Articles | Volume 17, issue 2
https://doi.org/10.5194/cp-17-565-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-17-565-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Cryptotephra from the Icelandic Veiðivötn 1477 CE eruption in a Greenland ice core: confirming the dating of volcanic events in the 1450s CE and assessing the eruption's climatic impact
Peter M. Abbott
CORRESPONDING AUTHOR
Climate and Environmental Physics and Oeschger Centre for Climate
Change Research, University of Bern, 3012 Bern, Switzerland
Gill Plunkett
Archaeology and Palaeoecology, School of Natural and Built
Environment, Queen's University Belfast, Belfast BT7 1NN, UK
Christophe Corona
Geolab, Université Clermont Auvergne, CNRS, 63000,
Clermont-Ferrand, France
Nathan J. Chellman
Desert Research Institute, Nevada System of Higher Education, Reno,
Nevada 89512, USA
Joseph R. McConnell
Desert Research Institute, Nevada System of Higher Education, Reno,
Nevada 89512, USA
John R. Pilcher
Archaeology and Palaeoecology, School of Natural and Built
Environment, Queen's University Belfast, Belfast BT7 1NN, UK
Markus Stoffel
Climatic Change Impacts and Risks in the Anthropocene (C-CIA),
Institute for Environmental Sciences, University of Geneva, 1205 Geneva, Switzerland
Department of Earth Sciences, University of Geneva, 1205 Geneva,
Switzerland
Department F.-A. Forel for Environmental and Aquatic Sciences,
University of Geneva, 1205 Geneva, Switzerland
Michael Sigl
Climate and Environmental Physics and Oeschger Centre for Climate
Change Research, University of Bern, 3012 Bern, Switzerland
Related authors
David J. Lowe, Peter M. Abbott, Takehiko Suzuki, and Britta J. L. Jensen
Hist. Geo Space. Sci., 13, 93–132, https://doi.org/10.5194/hgss-13-93-2022, https://doi.org/10.5194/hgss-13-93-2022, 2022
Short summary
Short summary
The Commission on Tephrochronology (COT), formed in 1961, comprises geoscientists who characterize, map, and date tephra (volcanic ash) layers and use them as stratigraphic linking and dating tools in geological, palaeoenvironmental, and archaeological research. We review COT's origins and growth and show how its leadership and activities – hosting meetings, supporting ECRs, developing new analytical and dating methods, and publishing volumes – have strongly influenced tephrochronology globally.
Karolina Janecka, Kerstin Treydte, Silvia Piccinelli, Loïc Francon, Marçal Argelich Ninot, Johannes Edvardsson, Christophe Corona, Veiko Lehsten, and Markus Stoffel
Clim. Past, 21, 1679–1697, https://doi.org/10.5194/cp-21-1679-2025, https://doi.org/10.5194/cp-21-1679-2025, 2025
Short summary
Short summary
Peatlands hold valuable insights about past climate, but the link between tree growth and water conditions remains unclear. We analyzed tree-ring stable isotopes from Scots pines in Swedish peatlands to study their response to water levels and climate. Unlike tree-ring widths, stable isotopes showed strong, consistent signals of water table levels and summer climate. This improves our ability to reconstruct past climate changes from peatland trees.
Jérôme Lopez-Saez, Christophe Corona, Lenka Slamova, Matthias Huss, Valérie Daux, Kurt Nicolussi, and Markus Stoffel
Clim. Past, 20, 1251–1267, https://doi.org/10.5194/cp-20-1251-2024, https://doi.org/10.5194/cp-20-1251-2024, 2024
Short summary
Short summary
Glaciers in the European Alps have been retreating since the 1850s. Monitoring glacier mass balance is vital for understanding global changes, but only a few glaciers have long-term data. This study aims to reconstruct the mass balance of the Silvretta Glacier in the Swiss Alps using stable isotopes and tree ring proxies. Results indicate increased glacier mass until the 19th century, followed by a sharp decline after the Little Ice Age with accelerated losses due to anthropogenic warming.
Susanne Preunkert, Pascal Bohleber, Michel Legrand, Adrien Gilbert, Tobias Erhardt, Roland Purtschert, Lars Zipf, Astrid Waldner, Joseph R. McConnell, and Hubertus Fischer
The Cryosphere, 18, 2177–2194, https://doi.org/10.5194/tc-18-2177-2024, https://doi.org/10.5194/tc-18-2177-2024, 2024
Short summary
Short summary
Ice cores from high-elevation Alpine glaciers are an important tool to reconstruct the past atmosphere. However, since crevasses are common at these glacier sites, rigorous investigations of glaciological conditions upstream of drill sites are needed before interpreting such ice cores. On the basis of three ice cores extracted at Col du Dôme (4250 m a.s.l; French Alps), an overall picture of a dynamic crevasse formation is drawn, which disturbs the depth–age relation of two of the three cores.
Xavier Faïn, David M. Etheridge, Kévin Fourteau, Patricia Martinerie, Cathy M. Trudinger, Rachael H. Rhodes, Nathan J. Chellman, Ray L. Langenfelds, Joseph R. McConnell, Mark A. J. Curran, Edward J. Brook, Thomas Blunier, Grégory Teste, Roberto Grilli, Anthony Lemoine, William T. Sturges, Boris Vannière, Johannes Freitag, and Jérôme Chappellaz
Clim. Past, 19, 2287–2311, https://doi.org/10.5194/cp-19-2287-2023, https://doi.org/10.5194/cp-19-2287-2023, 2023
Short summary
Short summary
We report on a 3000-year record of carbon monoxide (CO) levels in the Southern Hemisphere's high latitudes by combining ice core and firn air measurements with modern direct atmospheric samples. Antarctica [CO] remained stable (–835 to 1500 CE), decreased during the Little Ice Age, and peaked around 1985 CE. Such evolution reflects stable biomass burning CO emissions before industrialization, followed by growth from CO anthropogenic sources, which decline after 1985 due to improved combustion.
Elizabeth R. Thomas, Diana O. Vladimirova, Dieter R. Tetzner, B. Daniel Emanuelsson, Nathan Chellman, Daniel A. Dixon, Hugues Goosse, Mackenzie M. Grieman, Amy C. F. King, Michael Sigl, Danielle G. Udy, Tessa R. Vance, Dominic A. Winski, V. Holly L. Winton, Nancy A. N. Bertler, Akira Hori, Chavarukonam M. Laluraj, Joseph R. McConnell, Yuko Motizuki, Kazuya Takahashi, Hideaki Motoyama, Yoichi Nakai, Franciéle Schwanck, Jefferson Cardia Simões, Filipe Gaudie Ley Lindau, Mirko Severi, Rita Traversi, Sarah Wauthy, Cunde Xiao, Jiao Yang, Ellen Mosely-Thompson, Tamara V. Khodzher, Ludmila P. Golobokova, and Alexey A. Ekaykin
Earth Syst. Sci. Data, 15, 2517–2532, https://doi.org/10.5194/essd-15-2517-2023, https://doi.org/10.5194/essd-15-2517-2023, 2023
Short summary
Short summary
The concentration of sodium and sulfate measured in Antarctic ice cores is related to changes in both sea ice and winds. Here we have compiled a database of sodium and sulfate records from 105 ice core sites in Antarctica. The records span all, or part, of the past 2000 years. The records will improve our understanding of how winds and sea ice have changed in the past and how they have influenced the climate of Antarctica over the past 2000 years.
Nicolas Steeb, Virginia Ruiz-Villanueva, Alexandre Badoux, Christian Rickli, Andrea Mini, Markus Stoffel, and Dieter Rickenmann
Earth Surf. Dynam., 11, 487–509, https://doi.org/10.5194/esurf-11-487-2023, https://doi.org/10.5194/esurf-11-487-2023, 2023
Short summary
Short summary
Various models have been used in science and practice to estimate how much large wood (LW) can be supplied to rivers. This contribution reviews the existing models proposed in the last 35 years and compares two of the most recent spatially explicit models by applying them to 40 catchments in Switzerland. Differences in modelling results are discussed, and results are compared to available observations coming from a unique database.
Aymeric P. M. Servettaz, Anaïs J. Orsi, Mark A. J. Curran, Andrew D. Moy, Amaelle Landais, Joseph R. McConnell, Trevor J. Popp, Emmanuel Le Meur, Xavier Faïn, and Jérôme Chappellaz
Clim. Past, 19, 1125–1152, https://doi.org/10.5194/cp-19-1125-2023, https://doi.org/10.5194/cp-19-1125-2023, 2023
Short summary
Short summary
The temperature of the past 2000 years is still poorly known in vast parts of the East Antarctic plateau. In this study, we present temperature reconstructions based on water and gas stable isotopes from the Aurora Basin North ice core. Spatial and temporal significance of each proxy differs, and we can identify some cold periods in the snow temperature up to 2°C cooler in the 1000–1400 CE period, which could not be determined with water isotopes only.
