Articles | Volume 20, issue 6
https://doi.org/10.5194/cp-20-1387-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-20-1387-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
600 years of wine must quality and April to August temperatures in western Europe 1420–2019
Christian Pfister
Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
Stefan Brönnimann
CORRESPONDING AUTHOR
Oeschger Centre for Climate Change Research, Institute of Geography, University of Bern, Bern, Switzerland
Andres Altwegg
independent researcher: Brugg, Switzerland
Rudolf Brázdil
Institute of Geography, Masaryk University, and Global Change Research Institute of the Czech Academy of Sciences Brno, Brno, Czech Republic
Laurent Litzenburger
Centre de recherche universitaire lorrain d'histoire, Université de Lorraine, Nancy, France
Daniele Lorusso
Dipartimento di Beni Culturali e Ambientali, Università degli Studi di Milano, Milan, Italy
Thomas Pliemon
Institute of Physics, Department of Astrophysics and Geophysics, University of Graz, Graz, Austria
Related authors
Christian Pfister, Stefan Brönnimann, Laurent Litzenburger, Peter Thejll, Andres Altwegg, Rudolf Brázdil, Andrea Kiss, Erich Landsteiner, Fredrik Charpentier Ljungqvist, and Thomas Pliemon
EGUsphere, https://doi.org/10.5194/egusphere-2025-3242, https://doi.org/10.5194/egusphere-2025-3242, 2025
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
Narrative historical records of wine production in Central Europe date back to 1200. A study of taxes paid to authorities in the French-Luxembourg Moselle region, Germany, and the Swiss Plateau over the last few centuries shows that wine yields provide indirect indications of summer temperatures when the impact of heavy frosts is taken into account. This enables climate reconstructions based on tree rings to be refined and confirmed. Occasionally, poor harvests gave rise to witch hunts.
Fredrik Charpentier Ljungqvist, Bo Christiansen, Jan Esper, Heli Huhtamaa, Lotta Leijonhufvud, Christian Pfister, Andrea Seim, Martin Karl Skoglund, and Peter Thejll
Clim. Past, 19, 2463–2491, https://doi.org/10.5194/cp-19-2463-2023, https://doi.org/10.5194/cp-19-2463-2023, 2023
Short summary
Short summary
We study the climate signal in long harvest series from across Europe between the 16th and 18th centuries. The climate–harvest yield relationship is found to be relatively weak but regionally consistent and similar in strength and sign to modern climate–harvest yield relationships. The strongest climate–harvest yield patterns are a significant summer soil moisture signal in Sweden, a winter temperature and precipitation signal in Switzerland, and spring temperature signals in Spain.
Thomas Pliemon, Ulrich Foelsche, Christian Rohr, and Christian Pfister
Clim. Past, 19, 2237–2256, https://doi.org/10.5194/cp-19-2237-2023, https://doi.org/10.5194/cp-19-2237-2023, 2023
Short summary
Short summary
Louis Morin consistently recorded precipitation intensity and duration between 1665 and 1713. We use these records to reconstruct precipitation totals. This reconstruction is validated by several methods and then presented using precipitation indexes. What is exceptional about this dataset is the availability of a sub-daily resolution and the low number of missing data points over the entire observation period.
Rudolf Brázdil, Petr Dobrovolný, Christian Pfister, Katrin Kleemann, Kateřina Chromá, Péter Szabó, and Piotr Olinski
Clim. Past, 19, 1863–1890, https://doi.org/10.5194/cp-19-1863-2023, https://doi.org/10.5194/cp-19-1863-2023, 2023
Short summary
Short summary
The Thirty Years' War (from 1618 to 1648 CE), an armed military conflict in Europe, brought extensive devastation to Europe. The paper analyses annual and seasonal temperature, precipitation, and drought patterns, as well as severe weather extremes, based particularly on documentary data, during this event in central Europe to demonstrate their broad impacts on human society and human responses in coincidence with weather and climate during this period of hardship.
Thomas Pliemon, Ulrich Foelsche, Christian Rohr, and Christian Pfister
Clim. Past, 18, 1685–1707, https://doi.org/10.5194/cp-18-1685-2022, https://doi.org/10.5194/cp-18-1685-2022, 2022
Short summary
Short summary
We have digitized and analyzed meteorological variables (temperature, direction of the movement of the clouds, and cloud cover), which were noted by Louis Morin in the period 1665–1713 in Paris. This time period is characterized by cold winters and autumns and moderate springs and summers. A low frequency of westerlies in the winter months leads to a cooling. Morin's measurements seem to be trustworthy. Only cloud cover in quantitative terms should be taken with caution.
