Articles | Volume 14, issue 3
https://doi.org/10.5194/cp-14-369-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-14-369-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Palaeoclimate significance of speleothems in crystalline rocks: a test case from the Late Glacial and early Holocene (Vinschgau, northern Italy)
Gabriella Koltai
CORRESPONDING AUTHOR
Institute of Geology, University of Innsbruck, Innrain 52, 6020
Innsbruck, Austria
Hai Cheng
Xi'an Jiaotong University, Institute of Global
Environmental Change, 28 Xianning West Road, Xi'an 710049,
Shaanxi, China
Christoph Spötl
Institute of Geology, University of Innsbruck, Innrain 52, 6020
Innsbruck, Austria
Related authors
Paul Töchterle, Anna Baldo, Julian B. Murton, Frederik Schenk, R. Lawrence Edwards, Gabriella Koltai, and Gina E. Moseley
Clim. Past, 20, 1521–1535, https://doi.org/10.5194/cp-20-1521-2024, https://doi.org/10.5194/cp-20-1521-2024, 2024
Short summary
Short summary
We present a reconstruction of permafrost and snow cover on the British Isles for the Younger Dryas period, a time of extremely cold winters that happened approximately 12 000 years ago. Our results indicate that seasonal sea ice in the North Atlantic was most likely a crucial factor to explain the observed climate shifts during this time.
Charlotte Honiat, Gabriella Koltai, Yuri Dublyansky, R. Lawrence Edwards, Haiwei Zhang, Hai Cheng, and Christoph Spötl
Clim. Past, 19, 1177–1199, https://doi.org/10.5194/cp-19-1177-2023, https://doi.org/10.5194/cp-19-1177-2023, 2023
Short summary
Short summary
A look at the climate evolution during the last warm period may allow us to test ground for future climate conditions. We quantified the temperature evolution during the Last Interglacial using a tiny amount of water trapped in the crystals of precisely dated stalagmites in caves from the southeastern European Alps. Our record indicates temperatures up to 2 °C warmer than today and an unstable climate during the first half of the Last Interglacial.
Gabriella Koltai, Christoph Spötl, Alexander H. Jarosch, and Hai Cheng
Clim. Past, 17, 775–789, https://doi.org/10.5194/cp-17-775-2021, https://doi.org/10.5194/cp-17-775-2021, 2021
Short summary
Short summary
This paper utilises a novel palaeoclimate archive from caves, cryogenic cave carbonates, which allow for precisely constraining permafrost thawing events in the past. Our study provides new insights into the climate of the Younger Dryas (12 800 to 11 700 years BP) in mid-Europe from the perspective of a high-elevation cave sensitive to permafrost development. We quantify seasonal temperature and precipitation changes by using a heat conduction model.
Juan Luis Bernal-Wormull, Ana Moreno, Yuri Dublyansky, Christoph Spötl, Reyes Giménez, Carlos Pérez-Mejías, Miguel Bartolomé, Martin Arriolabengoa, Eneko Iriarte, Isabel Cacho, Richard Lawrence Edwards, and Hai Cheng
EGUsphere, https://doi.org/10.5194/egusphere-2024-3612, https://doi.org/10.5194/egusphere-2024-3612, 2024
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
We present in this manuscript a record of temperature changes during the last deglaciation and the Holocene using isotopes of fluid inclusions in stalagmites from the northeastern region of the Iberian Peninsula. This innovative climate proxy for this study region provides a quantitative understanding of the abrupt temperature changes in southern Europe of the last 16500 years before present.
Timothy J. Pollard, Jon D. Woodhead, Russell N. Drysdale, R. Lawrence Edwards, Xianglei Li, Ashlea N. Wainwright, Mathieu Pythoud, Hai Cheng, John C. Hellstrom, Ilaria Isola, Eleonora Regattieri, Giovanni Zanchetta, and Dylan S. Parmenter
EGUsphere, https://doi.org/10.5194/egusphere-2024-3594, https://doi.org/10.5194/egusphere-2024-3594, 2024
Short summary
Short summary
The uranium-thorium and uranium-lead radiometric dating methods are both capable of dating carbonate samples ranging in age from about 400,000 to 650,000 years. Here we test agreement between the two methods by 'double dating' speleothems (i.e. secondary cave mineral deposits) that grew within this age range. We demonstrate excellent agreement between the two dating methods and discuss their relative strengths and weaknesses.
Alexander H. Jarosch, Paul Hofer, and Christoph Spötl
The Cryosphere, 18, 4811–4816, https://doi.org/10.5194/tc-18-4811-2024, https://doi.org/10.5194/tc-18-4811-2024, 2024
Short summary
Short summary
Mechanical damage to stalagmites is commonly observed in mid-latitude caves. In this study we investigate ice flow along the cave bed as a possible mechanism for stalagmite damage. Utilizing models which simulate forces created by ice flow, we study the structural integrity of different stalagmite geometries. Our results suggest that structural failure of stalagmites caused by ice flow is possible, albeit unlikely.
Hu Yang, Xiaoxu Shi, Xulong Wang, Qingsong Liu, Yi Zhong, Xiaodong Liu, Youbin Sun, Yanjun Cai, Fei Liu, Gerrit Lohmann, Martin Werner, Zhimin Jian, Tainã M. L. Pinho, Hai Cheng, Lijuan Lu, Jiping Liu, Chao-Yuan Yang, Qinghua Yang, Yongyun Hu, Xing Cheng, Jingyu Zhang, and Dake Chen
EGUsphere, https://doi.org/10.5194/egusphere-2024-2778, https://doi.org/10.5194/egusphere-2024-2778, 2024
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
The precession driven low-latitude hydrological cycle is not paced by hemispheric summer insolation, but shifting perihelion.
Paul Töchterle, Anna Baldo, Julian B. Murton, Frederik Schenk, R. Lawrence Edwards, Gabriella Koltai, and Gina E. Moseley
Clim. Past, 20, 1521–1535, https://doi.org/10.5194/cp-20-1521-2024, https://doi.org/10.5194/cp-20-1521-2024, 2024
Short summary
Short summary
We present a reconstruction of permafrost and snow cover on the British Isles for the Younger Dryas period, a time of extremely cold winters that happened approximately 12 000 years ago. Our results indicate that seasonal sea ice in the North Atlantic was most likely a crucial factor to explain the observed climate shifts during this time.
Pengzhen Duan, Hanying Li, Zhibang Ma, Jingyao Zhao, Xiyu Dong, Ashish Sinha, Peng Hu, Haiwei Zhang, Youfeng Ning, Guangyou Zhu, and Hai Cheng
Clim. Past, 20, 1401–1414, https://doi.org/10.5194/cp-20-1401-2024, https://doi.org/10.5194/cp-20-1401-2024, 2024
Short summary
Short summary
We use multi-proxy speleothem records to reveal a two droughts–one pluvial pattern during 8.5–8.0 ka. The different rebounded rainfall quantity after two droughts causes different behavior of δ13C, suggesting the dominant role of rainfall threshold on the ecosystem. A comparison of different records suggests the prolonged 8.2 ka event is a globally common phenomenon rather than a regional signal. The variability of the AMOC strength is mainly responsible for these climate changes.
Hubert Vonhof, Sophie Verheyden, Dominique Bonjean, Stéphane Pirson, Michael Weber, Denis Scholz, John Hellstrom, Hai Cheng, Xue Jia, Kevin Di Modica, Gregory Abrams, Marjan van Nunen, Joost Ruiter, Michèlle van der Does, Daniel Böhl, and Jeroen van der Lubbe
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-27, https://doi.org/10.5194/cp-2024-27, 2024
Revised manuscript accepted for CP
Short summary
Short summary
The sedimentary sequence in Scladina Cave (Belgium) is well-known for its rich archeological assemblages and its numerous faunal remains. Of particular interest is the presence of a nearly complete jaw bone of a Neandertal child. In this study, we present new Uranium-series ages of stalagmites from the archeological sequence which allow more precise dating of the archeological finds. One key result is that the Neandertal child may be slightly older than previously thought.
Miguel Bartolomé, Ana Moreno, Carlos Sancho, Isabel Cacho, Heather Stoll, Negar Haghipour, Ánchel Belmonte, Christoph Spötl, John Hellstrom, R. Lawrence Edwards, and Hai Cheng
Clim. Past, 20, 467–494, https://doi.org/10.5194/cp-20-467-2024, https://doi.org/10.5194/cp-20-467-2024, 2024
Short summary
Short summary
Reconstructing past temperatures at regional scales during the Common Era is necessary to place the current warming in the context of natural climate variability. We present a climate reconstruction based on eight stalagmites from four caves in the Pyrenees, NE Spain. These stalagmites were dated precisely and analysed for their oxygen isotopes, which appear dominated by temperature changes. Solar variability and major volcanic eruptions are the two main drivers of observed climate variability.
Heather M. Stoll, Chris Day, Franziska Lechleitner, Oliver Kost, Laura Endres, Jakub Sliwinski, Carlos Pérez-Mejías, Hai Cheng, and Denis Scholz
Clim. Past, 19, 2423–2444, https://doi.org/10.5194/cp-19-2423-2023, https://doi.org/10.5194/cp-19-2423-2023, 2023
Short summary
Short summary
Stalagmites formed in caves provide valuable information about past changes in climate and vegetation conditions. In this contribution, we present a new method to better estimate past changes in soil and vegetation productivity using carbon isotopes and trace elements measured in stalagmites. Applying this method to other stalagmites should provide a better indication of past vegetation feedbacks to climate change.
