 2025
Short summary
Short summary
This study assesses global methane emissions from wetlands between 2000 and 2020 using multiple models. We found that wetland emissions increased by 6–7 Tg CH4 yr-1 in the 2010s compared to the 2000s. Rising temperatures primarily drove this increase, while changes in precipitation and CO2 levels also played roles. Our findings highlight the importance of wetlands in the global methane budget and the need for continuous monitoring to understand their impact on climate change.
Fortunat Joos, Sebastian Lienert, and Sönke Zaehle
Biogeosciences, 22, 19–39, https://doi.org/10.5194/bg-22-19-2025, https://doi.org/10.5194/bg-22-19-2025, 2025
Short summary
Short summary
How plants regulate their exchange of CO2 and water with the atmosphere under global warming is critical for their carbon uptake and their cooling influence. We analyze the isotope ratio of atmospheric CO2 and detect no significant decadal trends in the seasonal cycle amplitude. The data are consistent with the regulation towards leaf CO2 and intrinsic water use efficiency growing proportionally to atmospheric CO2, in contrast to recent suggestions of downregulation of CO2 and water fluxes.
Yona Silvy, Thomas L. Frölicher, Jens Terhaar, Fortunat Joos, Friedrich A. Burger, Fabrice Lacroix, Myles Allen, Raffaele Bernardello, Laurent Bopp, Victor Brovkin, Jonathan R. Buzan, Patricia Cadule, Martin Dix, John Dunne, Pierre Friedlingstein, Goran Georgievski, Tomohiro Hajima, Stuart Jenkins, Michio Kawamiya, Nancy Y. Kiang, Vladimir Lapin, Donghyun Lee, Paul Lerner, Nadine Mengis, Estela A. Monteiro, David Paynter, Glen P. Peters, Anastasia Romanou, Jörg Schwinger, Sarah Sparrow, Eric Stofferahn, Jerry Tjiputra, Etienne Tourigny, and Tilo Ziehn
Earth Syst. Dynam., 15, 1591–1628, https://doi.org/10.5194/esd-15-1591-2024, https://doi.org/10.5194/esd-15-1591-2024, 2024
Short summary
Short summary
The adaptive emission reduction approach is applied with Earth system models to generate temperature stabilization simulations. These simulations provide compatible emission pathways and budgets for a given warming level, uncovering uncertainty ranges previously missing in the Coupled Model Intercomparison Project scenarios. These target-based emission-driven simulations offer a more coherent assessment across models for studying both the carbon cycle and its impacts under climate stabilization.
Ana-Cristina Mârza, Laurie Menviel, and Luke C. Skinner
Geochronology, 6, 503–519, https://doi.org/10.5194/gchron-6-503-2024, https://doi.org/10.5194/gchron-6-503-2024, 2024
Short summary
Short summary
Radiocarbon serves as a powerful dating tool, but the calibration of marine radiocarbon dates presents significant challenges because the whole surface ocean cannot be represented by a single calibration curve. Here we use climate model outputs and data to assess a novel method for developing regional marine calibration curves. Our results are encouraging and point to a way forward for solving the marine radiocarbon age calibration problem without relying on model simulations of the past.
Timothée Bourgeois, Olivier Torres, Friederike Fröb, Aurich Jeltsch-Thömmes, Giang T. Tran, Jörg Schwinger, Thomas L. Frölicher, Jean Negrel, David Keller, Andreas Oschlies, Laurent Bopp, and Fortunat Joos
EGUsphere, https://doi.org/10.5194/egusphere-2024-2768, https://doi.org/10.5194/egusphere-2024-2768, 2024
Short summary
Short summary
Anthropogenic greenhouse gas emissions significantly impact ocean ecosystems through climate change and acidification, leading to either progressive or abrupt changes. This study maps the crossing of physical and ecological limits for various ocean impact metrics under three emission scenarios. Using Earth system models, we identify when these limits are exceeded, highlighting the urgent need for ambitious climate action to safeguard the world's oceans and ecosystems.
Hanqin Tian, Naiqing Pan, Rona L. Thompson, Josep G. Canadell, Parvadha Suntharalingam, Pierre Regnier, Eric A. Davidson, Michael Prather, Philippe Ciais, Marilena Muntean, Shufen Pan, Wilfried Winiwarter, Sönke Zaehle, Feng Zhou, Robert B. Jackson, Hermann W. Bange, Sarah Berthet, Zihao Bian, Daniele Bianchi, Alexander F. Bouwman, Erik T. Buitenhuis, Geoffrey Dutton, Minpeng Hu, Akihiko Ito, Atul K. Jain, Aurich Jeltsch-Thömmes, Fortunat Joos, Sian Kou-Giesbrecht, Paul B. Krummel, Xin Lan, Angela Landolfi, Ronny Lauerwald, Ya Li, Chaoqun Lu, Taylor Maavara, Manfredi Manizza, Dylan B. Millet, Jens Mühle, Prabir K. Patra, Glen P. Peters, Xiaoyu Qin, Peter Raymond, Laure Resplandy, Judith A. Rosentreter, Hao Shi, Qing Sun, Daniele Tonina, Francesco N. Tubiello, Guido R. van der Werf, Nicolas Vuichard, Junjie Wang, Kelley C. Wells, Luke M. Western, Chris Wilson, Jia Yang, Yuanzhi Yao, Yongfa You, and Qing Zhu
Earth Syst. Sci. Data, 16, 2543–2604, https://doi.org/10.5194/essd-16-2543-2024, https://doi.org/10.5194/essd-16-2543-2024, 2024
Short summary
Short summary
Atmospheric concentrations of nitrous oxide (N2O), a greenhouse gas 273 times more potent than carbon dioxide, have increased by 25 % since the preindustrial period, with the highest observed growth rate in 2020 and 2021. This rapid growth rate has primarily been due to a 40 % increase in anthropogenic emissions since 1980. Observed atmospheric N2O concentrations in recent years have exceeded the worst-case climate scenario, underscoring the importance of reducing anthropogenic N2O emissions.
Markus Adloff, Frerk Pöppelmeier, Aurich Jeltsch-Thömmes, Thomas F. Stocker, and Fortunat Joos
Clim. Past, 20, 1233–1250, https://doi.org/10.5194/cp-20-1233-2024, https://doi.org/10.5194/cp-20-1233-2024, 2024
Short summary
Short summary
The Atlantic Meridional Overturning Circulation (AMOC) is an ocean current that transports heat into the North Atlantic. Over the ice age cycles, AMOC strength and its spatial pattern varied. We tested the role of heat forcing for these AMOC changes by simulating the temperature changes of the last eight glacial cycles. In our model, AMOC shifts between four distinct circulation modes caused by heat and salt redistributions that reproduce reconstructed long-term North Atlantic SST changes.
Jennifer L. Middleton, Julia Gottschalk, Gisela Winckler, Jean Hanley, Carol Knudson, Jesse R. Farmer, Frank Lamy, Lorraine E. Lisiecki, and Expedition 383 Scientists
Geochronology, 6, 125–145, https://doi.org/10.5194/gchron-6-125-2024, https://doi.org/10.5194/gchron-6-125-2024, 2024
Short summary
Short summary
We present oxygen isotope data for a new sediment core from the South Pacific and assign ages to our record by aligning distinct patterns in observed oxygen isotope changes to independently dated target records with the same patterns. We examine the age uncertainties associated with this approach caused by human vs. automated alignment and the sensitivity of outcomes to the choice of alignment target. These efforts help us understand the timing of past climate changes.
Brooke Snoll, Ruza Ivanovic, Lauren Gregoire, Sam Sherriff-Tadano, Laurie Menviel, Takashi Obase, Ayako Abe-Ouchi, Nathaelle Bouttes, Chengfei He, Feng He, Marie Kapsch, Uwe Mikolajewicz, Juan Muglia, and Paul Valdes
Clim. Past, 20, 789–815, https://doi.org/10.5194/cp-20-789-2024, https://doi.org/10.5194/cp-20-789-2024, 2024
Short summary
Short summary
Geological records show rapid climate change throughout the recent deglaciation. The drivers of these changes are still misunderstood but are often attributed to shifts in the Atlantic Ocean circulation from meltwater input. A cumulative effort to understand these processes prompted numerous simulations of this period. We use these to explain the chain of events and our collective ability to simulate them. The results demonstrate the importance of the meltwater amount used in the simulation.
Emmanuele Russo, Jonathan Buzan, Sebastian Lienert, Guillaume Jouvet, Patricio Velasquez Alvarez, Basil Davis, Patrick Ludwig, Fortunat Joos, and Christoph C. Raible
Clim. Past, 20, 449–465, https://doi.org/10.5194/cp-20-449-2024, https://doi.org/10.5194/cp-20-449-2024, 2024
Short summary
Short summary
We present a series of experiments conducted for the Last Glacial Maximum (~21 ka) over Europe using the regional climate Weather Research and Forecasting model (WRF) at convection-permitting resolutions. The model, with new developments better suited to paleo-studies, agrees well with pollen-based climate reconstructions. This agreement is improved when considering different sources of uncertainty. The effect of convection-permitting resolutions is also assessed.
Christen L. Bowman, Devin S. Rand, Lorraine E. Lisiecki, and Samantha C. Bova
Earth Syst. Sci. Data, 16, 701–713, https://doi.org/10.5194/essd-16-701-2024, https://doi.org/10.5194/essd-16-701-2024, 2024
Short summary
Short summary
We estimate an average (stack) of Western Pacific Warm Pool (WPWP) sea surface climate records over the last 800 kyr from 10 ocean sediment cores. To better understand glacial–interglacial differences between the tropical WPWP and high-latitude climate change, we compare our WPWP stack to global and North Atlantic deep-ocean stacks. Although we see similar timing in glacial–interglacial change between the stacks, the WPWP exhibits less amplitude of change.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Dorothee C. E. Bakker, Judith Hauck, Peter Landschützer, Corinne Le Quéré, Ingrid T. Luijkx, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Peter Anthoni, Leticia Barbero, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Bertrand Decharme, Laurent Bopp, Ida Bagus Mandhara Brasika, Patricia Cadule, Matthew A. Chamberlain, Naveen Chandra, Thi-Tuyet-Trang Chau, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Xinyu Dou, Kazutaka Enyo, Wiley Evans, Stefanie Falk, Richard A. Feely, Liang Feng, Daniel J. Ford, Thomas Gasser, Josefine Ghattas, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Jens Heinke, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Andrew R. Jacobson, Atul Jain, Tereza Jarníková, Annika Jersild, Fei Jiang, Zhe Jin, Fortunat Joos, Etsushi Kato, Ralph F. Keeling, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Arne Körtzinger, Xin Lan, Nathalie Lefèvre, Hongmei Li, Junjie Liu, Zhiqiang Liu, Lei Ma, Greg Marland, Nicolas Mayot, Patrick C. McGuire, Galen A. McKinley, Gesa Meyer, Eric J. Morgan, David R. Munro, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin M. O'Brien, Are Olsen, Abdirahman M. Omar, Tsuneo Ono, Melf Paulsen, Denis Pierrot, Katie Pocock, Benjamin Poulter, Carter M. Powis, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Thais M. Rosan, Jörg Schwinger, Roland Séférian, T. Luke Smallman, Stephen M. Smith, Reinel Sospedra-Alfonso, Qing Sun, Adrienne J. Sutton, Colm Sweeney, Shintaro Takao, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Hiroyuki Tsujino, Francesco Tubiello, Guido R. van der Werf, Erik van Ooijen, Rik Wanninkhof, Michio Watanabe, Cathy Wimart-Rousseau, Dongxu Yang, Xiaojuan Yang, Wenping Yuan, Xu Yue, Sönke Zaehle, Jiye Zeng, and Bo Zheng
Earth Syst. Sci. Data, 15, 5301–5369, https://doi.org/10.5194/essd-15-5301-2023, https://doi.org/10.5194/essd-15-5301-2023, 2023
Short summary
Short summary
The Global Carbon Budget 2023 describes the methodology, main results, and data sets used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, land ecosystems, and the ocean over the historical period (1750–2023). These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Laurie C. Menviel, Paul Spence, Andrew E. Kiss, Matthew A. Chamberlain, Hakase Hayashida, Matthew H. England, and Darryn Waugh
Biogeosciences, 20, 4413–4431, https://doi.org/10.5194/bg-20-4413-2023, https://doi.org/10.5194/bg-20-4413-2023, 2023
Short summary
Short summary
As the ocean absorbs 25% of the anthropogenic emissions of carbon, it is important to understand the impact of climate change on the flux of carbon between the ocean and the atmosphere. Here, we use a very high-resolution ocean, sea-ice, carbon cycle model to show that the capability of the Southern Ocean to uptake CO2 has decreased over the last 40 years due to a strengthening and poleward shift of the southern hemispheric westerlies. This trend is expected to continue over the coming century.