Michael N. Dyonisius, Vasilii V. Petrenko, Andrew M. Smith, Benjamin Hmiel, Peter D. Neff, Bin Yang, Quan Hua, Jochen Schmitt, Sarah A. Shackleton, Christo Buizert, Philip F. Place, James A. Menking, Ross Beaudette, Christina Harth, Michael Kalk, Heidi A. Roop, Bernhard Bereiter, Casey Armanetti, Isaac Vimont, Sylvia Englund Michel, Edward J. Brook, Jeffrey P. Severinghaus, Ray F. Weiss, and Joseph R. McConnell
The Cryosphere, 17, 843–863, https://doi.org/10.5194/tc-17-843-2023, https://doi.org/10.5194/tc-17-843-2023, 2023
Short summary
Short summary
Cosmic rays that enter the atmosphere produce secondary particles which react with surface minerals to produce radioactive nuclides. These nuclides are often used to constrain Earth's surface processes. However, the production rates from muons are not well constrained. We measured 14C in ice with a well-known exposure history to constrain the production rates from muons. 14C production in ice is analogous to quartz, but we obtain different production rates compared to commonly used estimates.
Heli Huhtamaa, Markus Stoffel, and Christophe Corona
Clim. Past, 18, 2077–2092, https://doi.org/10.5194/cp-18-2077-2022, https://doi.org/10.5194/cp-18-2077-2022, 2022
Short summary
Short summary
Tree-ring data and written sources from northern Fennoscandia reveal that large 17th century eruptions had considerable climatic, agricultural, and socioeconomic impacts far away from the eruption locations. Yet, micro-regional investigation shows that the human consequences were commonly indirect, as various factors, like agro-ecosystems, resource availability, institutions, and personal networks, dictated how the volcanic cold pulses and related crop failures materialized on a societal level.
David J. Lowe, Peter M. Abbott, Takehiko Suzuki, and Britta J. L. Jensen
Hist. Geo Space. Sci., 13, 93–132, https://doi.org/10.5194/hgss-13-93-2022, https://doi.org/10.5194/hgss-13-93-2022, 2022
Short summary
Short summary
The Commission on Tephrochronology (COT), formed in 1961, comprises geoscientists who characterize, map, and date tephra (volcanic ash) layers and use them as stratigraphic linking and dating tools in geological, palaeoenvironmental, and archaeological research. We review COT's origins and growth and show how its leadership and activities – hosting meetings, supporting ECRs, developing new analytical and dating methods, and publishing volumes – have strongly influenced tephrochronology globally.
Michael Sigl, Matthew Toohey, Joseph R. McConnell, Jihong Cole-Dai, and Mirko Severi
Earth Syst. Sci. Data, 14, 3167–3196, https://doi.org/10.5194/essd-14-3167-2022, https://doi.org/10.5194/essd-14-3167-2022, 2022
Short summary
Short summary
Volcanism is a key driver of climate. Based on ice cores from Greenland and Antarctica, we reconstruct its climate impact potential over the Holocene. By aligning records on a well-dated chronology from Antarctica, we resolve long-standing inconsistencies in the dating of past volcanic eruptions. We reconstruct 850 eruptions (which, in total, injected 7410 Tg of sulfur in the stratosphere) and estimate how they changed the opacity of the atmosphere, a prerequisite for climate model simulations.
Helen Mackay, Gill Plunkett, Britta J. L. Jensen, Thomas J. Aubry, Christophe Corona, Woon Mi Kim, Matthew Toohey, Michael Sigl, Markus Stoffel, Kevin J. Anchukaitis, Christoph Raible, Matthew S. M. Bolton, Joseph G. Manning, Timothy P. Newfield, Nicola Di Cosmo, Francis Ludlow, Conor Kostick, Zhen Yang, Lisa Coyle McClung, Matthew Amesbury, Alistair Monteath, Paul D. M. Hughes, Pete G. Langdon, Dan Charman, Robert Booth, Kimberley L. Davies, Antony Blundell, and Graeme T. Swindles
Clim. Past, 18, 1475–1508, https://doi.org/10.5194/cp-18-1475-2022, https://doi.org/10.5194/cp-18-1475-2022, 2022
Short summary
Short summary
We assess the climatic and societal impact of the 852/3 CE Alaska Mount Churchill eruption using environmental reconstructions, historical records and climate simulations. The eruption is associated with significant Northern Hemisphere summer cooling, despite having only a moderate sulfate-based climate forcing potential; however, evidence of a widespread societal response is lacking. We discuss the difficulties of confirming volcanic impacts of a single eruption even when it is precisely dated.
Markus Stoffel, Christophe Corona, Francis Ludlow, Michael Sigl, Heli Huhtamaa, Emmanuel Garnier, Samuli Helama, Sébastien Guillet, Arlene Crampsie, Katrin Kleemann, Chantal Camenisch, Joseph McConnell, and Chaochao Gao
Clim. Past, 18, 1083–1108, https://doi.org/10.5194/cp-18-1083-2022, https://doi.org/10.5194/cp-18-1083-2022, 2022
Short summary
Short summary
The mid-17th century saw several volcanic eruptions, deteriorating climate, political instability, and famine in Europe, China, and Japan. We analyze impacts of the eruptions on climate but also study their socio-political context. We show that an unambiguous distinction of volcanic cooling or wetting from natural climate variability is not straightforward. It also shows that political instability, poor harvest, and famine cannot only be attributed to volcanic climatic impacts.
Sam White, Eduardo Moreno-Chamarro, Davide Zanchettin, Heli Huhtamaa, Dagomar Degroot, Markus Stoffel, and Christophe Corona
Clim. Past, 18, 739–757, https://doi.org/10.5194/cp-18-739-2022, https://doi.org/10.5194/cp-18-739-2022, 2022
Short summary
Short summary
This study examines whether the 1600 Huaynaputina volcano eruption triggered persistent cooling in the North Atlantic. It compares previous paleoclimate simulations with new climate reconstructions from natural proxies and historical documents and finds that the reconstructions are consistent with, but do not support, an eruption trigger for persistent cooling. The study also analyzes societal impacts of climatic change in ca. 1600 and the use of historical observations in model–data comparison.
Xavier Faïn, Rachael H. Rhodes, Philip Place, Vasilii V. Petrenko, Kévin Fourteau, Nathan Chellman, Edward Crosier, Joseph R. McConnell, Edward J. Brook, Thomas Blunier, Michel Legrand, and Jérôme Chappellaz
Clim. Past, 18, 631–647, https://doi.org/10.5194/cp-18-631-2022, https://doi.org/10.5194/cp-18-631-2022, 2022
Short summary
Short summary
Carbon monoxide (CO) is a regulated pollutant and one of the key components determining the oxidizing capacity of the atmosphere. In this study, we analyzed five ice cores from Greenland at high resolution for CO concentrations by coupling laser spectrometry with continuous melting. By combining these new datasets, we produced an upper-bound estimate of past atmospheric CO abundance since preindustrial times for the Northern Hemisphere high latitudes, covering the period from 1700 to 1957 CE.
Jiamei Lin, Anders Svensson, Christine S. Hvidberg, Johannes Lohmann, Steffen Kristiansen, Dorthe Dahl-Jensen, Jørgen Peder Steffensen, Sune Olander Rasmussen, Eliza Cook, Helle Astrid Kjær, Bo M. Vinther, Hubertus Fischer, Thomas Stocker, Michael Sigl, Matthias Bigler, Mirko Severi, Rita Traversi, and Robert Mulvaney
Clim. Past, 18, 485–506, https://doi.org/10.5194/cp-18-485-2022, https://doi.org/10.5194/cp-18-485-2022, 2022
Short summary
Short summary
We employ acidity records from Greenland and Antarctic ice cores to estimate the emission strength, frequency and climatic forcing for large volcanic eruptions from the last half of the last glacial period. A total of 25 volcanic eruptions are found to be larger than any eruption in the last 2500 years, and we identify more eruptions than obtained from geological evidence. Towards the end of the glacial period, there is a notable increase in volcanic activity observed for Greenland.
Luuk Dorren, Frédéric Berger, Franck Bourrier, Nicolas Eckert, Charalampos Saroglou, Massimiliano Schwarz, Markus Stoffel, Daniel Trappmann, Hans-Heini Utelli, and Christine Moos
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-32, https://doi.org/10.5194/nhess-2022-32, 2022
Publication in NHESS not foreseen
Short summary
Short summary
In the daily practice of rockfall hazard analysis, trajectory simulations are used to delimit runout zones. To do so, the expert needs to separate "realistic" from "unrealistic" simulated groups of trajectories. This is often done on the basis of reach probability values. This paper provides a basis for choosing a reach probability threshold value for delimiting the rockfall runout zone, based on recordings and simulations of recent rockfall events at 18 active rockfall sites in Europe.