Giselle Utida, Francisco W. Cruz, Mathias Vuille, Angela Ampuero, Valdir F. Novello, Jelena Maksic, Gilvan Sampaio, Hai Cheng, Haiwei Zhang, Fabio Ramos Dias de Andrade, and R. Lawrence Edwards
Clim. Past, 19, 1975–1992, https://doi.org/10.5194/cp-19-1975-2023, https://doi.org/10.5194/cp-19-1975-2023, 2023
Short summary
Short summary
We reconstruct the Intertropical Convergence Zone (ITCZ) behavior during the past 3000 years over northeastern Brazil based on oxygen stable isotopes of stalagmites. Paleoclimate changes were mainly forced by the tropical South Atlantic and tropical Pacific sea surface temperature variability. We describe an ITCZ zonal behavior active around 1100 CE and the period from 1500 to 1750 CE. The dataset also records historical droughts that affected modern human population in this area of Brazil.
Anika Donner, Paul Töchterle, Christoph Spötl, Irka Hajdas, Xianglei Li, R. Lawrence Edwards, and Gina E. Moseley
Clim. Past, 19, 1607–1621, https://doi.org/10.5194/cp-19-1607-2023, https://doi.org/10.5194/cp-19-1607-2023, 2023
Short summary
Short summary
This study investigates the first finding of fine-grained cryogenic cave minerals in Greenland, a type of speleothem that has been notably difficult to date. We present a successful approach for determining the age of these minerals using 230Th / U disequilibrium and 14C dating. We relate the formation of the cryogenic cave minerals to a well-documented extreme weather event in 1889 CE. Additionally, we provide a detailed report on the mineralogical and isotopic composition of these minerals.
Charlotte Honiat, Gabriella Koltai, Yuri Dublyansky, R. Lawrence Edwards, Haiwei Zhang, Hai Cheng, and Christoph Spötl
Clim. Past, 19, 1177–1199, https://doi.org/10.5194/cp-19-1177-2023, https://doi.org/10.5194/cp-19-1177-2023, 2023
Short summary
Short summary
A look at the climate evolution during the last warm period may allow us to test ground for future climate conditions. We quantified the temperature evolution during the Last Interglacial using a tiny amount of water trapped in the crystals of precisely dated stalagmites in caves from the southeastern European Alps. Our record indicates temperatures up to 2 °C warmer than today and an unstable climate during the first half of the Last Interglacial.
Miguel Bartolomé, Gérard Cazenave, Marc Luetscher, Christoph Spötl, Fernando Gázquez, Ánchel Belmonte, Alexandra V. Turchyn, Juan Ignacio López-Moreno, and Ana Moreno
The Cryosphere, 17, 477–497, https://doi.org/10.5194/tc-17-477-2023, https://doi.org/10.5194/tc-17-477-2023, 2023
Short summary
Short summary
In this work we study the microclimate and the geomorphological features of Devaux ice cave in the Central Pyrenees. The research is based on cave monitoring, geomorphology, and geochemical analyses. We infer two different thermal regimes. The cave is impacted by flooding in late winter/early spring when the main outlets freeze, damming the water inside. Rock temperatures below 0°C and the absence of drip water indicate frozen rock, while relict ice formations record past damming events.
Paul Töchterle, Simon D. Steidle, R. Lawrence Edwards, Yuri Dublyansky, Christoph Spötl, Xianglei Li, John Gunn, and Gina E. Moseley
Geochronology, 4, 617–627, https://doi.org/10.5194/gchron-4-617-2022, https://doi.org/10.5194/gchron-4-617-2022, 2022
Short summary
Short summary
Cryogenic cave carbonates (CCCs) provide a marker for past permafrost conditions. Their formation age is determined by Th / U dating. However, samples can be contaminated with small amounts of Th at formation, which can cause inaccurate ages and require correction. We analysed multiple CCCs and found that varying degrees of contamination can cause an apparent spread of ages, when samples actually formed within distinguishable freezing events. A correction method using isochrons is presented.
Maria Wind, Friedrich Obleitner, Tanguy Racine, and Christoph Spötl
The Cryosphere, 16, 3163–3179, https://doi.org/10.5194/tc-16-3163-2022, https://doi.org/10.5194/tc-16-3163-2022, 2022
Short summary
Short summary
We present a thorough analysis of the thermal conditions of a sag-type ice cave in the Austrian Alps using temperature measurements for the period 2008–2021. Apart from a long-term increasing temperature trend in all parts of the cave, we find strong interannual and spatial variations as well as a characteristic seasonal pattern. Increasing temperatures further led to a drastic decrease in cave ice. A first attempt to model ablation based on temperature shows promising results.
Jan Pfeiffer, Thomas Zieher, Jan Schmieder, Thom Bogaard, Martin Rutzinger, and Christoph Spötl
Nat. Hazards Earth Syst. Sci., 22, 2219–2237, https://doi.org/10.5194/nhess-22-2219-2022, https://doi.org/10.5194/nhess-22-2219-2022, 2022
Short summary
Short summary
The activity of slow-moving deep-seated landslides is commonly governed by pore pressure variations within the shear zone. Groundwater recharge as a consequence of precipitation therefore is a process regulating the activity of landslides. In this context, we present a highly automated geo-statistical approach to spatially assess groundwater recharge controlling the velocity of a deep-seated landslide in Tyrol, Austria.
Caroline Welte, Jens Fohlmeister, Melina Wertnik, Lukas Wacker, Bodo Hattendorf, Timothy I. Eglinton, and Christoph Spötl
Clim. Past, 17, 2165–2177, https://doi.org/10.5194/cp-17-2165-2021, https://doi.org/10.5194/cp-17-2165-2021, 2021
Short summary
Short summary
Stalagmites are valuable climate archives, but unlike other proxies the use of stable carbon isotopes (δ13C) is still difficult. A stalagmite from the Austrian Alps was analyzed using a new laser ablation method for fast radiocarbon (14C) analysis. This allowed 14C and δ13C to be combined, showing that besides soil and bedrock a third source is contributing during periods of warm, wet climate: old organic matter.
Kathleen A. Wendt, Xianglei Li, R. Lawrence Edwards, Hai Cheng, and Christoph Spötl
Clim. Past, 17, 1443–1454, https://doi.org/10.5194/cp-17-1443-2021, https://doi.org/10.5194/cp-17-1443-2021, 2021
Short summary
Short summary
In this study, we tested the upper limits of U–Th dating precision by analyzing three stalagmites from the Austrian Alps that have high U concentrations. The composite record spans the penultimate interglacial (MIS 7) with an average 2σ age uncertainty of 400 years. This unprecedented age control allows us to constrain the timing of temperature shifts in the Alps during MIS 7 while offering new insight into millennial-scale changes in the North Atlantic leading up to Terminations III and IIIa.
Gabriella Koltai, Christoph Spötl, Alexander H. Jarosch, and Hai Cheng
Clim. Past, 17, 775–789, https://doi.org/10.5194/cp-17-775-2021, https://doi.org/10.5194/cp-17-775-2021, 2021
Short summary
Short summary
This paper utilises a novel palaeoclimate archive from caves, cryogenic cave carbonates, which allow for precisely constraining permafrost thawing events in the past. Our study provides new insights into the climate of the Younger Dryas (12 800 to 11 700 years BP) in mid-Europe from the perspective of a high-elevation cave sensitive to permafrost development. We quantify seasonal temperature and precipitation changes by using a heat conduction model.
Chao-Jun Chen, Dao-Xian Yuan, Jun-Yun Li, Xian-Feng Wang, Hai Cheng, You-Feng Ning, R. Lawrence Edwards, Yao Wu, Si-Ya Xiao, Yu-Zhen Xu, Yang-Yang Huang, Hai-Ying Qiu, Jian Zhang, Ming-Qiang Liang, and Ting-Yong Li
Clim. Past Discuss., https://doi.org/10.5194/cp-2021-20, https://doi.org/10.5194/cp-2021-20, 2021
Manuscript not accepted for further review
Xianglei Li, Kathleen A. Wendt, Yuri Dublyansky, Gina E. Moseley, Christoph Spötl, and R. Lawrence Edwards
Geochronology, 3, 49–58, https://doi.org/10.5194/gchron-3-49-2021, https://doi.org/10.5194/gchron-3-49-2021, 2021
Short summary
Short summary
In this study, we built a statistical model to determine the initial δ234U in submerged calcite crusts that coat the walls of Devils Hole 2 (DH2) cave (Nevada, USA) and, using a 234U–238U dating method, extended the chronology of the calcite deposition beyond previous well-established 230Th ages and determined the oldest calcite deposited in this cave, a time marker for cave genesis. The novel method presented here may be used in future speleothem studies in similar hydrogeological settings.
Yue Hu, Xiaoming Sun, Hai Cheng, and Hong Yan
Clim. Past, 16, 597–610, https://doi.org/10.5194/cp-16-597-2020, https://doi.org/10.5194/cp-16-597-2020, 2020
Short summary
Short summary
Tridacna, as the largest marine bivalves, can be used for high-resolution paleoclimate reconstruction in its carbonate skeleton. In this contribution, the modern δ18O shell is suggested to be a proxy for sea surface temperature in the Xisha Islands, South China Sea. Data from a fossil Tridacna (3673 ± 28 BP) indicate a warmer climate and intense ENSO-related variability but reduced ENSO frequency and more extreme El Niño winters compared to modern Tridacna.
Haiwei Zhang, Hai Cheng, Yanjun Cai, Christoph Spötl, Ashish Sinha, Gayatri Kathayat, and Hanying Li
Clim. Past, 16, 211–225, https://doi.org/10.5194/cp-16-211-2020, https://doi.org/10.5194/cp-16-211-2020, 2020
Short summary
Short summary
Few studies have paid attention to the important effect of nonsummer monsoon (NSM) precipitation on the speleothem δ18O in SE China. We find the summer monsoon precipitation is equivalent to NSM precipitation amount in the area of spring persistent rain in SE China, and we discuss the relationships between seasonal precipitation amount, moisture source, δ18O, and ENSO. Characterizing the spatial differences in seasonal precipitation is key to interpreting the speleothem δ18O record.