Luke Skinner, Francois Primeau, Aurich Jeltsch-Thömmes, Fortunat Joos, Peter Köhler, and Edouard Bard
Clim. Past, 19, 2177–2202, https://doi.org/10.5194/cp-19-2177-2023, https://doi.org/10.5194/cp-19-2177-2023, 2023
Short summary
Short summary
Radiocarbon is best known as a dating tool, but it also allows us to track CO2 exchange between the ocean and atmosphere. Using decades of data and novel mapping methods, we have charted the ocean’s average radiocarbon ″age” since the last Ice Age. Combined with climate model simulations, these data quantify the ocean’s role in atmospheric CO2 rise since the last Ice Age while also revealing that Earth likely received far more cosmic radiation during the last Ice Age than hitherto believed.
Christoph Heinze, Thorsten Blenckner, Peter Brown, Friederike Fröb, Anne Morée, Adrian L. New, Cara Nissen, Stefanie Rynders, Isabel Seguro, Yevgeny Aksenov, Yuri Artioli, Timothée Bourgeois, Friedrich Burger, Jonathan Buzan, B. B. Cael, Veli Çağlar Yumruktepe, Melissa Chierici, Christopher Danek, Ulf Dieckmann, Agneta Fransson, Thomas Frölicher, Giovanni Galli, Marion Gehlen, Aridane G. González, Melchor Gonzalez-Davila, Nicolas Gruber, Örjan Gustafsson, Judith Hauck, Mikko Heino, Stephanie Henson, Jenny Hieronymus, I. Emma Huertas, Fatma Jebri, Aurich Jeltsch-Thömmes, Fortunat Joos, Jaideep Joshi, Stephen Kelly, Nandini Menon, Precious Mongwe, Laurent Oziel, Sólveig Ólafsdottir, Julien Palmieri, Fiz F. Pérez, Rajamohanan Pillai Ranith, Juliano Ramanantsoa, Tilla Roy, Dagmara Rusiecka, J. Magdalena Santana Casiano, Yeray Santana-Falcón, Jörg Schwinger, Roland Séférian, Miriam Seifert, Anna Shchiptsova, Bablu Sinha, Christopher Somes, Reiner Steinfeldt, Dandan Tao, Jerry Tjiputra, Adam Ulfsbo, Christoph Völker, Tsuyoshi Wakamatsu, and Ying Ye
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-182, https://doi.org/10.5194/bg-2023-182, 2023
Revised manuscript not accepted
Short summary
Short summary
For assessing the consequences of human-induced climate change for the marine realm, it is necessary to not only look at gradual changes but also at abrupt changes of environmental conditions. We summarise abrupt changes in ocean warming, acidification, and oxygen concentration as the key environmental factors for ecosystems. Taking these abrupt changes into account requires greenhouse gas emissions to be reduced to a larger extent than previously thought to limit respective damage.
Sian Kou-Giesbrecht, Vivek K. Arora, Christian Seiler, Almut Arneth, Stefanie Falk, Atul K. Jain, Fortunat Joos, Daniel Kennedy, Jürgen Knauer, Stephen Sitch, Michael O'Sullivan, Naiqing Pan, Qing Sun, Hanqin Tian, Nicolas Vuichard, and Sönke Zaehle
Earth Syst. Dynam., 14, 767–795, https://doi.org/10.5194/esd-14-767-2023, https://doi.org/10.5194/esd-14-767-2023, 2023
Short summary
Short summary
Nitrogen (N) is an essential limiting nutrient to terrestrial carbon (C) sequestration. We evaluate N cycling in an ensemble of terrestrial biosphere models. We find that variability in N processes across models is large. Models tended to overestimate C storage per unit N in vegetation and soil, which could have consequences for projecting the future terrestrial C sink. However, N cycling measurements are highly uncertain, and more are necessary to guide the development of N cycling in models.
Himadri Saini, Katrin J. Meissner, Laurie Menviel, and Karin Kvale
Clim. Past, 19, 1559–1584, https://doi.org/10.5194/cp-19-1559-2023, https://doi.org/10.5194/cp-19-1559-2023, 2023
Short summary
Short summary
Understanding the changes in atmospheric CO2 during the last glacial cycle is crucial to comprehend the impact of climate change in the future. Previous research has hypothesised a key role of greater aeolian iron input into the Southern Ocean in influencing the global atmospheric CO2 levels by impacting the changes in the marine phytoplankton response. In our study, we test this iron hypothesis using climate modelling and constrain the impact of ocean iron supply on global CO2 decrease.
Jens Terhaar, Thomas L. Frölicher, and Fortunat Joos
Biogeosciences, 19, 4431–4457, https://doi.org/10.5194/bg-19-4431-2022, https://doi.org/10.5194/bg-19-4431-2022, 2022
Short summary
Short summary
Estimates of the ocean sink of anthropogenic carbon vary across various approaches. We show that the global ocean carbon sink can be estimated by three parameters, two of which approximate the ocean ventilation in the Southern Ocean and the North Atlantic, and one of which approximates the chemical capacity of the ocean to take up carbon. With observations of these parameters, we estimate that the global ocean carbon sink is 10 % larger than previously assumed, and we cut uncertainties in half.
Xavier Crosta, Karen E. Kohfeld, Helen C. Bostock, Matthew Chadwick, Alice Du Vivier, Oliver Esper, Johan Etourneau, Jacob Jones, Amy Leventer, Juliane Müller, Rachael H. Rhodes, Claire S. Allen, Pooja Ghadi, Nele Lamping, Carina B. Lange, Kelly-Anne Lawler, David Lund, Alice Marzocchi, Katrin J. Meissner, Laurie Menviel, Abhilash Nair, Molly Patterson, Jennifer Pike, Joseph G. Prebble, Christina Riesselman, Henrik Sadatzki, Louise C. Sime, Sunil K. Shukla, Lena Thöle, Maria-Elena Vorrath, Wenshen Xiao, and Jiao Yang
Clim. Past, 18, 1729–1756, https://doi.org/10.5194/cp-18-1729-2022, https://doi.org/10.5194/cp-18-1729-2022, 2022
Short summary
Short summary
Despite its importance in the global climate, our knowledge of Antarctic sea-ice changes throughout the last glacial–interglacial cycle is extremely limited. As part of the Cycles of Sea Ice Dynamics in the Earth system (C-SIDE) Working Group, we review marine- and ice-core-based sea-ice proxies to provide insights into their applicability and limitations. By compiling published records, we provide information on Antarctic sea-ice dynamics over the past 130 000 years.
Stefan Mulitza, Torsten Bickert, Helen C. Bostock, Cristiano M. Chiessi, Barbara Donner, Aline Govin, Naomi Harada, Enqing Huang, Heather Johnstone, Henning Kuhnert, Michael Langner, Frank Lamy, Lester Lembke-Jene, Lorraine Lisiecki, Jean Lynch-Stieglitz, Lars Max, Mahyar Mohtadi, Gesine Mollenhauer, Juan Muglia, Dirk Nürnberg, André Paul, Carsten Rühlemann, Janne Repschläger, Rajeev Saraswat, Andreas Schmittner, Elisabeth L. Sikes, Robert F. Spielhagen, and Ralf Tiedemann
Earth Syst. Sci. Data, 14, 2553–2611, https://doi.org/10.5194/essd-14-2553-2022, https://doi.org/10.5194/essd-14-2553-2022, 2022
Short summary
Short summary
Stable isotope ratios of foraminiferal shells from deep-sea sediments preserve key information on the variability of ocean circulation and ice volume. We present the first global atlas of harmonized raw downcore oxygen and carbon isotope ratios of various planktonic and benthic foraminiferal species. The atlas is a foundation for the analyses of the history of Earth system components, for finding future coring sites, and for teaching marine stratigraphy and paleoceanography.
Ryan A. Green, Laurie Menviel, Katrin J. Meissner, Xavier Crosta, Deepak Chandan, Gerrit Lohmann, W. Richard Peltier, Xiaoxu Shi, and Jiang Zhu
Clim. Past, 18, 845–862, https://doi.org/10.5194/cp-18-845-2022, https://doi.org/10.5194/cp-18-845-2022, 2022
Short summary
Short summary
Climate models are used to predict future climate changes and as such, it is important to assess their performance in simulating past climate changes. We analyze seasonal sea-ice cover over the Southern Ocean simulated from numerical PMIP3, PMIP4 and LOVECLIM simulations during the Last Glacial Maximum (LGM). Comparing these simulations to proxy data, we provide improved estimates of LGM seasonal sea-ice cover. Our estimate of summer sea-ice extent is 20 %–30 % larger than previous estimates.
Elisabeth Tschumi, Sebastian Lienert, Karin van der Wiel, Fortunat Joos, and Jakob Zscheischler
Biogeosciences, 19, 1979–1993, https://doi.org/10.5194/bg-19-1979-2022, https://doi.org/10.5194/bg-19-1979-2022, 2022
Short summary
Short summary
Droughts and heatwaves are expected to occur more often in the future, but their effects on land vegetation and the carbon cycle are poorly understood. We use six climate scenarios with differing extreme occurrences and a vegetation model to analyse these effects. Tree coverage and associated plant productivity increase under a climate with no extremes. Frequent co-occurring droughts and heatwaves decrease plant productivity more than the combined effects of single droughts or heatwaves.
Dipayan Choudhury, Laurie Menviel, Katrin J. Meissner, Nicholas K. H. Yeung, Matthew Chamberlain, and Tilo Ziehn
Clim. Past, 18, 507–523, https://doi.org/10.5194/cp-18-507-2022, https://doi.org/10.5194/cp-18-507-2022, 2022
Short summary
Short summary
We investigate the effects of a warmer climate from the Earth's paleoclimate (last interglacial) on the marine carbon cycle of the Southern Ocean using a carbon-cycle-enabled state-of-the-art climate model. We find a 150 % increase in CO2 outgassing during this period, which results from competition between higher sea surface temperatures and weaker oceanic circulation. From this we unequivocally infer that the carbon uptake by the Southern Ocean will reduce under a future warming scenario.
Karin Kvale, David P. Keller, Wolfgang Koeve, Katrin J. Meissner, Christopher J. Somes, Wanxuan Yao, and Andreas Oschlies
Geosci. Model Dev., 14, 7255–7285, https://doi.org/10.5194/gmd-14-7255-2021, https://doi.org/10.5194/gmd-14-7255-2021, 2021
Short summary
Short summary
We present a new model of biological marine silicate cycling for the University of Victoria Earth System Climate Model (UVic ESCM). This new model adds diatoms, which are a key aspect of the biological carbon pump, to an existing ecosystem model. Our modifications change how the model responds to warming, with net primary production declining more strongly than in previous versions. Diatoms in particular are simulated to decline with climate warming due to their high nutrient requirements.
Loïc Schmidely, Christoph Nehrbass-Ahles, Jochen Schmitt, Juhyeong Han, Lucas Silva, Jinwha Shin, Fortunat Joos, Jérôme Chappellaz, Hubertus Fischer, and Thomas F. Stocker
Clim. Past, 17, 1627–1643, https://doi.org/10.5194/cp-17-1627-2021, https://doi.org/10.5194/cp-17-1627-2021, 2021
Short summary
Short summary
Using ancient gas trapped in polar glaciers, we reconstructed the atmospheric concentrations of methane and nitrous oxide over the penultimate deglaciation to study their response to major climate changes. We show this deglaciation to be characterized by modes of methane and nitrous oxide variability that are also found during the last deglaciation and glacial cycle.