Gill Plunkett, Michael Sigl, Hans F. Schwaiger, Emma L. Tomlinson, Matthew Toohey, Joseph R. McConnell, Jonathan R. Pilcher, Takeshi Hasegawa, and Claus Siebe
Clim. Past, 18, 45–65, https://doi.org/10.5194/cp-18-45-2022, https://doi.org/10.5194/cp-18-45-2022, 2022
Short summary
Short summary
We report the identification of volcanic ash associated with a sulfate layer in Greenland ice cores previously thought to have been from the Vesuvius 79 CE eruption and which had been used to confirm the precise dating of the Greenland ice-core chronology. We find that the tephra was probably produced by an eruption in Alaska. We show the importance of verifying sources of volcanic signals in ice cores through ash analysis to avoid errors in dating ice cores and interpreting volcanic impacts.
Anne Dallmeyer, Martin Claussen, Stephan J. Lorenz, Michael Sigl, Matthew Toohey, and Ulrike Herzschuh
Clim. Past, 17, 2481–2513, https://doi.org/10.5194/cp-17-2481-2021, https://doi.org/10.5194/cp-17-2481-2021, 2021
Short summary
Short summary
Using the comprehensive Earth system model, MPI-ESM1.2, we explore the global Holocene vegetation changes and interpret them in terms of the Holocene climate change. The model results reveal that most of the Holocene vegetation transitions seen outside the high northern latitudes can be attributed to modifications in the intensity of the global summer monsoons.
Woon Mi Kim, Richard Blender, Michael Sigl, Martina Messmer, and Christoph C. Raible
Clim. Past, 17, 2031–2053, https://doi.org/10.5194/cp-17-2031-2021, https://doi.org/10.5194/cp-17-2031-2021, 2021
Short summary
Short summary
To understand the natural characteristics and future changes of the global extreme daily precipitation, it is necessary to explore the long-term characteristics of extreme daily precipitation. Here, we used climate simulations to analyze the characteristics and long-term changes of extreme precipitation during the past 3351 years. Our findings indicate that extreme precipitation in the past is associated with internal climate variability and regional surface temperatures.
Guoxiong Zheng, Martin Mergili, Adam Emmer, Simon Allen, Anming Bao, Hao Guo, and Markus Stoffel
The Cryosphere, 15, 3159–3180, https://doi.org/10.5194/tc-15-3159-2021, https://doi.org/10.5194/tc-15-3159-2021, 2021
Short summary
Short summary
This paper reports on a recent glacial lake outburst flood (GLOF) event that occurred on 26 June 2020 in Tibet, China. We find that this event was triggered by a debris landslide from a steep lateral moraine. As the relationship between the long-term evolution of the lake and its likely landslide trigger revealed by a time series of satellite images, this case provides strong evidence that it can be plausibly linked to anthropogenic climate change.
Andreas Kääb, Tazio Strozzi, Tobias Bolch, Rafael Caduff, Håkon Trefall, Markus Stoffel, and Alexander Kokarev
The Cryosphere, 15, 927–949, https://doi.org/10.5194/tc-15-927-2021, https://doi.org/10.5194/tc-15-927-2021, 2021
Short summary
Short summary
We present a map of rock glacier motion over parts of the northern Tien Shan and time series of surface speed for six of them over almost 70 years.
This is by far the most detailed investigation of this kind available for central Asia.
We detect a 2- to 4-fold increase in rock glacier motion between the 1950s and present, which we attribute to atmospheric warming.
Relative to the shrinking glaciers in the region, this implies increased importance of periglacial sediment transport.
James W. Kirchner, Sarah E. Godsey, Madeline Solomon, Randall Osterhuber, Joseph R. McConnell, and Daniele Penna
Hydrol. Earth Syst. Sci., 24, 5095–5123, https://doi.org/10.5194/hess-24-5095-2020, https://doi.org/10.5194/hess-24-5095-2020, 2020
Short summary
Short summary
Streams and groundwaters often show daily cycles in response to snowmelt and evapotranspiration. These typically have a roughly 6 h time lag, which is often interpreted as a travel-time lag. Here we show that it is instead primarily a phase lag that arises because aquifers integrate their inputs over time. We further show how these cycles shift seasonally, mirroring the springtime retreat of snow cover to higher elevations and the seasonal advance and retreat of photosynthetic activity.
Dimitri Osmont, Sandra Brugger, Anina Gilgen, Helga Weber, Michael Sigl, Robin L. Modini, Christoph Schwörer, Willy Tinner, Stefan Wunderle, and Margit Schwikowski
The Cryosphere, 14, 3731–3745, https://doi.org/10.5194/tc-14-3731-2020, https://doi.org/10.5194/tc-14-3731-2020, 2020
Short summary
Short summary
In this interdisciplinary case study, we were able to link biomass burning emissions from the June 2017 wildfires in Portugal to their deposition in the snowpack at Jungfraujoch, Swiss Alps. We analysed black carbon and charcoal in the snowpack, calculated backward trajectories, and monitored the fire evolution by remote sensing. Such case studies help to understand the representativity of biomass burning records in ice cores and how biomass burning tracers are archived in the snowpack.
Cited articles
Abbott, P. M. and Davies, S. M.: Volcanism and the Greenland ice-cores: the
tephra record, Earth-Sci. Rev., 115, 173–191, https://doi.org/10.1016/j.earscirev.2012.09.001, 2012.
Abbott, P. M., Davies, S. M., Steffensen, J. P., Pearce, N. J. G., Bigler, M.,
Johnsen, S. J., Seierstad, I. K., Svensson, A., and Wastegård, S.: A
detailed framework of Marine Isotope Stage 4 and 5 volcanic events in two
Greenland ice-cores, Quaternary Sci. Rev., 36, 59–77, https://doi.org/10.1016/j.quascirev.2011.05.001, 2012.
Abbott, P. M., Griggs, A. J., Bourne, A. J., Chapman, M. R., and Davies, S. M.:
Tracing marine cryptotephras in the North Atlantic during the last glacial
period: Improving the North Atlantic marine tephrostratigraphic framework,
Quaternary Sci. Rev., 189, 169–186, https://doi.org/10.1016/j.quascirev.2018.03.023,
2018.
Anchukaitis, K. J., Breitenmoser, P., Briffa, K. R., Buchwal, A.,
Büntgen, U., Cook, E. R., D'Arrigo, R. D., Esper, J., Evans, M. N.,
Frank, D., Grudd, H., Gunnarson, B. E., Hughes, M. K., Kirdyanov, A. V.,
Körner, C., Krusic, P. J., Luckman, B., Melvin, T. M., Salzer, M. W.,
Shashkin, A. V., Timmreck, C., Vaganov, E. A., and Wilson, R. J. S.: Tree
rings and volcanic cooling, Nat. Geosci., 5, 836–837, https://doi.org/10.1038/ngeo1645,
2012.
Andersen, K. K., Svensson, A., Johnsen, S. J., Rasmussen, S. O., Bigler, M.,
Röthlisberger, R., Ruth, U., Siggaard-Andersen, M.-L., Steffensen, J. P.,
Dahl-Jensen, D., Vinther, B. M., and Clausen, H. B.: The Greenland Ice Core
Chronology 2005, 15–42 ka, Part 1: constructing the time scale, Quaternary
Sci. Rev., 25, 3246–3257, https://doi.org/10.1016/j.quascirev.2006.08.002, 2006.
Baillie, M. G. L.: Proposed re-dating of the European ice core chronology by
seven years prior to the 7th century AD, Geophys. Res. Lett., 35,
L15813, https://doi.org/10.1029/2008GL034755, 2008.
Ballard, C.: The Lizard in the Volcano: Narratives of the Kuwae Eruption,
Contemp. Pac., 32, 98–123, https://doi.org/10.1353/cp.2020.0005, 2020.
Baroni, M., Savarino, J., Cole-Dai, J. H., Rai, V. K., and Thiemens, M. H.:
Anomalous sulfur isotope compositions of volcanic sulfate over the last
millennium in Antarctic ice cores, J. Geophys. Res., 113, D20112, https://doi.org/10.1029/2008JD010185, 2008.
Begét, J., Mason, O., and Anderson, P.: Age, Extent and Climatic
Significance of the c. 3400 BP Aniakchak Tephra, Western Alaska, USA,
Holocene, 2, 51–56, https://doi.org/10.1177/095968369200200106, 1992.
Benjamínsson, J.: Tephra layer “a”, in: Tephra Studies, edited by:
Self, S. and Sparks, R. S. J., Springer, Dordrecht, the Netherlands, 331–335,
1981.
Bergþórsdóttir, H. B.: A 3000 year high resolution multi-proxy
record of environmental change from lake Gripdeild, eastern Iceland,
University of Iceland, Reykjavík, Iceland, 85 pp., 2014.
Bethke, I., Outten, S., Otterå, O. H., Hawkins, E., Wagner, S., Sigl, M.,
and Thorne, P.: Potential volcanic impacts on future climate variability,
Nat. Clim. Change, 7, 799–805, https://doi.org/10.1038/nclimate3394, 2017.