Gina E. Moseley, Christoph Spötl, Susanne Brandstätter, Tobias Erhardt, Marc Luetscher, and R. Lawrence Edwards
Clim. Past, 16, 29–50, https://doi.org/10.5194/cp-16-29-2020, https://doi.org/10.5194/cp-16-29-2020, 2020
Short summary
Short summary
Abrupt climate change during the last ice age can be used to provide important insights into the timescales on which the climate is capable of changing and the mechanisms that drive those changes. In this study, we construct climate records for the period 60 to 120 ka using stalagmites that formed in caves along the northern rim of the European Alps and find good agreement with the timing of climate changes in Greenland and the Asian monsoon.
Mike Rogerson, Yuri Dublyansky, Dirk L. Hoffmann, Marc Luetscher, Paul Töchterle, and Christoph Spötl
Clim. Past, 15, 1757–1769, https://doi.org/10.5194/cp-15-1757-2019, https://doi.org/10.5194/cp-15-1757-2019, 2019
Short summary
Short summary
Rainfall in North Africa is known to vary through time and is likely to change as global climate warms. Here, we provide a new level of understanding about past rainfall in North Africa by looking at a stalagmite which formed within northeastern Libya between 67 and 30 thousand years ago. We find that at times more rain falls, and the associated moisture is mostly derived from the western Mediterranean during winter storms. Sometimes, water comes from the eastern Mediterranean.
Hanying Li, Hai Cheng, Ashish Sinha, Gayatri Kathayat, Christoph Spötl, Aurèle Anquetil André, Arnaud Meunier, Jayant Biswas, Pengzhen Duan, Youfeng Ning, and Richard Lawrence Edwards
Clim. Past, 14, 1881–1891, https://doi.org/10.5194/cp-14-1881-2018, https://doi.org/10.5194/cp-14-1881-2018, 2018
Short summary
Short summary
The
4.2 ka eventbetween 4.2 and 3.9 ka has been widely discussed in the Northern Hemsiphere but less reported in the Southern Hemisphere. Here, we use speleothem records from Rodrigues in the southwestern Indian Ocean spanning from 6000 to 3000 years ago to investigate the regional hydro-climatic variability. Our records show no evidence for an unusual climate anomaly between 4.2 and 3.9 ka. Instead, it shows a multi-centennial drought between 3.9 and 3.5 ka.
Gayatri Kathayat, Hai Cheng, Ashish Sinha, Max Berkelhammer, Haiwei Zhang, Pengzhen Duan, Hanying Li, Xianglei Li, Youfeng Ning, and R. Lawrence Edwards
Clim. Past, 14, 1869–1879, https://doi.org/10.5194/cp-14-1869-2018, https://doi.org/10.5194/cp-14-1869-2018, 2018
Short summary
Short summary
The 4.2 ka event is generally characterized as an approximately 300-year period of major global climate anomaly. However, the climatic manifestation of this event remains unclear in the Indian monsoon domain. Our high-resolution and precisely dated speleothem record from Meghalaya, India, characterizes the event as consisting of a series of multi-decadal droughts between 3.9 and 4.0 ka rather than a singular pulse of multi-centennial drought as previously thought.
Haiwei Zhang, Hai Cheng, Yanjun Cai, Christoph Spötl, Gayatri Kathayat, Ashish Sinha, R. Lawrence Edwards, and Liangcheng Tan
Clim. Past, 14, 1805–1817, https://doi.org/10.5194/cp-14-1805-2018, https://doi.org/10.5194/cp-14-1805-2018, 2018
Short summary
Short summary
The collapses of several Neolithic cultures in China are considered to have been associated with abrupt climate change during the 4.2 ka BP event; however, the hydroclimate of this event in China is still poorly known. Based on stalagmite records from monsoonal China, we found that north China was dry but south China was wet during this event. We propose that the rain belt remained longer at its southern position, giving rise to a pronounced humidity gradient between north and south China.
Florian Adolphi, Christopher Bronk Ramsey, Tobias Erhardt, R. Lawrence Edwards, Hai Cheng, Chris S. M. Turney, Alan Cooper, Anders Svensson, Sune O. Rasmussen, Hubertus Fischer, and Raimund Muscheler
Clim. Past, 14, 1755–1781, https://doi.org/10.5194/cp-14-1755-2018, https://doi.org/10.5194/cp-14-1755-2018, 2018
Short summary
Short summary
The last glacial period was characterized by a number of rapid climate changes seen, for example, as abrupt warmings in Greenland and changes in monsoon rainfall intensity. However, due to chronological uncertainties it is challenging to know how tightly coupled these changes were. Here we exploit cosmogenic signals caused by changes in the Sun and Earth magnetic fields to link different climate archives and improve our understanding of the dynamics of abrupt climate change.
Ny Riavo Gilbertinie Voarintsoa, Loren Bruce Railsback, George Albert Brook, Lixin Wang, Gayatri Kathayat, Hai Cheng, Xianglei Li, Richard Lawrence Edwards, Amos Fety Michel Rakotondrazafy, and Marie Olga Madison Razanatseheno
Clim. Past, 13, 1771–1790, https://doi.org/10.5194/cp-13-1771-2017, https://doi.org/10.5194/cp-13-1771-2017, 2017
Short summary
Short summary
This research has been an investigation of two stalagmites from two caves in NW Madagascar to reconstruct the region's paleoenvironmental changes, and to understand the linkage of such changes to the dynamics of the ITCZ. Stable isotopes, mineralogy, and petrography suggest wetter climate conditions than today during the early and late Holocene, when the mean ITCZ was south, and drier during the mid-Holocene when the ITCZ was north.
Stef Vansteenberge, Sophie Verheyden, Hai Cheng, R. Lawrence Edwards, Eddy Keppens, and Philippe Claeys
Clim. Past, 12, 1445–1458, https://doi.org/10.5194/cp-12-1445-2016, https://doi.org/10.5194/cp-12-1445-2016, 2016
Short summary
Short summary
The use of stalagmites for last interglacial continental climate reconstructions in Europe has been successful in the past; however to expand the geographical coverage, additional data from Belgium is presented. It has been shown that stalagmite growth, morphology and stable isotope content reflect regional and local climate conditions, with Eemian optimum climate occurring between 125.3 and 117.3 ka. The start the Weichselian is expressed by a stop of growth caused by a drying climate.
C. Spötl and H. Cheng
Clim. Past, 10, 1349–1362, https://doi.org/10.5194/cp-10-1349-2014, https://doi.org/10.5194/cp-10-1349-2014, 2014
M. Luetscher, M. Borreguero, G. E. Moseley, C. Spötl, and R. L. Edwards
The Cryosphere, 7, 1073–1081, https://doi.org/10.5194/tc-7-1073-2013, https://doi.org/10.5194/tc-7-1073-2013, 2013
V. E. Johnston, A. Borsato, C. Spötl, S. Frisia, and R. Miorandi
Clim. Past, 9, 99–118, https://doi.org/10.5194/cp-9-99-2013, https://doi.org/10.5194/cp-9-99-2013, 2013
Related subject area
Subject: Proxy Use-Development-Validation | Archive: Terrestrial Archives | Timescale: Centennial-Decadal
A past and present perspective on the European summer vapor pressure deficit
Drought reconstruction since 1796 CE based on tree-ring widths in the upper Heilongjiang (Amur) River basin in Northeast Asia and its linkage to Pacific Ocean climate variability
Drought increase since the mid-20th century in the northern South American Altiplano revealed by a 389-year precipitation record
Climate change detection and attribution using observed and simulated tree-ring width
Integrating plant wax abundance and isotopes for paleo-vegetation and paleoclimate reconstructions: a multi-source mixing model using a Bayesian framework
Do Southern Hemisphere tree rings record past volcanic events? A case study from New Zealand
Prospects for dendroanatomy in paleoclimatology – a case study on Picea engelmannii from the Canadian Rockies
Reconstructing past hydrology of eastern Canadian boreal catchments using clastic varved sediments and hydro-climatic modelling: 160 years of fluvial inflows
A 2600-year summer climate reconstruction in central Japan by integrating tree-ring stable oxygen and hydrogen isotopes
An overview on isotopic divergences – causes for instability of tree-ring isotopes and climate correlations
Proxy surrogate reconstructions for Europe and the estimation of their uncertainties
The 4.2 ka event in the central Mediterranean: new data from a Corchia speleothem (Apuan Alps, central Italy)
A 900-year New England temperature reconstruction from in situ seasonally produced branched glycerol dialkyl glycerol tetraethers (brGDGTs)
Leaf wax n-alkane distributions record ecological changes during the Younger Dryas at Trzechowskie paleolake (northern Poland) without temporal delay
Ground surface temperature reconstruction for the last 500 years obtained from permafrost temperatures observed in the SHARE STELVIO Borehole, Italian Alps
Decreasing Indian summer monsoon on the northern Indian sub-continent during the last 180 years: evidence from five tree-ring cellulose oxygen isotope chronologies
Recent climate variations in Chile: constraints from borehole temperature profiles
Spatio-temporal variability of Arctic summer temperatures over the past 2 millennia
Comparing proxy and model estimates of hydroclimate variability and change over the Common Era
Climate signals in a multispecies tree-ring network from central and southern Italy and reconstruction of the late summer temperatures since the early 1700s
Low-resolution Australasian palaeoclimate records of the last 2000 years
Climatic history of the northeastern United States during the past 3000 years
Experiments based on blue intensity for reconstructing North Pacific temperatures along the Gulf of Alaska
Spring temperature variability over Turkey since 1800 CE reconstructed from a broad network of tree-ring data
On the spatial and temporal variability of ENSO precipitation and drought teleconnection in mainland Southeast Asia
Interannual and (multi-)decadal variability in the sedimentary BIT index of Lake Challa, East Africa, over the past 2200 years: assessment of the precipitation proxy
A tree-ring perspective on temporal changes in the frequency and intensity of hydroclimatic extremes in the territory of the Czech Republic since 761 AD
Multi-century lake area changes in the Southern Altiplano: a tree-ring-based reconstruction
Optimal ranking regime analysis of TreeFlow dendrohydrological reconstructions
New insights into the reconstructed temperature in Portugal over the last 400 years
Expressions of climate perturbations in western Ugandan crater lake sediment records during the last 1000 years
Blue intensity and density from northern Fennoscandian tree rings, exploring the potential to improve summer temperature reconstructions with earlywood information
Reconstruction of the March–August PDSI since 1703 AD based on tree rings of Chinese pine (Pinus tabulaeformis Carr.) in the Lingkong Mountain, southeast Chinese loess Plateau
Forward modelling of tree-ring width and comparison with a global network of tree-ring chronologies
Reconstruction of northeast Asia spring temperature 1784–1990
COnstructing Proxy Records from Age models (COPRA)
A 560 yr summer temperature reconstruction for the Western Mediterranean basin based on stable carbon isotopes from Pinus nigra ssp. laricio (Corsica/France)
Isotopic and lithologic variations of one precisely-dated stalagmite across the Medieval/LIA period from Heilong Cave, central China
Modelling and climatic interpretation of the length fluctuations of Glaciar Frías (north Patagonian Andes, Argentina) 1639–2009 AD
A review of the South American monsoon history as recorded in stable isotopic proxies over the past two millennia
Identification of climatic state with limited proxy data
Multi-century tree-ring based reconstruction of the Neuquén River streamflow, northern Patagonia, Argentina
Extreme pointer years in tree-ring records of Central Spain as evidence of climatic events and the eruption of the Huaynaputina Volcano (Peru, 1600 AD)
Precipitation changes in the South American Altiplano since 1300 AD reconstructed by tree-rings
Fire history in western Patagonia from paired tree-ring fire-scar and charcoal records
Northern Hemisphere temperature patterns in the last 12 centuries
Viorica Nagavciuc, Simon L. L. Michel, Daniel F. Balting, Gerhard Helle, Mandy Freund, Gerhard H. Schleser, David N. Steger, Gerrit Lohmann, and Monica Ionita
Clim. Past, 20, 573–595, https://doi.org/10.5194/cp-20-573-2024, https://doi.org/10.5194/cp-20-573-2024, 2024
Short summary
Short summary
The main aim of this paper is to present the summer vapor pressure deficit (VPD) reconstruction dataset for the last 400 years over Europe based on δ18O records by using a random forest approach. We provide both a spatial and a temporal long-term perspective on the past summer VPD and new insights into the relationship between summer VPD and large-scale atmospheric circulation. This is the first gridded reconstruction of the European summer VPD over the past 400 years.