Rudolf Brázdil, Petr Dobrovolný, Max Carl Arne Torbenson, Lukáš Dolák, and Kateřina Chromá
EGUsphere, https://doi.org/10.5194/egusphere-2025-3917, https://doi.org/10.5194/egusphere-2025-3917, 2025
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
Documentary data about weather and climate are used to reconstruct temperature and precipitation patterns as well as hydrometeorological extremes in the Czech Lands for the 15th century. These data significantly complement existing knowledge of climatic patterns in Central Europe during this century and coincide well with other climate reconstructions from this area based on different proxies.
Jan Řehoř, Rudolf Brázdil, Oldřich Rakovec, Martin Hanel, Milan Fischer, Rohini Kumar, Jan Balek, Markéta Poděbradská, Vojtěch Moravec, Luis Samaniego, Yannis Markonis, and Miroslav Trnka
Hydrol. Earth Syst. Sci., 29, 3341–3358, https://doi.org/10.5194/hess-29-3341-2025, https://doi.org/10.5194/hess-29-3341-2025, 2025
Short summary
Short summary
We present a robust method for identification and classification of global land drought events (GLDEs) based on soil moisture. Two models were used to calculate soil moisture and delimit soil drought over global land from 1980–2022, with clusters of 775 and 630 GLDEs. Using four spatiotemporal and three motion-related characteristics, we categorized GLDEs into seven severity and seven dynamic categories. The frequency of GLDEs has generally increased in recent decades.
Nicolás Duque-Gardeazabal, Andrew R. Friedman, and Stefan Brönnimann
Hydrol. Earth Syst. Sci., 29, 3277–3295, https://doi.org/10.5194/hess-29-3277-2025, https://doi.org/10.5194/hess-29-3277-2025, 2025
Short summary
Short summary
Understanding hydrological variability is essential for ecological conservation and sustainable development. Evapotranspiration influences the carbon cycle, and finding what causes its variability is important for ecosystems. This study shows that ENSO (El Niño–Southern Oscillation) influences not only South America’s rainfall, soil moisture, radiation, and evaporation but also other phenomena in the Atlantic Ocean. The impacts change regionally depending on the season analysed and have implications for heat extremes.
Christian Pfister, Stefan Brönnimann, Laurent Litzenburger, Peter Thejll, Andres Altwegg, Rudolf Brázdil, Andrea Kiss, Erich Landsteiner, Fredrik Charpentier Ljungqvist, and Thomas Pliemon
EGUsphere, https://doi.org/10.5194/egusphere-2025-3242, https://doi.org/10.5194/egusphere-2025-3242, 2025
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
Narrative historical records of wine production in Central Europe date back to 1200. A study of taxes paid to authorities in the French-Luxembourg Moselle region, Germany, and the Swiss Plateau over the last few centuries shows that wine yields provide indirect indications of summer temperatures when the impact of heavy frosts is taken into account. This enables climate reconstructions based on tree rings to be refined and confirmed. Occasionally, poor harvests gave rise to witch hunts.
Rudolf Brázdil, Jan Lhoták, Kateřina Chromá, and Laurent Litzenburger
EGUsphere, https://doi.org/10.5194/egusphere-2025-2942, https://doi.org/10.5194/egusphere-2025-2942, 2025
Short summary
Short summary
The tax relief data connected with weather damage to farmers' yields from the Prácheň Region (southwestern Bohemia) in the period 1655–1827 CE were used to identify frequency, severity and impacts of damaging weather events presented in the context of other documentary data. Tax relief data used represent the very rarely used source of administrative records for historical-climatological research.
Noemi Imfeld and Stefan Brönnimann
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-249, https://doi.org/10.5194/essd-2025-249, 2025
Preprint under review for ESSD
Short summary
Short summary
We extend Swiss daily climate reconstructions from 1763 to 2020 to six additional variables at 1×1 km resolution using analogue resampling and data assimilation. Wind and temperature reconstructions show reasonable skill, while humidity and sunshine duration perform less well. Application to historical wild fire events demonstrates the data set’s potential for impact studies. This is the first Swiss data set providing several variables at a high-resolution of 1x1 km and going back to 1763.