Jun Shao, Lowell D. Stott, Laurie Menviel, Andy Ridgwell, Malin Ödalen, and Mayhar Mohtadi
Clim. Past, 17, 1507–1521, https://doi.org/10.5194/cp-17-1507-2021, https://doi.org/10.5194/cp-17-1507-2021, 2021
Short summary
Short summary
Planktic and shallow benthic foraminiferal stable carbon isotope
(δ13C) data show a rapid decline during the last deglaciation. This widespread signal was linked to respired carbon released from the deep ocean and its transport through the upper-ocean circulation. Using numerical simulations in which a stronger flux of respired carbon upwells and outcrops in the Southern Ocean, we find that the depleted δ13C signal is transmitted to the rest of the upper ocean through air–sea gas exchange.
Jurek Müller and Fortunat Joos
Biogeosciences, 18, 3657–3687, https://doi.org/10.5194/bg-18-3657-2021, https://doi.org/10.5194/bg-18-3657-2021, 2021
Short summary
Short summary
We present long-term projections of global peatland area and carbon with a continuous transient history since the Last Glacial Maximum. Our novel results show that large parts of today’s northern peatlands are at risk from past and future climate change, with larger emissions clearly connected to larger risks. The study includes comparisons between different emission and land-use scenarios, driver attribution through factorial simulations, and assessments of uncertainty from climate forcing.
Nicholas King-Hei Yeung, Laurie Menviel, Katrin J. Meissner, Andréa S. Taschetto, Tilo Ziehn, and Matthew Chamberlain
Clim. Past, 17, 869–885, https://doi.org/10.5194/cp-17-869-2021, https://doi.org/10.5194/cp-17-869-2021, 2021
Short summary
Short summary
The Last Interglacial period (LIG) is characterised by strong orbital forcing compared to the pre-industrial period (PI). This study compares the mean climate state of the LIG to the PI as simulated by the ACCESS-ESM1.5, with a focus on the southern hemispheric monsoons, which are shown to be consistently weakened. This is associated with cooler terrestrial conditions in austral summer due to decreased insolation, and greater pressure and subsidence over land from Hadley cell strengthening.
Masa Kageyama, Louise C. Sime, Marie Sicard, Maria-Vittoria Guarino, Anne de Vernal, Ruediger Stein, David Schroeder, Irene Malmierca-Vallet, Ayako Abe-Ouchi, Cecilia Bitz, Pascale Braconnot, Esther C. Brady, Jian Cao, Matthew A. Chamberlain, Danny Feltham, Chuncheng Guo, Allegra N. LeGrande, Gerrit Lohmann, Katrin J. Meissner, Laurie Menviel, Polina Morozova, Kerim H. Nisancioglu, Bette L. Otto-Bliesner, Ryouta O'ishi, Silvana Ramos Buarque, David Salas y Melia, Sam Sherriff-Tadano, Julienne Stroeve, Xiaoxu Shi, Bo Sun, Robert A. Tomas, Evgeny Volodin, Nicholas K. H. Yeung, Qiong Zhang, Zhongshi Zhang, Weipeng Zheng, and Tilo Ziehn
Clim. Past, 17, 37–62, https://doi.org/10.5194/cp-17-37-2021, https://doi.org/10.5194/cp-17-37-2021, 2021
Short summary
Short summary
The Last interglacial (ca. 127 000 years ago) is a period with increased summer insolation at high northern latitudes, resulting in a strong reduction in Arctic sea ice. The latest PMIP4-CMIP6 models all simulate this decrease, consistent with reconstructions. However, neither the models nor the reconstructions agree on the possibility of a seasonally ice-free Arctic. Work to clarify the reasons for this model divergence and the conflicting interpretations of the records will thus be needed.
Bette L. Otto-Bliesner, Esther C. Brady, Anni Zhao, Chris M. Brierley, Yarrow Axford, Emilie Capron, Aline Govin, Jeremy S. Hoffman, Elizabeth Isaacs, Masa Kageyama, Paolo Scussolini, Polychronis C. Tzedakis, Charles J. R. Williams, Eric Wolff, Ayako Abe-Ouchi, Pascale Braconnot, Silvana Ramos Buarque, Jian Cao, Anne de Vernal, Maria Vittoria Guarino, Chuncheng Guo, Allegra N. LeGrande, Gerrit Lohmann, Katrin J. Meissner, Laurie Menviel, Polina A. Morozova, Kerim H. Nisancioglu, Ryouta O'ishi, David Salas y Mélia, Xiaoxu Shi, Marie Sicard, Louise Sime, Christian Stepanek, Robert Tomas, Evgeny Volodin, Nicholas K. H. Yeung, Qiong Zhang, Zhongshi Zhang, and Weipeng Zheng
Clim. Past, 17, 63–94, https://doi.org/10.5194/cp-17-63-2021, https://doi.org/10.5194/cp-17-63-2021, 2021
Short summary
Short summary
The CMIP6–PMIP4 Tier 1 lig127k experiment was designed to address the climate responses to strong orbital forcing. We present a multi-model ensemble of 17 climate models, most of which have also completed the CMIP6 DECK experiments and are thus important for assessing future projections. The lig127ksimulations show strong summer warming over the NH continents. More than half of the models simulate a retreat of the Arctic minimum summer ice edge similar to the average for 2000–2018.
Jurek Müller and Fortunat Joos
Biogeosciences, 17, 5285–5308, https://doi.org/10.5194/bg-17-5285-2020, https://doi.org/10.5194/bg-17-5285-2020, 2020
Short summary
Short summary
We present an in-depth model analysis of transient peatland area and carbon dynamics over the last 22 000 years. Our novel results show that the consideration of both gross positive and negative area changes are necessary to understand the transient evolution of peatlands and their net effect on atmospheric carbon. The study includes the attributions to drivers through factorial simulations, assessments of uncertainty from climate forcing, and determination of the global net carbon balance.
Nadine Mengis, David P. Keller, Andrew H. MacDougall, Michael Eby, Nesha Wright, Katrin J. Meissner, Andreas Oschlies, Andreas Schmittner, Alexander J. MacIsaac, H. Damon Matthews, and Kirsten Zickfeld
Geosci. Model Dev., 13, 4183–4204, https://doi.org/10.5194/gmd-13-4183-2020, https://doi.org/10.5194/gmd-13-4183-2020, 2020
Short summary
Short summary
In this paper, we evaluate the newest version of the University of Victoria Earth System Climate Model (UVic ESCM 2.10). Combining recent model developments as a joint effort, this version is to be used in the next phase of model intercomparison and climate change studies. The UVic ESCM 2.10 is capable of reproducing changes in historical temperature and carbon fluxes well. Additionally, the model is able to reproduce the three-dimensional distribution of many ocean tracers.
Cited articles
Alley, R. B. and Ágústsdóttir, A. M.: The 8k event: cause and
consequences of a major Holocene abrupt climate change, Quaternary Sci.
Rev., 24, 1123–1149, https://doi.org/10.1016/j.quascirev.2004.12.004, 2005. a
Anderson, R. S., Jiménez-Moreno, G., Ager, T., and Porinchu, D. F.:
High-elevation paleoenvironmental change during MIS 6–4 in the
central Rockies of Colorado as determined from pollen analysis,
Quaternary Res., 82, 542–552, https://doi.org/10.1016/j.yqres.2014.03.005, 2014. a
Axford, Y., Briner, J., Francis, D., Miller, G., Walker, I., and
Wolfe, A.: Chironomids record terrestrial temperature changes throughout
Arctic interglacials of the past 200 000 yr, Geol. Soc. Am.
Bull., 123, 1275–1287, https://doi.org/10.1130/B30329.1, 2011. a
Bakker, P., Stone, E. J., Charbit, S., Gröger, M., Krebs-Kanzow, U., Ritz, S. P., Varma, V., Khon, V., Lunt, D. J., Mikolajewicz, U., Prange, M., Renssen, H., Schneider, B., and Schulz, M.: Last interglacial temperature evolution – a model inter-comparison, Clim. Past, 9, 605–619, https://doi.org/10.5194/cp-9-605-2013, 2013. a, b
Basu, S., Agrawal, S., Sanyal, P., Mahato, P., Kumar, S., and Sarkar, A.:
Carbon isotopic ratios of modern C3–C4 plants from the
Gangetic Plain, India and its implications to paleovegetational
reconstruction, Palaeogeogr. Palaeocl., 440, 22–32,
https://doi.org/10.1016/j.palaeo.2015.08.012, 2015. a, b
Bazin, L., Landais, A., Lemieux-Dudon, B., Toyé Mahamadou Kele, H., Veres,
D., Parrenin, F., Martinerie, P., Ritz, C., Capron, E., Lipenkov, V. Y.,
Loutre, M.-F., Raynaud, D., Vinther, B. M., Svensson, A. M., Rasmussen,
S. O., Severi, M., Blunier, T., Leuenberger, M. C., Fischer, H.,
Masson-Delmotte, V., Chappellaz, J. A., and Wolff, E. W.: delta Deuterium
measured on ice core EDC on AICC2012 chronology, PANGAEA, https://doi.org/10.1594/PANGAEA.824891, 2013. a
Belanger, P. E., Curry, W. B., and Matthews, R. K.: Core-top evaluation of
benthic foraminiferal isotopic ratios for paleo-oceanographic
interpretations, Palaeogeogr. Palaeocl., 33,
205–220, https://doi.org/10.1016/0031-0182(81)90039-0, 1981. a, b
Bengtson, S. A., Meissner, K. J., Menviel, L., Sisson, S., and Wilkin, J.:
Evaluating the extent of North Atlantic Deep Water and the mean
Atlantic δ13C from statistical reconstructions,
Paleoceanogr. Paleocl., 34, 1022–1036, https://doi.org/10.1029/2019PA003589, 2019. a, b
Bengtson, S. A., Menviel, L., Meissner, K. J., Missiaen, L., Peterson, C., Lisiecki, L., and Joos, F.: Benthic δ13C during the last interglacial and the Holocene, UNSW, Australian Research Data Commons, https://doi.org/10.26190/5efe841541f3b, 2020. a
Bereiter, B., Eggleston, S., Schmitt, J., Nehrbass-Ahles, C., Stocker, T. F.,
Fischer, H., Kipfstuhl, S., and Chappellaz, J.: Revision of the EPICA
Dome C CO2 record from 800 to 600 kyr before present,
Geophys. Res. Lett., 42, 542–549, https://doi.org/10.1002/2014GL061957, 2015. a
Bickert, T. and Mackensen, A.: Last Glacial to Holocene Changes in
South Atlantic Deep Water Circulation, in: The South Atlantic
in the Late Quaternary: Reconstruction of Material Budgets and
Current Systems, edited by: Wefer, G., Mulitza, S., and Ratmeyer, V.,
Springer, Berlin and Heidelberg, Germany,
671–693, https://doi.org/10.1007/978-3-642-18917-3_29, 2003. a, b, c, d, e, f, g
Bickert, T. and Wefer, G.: Late Quaternary Deep Water Circulation in
the South Atlantic: Reconstruction from Carbonate Dissolution and
Benthic Stable Isotopes, in: The South Atlantic: Present and
Past Circulation, edited by: Wefer, G., Berger, W. H., Siedler, G., and
Webb, D. J., Springer, Berlin and Heidelberg, Germany,
599–620, https://doi.org/10.1007/978-3-642-80353-6_30, 1996. a, b
Bickert, T., Wefer, G., and Müller, P. J.: Stable isotopes and
sedimentology of core GeoB1032-2, PANGAEA, https://doi.org/10.1594/PANGAEA.103613,
2003. a
Bock, M., Schmitt, J., Beck, J., Seth, B., Chappellaz, J., and Fischer, H.:
Glacial/interglacial wetland, biomass burning, and geologic methane emissions
constrained by dual stable isotopic CH4 ice core records,
P. Natl. Acad. Sci. USA, 114, 5778–5786,
https://doi.org/10.1073/pnas.1613883114, 2017. a
Böhm, E., Lippold, J., Gutjahr, M., Frank, M., Blaser, P., Antz, B.,
Fohlmeister, J., Frank, N., Andersen, M. B., and Deininger, M.: Strong and
deep Atlantic meridional overturning circulation during the last glacial
cycle, Nature, 517, 73–76, https://doi.org/10.1038/nature14059, 2015. a
Boyle, E. A.: Cadmium and δ13C Paleochemical Ocean
Distributions During the Stage 2 Glacial Maximum, Annu. Rev.