Yang Xu, Heli Zhang, Feng Chen, Shijie Wang, Mao Hu, Martín Hadad, and Fidel Roig
Clim. Past, 19, 2079–2092, https://doi.org/10.5194/cp-19-2079-2023, https://doi.org/10.5194/cp-19-2079-2023, 2023
Short summary
Short summary
We reconstructed the monthly mean self-calibrating Palmer drought severity index for May–July in the upper Heilongjiang (Amur) Basin since 1796. Our analysis suggests that the dry/wet variability in this basin is related to several large-scale climate stresses and atmospheric circulation patterns (El Niño–Southern Oscillation). The cause of drought is primarily a reduction in advective water vapor transport, rather than precipitation circulation processes.
Mariano S. Morales, Doris B. Crispín-DelaCruz, Claudio Álvarez, Duncan A. Christie, M. Eugenia Ferrero, Laia Andreu-Hayles, Ricardo Villalba, Anthony Guerra, Ginette Ticse-Otarola, Ernesto C. Rodríguez-Ramírez, Rosmery LLocclla-Martínez, Joali Sanchez-Ferrer, and Edilson J. Requena-Rojas
Clim. Past, 19, 457–476, https://doi.org/10.5194/cp-19-457-2023, https://doi.org/10.5194/cp-19-457-2023, 2023
Short summary
Short summary
In this study, we develop the first tree-ring-based precipitation reconstruction for the northern South American Altiplano back to 1625 CE. We established that the occurrence rate of extreme dry events together with a shift in mean dry conditions for the late 20th–beginning of the 21st century is unprecedented in the past 389 years, consistent with other paleoclimatic records. Our reconstruction provides valuable information about El Niño–Southern Oscillation influences on local precipitation.
Jörg Franke, Michael N. Evans, Andrew Schurer, and Gabriele C. Hegerl
Clim. Past, 18, 2583–2597, https://doi.org/10.5194/cp-18-2583-2022, https://doi.org/10.5194/cp-18-2583-2022, 2022
Short summary
Short summary
Detection and attribution is a statistical method to evaluate if external factors or random variability have caused climatic changes. We use for the first time a comparison of simulated and observed tree-ring width that circumvents many limitations of previous studies relying on climate reconstructions. We attribute variability in temperature-limited trees to strong volcanic eruptions and for the first time detect a spatial pattern in the growth of moisture-sensitive trees after eruptions.
Deming Yang and Gabriel J. Bowen
Clim. Past, 18, 2181–2210, https://doi.org/10.5194/cp-18-2181-2022, https://doi.org/10.5194/cp-18-2181-2022, 2022
Short summary
Short summary
Plant wax lipid ratios and their isotopes are used in vegetation and paleoclimate reconstructions. While studies often use either type of data, both can inform the mixing pattern of source plants. We developed a statistic model that evaluates ratios and isotopes together. Through case studies, we showed that the approach allows more detailed interpretations of vegetation and paleoclimate than traditional methods. This evolving framework can include more geochemical tracers in the future.
Philippa A. Higgins, Jonathan G. Palmer, Chris S. M. Turney, Martin S. Andersen, and Fiona Johnson
Clim. Past, 18, 1169–1188, https://doi.org/10.5194/cp-18-1169-2022, https://doi.org/10.5194/cp-18-1169-2022, 2022
Short summary
Short summary
We studied eight New Zealand tree species and identified differences in their responses to large volcanic eruptions. The response is dependent on the species and how well it can tolerate stress, but substantial within-species differences are also observed depending on site factors, including altitude and exposure. This has important implications for tree-ring temperature reconstructions because site selection and compositing methods can change the magnitude of observed volcanic cooling.
Kristina Seftigen, Marina V. Fonti, Brian Luckman, Miloš Rydval, Petter Stridbeck, Georg von Arx, Rob Wilson, and Jesper Björklund
Clim. Past, 18, 1151–1168, https://doi.org/10.5194/cp-18-1151-2022, https://doi.org/10.5194/cp-18-1151-2022, 2022
Short summary
Short summary
New proxies and improvements in existing methodologies are needed to advance paleoclimate research. This study explored dendroanatomy, the analysis of wood anatomical parameters in dated tree rings, of Engelmann spruce from the Columbia Icefield area, Canada, as a proxy of past temperatures. Our new parameters compare favorably with state of the art proxy parameters from X-ray and visible light techniques, particularly with respect to the temporal stability of the temperature signal.
Antoine Gagnon-Poiré, Pierre Brigode, Pierre Francus, David Fortin, Patrick Lajeunesse, Hugues Dorion, and Annie-Pier Trottier
Clim. Past, 17, 653–673, https://doi.org/10.5194/cp-17-653-2021, https://doi.org/10.5194/cp-17-653-2021, 2021
Short summary
Short summary
A very high quality 160-year-long annually laminated (varved) sediment sequence of fluvial origin was recently discovered in an especially deep lake in Labrador. Each varve represents 1 hydrological year. A significant relation between varves' physical parameters (i.e., thickness and grain size extracted from each annual lamination) and river discharge instrumental observations provided the opportunity to develop regional discharge reconstructions beyond the instrumental period.
Takeshi Nakatsuka, Masaki Sano, Zhen Li, Chenxi Xu, Akane Tsushima, Yuki Shigeoka, Kenjiro Sho, Keiko Ohnishi, Minoru Sakamoto, Hiromasa Ozaki, Noboru Higami, Nanae Nakao, Misao Yokoyama, and Takumi Mitsutani
Clim. Past, 16, 2153–2172, https://doi.org/10.5194/cp-16-2153-2020, https://doi.org/10.5194/cp-16-2153-2020, 2020
Short summary
Short summary
In general, it is not easy to reconstruct past climate variations over a wide band of frequencies using a single proxy. Here, we propose a new method to reconstruct past summer climate seamlessly from annual to millennial timescales by integrating tree-ring cellulose oxygen and hydrogen isotope ratios. The result can be utilized to investigate various scales of climatological phenomena in the past and climate–society relationships in long human history.
Martine M. Savard and Valérie Daux
Clim. Past, 16, 1223–1243, https://doi.org/10.5194/cp-16-1223-2020, https://doi.org/10.5194/cp-16-1223-2020, 2020
Short summary
Short summary
Climatic reconstructions based on tree-ring isotopic series convey key information on past conditions prevailing in forested regions. However, in some cases, the relations between isotopes and climate appear unstable over time, generating isotopic divergences. Former reviews have thoroughly discussed the divergence concept for tree-ring width but not for isotopes. Here we present a synopsis of the isotopic divergence problem and suggest collaborative work for improving climatic reconstructions.
Oliver Bothe and Eduardo Zorita
Clim. Past, 16, 341–369, https://doi.org/10.5194/cp-16-341-2020, https://doi.org/10.5194/cp-16-341-2020, 2020
Short summary
Short summary
One can use the similarity between sparse indirect observations of past climates and full fields of simulated climates to learn more about past climates. Here, we detail how one can compute uncertainty estimates for such reconstructions of past climates. This highlights the ambiguity of the reconstruction. We further show that such a reconstruction for European summer temperature agrees well with a more common approach.