Lucas Pfister, Lena Wilhelm, Yuri Brugnara, Noemi Imfeld, and Stefan Brönnimann
Weather Clim. Dynam., 6, 571–594, https://doi.org/10.5194/wcd-6-571-2025, https://doi.org/10.5194/wcd-6-571-2025, 2025
Short summary
Short summary
Our work compares different machine learning approaches for creating long-term classifications of daily atmospheric circulation patterns using input data from surface meteorological observations. Our comparison reveals that a feedforward neural network performs best at this task. Using this model, we present a daily reconstruction of a commonly used weather type classification for central Europe that dates back to 1728.
Rudolf Brázdil, Jan Lhoták, Kateřina Chromá, Dominik Collet, Petr Dobrovolný, and Heli Huhtamaa
Clim. Past, 21, 547–570, https://doi.org/10.5194/cp-21-547-2025, https://doi.org/10.5194/cp-21-547-2025, 2025
Short summary
Short summary
Public granaries served as key infrastructure to improve food security in agrarian societies. Granary data from 15 domains at the Sušice region (southwestern Bohemia) in the period 1789–1849 CE are used here to identify years with bad and good grain harvests, which have been further analysed using documentary data and climatic reconstructions. The data used represent a new source of proxy data for historical–climatological research.
Richard Warren, Niklaus Emanuel Bartlome, Noémie Wellinger, Jörg Franke, Ralf Hand, Stefan Brönnimann, and Heli Huhtamaa
Clim. Past, 20, 2645–2662, https://doi.org/10.5194/cp-20-2645-2024, https://doi.org/10.5194/cp-20-2645-2024, 2024
Short summary
Short summary
This paper introduces the ClimeApp web application. The app provides quick access to the ModE-RA global climate reanalysis. Users can calculate and plot anomalies, composites, correlations, regressions and annual cycles across three different datasets and four climate variables. By re-examining the 1815 Tambora eruption, we demonstrate how combining results from different datasets and sources can help us investigate the historical palaeoclimate and integrate it into human history.
Rudolf Brázdil, Dominika Faturová, Monika Šulc Michalková, Jan Řehoř, Martin Caletka, and Pavel Zahradníček
Nat. Hazards Earth Syst. Sci., 24, 3663–3682, https://doi.org/10.5194/nhess-24-3663-2024, https://doi.org/10.5194/nhess-24-3663-2024, 2024
Short summary
Short summary
Flash floods belong to natural hazards that can be enhanced in frequency, intensity, and impact during recent climate change. This paper presents a complex analysis of spatiotemporal variability and human impacts (including material damage and fatalities) of flash floods in the Czech Republic for the 2001–2023 period. The analysis generally shows no statistically significant trends in the characteristics analyzed.
Peter Stucki, Lucas Pfister, Yuri Brugnara, Renate Varga, Chantal Hari, and Stefan Brönnimann
Clim. Past, 20, 2327–2348, https://doi.org/10.5194/cp-20-2327-2024, https://doi.org/10.5194/cp-20-2327-2024, 2024
Short summary
Short summary
In our work, we reconstruct the weather of the extremely cold and wet summer in 1816 using a weather forecasting model to obtain high-resolution, three-dimensional weather simulations. We refine our simulations with surface pressure and temperature observations, representing a novel approach for this period. Our results show that this approach yields detailed and accurate weather reconstructions, opening the door to analyzing past weather events and their impacts in detail.
Stefan Brönnimann, Janusz Filipiak, Siyu Chen, and Lucas Pfister
Clim. Past, 20, 2219–2235, https://doi.org/10.5194/cp-20-2219-2024, https://doi.org/10.5194/cp-20-2219-2024, 2024
Short summary
Short summary
The year 1740 was the coldest in central Europe since at least 1421. New monthly global climate reconstructions, together with daily weather reconstructions, allow a detailed view of this climatic event. Following several severe cold spells in January and February, a persistent circulation pattern with blocking over the British Isles caused northerly flow towards western Europe during a large part of the year. It was one of the strongest, arguably unforced excursions in European temperature.
Rudolf Brázdil, Jan Lhoták, Kateřina Chromá, and Petr Dobrovolný
Clim. Past, 20, 1017–1037, https://doi.org/10.5194/cp-20-1017-2024, https://doi.org/10.5194/cp-20-1017-2024, 2024
Short summary
Short summary
The newly developed series of wheat, rye, barley, and oats prices from Sušice (southwestern Bohemia) for the period 1725–1824 CE is used to demonstrate effects of weather, climate, socio-economic, and societal factors on their fluctuations, with particular attention paid to years with extremely high prices. Cold spring temperatures and wet conditions from winter to summer were reflected in very high grain prices.