Earth Pl. Sc., 20, 245–287,
https://doi.org/10.1146/annurev.ea.20.050192.001333, 1992. a, b
Boyle, E. A. and Keigwin, L. D.: Comparison of Atlantic and Pacific
paleochemical records for the last 215 000 years: changes in deep ocean
circulation and chemical inventories, Earth Planet. Sci. Lett.,
76, 135–150, https://doi.org/10.1016/0012-821X(85)90154-2, 1985. a
Boyle, E. A. and Keigwin, L.: North Atlantic thermohaline circulation during
the past 20 000 years linked to high-latitude surface temperature, Nature,
330, 35–40, https://doi.org/10.1038/330035a0, 1987. a
Brovkin, V., Bendtsen, J., Claussen, M., Ganopolski, A., Kubatzki, C.,
Petoukhov, V., and Andreev, A.: Carbon cycle, vegetation, and climate
dynamics in the Holocene: Experiments with the CLIMBER-2 model, Global
Biogeochem. Cy., 16, 1–20, https://doi.org/10.1029/2001GB001662, 2002. a
Brovkin, V., Brücher, T., Kleinen, T., Zaehle, S., Joos, F., Roth, R.,
Spahni, R., Schmitt, J., Fischer, H., Leuenberger, M., Stone, E. J.,
Ridgwell, A., Chappellaz, J., Kehrwald, N., Barbante, C., Blunier, T., and
Dahl Jensen, D.: Comparative carbon cycle dynamics of the present and last
interglacial, Quaternary Sci. Rev., 137, 15–32,
https://doi.org/10.1016/j.quascirev.2016.01.028, 2016. a, b
Came, R. E., Oppo, D. W., and Curry, W. B.: Atlantic Ocean circulation during
the Younger Dryas: Insights from a new Cd/Ca record from the
western subtropical South Atlantic, Paleoceanography, 18, 1086–1095,
https://doi.org/10.1029/2003PA000888, 2003. a
Candy, S. and Alonso-Garcia, M.: Sea surface temperature reconstruction for
sediment core GIK23414-6, PANGAEA, https://doi.org/10.1594/PANGAEA.894428, 2018. a
CAPE-Last Interglacial Project Members: Last Interglacial Arctic warmth confirms polar amplification of
climate change, Quaternary Sci. Rev., 25, 1383–1400,
https://doi.org/10.1016/j.quascirev.2006.01.033, 2006. a, b
Cernusak, L. A., Ubierna, N., Winter, K., Holtum, J. A. M., Marshall, J. D.,
and Farquhar, G. D.: Environmental and physiological determinants of carbon
isotope discrimination in terrestrial plants, New Phytol., 200, 950–965,
https://doi.org/10.1111/nph.12423, 2013. a
Chen, J., Farrell, J. W., Murray, D. W., and Prell, W. L.: Timescale and
paleoceanographic implications of a 3.6m.y. oxygen isotope record from the
northeast Indian Ocean,
Paleoceanography, 10, 21–47, https://doi.org/10.1029/94PA02290, 1995. a, b
Cheng, X., Tian, J., and Wang, P.: Stable isotopes from Site 1143, Tech. Rep. 184, International Ocean Discovery Program, College Station, TX, USA, 1–8, 2004. a
Collins, J. A., Schefuß, E., Heslop, D., Mulitza, S., Prange, M., Zabel,
M., Tjallingii, R., Dokken, T. M., Huang, E., Mackensen, A., Schulz, M.,
Tian, J., Zarriess, M., and Wefer, G.: Interhemispheric symmetry of the
tropical African rainbelt over the past 23 000 years, Nat. Geosci., 4,
42–45, https://doi.org/10.1038/ngeo1039, 2011. a
Cortijo, E.: Stable isotope analysis on sediment core SU90-39, PANGAEA,
https://doi.org/10.1594/PANGAEA.106761, 2003. a, b
Curry, W. B. and Lohmann, G. P.: Carbon isotopic changes in benthic
foraminifera from the western South Atlantic: Reconstruction of glacial
abyssal circulation patterns, Quaternary Res., 18, 218–235,
https://doi.org/10.1016/0033-5894(82)90071-0, 1982. a, b
Curry, W. B. and Oppo, D. W.: Synchronous, high-frequency oscillations in
tropical sea surface temperatures and North Atlantic Deep Water
production during the Last Glacial Cycle, Paleoceanography, 12, 1–14,
https://doi.org/10.1029/96PA02413, 1997. a, b
Curry, W. B. and Oppo, D. W.: Glacial water mass geometry and the distribution
of δ13C of ΣCO2 in the western
Atlantic Ocean, Paleoceanography, 20, PA1017, https://doi.org/10.1029/2004PA001021, 2005. a, b, c, d
Curry, W. B., Shackleton, N., and Richter, C.:
Proc. ODP, Init. Repts, 154: College Station, TX (Ocean Drilling Program),
https://doi.org/10.2973/odp.proc.ir.154.1995, 1995. a, b
de Abreu, L., Shackleton, N. J., Schönfeld, J., Hall, M., and Chapman, M.:
Millennial-scale oceanic climate variability off the Western Iberian
margin during the last two glacial periods, Mar. Geol., 196, 1–20,
https://doi.org/10.1016/S0025-3227(03)00046-X, 2003. a, b
Deaney, E. L., Barker, S., and van de Flierdt, T.: Timing and nature of AMOC
recovery across Termination 2 and magnitude of deglacial
CO2 change, Nat. Commun., 8, 1–10,
https://doi.org/10.1038/ncomms14595, 2017. a, b
de Vernal, A. and Hillaire-Marcel, C.: Natural Variability of Greenland
Climate, Vegetation, and Ice Volume During the Past Million
Years, Science, 320, 1622–1625, https://doi.org/10.1126/science.1153929, 2008. a, b
Diefendorf, A. F. and Freimuth, E. J.: Extracting the most from terrestrial
plant-derived n-alkyl lipids and their carbon isotopes from the sedimentary
record: A review, Org. Geochem., 103, 1–21,
https://doi.org/10.1016/j.orggeochem.2016.10.016, 2017. a
Diefendorf, A. F., Mueller, K. E., Wing, S. L., Koch, P. L., and Freeman,
K. H.: Global patterns in leaf 13C discrimination and
implications for studies of past and future climate, P.
Natl. Acad. Sci. USA, 107, 5738–5743, https://doi.org/10.1073/pnas.0910513107,
2010. a
Dioumaeva, I., Trumbore, S., Schuur, E. A. G., Goulden, M. L., Litvak, M., and
Hirsch, A. I.: Decomposition of peat from upland boreal forest: Temperature
dependence and sources of respired carbon, J. Geophys. Res.-Atmos., 107, 1–12, https://doi.org/10.1029/2001JD000848, 2002. a
Drake, N. A., Blench, R. M., Armitage, S. J., Bristow, C. S., and White, K. H.:
Ancient watercourses and biogeography of the Sahara explain the peopling of
the desert, P. Natl. Acad. Sci. USA, 108, 458–462,
https://doi.org/10.1073/pnas.1012231108, 2011. a
Duplessy, J.-C., Shackleton, N. J., Matthews, R. K., Prell, W., Ruddiman,
W. F., Caralp, M., and Hendy, C. H.: 13C Record of benthic
foraminifera in the last interglacial ocean: Implications for the carbon
cycle and the global deep water circulation, Quaternary Res., 21,
225–243, https://doi.org/10.1016/0033-5894(84)90099-1, 1984. a, b, c, d, e, f, g, h
Duplessy, J. C., Shackleton, N. J., Fairbanks, R. G., Labeyrie, L., Oppo,
D. W., and Kallel, N.: Deepwater source variations during the last climatic
cycle and their impact on the global deepwater circulation, Paleoceanography,
3, 343–360, https://doi.org/10.1029/PA003i003p00343, 1988. a
Dutton, A. and Lambeck, K.: Ice Volume and Sea Level During the Last
Interglacial, Science, 337, 216–219, https://doi.org/10.1126/science.1205749, 2012. a
Dutton, A., Carlson, A. E., Long, A. J., Milne, G. A., Clark, P. U., DeConto,
R., Horton, B. P., Rahmstorf, S., and Raymo, M. E.: Sea-level rise due to
polar ice-sheet mass loss during past warm periods, Science, 349, 4019,
https://doi.org/10.1126/science.aaa4019, 2015. a
Dyonisius, M. N., Petrenko, V. V., Smith, A. M., Hua, Q., Yang, B., Schmitt,
J., Beck, J., Seth, B., Bock, M., Hmiel, B., Vimont, I., Menking, J. A.,
Shackleton, S. A., Baggenstos, D., Bauska, T. K., Rhodes, R. H., Sperlich,
P., Beaudette, R., Harth, C., Kalk, M., Brook, E. J., Fischer, H.,
Severinghaus, J. P., and Weiss, R. F.: Old carbon reservoirs were not
important in the deglacial methane budget, Science, 367, 907–910,
https://doi.org/10.1126/science.aax0504, 2020. a
Eggleston, S., Schmitt, J., Bereiter, B., Schneider, R., and Fischer, H.:
CO2 concentration and stable isotope ratios of three
Antarctic ice cores covering the period from 149.4–1.5 kyr before 1950,
PANGAEA, https://doi.org/10.1594/PANGAEA.859181, 2016. a
Eide, M., Olsen, A., Ninnemann, U. S., and Johannessen, T.: A global ocean
climatology of preindustrial and modern ocean δ13C,
Global Biogeochem. Cy., 31, 515–534, https://doi.org/10.1002/2016GB005473, 2017. a, b, c
Farquhar, G. D.: On the Nature of Carbon Isotope Discrimination in C4
Species, Funct. Plant Biol., 10, 205–226, https://doi.org/10.1071/pp9830205,
1983. a
Farquhar, G. D., Ehleringer, J. R., and Hubick, K. T.: Carbon Isotope
Discrimination and Photosynthesis, Annu. Rev. Plant Phys., 40, 503–537,
https://doi.org/10.1146/annurev.pp.40.060189.002443, 1989. a
Flückiger, J., Monnin, E., Stauffer, B., Schwander, J., Stocker, T. F.,
Chappellaz, J., Raynaud, D., and Barnola, J.-M.: High-resolution Holocene
N2O ice core record and its relationship with
CH4 and CO2, Global Biogeochem. Cy.,
16, 1–8, https://doi.org/10.1029/2001GB001417, 2002. a
Freudenthal, T., Meggers, H., Henderiks, J., Kuhlmann, H., Moreno, A., and
Wefer, G.: Upwelling intensity and filament activity off Morocco during the
last 250 000 years, Deep Sea Res., 49, 3655–3674, https://doi.org/10.1016/S0967-0645(02)00101-7, 2002. a, b, c
Galaasen, E. V., Ninnemann, U. S., Irvalı, N., Kleiven, H. F., Rosenthal,
Y., Kissel, C., and Hodell, D. A.: Stable isotope ratios of C.