Ilaria Isola, Giovanni Zanchetta, Russell N. Drysdale, Eleonora Regattieri, Monica Bini, Petra Bajo, John C. Hellstrom, Ilaria Baneschi, Piero Lionello, Jon Woodhead, and Alan Greig
Clim. Past, 15, 135–151, https://doi.org/10.5194/cp-15-135-2019, https://doi.org/10.5194/cp-15-135-2019, 2019
Short summary
Short summary
To understand the natural variability in the climate system, the hydrological aspect (dry and wet conditions) is particularly important for its impact on our societies. The reconstruction of past precipitation regimes can provide a useful tool for forecasting future climate changes. We use multi-proxy time series (oxygen and carbon isotopes, trace elements) from a speleothem to investigate circulation pattern variations and seasonality effects during the dry 4.2 ka event in central Italy.
Daniel R. Miller, M. Helen Habicht, Benjamin A. Keisling, Isla S. Castañeda, and Raymond S. Bradley
Clim. Past, 14, 1653–1667, https://doi.org/10.5194/cp-14-1653-2018, https://doi.org/10.5194/cp-14-1653-2018, 2018
Short summary
Short summary
We measured biomarker production over a year in a small inland lake in the northeastern USA. Understanding biomarkers in the modern environment helps us improve reconstructions of past climate from lake sediment records. We use these results to interpret a 900-year decadally resolved temperature record from this lake. Our record highlights multi-decadal oscillations in temperature superimposed on a long-term cooling trend, providing novel insight into climate dynamics of the region.
Bernhard Aichner, Florian Ott, Michał Słowiński, Agnieszka M. Noryśkiewicz, Achim Brauer, and Dirk Sachse
Clim. Past, 14, 1607–1624, https://doi.org/10.5194/cp-14-1607-2018, https://doi.org/10.5194/cp-14-1607-2018, 2018
Short summary
Short summary
Abundances of plant biomarkers are compared with pollen data in a 3000-year climate archive covering the Late Glacial to Holocene transition in northern Poland. Both parameters synchronously show the rapid onset (12680–12600 yr BP) and termination
(11580–11490 yr BP) of the Younger Dryas cold interval in the study area. This demonstrates the suitability of such proxies to record pronounced changes in vegetation cover without significant delay.
Mauro Guglielmin, Marco Donatelli, Matteo Semplice, and Stefano Serra Capizzano
Clim. Past, 14, 709–724, https://doi.org/10.5194/cp-14-709-2018, https://doi.org/10.5194/cp-14-709-2018, 2018
Short summary
Short summary
The reconstruction of ground surface temperature for the last 500 years, obtained at the deepest mountain permafrost borehole of the world (Stelvio Pass, 3000 m a.s.l., Italian Alps), is presented here. The main difference with respect to MAAT reconstructions obtained through other proxy data for all of Europe relates to post Little Ice Age (LIA) events. Indeed at this site a stronger cooling of ca 1 °C between 1940 and 1989 and even a more abrupt warming between 1990 and 2011 was detected.
Chenxi Xu, Masaki Sano, Ashok Priyadarshan Dimri, Rengaswamy Ramesh, Takeshi Nakatsuka, Feng Shi, and Zhengtang Guo
Clim. Past, 14, 653–664, https://doi.org/10.5194/cp-14-653-2018, https://doi.org/10.5194/cp-14-653-2018, 2018
Short summary
Short summary
We have constructed a regional tree ring cellulose oxygen isotope record using a total of five chronologies obtained from the Himalaya. Centennial changes in the regional tree ring record indicate a trend of weakened Indian summer monsoon (ISM) intensity since 1820. Decreasing ISM activity is also observed in various high-resolution ISM records from southwest China and Southeast Asia, and may be the result of reduced land–ocean thermal contrasts since 1820.
Carolyne Pickler, Edmundo Gurza Fausto, Hugo Beltrami, Jean-Claude Mareschal, Francisco Suárez, Arlette Chacon-Oecklers, Nicole Blin, Maria Teresa Cortés Calderón, Alvaro Montenegro, Rob Harris, and Andres Tassara
Clim. Past, 14, 559–575, https://doi.org/10.5194/cp-14-559-2018, https://doi.org/10.5194/cp-14-559-2018, 2018
Short summary
Short summary
We compiled 31 temperature–depth profiles to reconstruct the ground surface temperature of the last 500 years in northern Chile. They suggest that the region experienced a cooling from 1850 to 1980 followed by a warming of 1.9 K. The cooling could coincide with a cooling interval in 1960. The warming is greater than that of proxy reconstructions for nearby regions and model simulations. These differences could be due to differences in spatial and temporal resolution between data and models.
Johannes P. Werner, Dmitry V. Divine, Fredrik Charpentier Ljungqvist, Tine Nilsen, and Pierre Francus
Clim. Past, 14, 527–557, https://doi.org/10.5194/cp-14-527-2018, https://doi.org/10.5194/cp-14-527-2018, 2018
Short summary
Short summary
We present a new gridded Arctic summer temperature reconstruction back to the first millennium CE. Our method respects the age uncertainties of the data, which results in a more precise reconstruction.
The spatial average shows a millennium-scale cooling trend which is reversed in the mid-19th century. While temperatures in the 10th century were probably as warm as in the 20th century, the spatial coherence of the recent warm episodes seems unprecedented.
The spatial average shows a millennium-scale cooling trend which is reversed in the mid-19th century. While temperatures in the 10th century were probably as warm as in the 20th century, the spatial coherence of the recent warm episodes seems unprecedented.
PAGES Hydro2k Consortium
Clim. Past, 13, 1851–1900, https://doi.org/10.5194/cp-13-1851-2017, https://doi.org/10.5194/cp-13-1851-2017, 2017
Short summary
Short summary
Water availability is fundamental to societies and ecosystems, but our understanding of variations in hydroclimate (including extreme events, flooding, and decadal periods of drought) is limited due to a paucity of modern instrumental observations. We review how proxy records of past climate and climate model simulations can be used in tandem to understand hydroclimate variability over the last 2000 years and how these tools can also inform risk assessments of future hydroclimatic extremes.
Giovanni Leonelli, Anna Coppola, Maria Cristina Salvatore, Carlo Baroni, Giovanna Battipaglia, Tiziana Gentilesca, Francesco Ripullone, Marco Borghetti, Emanuele Conte, Roberto Tognetti, Marco Marchetti, Fabio Lombardi, Michele Brunetti, Maurizio Maugeri, Manuela Pelfini, Paolo Cherubini, Antonello Provenzale, and Valter Maggi
Clim. Past, 13, 1451–1471, https://doi.org/10.5194/cp-13-1451-2017, https://doi.org/10.5194/cp-13-1451-2017, 2017
Short summary
Short summary
We analyze a tree-ring network from several sites distributed along the Italian Peninsula with the aims of detecting common climate drivers of tree growth and of reconstructing the past climate. We detect the main climatic drivers modulating tree-ring width (RW) and tree-ring maximum latewood density (MXD) and we reconstruct late summer temperatures since the early 1700s using a MXD chronology: this reconstruction is representative of a wide area around the Italian Peninsula.
Bronwyn C. Dixon, Jonathan J. Tyler, Andrew M. Lorrey, Ian D. Goodwin, Joëlle Gergis, and Russell N. Drysdale
Clim. Past, 13, 1403–1433, https://doi.org/10.5194/cp-13-1403-2017, https://doi.org/10.5194/cp-13-1403-2017, 2017
Short summary
Short summary
Existing sedimentary palaeoclimate records in Australasia were assessed for suitability for examining the last 2 millennia. A small number of high-quality records were identified, and new Bayesian age models were constructed for each record. Findings suggest that Australasian record chronologies and confidence in proxy–climate relationships are the main factors limiting appropriate data for examining Common Era climate variability. Recommendations for improving data accessibility are provided.
Jennifer R. Marlon, Neil Pederson, Connor Nolan, Simon Goring, Bryan Shuman, Ann Robertson, Robert Booth, Patrick J. Bartlein, Melissa A. Berke, Michael Clifford, Edward Cook, Ann Dieffenbacher-Krall, Michael C. Dietze, Amy Hessl, J. Bradford Hubeny, Stephen T. Jackson, Jeremiah Marsicek, Jason McLachlan, Cary J. Mock, David J. P. Moore, Jonathan Nichols, Dorothy Peteet, Kevin Schaefer, Valerie Trouet, Charles Umbanhowar, John W. Williams, and Zicheng Yu
Clim. Past, 13, 1355–1379, https://doi.org/10.5194/cp-13-1355-2017, https://doi.org/10.5194/cp-13-1355-2017, 2017
Short summary
Short summary
To improve our understanding of paleoclimate in the northeastern (NE) US, we compiled data from pollen, tree rings, lake levels, testate amoeba from bogs, and other proxies from the last 3000 years. The paleoclimate synthesis supports long-term cooling until the 1800s and reveals an abrupt transition from wet to dry conditions around 550–750 CE. Evidence suggests the region is now becoming warmer and wetter, but more calibrated data are needed, especially to capture multidecadal variability.
Rob Wilson, Rosanne D'Arrigo, Laia Andreu-Hayles, Rose Oelkers, Greg Wiles, Kevin Anchukaitis, and Nicole Davi
Clim. Past, 13, 1007–1022, https://doi.org/10.5194/cp-13-1007-2017, https://doi.org/10.5194/cp-13-1007-2017, 2017
Short summary
Short summary
Blue intensity shows great potential for reconstructing past summer temperatures from conifer trees growing at high latitude or the treeline. However, conifer species that express a strong colour difference between the heartwood and sapwood can impart a long-term trend bias in the resultant reconstructions. Herein, we highlight this issue using eight mountain hemlock sites across the Gulf of Alaska and explore how a non-biased reconstruction of past temperature could be derived using such data.