Borchardt, G. A., Aruscavage, P. J., and Millard, H. T.: Correlation of the
Bishop Ash, a Pleistocene marker bed, using instrumental neutron activation
analysis, J. Sediment. Res., 42, 301–306, https://doi.org/10.1306/74D72527-2B21-11D7-8648000102C1865D, 1972.
Bourne, A. J., Cook, E., Abbott, P. M., Seierstad, I. K., Steffensen, J. P.,
Svensson, A., Fischer, H., Schüpbach, S., and Davies, S. M.: A tephra
lattice for Greenland and a reconstruction of volcanic events spanning 25–45
ka b2k, Quaternary Sci. Rev., 118, 122–141, https://doi.org/10.1016/j.quascirev.2014.07.017, 2015.
Bourne, A. J., Abbott, P. M., Albert, P. G., Cook, E., Pearce, N. J. G.,
Ponomareva, V., Svensson, A., and Davies, S. M.: Underestimated risks of
recurrent long-range dispersal from northern Pacific Arc volcanoes, Sci.
Rep., 6, 29837, https://doi.org/10.1038/srep29837, 2016.
Briffa, K. R., Jones, P. D., Schweingruber, F. H., and Osborn, T. J.: Influence
of volcanic eruptions on Northern Hemisphere summer temperature over the
past 600 years, Nature, 393, 450–455, https://doi.org/10.1038/30943, 1998.
Büntgen, U., Wacker, L., Nicolussi, K., Sigl, M., Güttler, D.,
Tegel, W., Krusic, P. J., and Esper, J.: Extraterrestrial confirmation of
tree-ring dating, Nat. Clim. Change, 4, 404–405, https://doi.org/10.1038/nclimate2240,
2014.
Büntgen, U., Wacker, L., Diego Galván, J., Arnold, S., Arseneault,
D., Baillie, M., Beer, J., Bernabei, M., Bleicher, N., Boswijk, G.,
Bräuning, A., Carrer, M., Charpentier Ljungqvist, F., Cherubini, P.,
Christl, M., Christie, D. A., Clark, P. W., Cook, E. R., D'Arrigo, R., Davi,
N., Eggertsson, Ó., Esper, J., Fowler, A. M., Gedalof, Z., Gennaretti,
F., Grießinger, J., Grissino-Mayer, H., Grudd, H., Gunnarson, B. E.,
Hantemirov, R., Herzig, F., Hessl, A., Heussner, K.-U., Jull, A. J. T.,
Kukarskih, V., Kirdyanov, A., Kolář, T., Krusic, P. J., Kyncl, T.,
Lara, A., LeQuesne, C., Linderholm, H. W., Loader, N. J., Luckman, B., Miyake,
F., Myglan, V. S., Nicolussi, K., Oppenheimer, C., Palmer, J., Panyushkina,
I., Pederson, N., Rybníček, M., Schweingruber, F. H., Seim, A.,
Sigl, M., Churakova (Sidorova), O., Speer, J. H., Synal, H.-A., Tegel, W.,
Treydte, K., Villalba, R., Wiles, G., Wilson, R., Winship, L. J., Wunder, J.,
Yang, B., and Young, G. H. F.: Tree rings reveal globally coherent signature of
cosmogenic radiocarbon events in 774 and 993 CE, Nat. Commun., 9, 3605, https://doi.org/10.1038/s41467-018-06036-0, 2018.
Büntgen, U., Arseneault, D., Boucher, É., Churakova, O. V.,
Gennaretti, F., Crivellaro, A., Hughes, M. K., Kirdyanov, A. V., Klippel,
L., Krusic, P. J., Linderholm, H. W., Ljungqvist, F. C., Ludescher, J.,
McCormick, M., Myglan, V. S., Nicolussi, K., Piermattei, A., Oppenheimer,
C., Reinig, F., Sigl, M., Vaganov, E. A., and Esper, J.: Prominent role of
volcanism in Common Era climate variability and human history,
Dendrochronologia, 64, 125757, https://doi.org/10.1016/j.dendro.2020.125757, 2020.
Burke, A., Moore, K. A., Sigl, M., Nita, D. C., McConnell, J. R., and Adkins,
J. F.: Stratospheric eruptions from tropical and extra-tropical volcanoes
constrained using high-resolution sulfur isotopes in ice cores, Earth
Planet. Sci. Lett., 521, 113–119, https://doi.org/10.1016/j.epsl.2019.06.006, 2019.
Cage, A. G., Davies, S. M., Wastegård, S., and Austin, W. E. N.:
Identification of the Icelandic Landnám tephra (AD 871 ± 2) in
Scottish fjordic sediment, Quatern. Int., 246, 168–176, https://doi.org/10.1016/j.quaint.2011.08.016, 2011.
Caracciolo, A., Bali, E., Guðfinnsson, G. H., Kahl, M., Halldórsson,
S. A., Hartley, M. E., and Gunnarsson, H.: Temporal evolution of magma and
crystal mush storage conditions in the Bárðarbunga-Veiðivötn
volcanic system, Iceland, Lithos, 352/353, 105234, https://doi.org/10.1016/j.lithos.2019.105234, 2020.
Chambers, F. M., Daniell, J. R. G., Hunt, J. B., Molloy, K., and O'Connell, M.:
Tephrostratigraphy of An Loch Mór, Inis Oírr, western Ireland:
implications for Holocene tephrochronology in the northeastern Atlantic
region, Holocene, 14, 703–720, https://doi.org/10.1191/0959683604hl749rp, 2004.
Cole-Dai, J., Ferris, D. G., Lanciki, A. L., Savarino, J., Thiemens, M. H., and
McConnell, J. R.: Two likely stratospheric volcanic eruptions in the 1450s
C.E. found in a bipolar, subannually dated 800 year ice core record, J.
Geophys. Res., 118, 7459–7466, https://doi.org/10.1002/jgrd.50587, 2013.
Cook, E., Portnyagin, M., Ponomareva, V., Bazanova, L., Svensson, A., and
Garbe-Schönberg, D.: First identification of cryptotephra from the
Kamchatka Peninsula in a Greenland ice core: Implications of a widespread
marker deposit that links Greenland to the Pacific northwest, Quaternary
Sci. Rev., 181, 200–206, https://doi.org/10.1016/j.quascirev.2017.11.036, 2018.
Coulter, S. E., Pilcher, J. R., Hall, V. A., Plunkett, G., and Davies, S. M.:
Testing the reliability of the JEOL FEGSEM 6500F electron microprobe for
quantitative major element analysis of glass shards from rhyolitic tephra,
Boreas, 39, 163–169, https://doi.org/10.1111/j.1502-3885.2009.00113.x, 2010.
Coulter, S. E., Pilcher, J. R., Plunkett, G., Baillie, M., Hall, V. A.,
Steffensen, J. P., Vinther, B. M., Clausen, H. B., and Johnsen, S. J.: Holocene
tephras highlight complexity of volcanic signals in Greenland ice cores, J.
Geophys. Res., 117, D21303, https://doi.org/10.1029/2012JD017698, 2012.
Davies, S. M., Elmquist, M., Bergman, J., Wohlfarth, B., and Hammarlund, D.:
Cryptotephra sedimentation processes within two lacustrine sequences from
west central Sweden, Holocene, 17, 1–13, https://doi.org/10.1177/0959683607076443,
2007.
Davies, S. M., Wastegård, S., Abbott, P. M., Barbante, C., Bigler, M.,
Johnsen, S. J., Rasmussen, T. L., Steffensen, J. P., and Svensson, A.: Tracing
volcanic events in the NGRIP ice-core and synchronising North Atlantic
marine records during the last glacial period, Earth Planet. Sci. Lett.,
294, 69–79, https://doi.org/10.1016/j.epsl.2010.03.004, 2010a.
Davies, S. M., Larsen, G., Wastegård, S., Turney, C. S. M., Hall, V. A.,
Coyle, L., and Thordarson, T.: Widespread dispersal of Icelandic tephra: how
does the Eyjafjöll eruption of 2010 compare to past Icelandic events?,
J. Quaternary Sci., 25, 605–611, https://doi.org/10.1002/jqs.1421, 2010b.
Delmas, R. J., Kirchner, S., Palais, J. M., and Petit, J. R.: 1000 years of
explosive volcanism recorded at the South Pole, Tellus B, 44, 335–350,
https://doi.org/10.1034/j.1600-0889.1992.00011.x, 1992.
Delwaide, A., Fillion, L., and Payette, S.: Spatiotemporal distribution of
light rings in subarctic black spruce, Quebec, Can. J. Forest Res., 21,
1828–1832, https://doi.org/10.1139/x91-252, 1991.
Dunbar, N. W. and Kurbatov, A. V.: Tephrochronology of the Siple Dome ice
core, West Antarctica: correlations and sources, Quaternary Sci. Rev.,
30, 1602–1614, https://doi.org/10.1016/j.quascirev.2011.03.015, 2011.