wuellerstorfi from sediment core MD03-2664, Bjerknes Centre for Climate
Research, PANGAEA, https://doi.org/10.1594/PANGAEA.830079, 2014a. a, b
Galaasen, E. V., Ninnemann, U. S., Irvalı, N., Kleiven, H. K. F., Rosenthal,
Y., Kissel, C., and Hodell, D. A.: Rapid Reductions in North Atlantic
Deep Water During the Peak of the Last Interglacial Period,
Science, 343, 1129–1132, https://doi.org/10.1126/science.1248667, 2014b. a, b, c, d
Gebhardt, H., Sarnthein, M., Grootes, P. M., Kiefer, T., Kuehn, H., Schmieder,
F., and Röhl, U.: Paleonutrient and productivity records from the
subarctic North Pacific for Pleistocene glacial terminations I to
V, Paleoceanography, 23, PA4212, https://doi.org/10.1029/2007PA001513, 2008. a
Govin, A., Braconnot, P., Capron, E., Cortijo, E., Duplessy, J.-C., Jansen, E., Labeyrie, L., Landais, A., Marti, O., Michel, E., Mosquet, E., Risebrobakken, B., Swingedouw, D., and Waelbroeck, C.: Persistent influence of ice sheet melting on high northern latitude climate during the early Last Interglacial, Clim. Past, 8, 483–507, https://doi.org/10.5194/cp-8-483-2012, 2012. a
Govin, A., Capron, E., Tzedakis, P. C., Verheyden, S., Ghaleb, B.,
Hillaire-Marcel, C., St-Onge, G., Stoner, J. S., Bassinot, F., Bazin, L.,
Blunier, T., Combourieu-Nebout, N., El Ouahabi, A., Genty, D., Gersonde, R.,
Jimenez-Amat, P., Landais, A., Martrat, B., Masson-Delmotte, V., Parrenin,
F., Seidenkrantz, M. S., Veres, D., Waelbroeck, C., and Zahn, R.: Sequence of
events from the onset to the demise of the Last Interglacial:
Evaluating strengths and limitations of chronologies used in climatic
archives, Quaternary Sci. Rev., 129, 1–36,
https://doi.org/10.1016/j.quascirev.2015.09.018, 2015. a, b, c, d, e
Hasenclever, J., Knorr, G., Rüpke, L. H., Köhler, P., Morgan, J.,
Garofalo, K., Barker, S., Lohmann, G., and Hall, I. R.: Sea level fall during
glaciation stabilized atmospheric CO2 by enhanced volcanic
degassing, Nat. Commun., 8, 15867, https://doi.org/10.1038/ncomms15867,
2017. a
Helmens, K. F., Salonen, J. S., Plikk, A., Engels, S., Väliranta, M.,
Kylander, M., Brendryen, J., and Renssen, H.: Major cooling intersecting peak
Eemian Interglacial warmth in northern Europe, Quaternary Sci.
Rev., 122, 293–299, https://doi.org/10.1016/j.quascirev.2015.05.018, 2015. a
Hmiel, B., Petrenko, V. V., Dyonisius, M. N., Buizert, C., Smith, A. M., Place,
P. F., Harth, C., Beaudette, R., Hua, Q., Yang, B., Vimont, I., Michel,
S. E., Severinghaus, J. P., Etheridge, D., Bromley, T., Schmitt, J.,
Faïn, X., Weiss, R. F., and Dlugokencky, E.: Preindustrial
14CH4 indicates greater anthropogenic fossil
CH4 emissions, Nature, 578, 409–412,
https://doi.org/10.1038/s41586-020-1991-8, 2020. a
Hodell, D. A. and Channell, J. E. T.: Mode transitions in Northern Hemisphere glaciation: co-evolution of millennial and orbital variability in Quaternary climate, Clim. Past, 12, 1805–1828, https://doi.org/10.5194/cp-12-1805-2016, 2016. a, b, c
Hodell, D. A., Charles, C. D., and Ninnemann, U. S.: Comparison of interglacial
stages in the South Atlantic sector of the southern ocean for the past
450 kyr: implifications for Marine Isotope Stage (MIS) 11, Global
Planet. Change, 24, 7–26, https://doi.org/10.1016/S0921-8181(99)00069-7, 2000. a
Hodell, D. A., Charles, C. D., and Sierro, F. J.: Late Pleistocene evolution
of the ocean's carbonate system, Earth Planet. Sci.
Lett., 192, 109–124, https://doi.org/10.1016/S0012-821X(01)00430-7, 2001. a, b
Hodell, D. A., Charles, C., Curtis, J., Mortyn, P., Ninnemann, U., and Venz, K.:
Data report: Oxygen isotope stratigraphy of ODP Leg 177 Sites 1088,
1089, 1090, 1093, and 1094, Proc. Ocean Drill. Prog. Sci.
Results, 177, 1–26, 2003. a
Hodell, D. A., Channell, J. E. T., Curtis, J. H., Romero, O. E., and Röhl,
U.: Oxygen and carbon isotopes of the benthic foraminifer Cibicoides
wuellerstorfi of IODP Site 303-U1308, supplement to: Onset of `Hudson Strait' Heinrich Events in the eastern North
Atlantic at the end of the middle Pleistocene transition
(∼ 640 ka)?, Paleoceanography, 23, PA4218,
https://doi.org/10.1029/2008PA001591, 2008. a, b
Hoffman, J. S., Clark, P. U., Parnell, A. C., and He, F.: Regional and global
sea-surface temperatures during the last interglaciation, Science, 355,
276–279, https://doi.org/10.1126/science.aai8464, 2017. a, b
Holbourn, A., Kuhnt, W., Schulz, M., and Erlenkeuser, H.: Impacts of orbital
forcing and atmospheric carbon dioxide on Miocene ice-sheet expansion,
Nature, 438, 483–487, https://doi.org/10.1038/nature04123, 2005. a, b
Hoogakker, B. A. A., Rohling, E. J., Palmer, M. R., Tyrrell, T., and Rothwell,
R. G.: Underlying causes for long-term global ocean
δ13C fluctuations over the last 1.20 Myr, Earth Planet. Sci. Lett., 248, 15–29, https://doi.org/10.1016/j.epsl.2006.05.007,
2006. a
Hüls, M.: Calculated sea surface temperature of sediment core M35003-4,
PANGAEA, https://doi.org/10.1594/PANGAEA.55761, 1999. a
Huybers, P. and Langmuir, C.: Feedback between deglaciation, volcanism, and
atmospheric CO2, Earth Planet. Sci. Lett., 286,
479–491, https://doi.org/10.1016/j.epsl.2009.07.014, 2009. a
IPCC: Climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Ding, Y., Mearns, L., and Wadhams, P., Cambridge University Press, Cambridge, UK and New York, NY, USA, 2013. a
Jansen, E., Raymo, M., and Blum, P.: Proc. ODP, Init. Repts, 154: College
Station, TX (Ocean Drilling Program), https://doi.org/10.2973/odp.proc.ir.162.1996,
1996. a, b
Jeltsch-Thömmes, A. and Joos, F.: Modeling the evolution of pulse-like perturbations in atmospheric carbon and carbon isotopes: the role of weathering–sedimentation imbalances, Clim. Past, 16, 423–451, https://doi.org/10.5194/cp-16-423-2020, 2020. a, b, c
Jeltsch-Thömmes, A., Battaglia, G., Cartapanis, O., Jaccard, S. L., and Joos, F.: Low terrestrial carbon storage at the Last Glacial Maximum: constraints from multi-proxy data, Clim. Past, 15, 849–879, https://doi.org/10.5194/cp-15-849-2019, 2019. a, b
Jouzel, J., Masson-Delmotte, V., Cattani, O., Dreyfus, G., Falourd, S.,
Hoffmann, G., Minster, B., Nouet, J., Barnola, J. M., Chappellaz, J.,
Fischer, H., Gallet, J. C., Johnsen, S., Leuenberger, M., Loulergue, L.,
Luethi, D., Oerter, H., Parrenin, F., Raisbeck, G., Raynaud, D., Schilt, A., Schwander, J., Selmo, E., Souchez, R., Spahni, R., Stauffer, B., Steffensen, J. P., Stenni, B., Stocker, T. F., Tison, J. L., Werner, M., and Wolff, E. W.: Orbital and Millennial Antarctic Climate Variability over the Past 800 000 Years, Science, 317, 793–796,
https://doi.org/10.1126/science.1141038, 2007. a
Jullien, E., Grousset, F. E., Hemming, S. R., Peck, V. L., Hall, I. R.,
Jeantet, C., and Billy, I.: Contrasting conditions preceding MIS3 and
MIS2 Heinrich events, Global and Planet. Change, 54, 225–238,
https://doi.org/10.1016/j.gloplacha.2006.06.021, 2006. a
Kawamura, K., Parrenin, F., Lisiecki, L., Uemura, R., Vimeux, F., Severinghaus, J. P., Hutterli, M. A., Nakazawa, T., Aoki, S., Jouzel, J., Raymo, M. E., Matsumoto, K., Nakata, H., Motoyama, H., Fujita, S., Goto-Azuma, K., Fujii, Y., and Watanabe, O.: Northern Hemisphere forcing of climatic cycles in Antarctica over the past 360 000 years, Nature, 448, 912–916, https://doi.org/10.1038/nature06015, 2007. a
Keigwin, L. D. and Jones, G. A.: Glacial-Holocene stratigraphy, chronology,
and paleoceanographic observations on some North Atlantic sediment
drifts, Deep Sea Research Pt. A, 36, 845–867, https://doi.org/10.1016/0198-0149(89)90032-0, 1989. a, b
Keigwin, L. D. and Jones, G. A.: Western North Atlantic evidence for
millennial-scale changes in ocean circulation and climate, J.
Geophys. Res.-Oceans, 99, 12397–12410, https://doi.org/10.1029/94JC00525,
1994. a, b
Keigwin, L. D. and Schlegel, M. A.: Ocean ventilation and sedimentation since
the glacial maximum at 3 km in the western North Atlantic, Geochem. Geophys. Geosy., 3, 1–14, https://doi.org/10.1029/2001GC000283, 2002. a, b
Keigwin, L. D., Jones, G. A., Lehman, S. J., and Boyle, E. A.: Deglacial
meltwater discharge, North Atlantic Deep Circulation, and abrupt
climate change, J. Geophys. Res.-Oceans, 96,
16811–16826, https://doi.org/10.1029/91JC01624, 1991. a
Keller, K. M., Lienert, S., Bozbiyik, A., Stocker, T. F., Churakova (Sidorova), O. V., Frank, D. C., Klesse, S., Koven, C. D., Leuenberger, M., Riley, W. J., Saurer, M., Siegwolf, R., Weigt, R. B., and Joos, F.: 20th century changes in carbon isotopes and water-use efficiency: tree-ring-based evaluation of the CLM4.5 and LPX-Bern models, Biogeosciences, 14, 2641–2673, https://doi.org/10.5194/bg-14-2641-2017, 2017. a
Key, R. M., Kozyr, A., Sabine, C. L., Lee, K., Wanninkhof, R., Bullister,
J. L., Feely, R. A., Millero, F. J., Mordy, C., and Peng, T.-H.: A global
ocean carbon climatology: Results from Global Data Analysis Project (GLODAP), Global Biogeochem. Cy., 18, GB4031, https://doi.org/10.1029/2004GB002247, 2004. a
Köhler, P., Nehrbass-Ahles, C., Schmitt, J., Stocker, T. F., and Fischer,
H.: Continuous record of the atmospheric greenhouse gas carbon dioxide
(CO2), raw data, PANGAEA, https://doi.org/10.1594/PANGAEA.871265, 2017. a, b
Kohn, M. J.: Carbon isotope compositions of terrestrial C3 plants as
indicators of (paleo)ecology and (paleo)climate, P. Natl. Acad. Sci. USA, 107, 19691–19695, https://doi.org/10.1073/pnas.1004933107, 2010. a, b
Kopp, R. E., Simons, F. J., Mitrovica, J. X., Maloof, A. C., and Oppenheimer,
M.: Probabilistic assessment of sea level during the last interglacial stage, Nature, 462, 863–867, https://doi.org/10.1038/nature08686, 2009. a
Labeyrie, L., Vidal, L., Cortijo, E., Paterne, M., Arnold, M., Duplessy, J. C., Vautravers, M., Labracherie, M., Duprat, J., Turon, J. L., Grousset, F., and Van Weering, T.: Surface and Deep Hydrology of the Northern Atlantic
Ocean during the past 150 000 Years, Philos. T. Biol. Sci., 348, 255–264, 1995. a
Labeyrie, L., Labracherie, M., Gorfti, N., Pichon, J. J., Vautravers, M.,
Arnold, M., Duplessy, J.-C., Paterne, M., Michel, E., Duprat, J., Caralp, M., and Turon, J.-L.: Hydrographic changes of the Southern Ocean (southeast Indian Sector) Over the last 230 kyr, Paleoceanography, 11, 57–76, https://doi.org/10.1029/95PA02255, 1996. a
Labeyrie, L., Leclaire, H., Waelbroeck, C., Cortijo, E., Duplessy, J.-C.,
Vidal, L., Elliot, M., Coat, B. L., and Auffret, G.: Temporal Variability
of the Surface and Deep Waters of the North West Atlantic Ocean at Orbital and Millenial Scales, in: Mechanisms of Global Climate Change at Millennial Time Scales, American Geophysical Union, https://doi.org/10.1029/GM112p0077, 77–98, 1999. a, b
Labeyrie, L. D., Leclaire, H., Waelbroeck, C., Cortijo, E., Duplessy, J.-C.,
Vidal, L., Elliot, M., and Le Coat, B.: Foraminiferal stable isotopes of
sediment core CH69-K09, PANGAEA, https://doi.org/10.1594/PANGAEA.881464, 2017. a
Larrasoaña, J. C., Roberts, A. P., and Rohling, E. J.: Dynamics of Green Sahara Periods and Their Role in Hominin Evolution, Plos One, 8, e76514, https://doi.org/10.1371/journal.pone.0076514, 2013. a, b
Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A. C. M., and
Levrard, B.: A long-term numerical solution for the insolation quantities of the Earth, Astron. Astrophys., 428, 261–285,
https://doi.org/10.1051/0004-6361:20041335, 2004. a
Leavitt, S. W.: Systematics of stable-carbon isotopic differences between
gymnosperm and angiosperm trees, Plant Physiol., 11,
257–262, 1992. a
Lebreiro, S. M., Voelker, A. H. L., Vizcaino, A., Abrantes, F. G., Alt-Epping, U., Jung, S., Thouveny, N., and Gràcia, E.: Sediment instability on the Portuguese continental margin under abrupt glacial climate changes (last 60kyr), Quaternary Sci. Rev., 28, 3211–3223,
https://doi.org/10.1016/j.quascirev.2009.08.007, 2009. a
Lee, M., Wei, K. C. J., and Chen, Y.-G.: High Resolution Oxygen Isotope
Stratigraphy for the Last 150 000 Years in the Southern South
China Sea: Core MD972151, Terr. Atmos. Ocean.