Nesibe Köse, H. Tuncay Güner, Grant L. Harley, and Joel Guiot
Clim. Past, 13, 1–15, https://doi.org/10.5194/cp-13-1-2017, https://doi.org/10.5194/cp-13-1-2017, 2017
Timo A. Räsänen, Ville Lindgren, Joseph H. A. Guillaume, Brendan M. Buckley, and Matti Kummu
Clim. Past, 12, 1889–1905, https://doi.org/10.5194/cp-12-1889-2016, https://doi.org/10.5194/cp-12-1889-2016, 2016
Short summary
Short summary
El Niño-Southern Oscillation (ENSO) is linked to severe droughts and floods in mainland Southeast Asia. This research provides a more accurate and uniform picture of the spatio-temporal effects of ENSO on precipitation (1980–2013) and improves our understanding of long-term (1650–2004) ENSO teleconnection and its variability over the study area. The results reveal not only recognisable spatio-temporal patterns but also a high degree of variability and non-stationarity in the effects of ENSO.
Laura K. Buckles, Dirk Verschuren, Johan W. H. Weijers, Christine Cocquyt, Maarten Blaauw, and Jaap S. Sinninghe Damsté
Clim. Past, 12, 1243–1262, https://doi.org/10.5194/cp-12-1243-2016, https://doi.org/10.5194/cp-12-1243-2016, 2016
Short summary
Short summary
This paper discusses the underlying mechanisms of a method that uses specific membrane lipids present in the sediments of an African tropical lake to determine past changes in rainfall. With this method, past dry periods in the last 25 000 years can be assessed.
P. Dobrovolný, M. Rybníček, T. Kolář, R. Brázdil, M. Trnka, and U. Büntgen
Clim. Past, 11, 1453–1466, https://doi.org/10.5194/cp-11-1453-2015, https://doi.org/10.5194/cp-11-1453-2015, 2015
Short summary
Short summary
A new data set of 3194 oak (Quercus spp.) ring width samples collected across the Czech Republic and covering the past 1250 years was analysed. The temporal distribution of negative and positive TRW extremes occurring is regular with no indication of clustering. Negative TRW extremes coincided with above-average March-May and June-August temperature means and below-average precipitation totals. Positive extremes coincided with higher summer precipitation, while temperatures were mostly normal.
M. S. Morales, J. Carilla, H. R. Grau, and R. Villalba
Clim. Past, 11, 1139–1152, https://doi.org/10.5194/cp-11-1139-2015, https://doi.org/10.5194/cp-11-1139-2015, 2015
Short summary
Short summary
A 601-year lake area reconstruction in NW Argentina and SW Bolivia, characterized the occurrence of annual to multi-decadal lake area fluctuations and its main oscillation modes of variability. Our reconstruction points out that the late 20th century decrease in lake area was exceptional over the period 1407–2007. A persistent negative trend in lake area is clear in the reconstruction and consistent with glacier retreat and other climate proxies from the Altiplano and the tropical Andes.
S. A. Mauget
Clim. Past, 11, 1107–1125, https://doi.org/10.5194/cp-11-1107-2015, https://doi.org/10.5194/cp-11-1107-2015, 2015
Short summary
Short summary
A new approach to time series analysis - the ORR method - was used to evaluate reconstructed western US streamflow records during 1500-2007. This method shows an interesting pattern of alternating drought and wet periods during the late 16th and 17th centuries, a period with relatively few drought or wet periods during the 18th century, and the and the reappearance of alternating dry and wet periods during the 19th and early 20th centuries.
J. A. Santos, M. F. Carneiro, A. Correia, M. J. Alcoforado, E. Zorita, and J. J. Gómez-Navarro
Clim. Past, 11, 825–834, https://doi.org/10.5194/cp-11-825-2015, https://doi.org/10.5194/cp-11-825-2015, 2015
K. Mills, D. B. Ryves, N. J. Anderson, C. L. Bryant, and J. J. Tyler
Clim. Past, 10, 1581–1601, https://doi.org/10.5194/cp-10-1581-2014, https://doi.org/10.5194/cp-10-1581-2014, 2014
J. A. Björklund, B. E. Gunnarson, K. Seftigen, J. Esper, and H. W. Linderholm
Clim. Past, 10, 877–885, https://doi.org/10.5194/cp-10-877-2014, https://doi.org/10.5194/cp-10-877-2014, 2014
Q. Cai, Y. Liu, Y. Lei, G. Bao, and B. Sun
Clim. Past, 10, 509–521, https://doi.org/10.5194/cp-10-509-2014, https://doi.org/10.5194/cp-10-509-2014, 2014
P. Breitenmoser, S. Brönnimann, and D. Frank
Clim. Past, 10, 437–449, https://doi.org/10.5194/cp-10-437-2014, https://doi.org/10.5194/cp-10-437-2014, 2014
M. Ohyama, H. Yonenobu, J.-N. Choi, W.-K. Park, M. Hanzawa, and M. Suzuki
Clim. Past, 9, 261–266, https://doi.org/10.5194/cp-9-261-2013, https://doi.org/10.5194/cp-9-261-2013, 2013
S. F. M. Breitenbach, K. Rehfeld, B. Goswami, J. U. L. Baldini, H. E. Ridley, D. J. Kennett, K. M. Prufer, V. V. Aquino, Y. Asmerom, V. J. Polyak, H. Cheng, J. Kurths, and N. Marwan
Clim. Past, 8, 1765–1779, https://doi.org/10.5194/cp-8-1765-2012, https://doi.org/10.5194/cp-8-1765-2012, 2012
S. Szymczak, M. M. Joachimski, A. Bräuning, T. Hetzer, and J. Kuhlemann
Clim. Past, 8, 1737–1749, https://doi.org/10.5194/cp-8-1737-2012, https://doi.org/10.5194/cp-8-1737-2012, 2012
Y. F. Cui, Y. J. Wang, H. Cheng, K. Zhao, and X. G. Kong
Clim. Past, 8, 1541–1550, https://doi.org/10.5194/cp-8-1541-2012, https://doi.org/10.5194/cp-8-1541-2012, 2012
P. W. Leclercq, P. Pitte, R. H. Giesen, M. H. Masiokas, and J. Oerlemans
Clim. Past, 8, 1385–1402, https://doi.org/10.5194/cp-8-1385-2012, https://doi.org/10.5194/cp-8-1385-2012, 2012
M. Vuille, S. J. Burns, B. L. Taylor, F. W. Cruz, B. W. Bird, M. B. Abbott, L. C. Kanner, H. Cheng, and V. F. Novello
Clim. Past, 8, 1309–1321, https://doi.org/10.5194/cp-8-1309-2012, https://doi.org/10.5194/cp-8-1309-2012, 2012
J. D. Annan and J. C. Hargreaves
Clim. Past, 8, 1141–1151, https://doi.org/10.5194/cp-8-1141-2012, https://doi.org/10.5194/cp-8-1141-2012, 2012
I. A. Mundo, M. H. Masiokas, R. Villalba, M. S. Morales, R. Neukom, C. Le Quesne, R. B. Urrutia, and A. Lara
Clim. Past, 8, 815–829, https://doi.org/10.5194/cp-8-815-2012, https://doi.org/10.5194/cp-8-815-2012, 2012
M. Génova
Clim. Past, 8, 751–764, https://doi.org/10.5194/cp-8-751-2012, https://doi.org/10.5194/cp-8-751-2012, 2012
M. S. Morales, D. A. Christie, R. Villalba, J. Argollo, J. Pacajes, J. S. Silva, C. A. Alvarez, J. C. Llancabure, and C. C. Soliz Gamboa
Clim. Past, 8, 653–666, https://doi.org/10.5194/cp-8-653-2012, https://doi.org/10.5194/cp-8-653-2012, 2012
A. Holz, S. Haberle, T. T. Veblen, R. De Pol-Holz, and J. Southon
Clim. Past, 8, 451–466, https://doi.org/10.5194/cp-8-451-2012, https://doi.org/10.5194/cp-8-451-2012, 2012
F. C. Ljungqvist, P. J. Krusic, G. Brattström, and H. S. Sundqvist
Clim. Past, 8, 227–249, https://doi.org/10.5194/cp-8-227-2012, https://doi.org/10.5194/cp-8-227-2012, 2012
Cited articles
Avigour, A., Magaritz, M., and Issar, A.: Pleistocene paleoclimate of the
arid region of Israel as recorded in calcite deposits along regional
transverse faults and in veins, Quaternary Res., 37, 304–314, 1992.
Bakke, J., Lie, O., Heegaard, E., Dokken, T., Haug, G. H., Birks, H. H.,
Dulski, P., and Nilsen, T.: Rapid oceanic and atmospheric changes during the
Younger Dryas cold period, Nat. Geosci., 2, 202–205, 2009.
Baldini, L. M., McDermott, F., Baldini, J. U. L., Arias, P., Cueto, M.,
Fairchild, I. J., Hoffmann, D. L., Mattey, D. P., Müller, W.,
Nita, D. C., Ontanón, R., Garciá-Moncó, C., and Richards, D. A.:
Regional temperature, atmospheric circulation, and sea ice variability within
the Younger Dryas Event constrained using a speleothem from northern Iberia,
Earth Planet. Sc. Lett., 419, 101–110, 2015.
Bartolomé, M., Moreno, A., Sancho, C., Stoll, H. M., Cacho, I.,
Spötl, C., Belmonte, Á., Edwards, R. L., Cheng, H., and
Hellstrom, J. C.: Hydrological change in Southern Europe responding to
increasing North Atlantic overturning during Greenland Stadial 1, P. Natl.
Acad. Sci. USA, 112, 6568–6572, 2015.
Belli, R., Borsato, A., Frisia, S., Drysdale, R., Maas, R., and Greig, A.:
Investigating the hydrological significance of stalagmite geochemistry (Mg,
Sr) using Sr isotope and particulate element records across the Late
Glacial-to-Holocene transition, Geochim. Cosmochim. Ac., 199, 247–263, 2017.