Dunbar, N. W., Zielinski, G. A., and Voisins, D. T.: Tephra layers in the Siple
Dome and Taylor Dome ice cores, Antarctica: Sources and correlations, J.
Geophys. Res., 108, 2374, https://doi.org/10.1029/2002JB002056, 2003.
Dunbar, N. W., Iverson, N. A., Van Eaton, A. R., Sigl, M., Alloway, B. V.,
Kurbatov, A. V., Mastin, L. G., McConnell, J. R., and Wilson, C. J. N.: New
Zealand supereruption provides time marker for the Last Glacial Maximum in
Antarctica, Sci. Rep., 7, 12238, https://doi.org/10.1038/s41598-017-11758-0, 2017.
Ernst, G. G. J., Davies, J. P., and Sparks, R. S. J.: Bifurcation of volcanic
plumes in a crosswind, Bull. Volcanol., 56, 159–169, https://doi.org/10.1007/BF00279601, 1994.
Esper, J., Büntgen, U., Luterbacher, J., and Krusic, P. J.: Testing the
hypothesis of post-volcanic missing rings in temperature sensitive
dendrochronological data, Dendrochronologia, 31, 216–222, https://doi.org/10.1016/j.dendro.2012.11.002, 2013.
Esper, J., Büntgen, U., Hartl-Meier, C., Oppenheimer, C., and Schneider,
L.: Northern Hemisphere temperature anomalies during the 1450s period of
ambiguous volcanic forcing, Bull. Volcanol., 79, 41, https://doi.org/10.1007/s00445-017-1125-9, 2017.
Fiacco, R. J., Palais, J. M., Germani, M. S., Zielinski, G. A., and Mayewski,
P. A.: Characteristics and Possible Source of a 1479 A.D. Volcanic Ash Layer
in a Greenland Ice Core, Quaternary Res., 39, 267–273, https://doi.org/10.1006/qres.1993.1033, 1993.
Fiacco, R. J., Thordarson, T., Germani, M. S., Self, S., Palais, J. M.,
Whitlow, S., and Grootes, P. M.: Atmospheric Aerosol Loading and Transport Due
to the 1783–84 Laki Eruption in Iceland, Interpreted from Ash Particles and
Acidity in the GISP2 Ice Core, Quaternary Res., 42, 231–240, https://doi.org/10.1006/qres.1994.1074, 1994.
Filion, L., Payette, S., Gauthier, L., and Boutin, Y.: Light rings in
subarctic conifers as a dendrochronological tool, Quaternary Res., 26,
272–279, https://doi.org/10.1016/0033-5894(86)90111-0, 1986.
Gao, C., Robock, A., Self, S., Witter, J. B., Steffensen, J. P., Clausen,
H. B., Siggaard-Andersen, M.-L., Johnsen, S. J., Mayewski, P. A., and Ammann,
C.: The 1452 or 1453 A.D. Kuwae eruption signal derived from multiple ice
core records: Greatest volcanic sulfate event of the past 700 years, J.
Geophys. Res., 111, D12107, https://doi.org/10.1029/2005JD006710, 2006.
Gautier, E., Savarino, J., Hoek, J., Erbland, J., Caillon, N., Hattori, S.,
Yoshida, N., Albalat, E., Albarede, F., and Farquhar, J.: 2600-years of
stratospheric volcanism through sulfate isotopes, Nat. Commun., 10, 466,
https://doi.org/10.1038/s41467-019-08357-0, 2019.
Grove, J. M.: The Little Ice Age, Routledge, London, UK, 2012.
Gudmundsdóttir, E. R., Eiríksson, J., and Larsen, G.: Identification
and definition of primary and reworked tephra in Late Glacial and Holocene
marine shelf sediments off North Iceland, J. Quaternary Sci., 26,
589–602, https://doi.org/10.1002/jqs.1474, 2011.
Gudmundsdóttir, E. R., Larsen, G., Björck, S., Ingólfsson, Ó.,
and Striberger, J.: A new high-resolution Holocene tephra stratigraphy in
eastern Iceland: Improving the Icelandic and North Atlantic
tephrochronology, Quaternary Sci. Rev., 150, 234–249, https://doi.org/10.1016/j.quascirev.2016.08.011, 2016.
Guillet, S., Corona, C., Stoffel, M., Khodri, M., Lavigne, F., Ortega, P.,
Eckert, N., Sielenou, P. D., Daux, V., Churakova (Sidorova), O. V., Davi, N.,
Edouard, J.-L., Zhang, Y., Luckman, B. H., Myglan, V. S., Guiot, J., Beniston,
M., Masson-Delmotte, V., and Oppenheimer, C.: Climate response to the Samalas
volcanic eruption in 1257 revealed by proxy records, Nat. Geosci., 10,
123–128, https://doi.org/10.1038/ngeo2875, 2017.
Guillet, S., Corona, C., Ludlow, F., Oppenheimer, C., and Stoffel, M.:
Climatic and societal impacts of a “forgotten” cluster of volcanic
eruptions in 1108–1110 CE, Sci. Rep., 10, 6715, https://doi.org/10.1038/s41598-020-63339-3, 2020.
Hammer, C. U., Clausen, H. B., and Dansgaard, W.: Greenland ice sheet evidence
of post-glacial volcanism and its climatic impact, Nature, 288, 230–235,
https://doi.org/10.1038/288230a0, 1980.
Harning, D. J., Thordarson, T., Geirsdóttir, Á., Zalzal, K., and
Miller, G. H.: Provenance, stratigraphy and chronology of Holocene tephra
from Vestfirðir, Iceland, Quat. Geochronol., 46, 59–76, https://doi.org/10.1016/j.quageo.2018.03.007, 2018.
Hartman, L. H., Kurbatov, A. V., Winski, D. A., Cruz-Uribe, A. M., Davies, S. M.,
Dunbar, N. W., Iverson, N. A., Aydin, M., Fegyveresi, J. M., Ferris, D. G.,
Fudge, T. J., Osterberg, E. C., Hargreaves, G. M., and Yates, M. G: Volcanic
glass properties from 1459 C.E. volcanic event in South Pole ice core
dismiss Kuwae caldera as a potential source, Sci. Rep., 9, 14437, https://doi.org/10.1038/s41598-019-50939-x, 2019.
Iverson, N. A., Kalteyer, D., Dunbar, N. W., Kurbatov, A., and Yates, M.:
Advancements and best practices for analysis and correlation of tephra and
cryptotephra in ice, Quat. Geochronol., 40, 45–55, https://doi.org/10.1016/j.quageo.2016.09.008, 2017.
Jensen, B. J. L., Pyne-O'Donnell, S., Plunkett, G., Froese, D. G., Hughes,
P. D .M., Sigl, M., McConnell, J. R., Amesbury, M. J., Blackwell, P. G., van den
Bogaard, C., Buck, C. E., Charman, D. J., Clague, J. J., Hall, V. A., Koch, J.,
Mackay, H., Mallon, G., McColl, L., and Pilcher, J. R.: Transatlantic
distribution of the Alaskan White River Ash, Geology, 42, 875–878, https://doi.org/10.1130/G35945.1, 2014.
Koffman, B. G., Kreutz, K. J., Kurbatov, A. V., and Dunbar, N. W.: Impact of
known local and tropical volcanic eruptions of the past millennium on the
WAIS Divide microparticle record, Geophys. Res. Lett., 40, 4712–4716, https://doi.org/10.1002/grl.50822, 2013.
Koffman, B. G., Dowd, E. G., Osterberg, E. C., Ferris, D. G., Hartman, L. H.,
Wheatley, S. D., Kurbatov, A. V., Wong, G. J., Markle, B. R., Dunbar, N. W.,
Kreutz, K. J., and Yates, M.: Rapid transport of ash and sulfate from the 2011
Puyehue-Cordón Caulle (Chile) eruption to West Antarctica, J. Geophys.
Res.-Atmos., 122, 8908–8920, https://doi.org/10.1002/2017JD026893, 2017.
Kuehn, S. C., Froese, D. G., and Shane, P. A. R.: The INTAV intercomparison of
electron-beam microanalysis of glass by tephrochronology laboratories:
Results and recommendations, Quatern. Int., 246, 19–47, https://doi.org/10.1016/j.quaint.2011.08.022, 2011.
LaMarche Jr., V. C., and Hirschboeck, K. K.: Frost rings in trees as records of
major volcanic eruptions, Nature, 307, 121–126, https://doi.org/10.1038/307121a0, 1984.
Langway Jr., C. C., Osada, K., Clausen, H. B., Hammer, C. U., and Shoji, H.: A
10-century comparison of prominent bipolar volcanic events in ice cores, J.
Geophys. Res., 110, 16241–16247, https://doi.org/10.1029/95JD01175, 1995.