Sci., 10, 239–254, https://doi.org/10.3319/tao.1999.10.1.239(images), 1999. a, b
Lehman, S. J., Sachs, J. P., Crotwell, A. M., Keigwin, L. D., and Boyle, E. A.: Relation of subtropical Atlantic temperature, high-latitude ice rafting, deep water formation, and European climate 130 000–60 000 years
ago, Quaternary Sci. Rev., 21, 1917–1924,
https://doi.org/10.1016/S0277-3791(02)00078-1, 2002. a
Lisiecki, L. E. and Raymo, M. E.: A Pliocene-Pleistocene stack of 57
globally distributed benthic δ18O records,
Paleoceanography, 20, PA1003, https://doi.org/10.1029/2004PA001071, 2005. a
Lisiecki, L. E. and Stern, J. V.: Regional and global benthic
δ18O stacks for the last glacial cycle,
Paleoceanography, 31, 2016PA003002, https://doi.org/10.1002/2016PA003002, 2016. a, b, c
Lototskaya, A. and Ganssen, G. M.: The structure of Termination II
(penultimate deglaciation and Eemian) in the North Atlantic, Quaternary Sci. Rev., 18, 1641–1654, https://doi.org/10.1016/S0277-3791(99)00011-6, 1999. a
Lüthi, D., Le Floch, M., Bereiter, B., Blunier, T., Barnola, J.-M.,
Siegenthaler, U., Raynaud, D., Jouzel, J., Fischer, H., Kawamura, K., and
Stocker, T. F.: High-resolution carbon dioxide concentration record
650 000–800 000 years before present, Nature, 453, 379–382,
https://doi.org/10.1038/nature06949, 2008. a
Lyle, M., Mix, A., and Pisias, N.: Patterns of CaCO3 deposition
in the eastern tropical Pacific Ocean for the last 150 Kyr: Evidence
for a southeast Pacific depositional spike during marine isotope stage
(MIS) 2, Paleoceanography, 17, 3–1, https://doi.org/10.1029/2000PA000538, 2002. a, b, c
Lynch-Stieglitz, J., Stocker, T. F., Broecker, W. S., and Fairbanks, R. G.: The
influence of air-sea exchange on the isotopic composition of oceanic carbon: Observations and modeling, Global Biogeochem. Cy., 9, 653–665,
https://doi.org/10.1029/95GB02574, 1995. a
Lynch-Stieglitz, J., Curry, W. B., Oppo, D. W., Ninneman, U. S., Charles,
C. D., and Munson, J.: Meridional overturning circulation in the South
Atlantic at the last glacial maximum, Geochem. Geophys. Geosy., 7, Q10N03, https://doi.org/10.1029/2005GC001226, 2006. a, b
Mackensen, A. and Bickert, T.: Stable Carbon Isotopes in Benthic
Foraminifera: Proxies for Deep and Bottom Water Circulation and
New Production, in: Use of Proxies in Paleoceanography: Examples
from the South Atlantic, edited by: Fischer, G. and Wefer, G.,
Springer, Berlin, Heidelberg,
https://doi.org/10.1007/978-3-642-58646-0_9, 229–254, 1999. a, b
Mackensen, A., Rudolph, M., and Kuhn, G.: Late Pleistocene deep-water
circulation in the subantarctic eastern Atlantic, Global Planet.
Change, 30, 197–229, https://doi.org/10.1016/S0921-8181(01)00102-3, 2001. a
Marcott, S. A., Shakun, J. D., Clark, P. U., and Mix, A. C.: A Reconstruction of Regional and Global Temperature for the Past 11,300 Years, Science, 339, 1198–1201, https://doi.org/10.1126/science.1228026, 2013. a
Martrat, B., Grimalt, J. O., Shackleton, N. J., de Abreu, L., Hutterli, M. A., and Stocker, T. F.: Sea surface temperature estimation for the Iberian Margin, Supplement to: Martrat, B et al. (2007): Four climate cycles of recurring deep and surface water destabilizations on the Iberian Margin: Science, 317, 502–507, https://doi.org/10.1126/science.1139994,
https://doi.org/10.1594/PANGAEA.771894, 2007a. a, b
Martrat, B., Grimalt, J. O., Shackleton, N. J., de Abreu, L., Hutterli, M. A., and Stocker, T. F.: (Table S2) Sea surface temperature estimation for ODP Hole 161–977A, PANGAEA, https://doi.org/10.1594/PANGAEA.771890, 2007b. a
Masson-Delmotte, V., Stenni, B., Pol, K., Braconnot, P., Cattani, O., Falourd,
S., Kageyama, M., Jouzel, J., Landais, A., Minster, B., Barnola, J. M.,
Chappellaz, J., Krinner, G., Johnsen, S., Röthlisberger, R., Hansen, J.,
Mikolajewicz, U., and Otto-Bliesner, B.: EPICA Dome C record of glacial and interglacial intensities, Quaternary Sci. Rev., 29, 113–128, https://doi.org/10.1016/j.quascirev.2009.09.030, 2010. a
Masson-Delmotte, V., Schulz, M., Abe-Ouchi, A., Beer, J., Ganopolski, J.,
González Rouco, J. F., Jansen, E., Lambeck, K., Luterbacher, J., Naish,
T., Osborn, T., Otto-Bliesner, B., Quinn, T., Ramesh, R., Rojas, M., Shao,
X., and Timmermann, A.: Information from paleoclimate archives, in: Climate
change 2013: The physical science basis, Contribution of working group
I to the fifth assessment report of the intergovernmental panel on climate change, edited by Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Doschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, UK,
https://doi.org/10.1017/CBO9781107415324.013, 383–464, 2013. a
McIntyre, K., Ravelo, A. C., and Delaney, M. L.: North Atlantic
Intermediate Waters in the Late Pliocene to Early Pleistocene,
Paleoceanography, 14, 324–335, https://doi.org/10.1029/1998PA900005, 1999. a, b
McKay, N. P., Overpeck, J. T., and Otto-Bliesner, B. L.: The role of ocean
thermal expansion in Last Interglacial sea level rise, Geophys.
Res. Lett., 38, L14605, https://doi.org/10.1029/2011GL048280, 2011. a
McManus, J. F., Oppo, D. W., and Cullen, J. L.: A 0.5-Million-Year Record of Millennial-Scale Climate Variability in the North Atlantic, Science, 283, 971–975, https://doi.org/10.1126/science.283.5404.971, 1999. a, b
Members, C. P.: Stable isotopes measured on foraminifera from the 120 kyr time slice reconstruction in sediment core RC12–339, PANGAEA,
https://doi.org/10.1594/PANGAEA.358927, 2006. a
Menviel, L. and Joos, F.: Toward explaining the Holocene carbon dioxide and
carbon isotope records: Results from transient ocean carbon cycle-climate
simulations, Paleoceanography, 27, https://doi.org/10.1029/2011PA002224, 2012. a
Menviel, L., Mouchet, A., J. Meissner, K., Joos, F., and H. England, M.: Impact of oceanic circulation changes on atmospheric
δ13CO2, Global Biogeochem. Cy.,
29, 1944–1961, https://doi.org/10.1002/2015GB005207, 2015. a
Menviel, L., Yu, J., Joos, F., Mouchet, A., Meissner, K. J., and England,
M. H.: Poorly ventilated deep ocean at the Last Glacial Maximum
inferred from carbon isotopes: A data-model comparison study,
Paleoceanography, 32, 2–17, https://doi.org/10.1002/2016PA003024, 2017. a
Menviel, L., Capron, E., Govin, A., Dutton, A., Tarasov, L., Abe-Ouchi, A., Drysdale, R. N., Gibbard, P. L., Gregoire, L., He, F., Ivanovic, R. F., Kageyama, M., Kawamura, K., Landais, A., Otto-Bliesner, B. L., Oyabu, I., Tzedakis, P. C., Wolff, E., and Zhang, X.: The penultimate deglaciation: protocol for Paleoclimate Modelling Intercomparison Project (PMIP) phase 4 transient numerical simulations between 140 and 127 ka, version 1.0, Geosci. Model Dev., 12, 3649–3685, https://doi.org/10.5194/gmd-12-3649-2019, 2019. a, b
Millo, C., Sarnthein, M., Voelker, A., and Erlenkeuser, H.: Variability of the Denmark Strait Overflow during the Last Glacial Maximum, Boreas, 35, 50–60, https://doi.org/10.1080/03009480500359244, 2006. a
Mix, A. C. and Fairbanks, R. G.: North Atlantic surface-ocean control of
Pleistocene deep-ocean circulation, Earth Planet. Sci. Lett.,
73, 231–243, https://doi.org/10.1016/0012-821X(85)90072-X, 1985. a, b
Mix, A. C., Pisias, N. G., Zahn, R., Rugh, W., Lopez, C., and Nelson, K.:
Carbon 13 in Pacific Deep and Intermediate Waters, 0-370 ka:
Implications for Ocean Circulation and Pleistocene
CO2, Paleoceanography, 6, 205–226, https://doi.org/10.1029/90PA02303,
1991. a, b, c, d
Mokeddem, Z., McManus, J. F., and Oppo, D. W.: Oceanographic dynamics and the
end of the last interglacial in the subpolar North Atlantic, P. Natl. Acad. Sci. USA, 111, 11263–11268, https://doi.org/10.1073/pnas.1322103111, 2014. a, b
Montero-Serrano, J.-C., Bout-Roumazeilles, V., Carlson, A. E., Tribovillard,
N., Bory, A., Meunier, G., Sionneau, T., Flower, B. P., Martinez, P., Billy, I., and Riboulleau, A.: Contrasting rainfall patterns over North America during the Holocene and Last Interglacial as recorded by sediments of the northern Gulf of Mexico, Geophys. Res. Lett., 38, L14709, https://doi.org/10.1029/2011GL048194, 2011. a
Muhs, D. R., Ager, T. A., and Begét, J. E.: Vegetation and paleoclimate of the last interglacial period, central Alaska, Quaternary Sci. Rev.,
20, 41–61, https://doi.org/10.1016/S0277-3791(00)00132-3, 2001. a, b
Mulitza, S., Prange, M., Stuut, J.-B., Zabel, M., von Dobeneck, T., Itambi,
A. C., Nizou, J., Schulz, M., and Wefer, G.: Sahel megadroughts triggered by glacial slowdowns of Atlantic meridional overturning, Paleoceanography, 23, PA4206, https://doi.org/10.1029/2008PA001637, 2008. a
Novák, M., Buzek, F., and Adamová, M.: Vertical trends in
δ13C, δ15N and
δ34S ratios in bulk Sphagnum peat, Soil Biol.