Rudolf Brázdil, Kateřina Chromá, and Pavel Zahradníček
Nat. Hazards Earth Syst. Sci., 24, 1437–1457, https://doi.org/10.5194/nhess-24-1437-2024, https://doi.org/10.5194/nhess-24-1437-2024, 2024
Short summary
Short summary
The official mortality data in the Czech Republic in 1919–2022 are used to show long-term fluctuations in the number of fatalities caused by excessive natural cold and heat, lightning, natural disasters, and falls on ice/snow, as well as the sex and age of the deceased, based on certain meteorological, historical, and socioeconomic factors that strongly influence changes in the number and structure of such fatalities. Knowledge obtained is usable in risk management for the preservation of lives.
Stefan Brönnimann, Yuri Brugnara, and Clive Wilkinson
Clim. Past, 20, 757–767, https://doi.org/10.5194/cp-20-757-2024, https://doi.org/10.5194/cp-20-757-2024, 2024
Short summary
Short summary
The early 20th century warming – the first phase of global warming in the 20th century – started from a peculiar cold state around 1910. We digitised additional ship logbooks for these years to study this specific climate state and found that it is real and likely an overlap of several climatic anomalies, including oceanic variability (La Niña) and volcanic eruptions.
Noemi Imfeld, Koen Hufkens, and Stefan Brönnimann
Clim. Past, 20, 659–682, https://doi.org/10.5194/cp-20-659-2024, https://doi.org/10.5194/cp-20-659-2024, 2024
Short summary
Short summary
Climate and weather in spring are important because they can have far-reaching impacts, e.g. on plant growth, due to cold spells. Here, we study changes in climate and phenological indices for the period from 1763 to 2020 based on newly published reconstructed fields of daily temperature and precipitation for Switzerland. We look at three cases of extreme spring conditions, namely a warm spring in 1862, two frost events in 1873 and 1957, and three cold springs in 1785, 1837, and 1852.
Fredrik Charpentier Ljungqvist, Bo Christiansen, Jan Esper, Heli Huhtamaa, Lotta Leijonhufvud, Christian Pfister, Andrea Seim, Martin Karl Skoglund, and Peter Thejll
Clim. Past, 19, 2463–2491, https://doi.org/10.5194/cp-19-2463-2023, https://doi.org/10.5194/cp-19-2463-2023, 2023
Short summary
Short summary
We study the climate signal in long harvest series from across Europe between the 16th and 18th centuries. The climate–harvest yield relationship is found to be relatively weak but regionally consistent and similar in strength and sign to modern climate–harvest yield relationships. The strongest climate–harvest yield patterns are a significant summer soil moisture signal in Sweden, a winter temperature and precipitation signal in Switzerland, and spring temperature signals in Spain.
Thomas Pliemon, Ulrich Foelsche, Christian Rohr, and Christian Pfister
Clim. Past, 19, 2237–2256, https://doi.org/10.5194/cp-19-2237-2023, https://doi.org/10.5194/cp-19-2237-2023, 2023
Short summary
Short summary
Louis Morin consistently recorded precipitation intensity and duration between 1665 and 1713. We use these records to reconstruct precipitation totals. This reconstruction is validated by several methods and then presented using precipitation indexes. What is exceptional about this dataset is the availability of a sub-daily resolution and the low number of missing data points over the entire observation period.
Rudolf Brázdil, Petr Dobrovolný, Christian Pfister, Katrin Kleemann, Kateřina Chromá, Péter Szabó, and Piotr Olinski
Clim. Past, 19, 1863–1890, https://doi.org/10.5194/cp-19-1863-2023, https://doi.org/10.5194/cp-19-1863-2023, 2023
Short summary
Short summary
The Thirty Years' War (from 1618 to 1648 CE), an armed military conflict in Europe, brought extensive devastation to Europe. The paper analyses annual and seasonal temperature, precipitation, and drought patterns, as well as severe weather extremes, based particularly on documentary data, during this event in central Europe to demonstrate their broad impacts on human society and human responses in coincidence with weather and climate during this period of hardship.