Larsen, D. J., Miller, G. H., Geirsdóttir, Á., and Thordarson, T.: A
3000-year varved record of glacier activity and climate change from the
proglacial lake Hvítárvatn, Iceland, Quaternary Sci. Rev.,
30, 2715–2731, https://doi.org/10.1016/j.quascirev.2011.05.026, 2011.
Larsen, G.: Recent volcanic history of the Veiðivötn fissure swarm,
southern Iceland – an approach to volcanic risk assessment, J. Volcanol.
Geoth. Res., 22, 33–58, https://doi.org/10.1016/0377-0273(84)90034-9, 1984.
Larsen, G.: Explosive Volcanism in Iceland: Three Examples of Hydromagmatic
Basaltic Eruptions on long Volcanic Fissures within the past 1200 Years,
Geophysical Research Abstracts, Vol. 7, 10158, SRef-ID: 1607-7962/gra/EGU05-A-10158, available at: https://meetings.copernicus.org/www.cosis.net/abstracts/EGU05/10158/EGU05-J-10158.pdf (last access: 7 January 2021), 2005.
Larsen, G. and Eiríksson, J.: Late Quaternary terrestrial
tephrochronology of Iceland – frequency of explosive eruptions, type and
volume of tephra deposits, J. Quaternary Sci., 23, 109–120, https://doi.org/10.1002/jqs.1129, 2008.
Larsen, G., Gudmundsson, M. T., and Björnsson, H.: Eight centuries of
periodic volcanism at the centre of the Iceland hotspot revealed by glacier
tephrostratigraphy, Geology, 26, 943–946, https://doi.org/10.1130/0091-7613(1998)026<0943:ECOPVA>2.3.CO;2, 1998.
Larsen, G., Eiríksson, J., Knudsen, K. L., and Heinemeier, J.:
Correlation of late Holocene terrestrial and marine tephra markers, north
Iceland: implications for reservoir age changes, Polar Res., 21, 283–290,
https://doi.org/10.3402/polar.v21i2.6489, 2002.
Larsen, G., Gudmundsson, M. T., Einarsson, P., and Thordarson, T.:
Bárðarbunga, in: Náttúruvá á Íslandi - Eldgos og
jarðskjálftar, edited by: Sólnes, S., Sigmundsson, F., and
Bessason, B., Viðlagatrygging
Íslands/Háskólaútgáfan, Reykjavík, Iceland, 253–261, 2013.
Larsen, G., Eiríksson, J., and Gudmundsdóttir, E. R.: Last millennium
dispersal of air-fall tephra and ocean-rafted pumice towards the north
Icelandic shelf and the Nordic seas, in: Marine Tephrochronology, edited by:
Austin, W. E. N., Abbott, P. M., Davies, S. M., Pearce, N. J .G., and
Wastegård, S., Geological Society, London, United Kingdom, 113–211, https://doi.org/10.1144/SP398.4, 2014.
Lawson, I. T., Gathorne-Hardy, F. J., Church, M. J., Newton, A. J., Edwards,
K. J., Dugmore, A. J., and Einarsson, Á.: Environmental impacts of the
Norse settlement: palaeoenvironmental data from Mývatnssveit, northern
Iceland, Boreas, 36, 1–19, https://doi.org/10.1111/j.1502-3885.2007.tb01176.x, 2007.
Lawson, I. T., Swindles, G. T., Plunkett, G., and Greenberg, D.: The spatial
distribution of Holocene cryptotephras in north-west Europe since 7 ka:
implications for understanding ash fall events from Icelandic eruptions,
Quaternary Sci. Rev., 41, 57–66, https://doi.org/10.1016/j.quascirev.2012.02.018, 2012.
Legrand, M. R. and Kirchner, S.: Origins and variations of nitrate in south
polar precipitation, J. Geophys. Res., 95, 3493–3507, https://doi.org/10.1029/JD095iD04p03493, 1990.
Le Maitre, R. W., Bateman, P., Dudek, A., Keller, J., Lameyre, J., Le Bas,
M. J., Sabine, P. A., Schmid, R., Sorensen, H., Streckeisen, A., and Woolley,
A. R.: A classification of igneous rocks and glossary of terms, Blackwell,
London, United Kingdom, 1989.
MacDonald, G. A. and Katsura, T.: Chemical composition of Hawaiian lavas, J.
Petrol., 5, 82–133, https://doi.org/10.1093/petrology/5.1.82, 1964.
Mackie, E. A. V., Davies, S. M., Turney, C. S. M., Dobbyn, K., Lowe, J. J., and
Hill, P. G.: The use of magnetic separation techniques to detect basaltic
microtephra in last glacial-interglacial transition (LGIT; 15–10 ka cal. BP)
sediment sequences in Scotland, Scot. J. Geol., 38, 21–30, https://doi.org/10.1144/sjg38010021, 2002.
Marshall, L., Johnson, J. S., Mann, G. W., Lee, L., Dhomse, S. S., Regayre, L.,
Yoshioka, M., Carslaw, K. S., and Schmidt, A.: Exploring How Eruptive Source
Parameters Affect Volcanic Radiative Forcing Using Statistical Emulation, J.
Geophys. Res., 124, 964–985, https://doi.org/10.1029/2018JD028675, 2019.
Maselli, O. J., Chellman, N. J., Grieman, M., Layman, L., McConnell, J. R., Pasteris, D., Rhodes, R. H., Saltzman, E., and Sigl, M.: Sea ice and pollution-modulated changes in Greenland ice core methanesulfonate and bromine, Clim. Past, 13, 39–59, https://doi.org/10.5194/cp-13-39-2017, 2017.
McConnell, J. R., Lamorey, G. W., Lambert, S. W., and Taylor, K. C.: Continuous
Ice-Core Chemical Analyses Using Inductively Coupled Plasma Mass
Spectrometry, Environ. Sci. Technol., 36, 7–11, https://doi.org/10.1021/es011088z,
2002.
McConnell, J. R., Burke, A., Dunbar, N. W., Köhler, P., Thomas, J. L.,
Arienzo, M. M., Chellman, N. J., Maselli, O. J., Sigl, M., Adkins, J. F.,
Baggenstos, D., Burkhart, J. F., Brook, E. J., Buizert, C., Cole-Dai, J.,
Fudge, T. J., Knorr, G., Graf, H. F., Grieman, M. M., Iverson, N., McGwire,
K. C., Mulvaney, R., Paris, G., Rhodes, R. H., Saltzman, E. S.,
Severinghaus, J. P., Steffensen, J. P., Taylor, K. C., and Winckler, G.:
Synchronous volcanic eruptions and abrupt climate change similar to 17.7 ka
plausibly linked by stratospheric ozone depletion, P. Natl. Acad. Sci. USA,
114, 10035–10040, https://doi.org/10.1073/pnas.1705595114, 2017.
McConnell, J. R., Sigl, M., Plunkett, G., Burke, A., Kim, W. M., Raible, C.
C., Wilson, A. I., Manning, J. G., Ludlow, F. M., Chellman, N. J., Innes, H.
M., Yang, Z., Larsen, J. F., Schaefer, J. R., Kipfstuhl, S., Mojtabavi, S.,
Wilhelms, F., Opel, T., Meyer, H., and Steffensen, J. P.: Extreme climate
after massive eruption of Alaska's Okmok volcano in 43 BCE and effects on
the late Roman Republic and Ptolemaic Kingdom, P. Natl. Acad. Sci. USA, 117, 15443–15449, https://doi.org/10.1073/pnas.2002722117, 2020.
Mekhaldi, F., Muscheler, R., Adolphi, F., Aldahan, A., Beer, J., McConnell,
J. R., Possnert, G., Sigl, M., Svensson, A., Synal, H.-A., Welten, K. C., and
Woodruff, T. E.: Multiradionuclide evidence for the solar origin of the
cosmic-ray events of AD 774/5 and 993/4, Nat. Commun., 6, 8611, https://doi.org/10.1038/ncomms9611, 2015.
Miller, G. H., Geirsdóttir, A., Zhong, Y. F., Larsen, D. J.,
Otto-Bliesner, B. L., Holland, M. M., Bailey, D. A., Refsnider, K. A.,
Lehman, S. J., Southon, J. R., Anderson, C., Björnsson, H., and
Thordarson, T.: Abrupt onset of the Little Ice Age triggered by volcanism
and sustained by sea-ice/ocean feedbacks, Geophys. Res. Lett., 39,
L02708, https://doi.org/10.1029/2011GL050168, 2012.
Miyake, F., Nagaya, K., Masuda, K., and Nakamura, T.: A signature of
cosmic-ray increase in AD 774–775 from tree rings in Japan, Nature, 486,
240–242, https://doi.org/10.1038/nature11123, 2012.