Biochem., 31, 1343–1346, 1999. a
Oppo, D. W. and Fairbanks, R. G.: Variability in the deep and intermediate
water circulation of the Atlantic Ocean during the past 25 000 years:
Northern Hemisphere modulation of the Southern Ocean, Earth
Planet. Sci. Lett., 86, 1–15, https://doi.org/10.1016/0012-821X(87)90183-X,
1987. a, b
Oppo, D. W. and Horowitz, M.: Glacial deep water geometry: South Atlantic
benthic foraminiferal Cd/Ca and δ13C evidence,
Paleoceanography, 15, 147–160, https://doi.org/10.1029/1999PA000436, 2000. a, b
Oppo, D. W. and Lehman, S. J.: Suborbital timescale variability of North
Atlantic Deep Water during the past 200 000 years, Paleoceanography,
10, 901–910, https://doi.org/10.1029/95PA02089, 1995. a, b
Oppo, D. W., McManus, J. F., and Cullen, J. L.: Abrupt Climate Events
500 000 to 340 000 Years Ago: Evidence from Subpolar North
Atlantic Sediments, Science, 279, 1335–1338,
https://doi.org/10.1126/science.279.5355.1335, 1998. a, b
Oppo, D. W., McManus, J. F., and Cullen, J. L.: Evolution and demise of the
Last Interglacial warmth in the subpolar North Atlantic, Quaternary
Sci. Rev., 25, 3268–3277, https://doi.org/10.1016/j.quascirev.2006.07.006, 2006. a
Otto-Bliesner, B. L., Brady, E. C., Zhao, A., Brierley, C. M., Axford, Y., Capron, E., Govin, A., Hoffman, J. S., Isaacs, E., Kageyama, M., Scussolini, P., Tzedakis, P. C., Williams, C. J. R., Wolff, E., Abe-Ouchi, A., Braconnot, P., Ramos Buarque, S., Cao, J., de Vernal, A., Guarino, M. V., Guo, C., LeGrande, A. N., Lohmann, G., Meissner, K. J., Menviel, L., Morozova, P. A., Nisancioglu, K. H., O'ishi, R., Salas y Mélia, D., Shi, X., Sicard, M., Sime, L., Stepanek, C., Tomas, R., Volodin, E., Yeung, N. K. H., Zhang, Q., Zhang, Z., and Zheng, W.: Large-scale features of Last Interglacial climate: results from evaluating the lig127k simulations for the Coupled Model Intercomparison Project (CMIP6)–Paleoclimate Modeling Intercomparison Project (PMIP4), Clim. Past, 17, 63–94, https://doi.org/10.5194/cp-17-63-2021, 2021. a, b, c
Pahnke, K. and Zahn, R.: Southern Hemisphere water mass conversion linked
with North Atlantic climate variability, Science, 307,
1741–1746, https://doi.org/10.1126/science.1102163, 2005. a
Past Interglacials Working Group of PAGES: Interglacials of the last 800 000 years, Revi.
Geophys., 54, 162–219, https://doi.org/10.1002/2015RG000482, 2016. a, b
Petit, J. R., Jouzel, J., Raynaud, D., Barkov, N. I., Barnola, J.-M., Basile,
I., Bender, M., Chappellaz, J., Davis, M., Delaygue, G., Delmotte, M.,
Kotlyakov, V. M., Legrand, M., Lipenkov, V. Y., Lorius, C., Pépin, L.,
Ritz, C., Saltzman, E., and Stievenard, M.: Climate and atmospheric history
of the past 420 000 years from the Vostok ice core, Antarctica, Nature,
399, 429–436, https://doi.org/10.1038/20859, 1999. a
Pisias, N. G. and Mix, A. C.: Spatial and temporal oceanographic variability of the eastern equatorial Pacific during the Late Pleistocene: Evidence from radiolaria microfossils, Paleoceanography, 12, 381–393,
https://doi.org/10.1029/97PA00583, 1997. a, b
Rau, A. J., Rogers, J., Lutjeharms, J. R. E., Giraudeau, J., Lee-Thorp, J. A., Chen, M. T., and Waelbroeck, C.: A 450-kyr record of hydrological conditions on the western Agulhas Bank Slope, south of Africa, Mar. Geol., 180, 183–201, https://doi.org/10.1016/S0025-3227(01)00213-4, 2002. a, b
Raymo, M. E., Oppo, D. W., and Curry, W.: The Mid-Pleistocene climate
transition: A deep sea carbon isotopic perspective, Paleoceanography, 12,
546–559, https://doi.org/10.1029/97PA01019, 1997. a
Raymo, M. E., Oppo, D. W., Flower, B. P., Hodell, D. A., McManus, J. F., Venz, K. A., Kleiven, K. F., and McIntyre, K.: Stability of North Atlantic water masses in face of pronounced climate variability during the
Pleistocene, Paleoceanography, 19, PA2008, https://doi.org/10.1029/2003PA000921, 2004. a, b
Reyes, A. V., Froese, D. G., and Jensen, B. J. L.: Permafrost response to last interglacial warming: field evidence from non-glaciated Yukon and Alaska, Quaternary Sci. Rev., 29, 3256–3274,
https://doi.org/10.1016/j.quascirev.2010.07.013, 2010. a
Roth, R. and Joos, F.: Model limits on the role of volcanic carbon emissions in regulating glacial–interglacial CO2 variations,
Earth Planet. Sci. Lett., 329–330, 141–149,
https://doi.org/10.1016/j.epsl.2012.02.019, 2012. a
Rowe, P. J., Wickens, L. B., Sahy, D., Marca, A. D., Peckover, E., Noble, S.,
Özkul, M., Baykara, M. O., Millar, I. L., and Andrews, J. E.: Multi-proxy speleothem record of climate instability during the early last interglacial in southern Turkey, Palaeogeogr. Palaeoclim. Palaeoecol., 538, 109422, https://doi.org/10.1016/j.palaeo.2019.109422, 2019. a
Ruddiman, W. F. and Members, C. P.: Stable isotope data of the 120 k time
slice, PANGAEA, https://doi.org/10.1594/PANGAEA.51932, 1982. a, b, c
Russon, T., Elliot, M., Kissel, C., Cabioch, G., Deckker, P. D., and
Corrège, T.: Middle-late Pleistocene deep water circulation in the
southwest subtropical Pacific, Paleoceanography, 24, PA4205,
https://doi.org/10.1029/2009PA001755, 2009. a, b
Samson, C. R., Sikes, E. L., and Howard, W. R.: Deglacial paleoceanographic
history of the Bay of Plenty, New Zealand, Paleoceanography, 20, PA4017,
https://doi.org/10.1029/2004PA001088, 2005. a
Sarnthein, M.: Age model of sediment core GIK16772-1, PANGAEA,
https://doi.org/10.1594/PANGAEA.134239, 2003. a
Sarnthein, M., Winn, K., Jung, S. J. A., Duplessy, J.-C., Labeyrie, L.,
Erlenkeuser, H., and Ganssen, G.: Changes in East Atlantic Deepwater
Circulation over the last 30 000 years: Eight time slice reconstructions, Paleoceanography, 9, 209–267, https://doi.org/10.1029/93PA03301, 1994. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, aa, ab, ac, ad, ae, af, ag, ah, ai, aj, ak, al, am, an, ao, ap, aq, ar, as
Saunois, M., Stavert, A. R., Poulter, B., Bousquet, P., Canadell, J. G., Jackson, R. B., Raymond, P. A., Dlugokencky, E. J., Houweling, S., Patra, P. K., Ciais, P., Arora, V. K., Bastviken, D., Bergamaschi, P., Blake, D. R., Brailsford, G., Bruhwiler, L., Carlson, K. M., Carrol, M., Castaldi, S., Chandra, N., Crevoisier, C., Crill, P. M., Covey, K., Curry, C. L., Etiope, G., Frankenberg, C., Gedney, N., Hegglin, M. I., Höglund-Isaksson, L., Hugelius, G., Ishizawa, M., Ito, A., Janssens-Maenhout, G., Jensen, K. M., Joos, F., Kleinen, T., Krummel, P. B., Langenfelds, R. L., Laruelle, G. G., Liu, L., Machida, T., Maksyutov, S., McDonald, K. C., McNorton, J., Miller, P. A., Melton, J. R., Morino, I., Müller, J., Murguia-Flores, F., Naik, V., Niwa, Y., Noce, S., O'Doherty, S., Parker, R. J., Peng, C., Peng, S., Peters, G. P., Prigent, C., Prinn, R., Ramonet, M., Regnier, P., Riley, W. J., Rosentreter, J. A., Segers, A., Simpson, I. J., Shi, H., Smith, S. J., Steele, L. P., Thornton, B. F., Tian, H., Tohjima, Y., Tubiello, F. N., Tsuruta, A., Viovy, N., Voulgarakis, A., Weber, T. S., van Weele, M., van der Werf, G. R., Weiss, R. F., Worthy, D., Wunch, D., Yin, Y., Yoshida, Y., Zhang, W., Zhang, Z., Zhao, Y., Zheng, B., Zhu, Q., Zhu, Q., and Zhuang, Q.: The Global Methane Budget 2000–2017, Earth Syst. Sci. Data, 12, 1561–1623, https://doi.org/10.5194/essd-12-1561-2020, 2020. a
Schmiedl, G. and Mackensen, A.: Late Quaternary paleoproductivity and deep
water circulation in the eastern South Atlantic Ocean: Evidence from benthic foraminifera, Palaeogeogr. Palaeoclim. Palaeoecol. 130, 43–80, https://doi.org/10.1016/S0031-0182(96)00137-X, 1997. a, b
Schmiedl, G. and Mackensen, A.: Multispecies stable isotopes of benthic
foraminifers reveal past changes of organic matter decomposition and
deepwater oxygenation in the Arabian Sea, Paleoceanography, 21, PA4213,
https://doi.org/10.1029/2006PA001284, 2006. a, b
Schmittner, A., Gruber, N., Mix, A. C., Key, R. M., Tagliabue, A., and Westberry, T. K.: Biology and air–sea gas exchange controls on the distribution of carbon isotope ratios (δ13C) in the ocean, Biogeosciences, 10, 5793–5816, https://doi.org/10.5194/bg-10-5793-2013, 2013. a
Schneider, R., Schmitt, J., Köhler, P., Joos, F., and Fischer, H.: A reconstruction of atmospheric carbon dioxide and its stable carbon isotopic composition from the penultimate glacial maximum to the last glacial inception, Clim. Past, 9, 2507–2523, https://doi.org/10.5194/cp-9-2507-2013, 2013. a, b, c
Schönfeld, J., Zahn, R., and de Abreu, L.: Surface and deep water response to rapid climate changes at the Western Iberian Margin, Global Planet. Change, 36, 237–264, https://doi.org/10.1016/S0921-8181(02)00197-2, 2003. a
Schubert, B. A. and Jahren, A. H.: The effect of atmospheric
CO2 concentration on carbon isotope fractionation in C3
land plants, Geochim. Cosmochim. Ac., 96, 29–43,
https://doi.org/10.1016/j.gca.2012.08.003, 2012. a
Schuur, E. A. G., McGuire, A. D., Schädel, C., Grosse, G., Harden, J. W.,
Hayes, D. J., Hugelius, G., Koven, C. D., Kuhry, P., Lawrence, D. M., Natali, S. M., Olefeldt, D., Romanovsky, V. E., Schaefer, K., Turetsky, M. R., Treat, C. C., and Vonk, J. E.: Climate change and the permafrost carbon feedback, Nature, 520, 171–179, https://doi.org/10.1038/nature14338, 2015. a
Shackleton, N. J.: The last interglacial in the marine and terrestrial records, P. Roy. Soc. Lond. B. Bio.,
174, 135–154, https://doi.org/10.1098/rspb.1969.0085, 1969. a
Shackleton, N. J.: Stable carbon and oxygen isotope ratios of benthic and
planktic foraminifera from the Atlantic Ocean, Supplement to: Shackleton, NJ (1977): Carbon-13 in Uvigerina: Tropical rain forest history and the equatorial Pacific carbonate dissolution cycle, in: The Fate of Fossil Fuel in the Oceans, edited by: Andersen, N. R. and Malahoff, A., Plenum, New York, https://doi.org/10.1594/PANGAEA.692091, 401-427, 1977. a, b, c