Eric Samakinwa, Christoph C. Raible, Ralf Hand, Andrew R. Friedman, and Stefan Brönnimann
Clim. Past Discuss., https://doi.org/10.5194/cp-2023-67, https://doi.org/10.5194/cp-2023-67, 2023
Publication in CP not foreseen
Short summary
Short summary
In this study, we nudged a stand-alone ocean model MPI-OM to proxy-reconstructed SST. Based on these model simulations, we introduce new estimates of the AMOC variations during the period 1450–1780 through a 10-member ensemble simulation with a novel nudging technique. Our approach reaffirms the known mechanisms of AMOC variability and also improves existing knowledge of the interplay between the AMOC and the NAO during the AMOC's weak and strong phases.
Ralf Hand, Eric Samakinwa, Laura Lipfert, and Stefan Brönnimann
Geosci. Model Dev., 16, 4853–4866, https://doi.org/10.5194/gmd-16-4853-2023, https://doi.org/10.5194/gmd-16-4853-2023, 2023
Short summary
Short summary
ModE-Sim is an ensemble of simulations with an atmosphere model. It uses observed sea surface temperatures, sea ice conditions, and volcanic aerosols for 1420 to 2009 as model input while accounting for uncertainties in these conditions. This generates several representations of the possible climate given these preconditions. Such a setup can be useful to understand the mechanisms that contribute to climate variability. This paper describes the setup of ModE-Sim and evaluates its performance.
Stefan Brönnimann and Yuri Brugnara
Clim. Past, 19, 1435–1445, https://doi.org/10.5194/cp-19-1435-2023, https://doi.org/10.5194/cp-19-1435-2023, 2023
Short summary
Short summary
We present the weather diaries of the Kirch family from 1677–1774 containing weather observations made in Leipzig and Guben and, from 1701 onward, instrumental observations made in Berlin. We publish the imaged diaries (10 445 images) and the digitized measurements (from 1720 onward). This is one of the oldest and longest meteorological records from Germany. The digitized pressure data show good agreement with neighbouring stations, highlighting their potential for weather reconstruction.
Stefan Brönnimann
Clim. Past, 19, 1345–1357, https://doi.org/10.5194/cp-19-1345-2023, https://doi.org/10.5194/cp-19-1345-2023, 2023
Short summary
Short summary
Weather reconstructions could help us to better understand the mechanisms leading to, and the impacts caused by, climatic changes. This requires daily weather information such as diaries. Here I present the weather diary by Georg Christoph Eimmart from Nuremberg covering the period 1695–1704. This was a particularly cold period in Europe, and the diary helps to better characterize this climatic anomaly.
Noemi Imfeld, Lucas Pfister, Yuri Brugnara, and Stefan Brönnimann
Clim. Past, 19, 703–729, https://doi.org/10.5194/cp-19-703-2023, https://doi.org/10.5194/cp-19-703-2023, 2023
Short summary
Short summary
Climate reconstructions give insights into monthly and seasonal climate variability of the past few hundred years. However, to understand past extreme weather events and to relate them to impacts, for example to periods of extreme floods, reconstructions on a daily timescale are needed. Here, we present a reconstruction of 258 years of high-resolution daily temperature and precipitation fields for Switzerland covering the period 1763 to 2020, which is based on instrumental measurements.
Moritz Buchmann, Gernot Resch, Michael Begert, Stefan Brönnimann, Barbara Chimani, Wolfgang Schöner, and Christoph Marty
The Cryosphere, 17, 653–671, https://doi.org/10.5194/tc-17-653-2023, https://doi.org/10.5194/tc-17-653-2023, 2023
Short summary
Short summary
Our current knowledge of spatial and temporal snow depth trends is based almost exclusively on time series of non-homogenised observational data. However, like other long-term series from observations, they are susceptible to inhomogeneities that can affect the trends and even change the sign. To assess the relevance of homogenisation for daily snow depths, we investigated its impact on trends and changes in extreme values of snow indices between 1961 and 2021 in the Swiss observation network.
Jianquan Dong, Stefan Brönnimann, Tao Hu, Yanxu Liu, and Jian Peng
Earth Syst. Sci. Data, 14, 5651–5664, https://doi.org/10.5194/essd-14-5651-2022, https://doi.org/10.5194/essd-14-5651-2022, 2022
Short summary
Short summary
We produced a new dataset of global station-based daily maximum wet-bulb temperature (GSDM-WBT) through the calculation of wet-bulb temperature, data quality control, infilling missing values, and homogenization. The GSDM-WBT covers the complete daily series of 1834 stations from 1981 to 2020. The GSDM-WBT dataset handles stations with many missing values and possible inhomogeneities, which could better support the studies on global and regional humid heat events.
