Articles | Volume 13, issue 10
Clim. Past, 13, 1403–1433, 2017

Special issue: Climate of the past 2000 years: regional and trans-regional...

Clim. Past, 13, 1403–1433, 2017

Research article 26 Oct 2017

Research article | 26 Oct 2017

Low-resolution Australasian palaeoclimate records of the last 2000 years

Bronwyn C. Dixon1, Jonathan J. Tyler2, Andrew M. Lorrey3, Ian D. Goodwin4, Joëlle Gergis5, and Russell N. Drysdale1 Bronwyn C. Dixon et al.
  • 1School of Geography, University of Melbourne, Melbourne, 3010, Australia
  • 2Department of Earth Sciences, University of Adelaide, Adelaide, 5005, Australia
  • 3National Institute of Water and Atmospheric Research, Auckland, 1010, New Zealand
  • 4Marine Climate Risk Group and Department of Environmental Sciences, Macquarie University, Sydney, 2109, Australia
  • 5School of Earth Sciences, University of Melbourne, Melbourne, 3010, Australia

Abstract. Non-annually resolved palaeoclimate records in the Australasian region were compiled to facilitate investigations of decadal to centennial climate variability over the past 2000 years. A total of 675 lake and wetland, geomorphic, marine, and speleothem records were identified. The majority of records are located near population centres in southeast Australia, in New Zealand, and across the maritime continent, and there are few records from the arid regions of central and western Australia. Each record was assessed against a set of a priori criteria based on temporal resolution, record length, dating methods, and confidence in the proxy–climate relationship over the Common Era. A subset of 22 records met the criteria and were endorsed for subsequent analyses. Chronological uncertainty was the primary reason why records did not meet the selection criteria. New chronologies based on Bayesian techniques were constructed for the high-quality subset to ensure a consistent approach to age modelling and quantification of age uncertainties. The primary reasons for differences between published and reconstructed age–depth models were the consideration of the non-singular distribution of ages in calibrated 14C dates and the use of estimated autocorrelation between sampled depths as a constraint for changes in accumulation rate. Existing proxies and reconstruction techniques that successfully capture climate variability in the region show potential to address spatial gaps and expand the range of climate variables covering the last 2000 years in the Australasian region. Future palaeoclimate research and records in Australasia could be greatly improved through three main actions: (i) greater data availability through the public archiving of published records; (ii) thorough characterisation of proxy–climate relationships through site monitoring and climate sensitivity tests; and (iii) improvement of chronologies through core-top dating, inclusion of tephra layers where possible, and increased date density during the Common Era.

Short summary
Existing sedimentary palaeoclimate records in Australasia were assessed for suitability for examining the last 2 millennia. A small number of high-quality records were identified, and new Bayesian age models were constructed for each record. Findings suggest that Australasian record chronologies and confidence in proxy–climate relationships are the main factors limiting appropriate data for examining Common Era climate variability. Recommendations for improving data accessibility are provided.