Miyake, F., Suzuki, A., Masuda, K., Horiuchi, K., Motoyama, H., Matsuzaki,
H., Motizuki, Y., Takahashi, K., and Nakai, Y.: Cosmic ray event of AD
774–775 shown in quasi-annual 10Be data from the Antarctic Dome Fuji
ice core, Geophys. Res. Lett., 42, 84–89, https://doi.org/10.1002/2014GL062218,
2015.
Monzier, M., Robin, C., and Eissen, J.-P.: Kuwae (≈ 1425 A.D.): the
forgotten caldera, J. Volcanol. Geoth. Res., 59, 207–218, https://doi.org/10.1016/0377-0273(94)90091-4, 1994.
Moore, J. C., Narita, H., and Maeno, N.: A continuous 770-year record of
volcanic activity from east Antarctica, J. Geophys. Res., 96,
17353–17359, https://doi.org/10.1029/91JD01283, 1991.
Narcisi, B., Petit, J. R., Delmonte, B., Batanova, V., and Savarino, J.:
Multiple sources for tephra from AD 1259 volcanic signal on Antarctic ice
cores, Quaternary Sci. Rev., 210, 164–174, https://doi.org/10.1016/j.quascirev.2019.03.005, 2019.
Németh, K., Cronin, S. J., and White, J. D. L.: Kuwae Caldera and Climate
Confusion, Open Geology Journal, 1, 7–11, https://doi.org/10.2174/1874262900701010007, 2007.
Newhall, C. G. and Self, S.: The volcanic explosivity index (VEI) an estimate
of explosive magnitude for historical volcanism, J. Geophys. Res., 87,
1231–1238, 1982.
Óladóttir, B. A., Larsen, G., and Sigmarsson, O.: Holocene volcanic
activity at Grímsvötn, Bárdarbunga and Kverkfjöll
subglacial centres beneath Vatnajökull, Iceland, Bull. Volcanol., 73,
1187–1208, https://doi.org/10.1007/s00445-011-0461-4, 2011.
Óladóttir, B. A., Thordarson, T., Geirsdóttir, Á.,
Jóhannsdóttir, G. E., and Mangerud, J.: The Saksunarvatn Ash and the
G10ka series tephra. Review and current state of knowledge, Quat.
Geochronol., 56, 101041, https://doi.org/10.1016/j.quageo.2019.101041, 2020.
Oppenheimer, C., Wacker, L., Xu, J., Diego Galván, J., Stoffel, M.,
Guillet, S., Corona, C., Sigl, M., Di Cosmo, N., Hajdas, I., Pan, B.,
Breuker, R., Schneider, L., Esper, J., Fei, J., Hammond, J. O. S., and
Büntgen, U.: Multi-proxy dating the “Millennium Eruption” of
Changbaishan to late 946 CE, Quaternary Sci. Rev., 158, 164–171, https://doi.org/10.1016/j.quascirev.2016.12.024, 2017.
Oppenheimer, C., Orchard, A., Stoffel, M., Newfield, T. P., Guillet, S.,
Corona, C., Sigl, M., Di Cosmo, N., and Büntgen, U.: The Eldgjá
eruption: timing, long-range impacts and influence on the Christianisation
of Iceland, Climatic Change, 147, 369–381, https://doi.org/10.1007/s10584-018-2171-9,
2018.
Owens, M. J., Lockwood, M., Hawkins, E., Usoskin, I., Jones, G. S., Barnard,
L., Schurer, A., and Fasullo, J.: The Maunder minimum and the Little Ice Age:
an update from recent reconstructions and climate simulations, J. Sp.
Weather Sp. Clim., 7, A33, https://doi.org/10.1051/swsc/2017034, 2017.
Palais, J. M., Taylor, K., Mayewski, P. A., and Grootes, P.: Volcanic ash from
the 1362 AD Öræfajökull eruption (Iceland) in the Greenland Ice
Sheet, Geophys. Res. Lett., 18, 1241–1244, https://doi.org/10.1029/91GL01557, 1991.
Perkins, M. E., Nash, W. P., Brown, F. H., and Fleck, R. J.: Fallout tuffs of
Trapper Creek, Idaho – A record of Miocene explosive volcanism in the Snake
River Plain volcanic province, Geol. Soc. Am. Bull., 107, 1484–1506,
https://doi.org/10.1130/0016-7606(1995)107<1484:FTOTCI>2.3.CO;2,
1995.
Perkins, M. E., Brown, F. H., Nash, W. P., Williams, S. K., and McIntosh, W.:
Sequence, age and source of silicic fallout tuffs in middle to late Miocene
basins of the northern Basin and Range province, Geol. Soc. Am. Bull.,
110, 344–360, https://doi.org/10.1130/0016-7606(1998)110<0344:SAASOS>2.3.CO;2, 1998.
Plummer, C. T., Curran, M. A. J., van Ommen, T. D., Rasmussen, S. O., Moy, A. D., Vance, T. R., Clausen, H. B., Vinther, B. M., and Mayewski, P. A.: An independently dated 2000-yr volcanic record from Law Dome, East Antarctica, including a new perspective on the dating of the 1450s CE eruption of Kuwae, Vanuatu, Clim. Past, 8, 1929–1940, https://doi.org/10.5194/cp-8-1929-2012, 2012.
Plunkett, G. and Pilcher, J. R.: Defining the potential source region of
volcanic ash in northwest Europe during the Mid- to Late Holocene,
Earth-Sci. Rev., 179, 20–37, https://doi.org/10.1016/j.earscirev.2018.02.006, 2018.
Plunkett, G., Sigl, M., Pilcher, J. R., McConnell, J. R., Chellman, N.,
Steffensen, J. P., and Büntgen, U.: Smoking guns and volcanic ash: the
importance of sparse tephras in Greenland ice cores, Polar Res., 39, 3511, https://doi.org/10.33265/polar.v39.3511, 2020.
Pollard, A. M., Blockley, S. P. E., and Ward, K. R.: Chemical alteration of
tephra in the depositional environment: theoretical stability modelling, J.
Quaternary Sci., 18, 385–394, https://doi.org/10.1002/jqs.760, 2003.
Robin, C., Monzier, M., and Eissen, J.-P.: Formation of the mid-fifteenth
century Kuwae caldera (Vanuatu) by an initial hydroclastic and subsequent
ignimbrite eruption, B. Volcanol., 56, 170–183, https://doi.org/10.1007/BF00279602,
1994.
Robock, A.: Volcanic eruptions and climate, Rev. Geophys., 38, 191–219,
https://doi.org/10.1029/1998RG000054, 2000.
Ruth, U., Wagenbach, D., Steffensen, J. P., and Bigler, M.: Continuous records
of microparticle concentration and size distribution in the central
Greenland NGRIP ice core during the last glacial period, J. Geophys. Res.,
108, 4098, https://doi.org/10.1029/2002JD002376, 2003.
Salzer, M. W. and Hughes, M. K.: Bristlecone pine tree rings and volcanic
eruptions over the last 5000 yr, Quaternary Res., 67, 57–68, https://doi.org/10.1016/j.yqres.2006.07.004, 2007.
Schneider, L., Smerdon, J. E., Büntgen, U., Wilson, R. J. S., Myglan, V. S.,
Kirdyanov, A. V., and Esper, J.: Revising midlatitude summer temperatures back
to A.D. 600 based on a wood density network, Geophys. Res. Lett., 42,
4556–4562, https://doi.org/10.1002/2015GL063956, 2015.
Schurer, A. P., Hegerl, G. C., Mann, M. E., Tett, S. F. B., and Phipps, S. J.:
Separating Forced from Chaotic Climate Variability over the Past Millennium,
J. Climate, 26, 6954–6973, https://doi.org/10.1175/JCLI-D-12-00826.1, 2013.
Schurer, A. P., Tett, S. F. B., and Hegerl, G. C.: Small influence of solar
variability on climate over the past millennium, Nat. Geosci. 7, 104–108,
https://doi.org/10.1038/ngeo2040, 2014.
Sigl, M., McConnell, J. R., Layman, L., Maselli, O., McGwire, K., Pasteris,
D., Dahl-Jensen, D., Steffensen, J. P., Vinther, B., Edwards, R., Mulvaney,
R., and Kipfstuhl, S.: A new bipolar ice core record of volcanism from WAIS
Divide and NEEM and implications for climate forcing of the last 2000 years,
J. Geophys. Res., 118, 1151–1169, https://doi.org/10.1029/2012JD018603, 2013.
Sigl, M., McConnell, J. R., Toohey, M., Curran, M., Das, S. B., Edwards, R.,
Isaksson, E., Kawamura, K., Kipfstuhl, S., Krüger, K., Layman, L.,
Maselli, O., Motizuki, Y., Motoyama, H., Pateris, D. R., and Severi, M.:
Insights from Antarctica on volcanic forcing during the Common Era, Nat.
Clim. Change, 4, 693–697, https://doi.org/10.1038/nclimate2293, 2014.