Shackleton, N. J. and Hall, M. A.: Stable isotope record of DSDP Hole
81-552A in the northeastern Atlantic Ocean, Supplement to: Shackleton, NJ; Hall, MA (1984): Oxygen and carbon isotope stratigraphy of Deep Sea Drilling Project Hole 552A: Plio-Pleistocene glacial history, in: Initial Reports of the Deep Sea Drilling Project, Washington (U.S. Govt. Printing Office), 81, 599–609, https://doi.org/10.2973/dsdp.proc.81.116.1984, 1984. a, b
Shackleton, N. J., Berger, A., and Peltier, W. R.: An alternative astronomical calibration of the lower Pleistocene timescale based on ODP Site 677, Earth Env. Sci. T. R. So., 81, 251–261, https://doi.org/10.1017/S0263593300020782, 1990. a, b
Shackleton, N. J., Hall, M. A., and Vincent, E.: Phase relationships between
millennial-scale events 64 000–24 000 years ago,
Paleoceanography, 15, 565–569, https://doi.org/10.1029/2000PA000513, 2000. a
Shackleton, S., Baggenstos, D., Menking, J. A., Dyonisius, M. N., Bereiter, B., Bauska, T. K., Rhodes, R. H., Brook, E. J., Petrenko, V. V., McConnell,
J. R., Kellerhals, T., Häberli, M., Schmitt, J., Fischer, H., and
Severinghaus, J. P.: Global ocean heat content in the Last Interglacial, Nat. Geosci., 13, 77–81, https://doi.org/10.1038/s41561-019-0498-0, 2020. a
Sikes, E. L., Howard, W. R., Samson, C. R., Mahan, T. S., Robertson, L. G., and Volkman, J. K.: Southern Ocean seasonal temperature and Subtropical
Front movement on the South Tasman Rise in the late Quaternary,
Paleoceanography, 24, PA2201, https://doi.org/10.1029/2008PA001659, 2009. a
Sirocko, F., Garbe-Schönberg, D., and Devey, C.: Processes controlling
trace element geochemistry of Arabian Sea sediments during the last
25 000 years, Global Planet. Change, 26, 217–303,
https://doi.org/10.1016/S0921-8181(00)00046-1, 2000. a
Skinner, L. C. and Shackleton, N. J.: Rapid transient changes in northeast
Atlantic deep water ventilation age across Termination I,
Paleoceanography, 19, PA2005, https://doi.org/10.1029/2003PA000983, 2004. a, b
Skinner, L. C. and Shackleton, N. J.: An Atlantic lead over Pacific
deep-water change across Termination I: implications for the application of the marine isotope stage stratigraphy, Quaternary Sci. Rev., 24, 571–580, https://doi.org/10.1016/j.quascirev.2004.11.008, 2005. a, b
Skinner, L. C., Shackleton, N. J., and Elderfield, H.: Millennial-scale
variability of deep-water temperature and δ18Odw indicating deep-water source
variations in the Northeast Atlantic, 0–34 cal. ka BP,
Geochem. Geophys. Geosy. 4, 1098, https://doi.org/10.1029/2003GC000585, 2003. a
Sowers, T., Bender, M., Labeyrie, L., Martinson, D., Jouzel, J., Raynaud, D.,
Pichon, J. J., and Korotkevich, Y. S.: A 135 000-year Vostok-Specmap
Common temporal framework, Paleoceanography, 8, 737–766,
https://doi.org/10.1029/93PA02328, 1993. a
Spahni, R., Chappellaz, J., Stocker, T. F., Loulergue, L., Hausammann, G.,
Kawamura, K., Flückiger, J., Schwander, J., Raynaud, D., Masson-Delmotte, V., and Jouzel, J.: Atmospheric Methane and Nitrous Oxide of the Late Pleistocene from Antarctic Ice Cores, Science, 310, 1317–1321, https://doi.org/10.1126/science.1120132, 2005. a
Stapel, J. G., Schwamborn, G., Schirrmeister, L., Horsfield, B., and Mangelsdorf, K.: Substrate potential of last interglacial to Holocene permafrost organic matter for future microbial greenhouse gas production, Biogeosciences, 15, 1969–1985, https://doi.org/10.5194/bg-15-1969-2018, 2018. a
Stern, J. V. and Lisiecki, L. E.: Termination 1 timing in radiocarbon-dated
regional benthic δ18O stacks, Paleoceanography, 29,
1127–1142, https://doi.org/10.1002/2014PA002700, 2014. a
Stott, L. D., Neumann, M., and Hammond, D.: Intermediate water ventilation on
the Northeastern Pacific Margin during the Late Pleistocene
inferred from benthic foraminiferal δ13C,
Paleoceanography, 15, 161–169, https://doi.org/10.1029/1999PA000375, 2000. a
Tarasov, P., Granoszewski, W., Bezrukova, E., Brewer, S., Nita, M., Abzaeva,
A., and Oberhänsli, H.: Quantitative reconstruction of the last
interglacial vegetation and climate based on the pollen record from Lake
Baikal, Russia, Clim. Dyn., 25, 625–637,
https://doi.org/10.1007/s00382-005-0045-0, 2005. a, b
Thomas, E. R., Wolff, E. W., Mulvaney, R., Steffensen, J. P., Johnsen, S. J.,
Arrowsmith, C., White, J. W. C., Vaughn, B., and Popp, T.: The 8.2ka event
from Greenland ice cores, Quaternary Sci. Rev., 26, 70–81,
https://doi.org/10.1016/j.quascirev.2006.07.017, 2007. a
Tjallingii, R., Claussen, M., Stuut, J.-B. W., Fohlmeister, J., Jahn, A.,
Bickert, T., Lamy, F., and Röhl, U.: Coherent high- and low-latitude
control of the northwest African hydrological balance, Nat. Geosci.,
1, 670–675, https://doi.org/10.1038/ngeo289, 2008. a
Tschumi, T., Joos, F., Gehlen, M., and Heinze, C.: Deep ocean ventilation, carbon isotopes, marine sedimentation and the deglacial CO2 rise, Clim. Past, 7, 771–800, https://doi.org/10.5194/cp-7-771-2011, 2011. a
Tzedakis, P. C., Drysdale, R. N., Margari, V., Skinner, L. C., Menviel, L.,
Rhodes, R. H., Taschetto, A. S., Hodell, D. A., Crowhurst, S. J., Hellstrom,
J. C., Fallick, A. E., Grimalt, J. O., McManus, J. F., Martrat, B., Mokeddem, Z., Parrenin, F., Regattieri, E., Roe, K., and Zanchetta, G.: Enhanced climate instability in the North Atlantic and southern Europe during the Last Interglacial, Nat. Commun., 9, 1–14,
https://doi.org/10.1038/s41467-018-06683-3, 2018. a, b, c
Venz, K. A. and Hodell, D. A.: New evidence for changes in
Plio–Pleistocene deep water circulation from Southern
Ocean ODP Leg 177 Site 1090, Palaeogeogr. Palaeoclim.
Palaeoecol. 182, 197–220, https://doi.org/10.1016/S0031-0182(01)00496-5, 2002. a, b
Venz, K. A., Hodell, D. A., Stanton, C., and Warnke, D. A.: A 1.0 Myr
Record of Glacial North Atlantic Intermediate Water Variability from ODP Site 982 in the Northeast Atlantic, Paleoceanography, 14, 42–52, https://doi.org/10.1029/1998PA900013, 1999. a, b
Vidal, L., Schneider, R., Marchal, O., Bickert, T., Stocker, T., and Wefer, G.: Link between the North and South Atlantic during the Heinrich events of the last glacial period, Clim. Dyn., 15, 909–919,
https://doi.org/10.1007/s003820050321, 1999. a, b
Waelbroeck, C., Duplessy, J.-C., Michel, E., Labeyrie, L., Paillard, D., and
Duprat, J.: The timing of the last deglaciation in North Atlantic climate records, Nature, 412, 724–727, https://doi.org/10.1038/35089060, 2001. a, b, c
Waelbroeck, C., Skinner, L. C., Labeyrie, L., Duplessy, J.-C., Michel, E.,
Riveiros, N. V., Gherardi, J.-M., and Dewilde, F.: The timing of deglacial
circulation changes in the Atlantic, Paleoceanography, 26, PA3213,
https://doi.org/10.1029/2010PA002007, 2011. a
Wang, L., Sarnthein, M., Erlenkeuser, H., Grimalt, J., Grootes, P., Heilig, S.,
Ivanova, E., Kienast, M., Pelejero, C., and Pflaumann, U.: East Asian
monsoon climate during the Late Pleistocene: high-resolution sediment
records from the South China Sea, Mar. Geol., 156, 245–284,
https://doi.org/10.1016/S0025-3227(98)00182-0, 1999. a, b, c, d, e
Wei, G.-J., Huang, C.-Y., Wang, C.-C., Lee, M.-Y., and Wei, K.-Y.:
High-resolution benthic foraminifer δ13C records in
the South China Sea during the last 150 ka, Mar. Geol., 232,
227–235, https://doi.org/10.1016/j.margeo.2006.08.005, 2006. a, b
Zahn, R. and Stüber, A.: Suborbital intermediate water variability inferred
from paired benthic foraminiferal Cd/Ca and δ13C
in the tropical West Atlantic and linking with North Atlantic
climates, Earth Planet. Sci. Lett., 200, 191–205,
https://doi.org/10.1016/S0012-821X(02)00613-1, 2002.
a
Zarriess, M. and Mackensen, A.: The tropical rainbelt and productivity changes off northwest Africa: A 31 000-year high-resolution record, Mar. Micropaleontol., 76, 76–91, https://doi.org/10.1016/j.marmicro.2010.06.001, 2010. a, b
Zarriess, M. and Mackensen, A.: Testing the impact of seasonal phytodetritus
deposition on δ13C of epibenthic foraminifer
Cibicidoides wuellerstorfi: A 31 000 year high-resolution record from the northwest African continental slope, Paleoceanography, 26, PA2202,
https://doi.org/10.1029/2010PA001944, 2011. a, b
Zarriess, M., Johnstone, H., Prange, M., Steph, S., Groeneveld, J., Mulitza,
S., and Mackensen, A.: Bipolar seesaw in the northeastern tropical Atlantic
during Heinrich stadials, Geophys. Res. Lett., 38, L04706,
https://doi.org/10.1029/2010GL046070, 2011. a
Zhang, J., Quay, P. D., and Wilbur, D. O.: Carbon isotope fractionation during
gas-water exchange and dissolution of CO2, Geochim.
Cosmochim. Ac., 59, 107–114, https://doi.org/10.1016/0016-7037(95)91550-D, 1995. a
Zhang, J., Wang, P., Li, Q., Cheng, X., Jin, H., and Zhang, S.: Western
equatorial Pacific productivity and carbonate dissolution over the last
550 kyr: Foraminiferal and nannofossil evidence from ODP Hole 807A,
Mar. Micropaleontol., 64, 121–140, https://doi.org/10.1016/j.marmicro.2007.03.003,
2007. a, b
Download
The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.
- Article
(3392 KB) - Full-text XML
- Corrigendum
-
Supplement
(1385 KB) - BibTeX
- EndNote
Short summary
The last interglacial was a warm period that may provide insights into future climates. Here, we compile and analyse stable carbon isotope data from the ocean during the last interglacial and compare it to the Holocene. The data show that Atlantic Ocean circulation was similar during the last interglacial and the Holocene. We also establish a difference in the mean oceanic carbon isotopic ratio between these periods, which was most likely caused by burial and weathering carbon fluxes.
The last interglacial was a warm period that may provide insights into future climates. Here, we...