Boch, R., Cheng, H., Spötl, C., Edwards, R. L., Wang, X., and
Häuselmann, Ph.: NALPS: a precisely dated European climate record
120–60 ka, Clim. Past, 7, 1247–1259, https://doi.org/10.5194/cp-7-1247-2011, 2011.
Borsato, A., Frisia, S., and Miorandi, R.: Carbon dioxide concentration in
temperate climate caves and parent soils over an altitudinal gradient and its
influence on speleothem growth and fabrics, Earth Surf. Proc. Land., 40,
1158–1170, 2015.
Brauer, A., Haug, G. H., Dulski, P., Sigman, D. M., and Negendank, J. F. W.:
An abrupt wind shift in western Europe at the onset of the Younger Dryas cold
period, Nat. Geosci., 1, 520–523, 2008.
Cheng, H., Edwards, R. L., Shen, C.-C., Polyak, V. J., Asmerom, Y.,
Woodhead, J., Hellstrom, J., Wang, Y., Kong, X., Spötl, C., Wang, X., and
Calvin Alexander Jr., E.: Improvements in
230Th dating, 230Th and 234U half-life values,
and U-Th isotopic measurements by multi-collector inductively coupled plasma
mass spectrometry, Earth Planet. Sc. Lett., 371, 82–91, 2013.
Cheng, H., Edwards, R. L., Sinha, A., Spötl, C., Yi, L., Chen, S.,
Kelly, M., Kathayat, G., Wang, X., Li, X., Kong, X., Wang, Y., Ning, Y., and
Zhang, H.: The Asian monsoon over the past 640 000 years and ice age
terminations, Nature, 534, 640–646, 2016.
Della Chiesa, S., Bertoldi, G., Niedrist, G., Obojes, N., Endrizzi, S.,
Albertson, J. D., Wohlfahrt, G., Hörtnagl, L., and Tappeiner, U.:
Modelling changes in grassland hydrological cycling along an elevational
gradient in the Alps, Ecohydrology, 7, 1453–1473, 2014.
Domínguez-Villar, D., Krklec, K., Pelicon, P., Fairchild, I. J.,
Cheng, H., and Edwards, L. R.: Geochemistry of speleothems affected by
aragonite to calcite recrystallization – potential inheritance from the
precursor mineral, Geochim. Cosmochim. Ac., 200, 310–329, 2017.
Dorale, J. A. and Liu, Z- H.: Limitations of Hendy test criteria in judging
the paleoclimatic suitability of speleothems and the need for replication,
J. Cave Karst Stud., 71, 73–80, 2009.
Dreybrodt, W. and Scholz, D.: Climatic dependence of stable carbon and oxygen
isotope signals recorded in speleothems: from soil water to speleothem
calcite, Geochim. Cosmochim. Ac., 75, 734–752, 2011.
Edwards, R. L., Chen, J. H., and Wasserburg, G. J.: 238U,
234U, 230Th, 232Th systematics and the precise
measurement of time over the past 500 000 years, Earth Planet. Sc. Lett.,
81, 171–192, 1987.
Fairchild, I. J. and Baker, A.: Speleothem science: from processes to past
environments, Wiley-Blackwell, Oxford, 2012.
Fliri, F.: Das Klima der Alpen im Raume von Tirol, Universitäts-Verlag
Wagner, Innsbruck, 1975.
Florineth, F.: Vegetation und Boden im Steppengebiet des oberen Vinschgaues
(Südtirol, Italien), Naturwiss.-med. Verein Innsbruck
Berichte, 61, 43–70, 1974.
Fohlmeister, J.: A statistical approach to construct composite climate
records of dated archives, Quat. Geochronol., 14, 48–56, 2012.
Fohlmeister, J., Schröder-Ritzrau, A., Scholz, D., Spötl, C.,
Riechelmann, D. F. C., Mudelsee, M., Wackerbarth, A., Gerdes, A.,
Riechelmann, S., Immenhauser, A., Richter, D. K., and Mangini, A.: Bunker
Cave stalagmites: an archive for central European Holocene climate
variability, Clim. Past, 8, 1751–1764, https://doi.org/10.5194/cp-8-1751-2012, 2012.
Ford, D. C. and Williams, P. W.: Karst Geomorphology and Hydrology, Unwin
Hyman, London, 2007.
Frisia, S.: Microstratigraphic logging of calcite fabrics in speleothems as
tool for palaeoclimate studies, Int. J. Speleol., 44, 1–16, 2015.
Frisia, S., Borsato, A., Fairchild, I. J., McDermott, F., and Selmo, E. M.:
Aragonite–calcite relationships in speleothems (Grotte de Clamouse, France):
environment, fabrics, and carbonate geochemistry, J. Sediment. Res., 72,
687–699, 2002.
Frisia, S., Borsato, A., Preto, N., and McDermott, F.: Late Holocene annual
growth in three Alpine stalagmites records the influence of solar activity
and the North Atlantic Oscillation on winter climate, Earth Planet. Sc.
Lett., 216, 411–424, 2003.
Frisia, S., Weirich, L., Hellstrom, J., Borsato, A., Golledge, N. R.,
Anesio, A. M., Bajo, P., Drysdale, R. N., Augustinus, P. C., Rivard, C., and
Cooper, A.: The influence of Antarctic subglacial volcanism on the global
iron cycle during the Last Glacial Maximum, Nat. Commun., 8, 15425,
https://doi.org/10.1038/ncomms15425, 2017.
Genty, D., Baker, A., Massault, M., Proctor, C., Gilmour, M.,
Pons-Branchu, E., and Hamelin, B.: Dead carbon in stalagmites: carbonate
bedrock paleodissolution vs. aging of soil organic matter. Implications for
13C variations in speleothems, Geochim. Cosmochim. Ac., 65,
3443–3457, 2001.
Heiri, O., Koinig, K. A., Spötl, C., Barrett, S., Brauer, A.,
Drescher-Schneider, R., Gaar, D., Ivy-Ochs, S., Kerschner, H., Luetscher, M.,
Moran, A., Nicolussi, K., Preusser, F., Schmidt, R., Schoeneich, P.,
Schwörer, C., Sprafke, T., Terhorst, B., and Tinner, W.: Palaeoclimate
records 60–8 ka in the Austrian and Swiss Alps and their forelands,
Quaternary Sci. Rev., 106, 186–205, 2014.
Hendy, C. H.: The isotopic geochemistry of speleothems (Part I). The
calculation of the effects of different modes of formation on the isotopic
composition of speleothems and their applicability as palaeoclimatic
indicators, Geochim. Cosmochim. Ac., 35, 801–824, 1971.
Hoffmann, D. L., Rogerson, M., Spötl, C., Luetscher, M., Vance, D.,
Osborne, A., Fello, N., and Moseley, G.: Timing and causes of North African
wet phases during the last glacial period and implications for modern human
migration, Sci. Rep.-UK, 6, 36367, https://doi.org/10.1038/srep36367, 2016.
Ilyashuk, B., Gobet, E., Heiri, O., Lotter, A. F., van Lewuwen, J. F. N., van
der Knaap, W. O., Ilyashuk, E., Oberili, F., and Ammann, B.: Lateglacial
environmental and climatic changes at the Maloja Pass, Central Swiss Alps, as
recorded by chironomids and pollen, Quaternary Sci. Rev., 28, 1340–1353,
2009.
Ivy-Ochs, S., Kerschner, H., Reuther, A., Preusser, F., Heine, K.,
Maisch, M., Kubik, P. W., and Schlüchter, C.: Chronology of the last
glacial cycle in the European Alps, J. Quaternary Sci., 23, 559–573, 2008.
Johnson, K. R., Hu, C., Belshaw, N. S., and Henderson, G. M.: Seasonal
trace-element and stable isotope variations in a Chinese speleothem: the
potential for high resolution paleomonsoon reconstruction, Earth Planet. Sc.
Lett., 244, 394–407, 2006.
Kelly, S. D., Newville, M. G., Cheng, L., Kemner, K. M., Sutton, S. R.,
Fenter, P., Sturchio, N. C., and Spötl, C.: Uranyl incorporation in
natural calcite, Environ. Sci. Technol., 37, 1284–1287, 2003.
Kendall, A. C.: Radiaxial fibrous calcite: a reappraisal, in: Carbonate
cements, edited by: Schneidermann, N. and Harris, P. M., SEPM Spec. P., 36,
59–77, 1985.
Kerschner, H. and Ivy-Ochs, S.: Palaeoclimate from glaciers: examples from
the Eastern Alps during the Alpine Lateglacial and early Holocene, Global
Planet. Change, 60, 58–71, 2008.
Kerschner, H., Kaser, G., and Sailer, R.: Alpine Younger Dryas glaciers as
palaeo-precipitation gauges, Ann. Glaciol., 31, 80–84, 2000.
Kim, S.-T. and O'Neil, J. R.: Equilibrium and nonequilibrium oxygen isotope
effects in synthetic carbonates, Geochim. Cosmochim. Ac., 61, 3461–3475,
1997.
Kim, S.-T., O'Neil, J. R., Hillarie-Marcell, C., and Mucci, A.: Oxygen
isotope fractionation between synthetic aragonite and water: influence of
temperature and Mg2+ concentration, Geochim. Cosmochim. Ac., 71,
4704–4715, 2007.
Koltai, G., Spötl, C., Luetscher, M., Barrett, S. J., and Müller, W.:
The nature of annual lamination in carbonate flowstones from non-karstic
fractures, Vinschgau (northern Italy), Chem. Geol., 457, 1–14, 2017.
Lachniet, M. S.: Are aragonite stalagmites reliable palaeoclimate proxies?
Test for oxygen isotope time-series replication and equilibrium, Geol. Soc.
Am. Bull., 127, 1521–1533, 2015.
Lachniet, M. S., Bernal, J. P., Asmerom, Y., and Polyak, V.: Uranium loss and
aragonite-calcite age discordance in a calcitized aragonite stalagmite, Quat.