Sigl, M., Winstrup, M., McConnell, J. R., Welten, K. C., Plunkett, G., Ludlow,
F., Büntgen, U., Caffee, M., Chellman, N., Dahl-Jensen, D., Fischer, H.,
Kipfstuhl, S., Kostick, C., Maselli, O. J., Mekhaldi, F., Mulvaney, R.,
Muscheler, R., Pasteris, D. R., Pilcher, J. R., Salzer, M., Schüpbach, S.,
Steffensen, J. P., Vinther, B. M., and Woodruff, T. E.: Timing and climate
forcing of volcanic eruptions for the past 2,500 years, Nature, 523,
543–549, https://doi.org/10.1038/nature14565, 2015.
Sigl, M., Fudge, T. J., Winstrup, M., Cole-Dai, J., Ferris, D., McConnell, J. R., Taylor, K. C., Welten, K. C., Woodruff, T. E., Adolphi, F., Bisiaux, M., Brook, E. J., Buizert, C., Caffee, M. W., Dunbar, N. W., Edwards, R., Geng, L., Iverson, N., Koffman, B., Layman, L., Maselli, O. J., McGwire, K., Muscheler, R., Nishiizumi, K., Pasteris, D. R., Rhodes, R. H., and Sowers, T. A.: The WAIS Divide deep ice core WD2014 chronology – Part 2: Annual-layer counting (0–31 ka BP), Clim. Past, 12, 769–786, https://doi.org/10.5194/cp-12-769-2016, 2016.
Slawinska, J. and Robock, A.: Impact of Volcanic Eruptions on Decadal to
Centennial Fluctuations of Arctic Sea Ice Extent during the Last Millennium
and on Initiation of the Little Ice Age, J. Climate, 31, 2145–2167, https://doi.org/10.1175/JCLI-D-16-0498.1, 2018.
Smith, V. C., Costa, A., Aguirre-Díaz, G., Pedrazzi, D., Scifo, A.,
Plunkett, G., Poret, M., Tournigand, P.-Y., Miles, D., Dee, M. W., McConnell,
J. R., Sunyé-Puchol Dávila Harris, P., Sigl, M., Pilcher, J. R.,
Chellman, N., and Gutiérrez, E.: The magnitude and impact of the 431 CE
Tierra Blanca Joven eruption of Ilopango, El Salvador, P. Natl. Acad. Sci.
USA, https://doi.org/10.1073/pnas.2003008117, 2020.
Stoffel, M., Khodri, M., Corona, C., Guillet, S., Poulain, V., Bekki, S.,
Guiot, J., Luckman, B. H., Oppenheimer, C., Lebas, N., Beniston, M., and
Masson-Delmotte, V.: Estimates of volcanic-induced cooling in the Northern
Hemisphere over the past 1,500 years, Nat. Geosci., 8, 784–788, https://doi.org/10.1038/ngeo2526, 2015.
Streeter, R. and Dugmore, A. J.: Late-Holocene land surface change in a
coupled social-ecological system, southern Iceland: a cross-scale
tephrochronology approach, Quaternary Sci. Rev., 86, 99–114, https://doi.org/10.1016/j.quascirev.2013.12.016, 2014.
Sun, C., Plunkett, G., Liu, J., Zhao, H., Sigl, M., McConnell, J. R.,
Pilcher, J. R., Vinther, B., Steffensen, J. P., and Hall, V.: Ash from
Changbaishan Millennium eruption recorded in Greenland ice: Implications for
determining the eruption's timing and impact, Geophys. Res. Lett., 41,
694–701, https://doi.org/10.1002/2013GL058642, 2014.
Thórarinsson, S.: The Öræfajökull Eruption of 1362, Acta
Nat. Isl., 2, 1–99, 1958.
Thordarson, T. and Larsen, G.: Volcanism in Iceland in historical time:
Volcano types, eruption styles and eruptive history, J. Geodyn., 43,
118–152, https://doi.org/10.1016/j.jog.2006.09.005, 2007.
Thordarson, T., Miller, D. J., Larsen, G., Self, S., and Sigurdsson, H.: New
estimates of sulfur degassing and atmospheric mass-loading by the 934 AD
Eldgjá eruption, Iceland, J. Volcanol. Geoth. Res., 108, 33–54,
https://doi.org/10.1016/S0377-0273(00)00277-8, 2001.
Toohey, M. and Sigl, M.: Volcanic stratospheric sulfur injections and aerosol optical depth from 500 BCE to 1900 CE, Earth Syst. Sci. Data, 9, 809–831, https://doi.org/10.5194/essd-9-809-2017, 2017.
Toohey, M., Krüger, K., Sigl, M., Stordal, F., and Svensen, H.: Climatic
and societal impacts of a volcanic double event at the dawn of the Middle
Ages, Clim. Change, 136, 401–412, https://doi.org/10.1007/s10584-016-1648-7,
2016.
Toohey, M., Krüger, K., Schmidt, H., Timmreck, C., Sigl, M., Stoffel, M.,
and Wilson, R.: Disproportionately strong climate forcing from extratropical
explosive volcanic eruptions, Nat. Geosci., 12, 100–107,
https://doi.org/10.1038/s41561-018-0286-2, 2019.
Vakhrameeva, P., Portnyagin, M., Ponomareva, V., Abbott, P. M., Repkina, T.,
Novikova, A., Koutsodendris, A., and Pross, J.: Identification of Icelandic
tephras from the last two millennia in the White Sea region (Vodoprovodnoe
peat bog, northwestern Russia), J. Quaternary Sci., 35, 493–504, https://doi.org/10.1002/jqs.3190, 2020.
Vinther, B. M., Clausen, H. B., Johnsen, S. J., Rasmussen, S. O., Andersen,
K. K., Buchardt, S. L., Dahl-Jensen, D., Seierstad, I. K., Siggaard-Andersen,
M.-L., Steffensen, J. P., Svensson, A., Olsen, J., and Heinemeier, J.: A
synchronized dating of three Greenland ice cores throughout the Holocene, J.
Geophys. Res., 111, D13102, https://doi.org/10.1029/2005JD006921, 2006.
Watson, E. J., Swindles, G. T., Savov, I. P., Lawson, I. T., Connor, C. B., and
Wilson, J. A.: Estimating the frequency of volcanic ash clouds over northern
Europe, Earth Planet. Sci. Lett., 460, 41–49, https://doi.org/10.1016/j.epsl.2016.11.054, 2017.
Wilson, R., Anchukaitis, K., Briffa, K. R., Büntgen, U., Cook, E.,
D'Arrigo, R., Davi, N., Esper, J., Frank, D., Gunnarson, B., Hegerl, G.,
Helama, S., Klesse, S., Krusic, P. J., Linderholm, H. W., Myglan, V.,
Osborn, T. J., Rydval, M., Schneider, L., Schurer, A., Wiles, G., Zhang, P.,
and Zorita, E.: Last millennium northern hemisphere summer temperatures from
tree rings: Part I: The long term context, Quaternary Sci. Rev., 134, 1–18,
https://doi.org/10.1016/j.quascirev.2015.12.005, 2016.
Witter, J. B. and Self, S.: The Kuwae (Vanuatu) eruption of AD 1452:
potential magnitude and impact and volatile release, B. Volcanol., 69,
301–318, https://doi.org/10.1007/s00445-006-0075-4, 2007.
Yamaguchi, D. K.: New tree-ring dates for recent eruptions of Mount St.
Helens, Quaternary Res., 20, 246–250, https://doi.org/10.1016/0033-5894(83)90080-7,
1983.
Zanolini, F., Delmas, R. J., and Legrand, M.: Sulphuric and nitric acid
concentrations and spikes along a 200m deep ice core at D 57 (Terre
Adélie, Antarctica), Ann. Glaciol., 7, 70–75, https://doi.org/10.3189/S0260305500005930, 1985.
Zielinski, G. A.: Stratospheric loading and optical depth estimates of explosive volcanism over the last 2100 years derived from the Greenland Ice Sheet Project 2 ice core, J. Geophys. Res., 100, 20937–20955, https://doi.org/10.1029/95JD01751, 1995.
Zielinski, G. A., Mayewski, P. A., Meeker, L .D., Whitlow, S., Twickler, M. S.,
Morrison, M., Meese, D. A., Gow, A. J., and Alley, R. B.: Record of Volcanism
Since 7000 B.C. from the GISP2 Greenland Ice Core and Implications for the
Volcano-Climate System, Science, 264, 948–952, https://doi.org/10.1126/science.264.5161.948, 1994.
Short summary
Volcanic eruptions are a key source of climatic variability, and greater understanding of their past influence will increase the accuracy of future projections. We use volcanic ash from a 1477 CE Icelandic eruption in a Greenlandic ice core as a temporal fix point to constrain the timing of two eruptions in the 1450s CE and their climatic impact. Despite being the most explosive Icelandic eruption in the last 1200 years, the 1477 CE event had a limited impact on Northern Hemisphere climate.
Volcanic eruptions are a key source of climatic variability, and greater understanding of their...