Duncan Pappert, Mariano Barriendos, Yuri Brugnara, Noemi Imfeld, Sylvie Jourdain, Rajmund Przybylak, Christian Rohr, and Stefan Brönnimann
Clim. Past, 18, 2545–2565, https://doi.org/10.5194/cp-18-2545-2022, https://doi.org/10.5194/cp-18-2545-2022, 2022
Short summary
Short summary
We present daily temperature and sea level pressure fields for Europe for the severe winter 1788/1789 based on historical meteorological measurements and an analogue reconstruction approach. The resulting reconstruction skilfully reproduces temperature and pressure variations over central and western Europe. We find intense blocking systems over northern Europe and several abrupt, strong cold air outbreaks, demonstrating that quantitative weather reconstruction of past extremes is possible.
Chantal Camenisch, Fernando Jaume-Santero, Sam White, Qing Pei, Ralf Hand, Christian Rohr, and Stefan Brönnimann
Clim. Past, 18, 2449–2462, https://doi.org/10.5194/cp-18-2449-2022, https://doi.org/10.5194/cp-18-2449-2022, 2022
Short summary
Short summary
We present a novel approach to assimilate climate information contained in chronicles and annals from the 15th century to generate climate reconstructions of the Burgundian Low Countries, taking into account uncertainties associated with the descriptions of narrative sources. Our study aims to be a first step towards a more quantitative use of available information contained in historical texts, showing how Bayesian inference can help the climate community with this endeavor.
Yuri Brugnara, Chantal Hari, Lucas Pfister, Veronika Valler, and Stefan Brönnimann
Clim. Past, 18, 2357–2379, https://doi.org/10.5194/cp-18-2357-2022, https://doi.org/10.5194/cp-18-2357-2022, 2022
Short summary
Short summary
We digitized dozens of weather journals containing temperature measurements from in and around Bern and Zurich. They cover over a century before the creation of a national weather service in Switzerland. With these data we could create daily temperature series for the two cities that span the last 265 years. We found that the pre-industrial climate on the Swiss Plateau was colder than suggested by previously available instrumental data sets and about 2.5 °C colder than the present-day climate.
Rudolf Brázdil, Petr Zahradník, Péter Szabó, Kateřina Chromá, Petr Dobrovolný, Lukáš Dolák, Miroslav Trnka, Jan Řehoř, and Silvie Suchánková
Clim. Past, 18, 2155–2180, https://doi.org/10.5194/cp-18-2155-2022, https://doi.org/10.5194/cp-18-2155-2022, 2022
Short summary
Short summary
Bark beetle outbreaks are important disturbances to Norway spruce forests. Their meteorological and climatological triggers are analysed for the main oubreaks over the territory of the Czech Republic based on newly created series of such outbreaks, covering the 1781–2021 CE period. The paper demonstrates the shift from windstorms as the main meteorological triggers of past outbreaks to effects of high temperatures and droughts together with windstorms in past decades.
Thomas Pliemon, Ulrich Foelsche, Christian Rohr, and Christian Pfister
Clim. Past, 18, 1685–1707, https://doi.org/10.5194/cp-18-1685-2022, https://doi.org/10.5194/cp-18-1685-2022, 2022
Short summary
Short summary
We have digitized and analyzed meteorological variables (temperature, direction of the movement of the clouds, and cloud cover), which were noted by Louis Morin in the period 1665–1713 in Paris. This time period is characterized by cold winters and autumns and moderate springs and summers. A low frequency of westerlies in the winter months leads to a cooling. Morin's measurements seem to be trustworthy. Only cloud cover in quantitative terms should be taken with caution.
Gilles Delaygue, Stefan Brönnimann, and Philip D. Jones
Weather Clim. Dynam. Discuss., https://doi.org/10.5194/wcd-2022-33, https://doi.org/10.5194/wcd-2022-33, 2022
Revised manuscript not accepted
Short summary
Short summary
We test whether any association between solar activity and meteorological conditions in the north Atlantic – European sector could be detected. We find associations consistent with those found by previous studies, with a slightly better statistical significance, and with less methodological biases which have impaired previous studies. Our study should help strengthen the recognition of meteorological impacts of solar activity.