Geochronol., 14, 26–37, 2012.
Lane, C. S., Brauer, A., Blockley, S. P. E., and Dulski, P.: Volcanic ash
reveals time-transgressive abrupt climate change during the Younger Dryas,
Geology, 41, 1251–1254, 2013.
Lauterbach, S., Brauer, A., Andersen, N., Danielopol, D. L., Dulski, P.,
Hüls, M., Milecka, K., Namiotko, T., Obremska, M., von Grafenstein, U.,
and Declakes participants: environmental responses to Lateglacial climatic
fluctuations recorded in the sediments of pre-Alpine Lake Mondsee
(northeastern Alps), J. Quaternary Sci., 26, 253–267, 2011.
Luetscher, M., Boch, R., Sodemann, H., Spötl, C., Cheng, H.,
Edwards, L. R., Frisia, S., Hof, F., and Müller, W.: North Atlantic storm
track changes during the Last Glacial Maximum recorded by Alpine speleothems,
Nat. Commun., 6, 6344, https://doi.org/10.1038/ncomms7344, 2015.
Luetscher, M., Hellstrom, J., Müller, W., Barrett, S., Dublyansky, Y.,
and Spötl, C.: A Younger Dryas temperature reconstruction from alpine
speleothems, Geophys. Res. Abstr, 18, EGU2016-11602, available at:
http://meetingorganizer.copernicus.org/EGU2016/EGU2016-11602.pdf, 2016.
McDermott, F.: Palaeo-climate reconstruction from stable isotope variations
in speleothems: a review, Quaternary Sci. Rev., 23, 901–918, 2004.
Magny, M., Guiot, J., and Schoellammer, P.: Quantitative Reconstruction of
Younger Dryas to Mid-Holocene Paleoclimates at Le Locle, Swiss Jura, Using
Pollen and Lake-Level Data, Quaternary Res., 56, 170–180,
https://doi.org/10.1006/qres.2001.2257, 2001.
McMillan, E. A., Fairchild, I. J., Frisia, S., Borsato, A., and
McDermott, F.: Annual trace element cycles in calcite–aragonite speleothems:
evidence of drought in the western Mediterranean 1200–1100 yr BP,
J. Quaternary Sci., 20, 423–433, 2005.
Mickler, P. J., Stern, L. A., and Banner, J. L.: Large kinetic isotope
effects in modern speleothems, Geol. Soc. Am. Bull., 118, 65–81, 2006.
Morse, J. W. and Mackenzie, F. T.: Geochemistry of Sedimentary Carbonates.
Developments in Sedimentology, Elsevier, Amsterdam, 48, 1990.
Ostermann, M., Koltai, G., Spötl, C., and Cheng, H.: Deep-seated
gravitational slope deformations in the Vinschgau (northern Italy) and their
association with springs and speleothems, Geophys. Res. Abstr., 18,
EGU2016-9307, available at:
https://meetingorganizer.copernicus.org/EGU2016/EGU2016-9307.pdf, 2016.
Polag, D., Scholz, D., Mühlinghaus, C., Spötl, C.,
Schröder-Ritzrau, A., Segl, M., and Mangini, A.: Stable isotope
fractionation in speleothems: laboratory experiments, Chem. Geol., 279,
31–39, 2010.
Polyak, V. J. and Asmerom, Y.: Late Holocene climate and cultural changes in
the southwestern United States, Science, 294, 148–151, 2001.
Richards, D. and Dorale, J. A.: Uranium-series chronology and environmental
applications of speleothems, in: Uranium-Series Geochemistry, edited by:
Bourdon, B., Henderson, G., Lundstorm, C. C., and Turner, S., Rev. Mineral.
Geochem., 52, 407–460, 2003.
Richter, D., Neuser, R. D., Schreuer, J., Gies, A., and Immenhauser, A.:
Radiaxial fibrous calcites: a new look at an old problem, Sediment. Geol.,
239, 23–36, 2011.
Ridley, H. E., Asmerom, Y., Baldini, J. U. L., Breitenbach, S. F. M.,
Aquino, V. V., Prufer, K. M., Culleton, B. J., Polyak, V.,
Lechleitner, F. A., Kennett, D. J., Zhang, M., Marwan, N., Macpherson, C. G.,
Baldini, L. M., Xiao, T., Peterkin, J. L., Awe, J., and Haug, G. H.: Aerosol
forcing of the position of the intertropical convergence zone since AD1550,
Nat. Geosci., 8, 195–200, https://doi.org/10.1038/ngeo2353, 2015.
Rozanski, K., Araguás-Araguás, L., and Gonfiantini, R.: Relation
between long-term trends in oxygen-18 isotope composition of precipitation
and climate, Science, 258, 981–985, 1992.
Schimpf, D., Kilian, R., Kronz, A., Spötl, C., Wörner, G.,
Deininger, M., and Mangini, A.: The significance of chemical, isotopic and
detrital components in three coeval stalagmites from the superhumid
southernmost Andes (53∘ S) as high-resolution paleo-climate proxies,
Quaternary Sci. Rev., 30, 443–459, 2011.
Scholz, D. and Hoffmann, D.: 230Th/U-dating of fossil corals and
speleothems, Quat. Sci. J.,
57, 52–76, 2008.
Scholz, D. and Hoffman, D.: StalAge – an algorithm designed for construction
of speleothem age models, Quat. Geochronol., 6, 369–382, 2011.
Shen, C. C., Wu, C. C., Cheng, H., Edwards, R. L., Hsieh, Y- T., Gallet, S.,
Chang, C. C., Li, T. Y., Lam, D. D., Kano, A., Hori, M., and Spötl, C.:
High-precision and high resolution carbonate 230Th dating by
MC-ICP-MS with SEM protocols, Geochim. Cosmochim. Ac., 99, 71–86, 2012.
Spötl, C.: Long-term performance of the Gasbench isotope ratio mass
spectrometry system for the stable isotope analysis of carbonate
microsamples, Rapid Commun. Mass Sp., 25, 1683–1685, 2011.
Spötl, C., Unterwurzacher, M., Mangini, A., and Longstaffe, F. J.:
Carbonate speleothems in the dry, inneralpine Vinschgau valley, northernmost
Italy: witnesses of changes in climate and hydrology since the Last Glacial
Maximum, J. Sediment. Res., 72, 793–808, 2002.
Spötl, C., Fohlmeister, J., Cheng, H., and Boch, R.: Modern aragonite
formation at near-freezing conditions in an alpine cave, Carnic Alps,
Austria, Chem. Geol., 435, 60–70, 2016.
Tremaine, D. M., Froelich, P. N., and Wang, Y.: Speleothem calcite farmed in
situ: modern calibration of δ18O and δ13C
paleoclimate proxies in a continuously-monitored natural cave system,
Geochim. Cosmochim. Ac., 75, 4929–4950, 2011.
von Grafenstein, U., Erlenkeuser, H., Brauer, A., Jouzel, J., and
Johnsen, S. J.: A mid-European decadal isotope-climate record from 15 500 to
5000 years BP, Science, 284, 1654–1657, 1999.
von Grafenstein, U., Belmecheri, S., Eicher, U., van Raden, U. J.,
Erlenkeuser, H., Andersen, N., and Ammann, B.: The oxygen and carbon isotopic
signatures of biogenic carbonates in Gerzensee, Switzerland, during the rapid
warming around 14 685 years BP and the following interstadial, Palaeogeogr.
Palaeocl., 391, 25–32, 2013.
Wang, P. X., Wang, B., Cheng, H., Fasullo, J., Guo, Z. T., Kiefer, T., and
Liu, Z. Y.: The global monsoon across timescales: coherent variability of
regional monsoons, Clim. Past, 10, 2007–2052, https://doi.org/10.5194/cp-10-2007-2014,
2014.
Wassenburg, J. A., Immenhauser, A., Richter, D. K., Jochum, K. P.,
Fietzke, J., Deininger, M., Goos, M., Scholz, D., and Sabaoui, A.: Climate
and cave control on Pleistocene/Holocene calcite-to-aragonite transitions in
speleothems in Morocco: elemental and isotopic evidence, Geochim. Cosmochim.
Ac., 92, 23–47, 2012.
Wassenburg, J. A., Dietrich, S., Fietzke, J., Fohlmeister, J., Jochum, K. P.,
Scholz, D., Richter, D. K., Sabaoui, A., Spötl, C., Lohmann, G.,
Andrae, M. O., and Immenhauser, A.: Reorganization of the North Atlantic
Oscillation during early Holocene deglaciation, Nat. Geosci., 9, 602–605,
2016.
Webb, M., Dredge, J., Barker, P. A., Müller, W., Jex, C.,
Desmarchelier, J., Hellstrom, J., and Wynn, P. M.: Quaternary climatic
instability in south-east Australia from a multi-proxy speleothem record,
J. Quaternary Sci., 29, 589–596, 2014.
Wedepohl, K. H.: The composition of the continental crust, Geochim.
Cosmochim. Ac., 59, 1217–1239, 1995.
Wurth, G., Niggemann, S., Richter, D. K., and Mangini, A.: The Younger Dryas
and Holocene climate record of a stalagmite from Hölloch Cave (Bavarian
Alps, Germany), J. Quaternary Sci., 19, 291–298, 2004.
ZAMG: Das Klima von Tirol-Südtirol-Belluno, Zentralanstalt für
Meteorologie und Geodynamik, Vienna, 2015.
Short summary
Here we present a multi-proxy study of flowstones in fractures of crystalline rocks with the aim of assessing the palaeoclimate significance of this new type of speleothem archive. Our results indicate a high degree of spatial heterogeneity, whereby changes in speleothem mineralogy and carbon isotope composition are likely governed by aquifer-internal processes. In contrast, the oxygen isotope composition reflects first-order climate variability.
Here we present a multi-proxy study of flowstones in fractures of crystalline rocks with the aim...