Articles | Volume 20, issue 1
https://doi.org/10.5194/cp-20-77-2024
https://doi.org/10.5194/cp-20-77-2024
Research article
 | 
10 Jan 2024
Research article |  | 10 Jan 2024

Resilient Antarctic monsoonal climate prevented ice growth during the Eocene

Michiel Baatsen, Peter Bijl, Anna von der Heydt, Appy Sluijs, and Henk Dijkstra

Related authors

Sustainability of regional Antarctic ice sheets under late Eocene seasonal atmospheric conditions
Dennis H. A. Vermeulen, Michiel L. J. Baatsen, and Anna S. von der Heydt
Clim. Past, 21, 95–114, https://doi.org/10.5194/cp-21-95-2025,https://doi.org/10.5194/cp-21-95-2025, 2025
Short summary
Similar North Pacific variability despite suppressed El Niño variability in the warm mid-Pliocene climate
Arthur Merlijn Oldeman, Michiel L. J. Baatsen, Anna S. von der Heydt, Frank M. Selten, and Henk A. Dijkstra
Earth Syst. Dynam., 15, 1037–1054, https://doi.org/10.5194/esd-15-1037-2024,https://doi.org/10.5194/esd-15-1037-2024, 2024
Short summary
The movement of atmospheric blocking systems: can we still assume quasi-stationarity?
Jonna van Mourik, Hylke de Vries, and Michiel Baatsen
EGUsphere, https://doi.org/10.5194/egusphere-2024-999,https://doi.org/10.5194/egusphere-2024-999, 2024
Short summary
Mid-Pliocene not analogous to high-CO2 climate when considering Northern Hemisphere winter variability
Arthur Merlijn Oldeman, Michiel L. J. Baatsen, Anna S. von der Heydt, Aarnout J. van Delden, and Henk A. Dijkstra
Weather Clim. Dynam., 5, 395–417, https://doi.org/10.5194/wcd-5-395-2024,https://doi.org/10.5194/wcd-5-395-2024, 2024
Short summary
The hydrological cycle and ocean circulation of the Maritime Continent in the Pliocene: results from PlioMIP2
Xin Ren, Daniel J. Lunt, Erica Hendy, Anna von der Heydt, Ayako Abe-Ouchi, Bette Otto-Bliesner, Charles J. R. Williams, Christian Stepanek, Chuncheng Guo, Deepak Chandan, Gerrit Lohmann, Julia C. Tindall, Linda E. Sohl, Mark A. Chandler, Masa Kageyama, Michiel L. J. Baatsen, Ning Tan, Qiong Zhang, Ran Feng, Stephen Hunter, Wing-Le Chan, W. Richard Peltier, Xiangyu Li, Youichi Kamae, Zhongshi Zhang, and Alan M. Haywood
Clim. Past, 19, 2053–2077, https://doi.org/10.5194/cp-19-2053-2023,https://doi.org/10.5194/cp-19-2053-2023, 2023
Short summary

Related subject area

Subject: Climate Modelling | Archive: Marine Archives | Timescale: Cenozoic
Climate variability, heat distribution, and polar amplification in the warm unipolar “icehouse” of the Oligocene
Dominique K. L. L. Jenny, Tammo Reichgelt, Charlotte L. O'Brien, Xiaoqing Liu, Peter K. Bijl, Matthew Huber, and Appy Sluijs
Clim. Past, 20, 1627–1657, https://doi.org/10.5194/cp-20-1627-2024,https://doi.org/10.5194/cp-20-1627-2024, 2024
Short summary
The role of atmospheric CO2 in controlling sea surface temperature change during the Pliocene
Lauren E. Burton, Alan M. Haywood, Julia C. Tindall, Aisling M. Dolan, Daniel J. Hill, Erin L. McClymont, Sze Ling Ho, and Heather L. Ford
Clim. Past, 20, 1177–1194, https://doi.org/10.5194/cp-20-1177-2024,https://doi.org/10.5194/cp-20-1177-2024, 2024
Short summary
Bayesian multi-proxy reconstruction of early Eocene latitudinal temperature gradients
Kilian Eichenseer and Lewis A. Jones
Clim. Past, 20, 349–362, https://doi.org/10.5194/cp-20-349-2024,https://doi.org/10.5194/cp-20-349-2024, 2024
Short summary
Amplified surface warming in the south-west Pacific during the mid-Pliocene (3.3–3.0 Ma) and future implications
Georgia R. Grant, Jonny H. T. Williams, Sebastian Naeher, Osamu Seki, Erin L. McClymont, Molly O. Patterson, Alan M. Haywood, Erik Behrens, Masanobu Yamamoto, and Katelyn Johnson
Clim. Past, 19, 1359–1381, https://doi.org/10.5194/cp-19-1359-2023,https://doi.org/10.5194/cp-19-1359-2023, 2023
Short summary
Sea surface temperature evolution of the North Atlantic Ocean across the Eocene–Oligocene transition
Kasia K. Śliwińska, Helen K. Coxall, David K. Hutchinson, Diederik Liebrand, Stefan Schouten, and Agatha M. de Boer
Clim. Past, 19, 123–140, https://doi.org/10.5194/cp-19-123-2023,https://doi.org/10.5194/cp-19-123-2023, 2023
Short summary

Cited articles

Amoo, M., Salzmann, U., Pound, M. J., Thompson, N., and Bijl, P. K.: Eocene to Oligocene vegetation and climate in the Tasmanian Gateway region were controlled by changes in ocean currents and pCO2, Clim. Past, 18, 525–546, https://doi.org/10.5194/cp-18-525-2022, 2022. a, b
Anagnostou, E., John, E. H., Edgar, K. M., Foster, G. L., Ridgwell, A., Inglis, G. N., Pancost, R. D., Lunt, D. J., and Pearson, P. N.: Changing atmospheric CO2 concentration was the primary driver of early Cenozoic climate, Nature, 533, 380–384, https://doi.org/10.1038/nature17423, 2016. a
Baatsen, M., van Hinsbergen, D. J. J., von der Heydt, A. S., Dijkstra, H. A., Sluijs, A., Abels, H. A., and Bijl, P. K.: Reconstructing geographical boundary conditions for palaeoclimate modelling during the Cenozoic, Clim. Past, 12, 1635–1644, https://doi.org/10.5194/cp-12-1635-2016, 2016. a, b, c, d, e
Baatsen, M., von der Heydt, A. S., Huber, M., Kliphuis, M. A., Bijl, P. K., Sluijs, A., and Dijkstra, H. A.: The middle to late Eocene greenhouse climate modelled using the CESM 1.0.5, Clim. Past, 16, 2573–2597, https://doi.org/10.5194/cp-16-2573-2020, 2020. a, b, c, d, e, f, g
Baatsen, M., Kliphuis, M., von der Heydt, A., and Dijkstra, H.: CESM simulations Eocene monsoons, Utrecht University [data set], https://doi.org/10.24416/UU01-A0VMKZ, 2023. a
Download
Short summary
This work introduces the possibility and consequences of monsoons on Antarctica in the warm Eocene climate. We suggest that such a monsoonal climate can be important to understand conditions in Antarctica prior to large-scale glaciation. We can explain seemingly contradictory indications of ice and vegetation on the continent through regional variability. In addition, we provide a new mechanism through which most of Antarctica remained ice-free through a wide range of global climatic changes.