Moritz Buchmann, John Coll, Johannes Aschauer, Michael Begert, Stefan Brönnimann, Barbara Chimani, Gernot Resch, Wolfgang Schöner, and Christoph Marty
The Cryosphere, 16, 2147–2161, https://doi.org/10.5194/tc-16-2147-2022, https://doi.org/10.5194/tc-16-2147-2022, 2022
Short summary
Short summary
Knowledge about inhomogeneities in a data set is important for any subsequent climatological analysis. We ran three well-established homogenization methods and compared the identified break points. By only treating breaks as valid when detected by at least two out of three methods, we enhanced the robustness of our results. We found 45 breaks within 42 of 184 investigated series; of these 70 % could be explained by events recorded in the station history.
Rudolf Brázdil, Petr Dobrovolný, Jiří Mikšovský, Petr Pišoft, Miroslav Trnka, Martin Možný, and Jan Balek
Clim. Past, 18, 935–959, https://doi.org/10.5194/cp-18-935-2022, https://doi.org/10.5194/cp-18-935-2022, 2022
Short summary
Short summary
The paper deals with 520-year series (1501–2020 CE) of temperature, precipitation, and four drought indices reconstructed from documentary evidence and instrumental observations for the Czech Lands. Basic features of their fluctuations, long-term trends, and periodicities as well as attribution to changes in external forcings and climate variability modes are analysed. Representativeness of Czech reconstructions at European scale is evaluated. The paper shows extreme character of past decades.
Stefan Brönnimann, Peter Stucki, Jörg Franke, Veronika Valler, Yuri Brugnara, Ralf Hand, Laura C. Slivinski, Gilbert P. Compo, Prashant D. Sardeshmukh, Michel Lang, and Bettina Schaefli
Clim. Past, 18, 919–933, https://doi.org/10.5194/cp-18-919-2022, https://doi.org/10.5194/cp-18-919-2022, 2022
Short summary
Short summary
Floods in Europe vary on time scales of several decades. Flood-rich and flood-poor periods alternate. Recently floods have again become more frequent. Long time series of peak stream flow, precipitation, and atmospheric variables reveal that until around 1980, these changes were mostly due to changes in atmospheric circulation. However, in recent decades the role of increasing atmospheric moisture due to climate warming has become more important and is now the main driver of flood changes.
Daniel Steinfeld, Adrian Peter, Olivia Martius, and Stefan Brönnimann
EGUsphere, https://doi.org/10.5194/egusphere-2022-92, https://doi.org/10.5194/egusphere-2022-92, 2022
Preprint archived
Short summary
Short summary
We assess the performance of various fire weather indices to predict wildfire occurrence in Northern Switzerland. We find that indices responding readily to weather changes have the best performance during spring; in the summer and autumn seasons, indices that describe persistent hot and dry conditions perform best. We demonstrate that a logistic regression model trained on local historical fire activity can outperform existing fire weather indices.
Duncan Pappert, Yuri Brugnara, Sylvie Jourdain, Aleksandra Pospieszyńska, Rajmund Przybylak, Christian Rohr, and Stefan Brönnimann
Clim. Past, 17, 2361–2379, https://doi.org/10.5194/cp-17-2361-2021, https://doi.org/10.5194/cp-17-2361-2021, 2021
Short summary
Short summary
This paper presents temperature and pressure measurements from the 37 stations of the late 18th century network of the Societas Meteorologica Palatina, in addition to providing an inventory of the available observations, most of which have been digitised. The quality of the recovered series is relatively good, as demonstrated by two case studies. Early instrumental data such as these will help to explore past climate and weather extremes in Europe in greater detail.
Gerard van der Schrier, Richard P. Allan, Albert Ossó, Pedro M. Sousa, Hans Van de Vyver, Bert Van Schaeybroeck, Roberto Coscarelli, Angela A. Pasqua, Olga Petrucci, Mary Curley, Mirosław Mietus, Janusz Filipiak, Petr Štěpánek, Pavel Zahradníček, Rudolf Brázdil, Ladislava Řezníčková, Else J. M. van den Besselaar, Ricardo Trigo, and Enric Aguilar
Clim. Past, 17, 2201–2221, https://doi.org/10.5194/cp-17-2201-2021, https://doi.org/10.5194/cp-17-2201-2021, 2021
Short summary
Short summary
The 1921 drought was the most severe drought to hit Europe since the start of the 20th century. Here the climatological description of the drought is coupled to an overview of its impacts, sourced from newspapers, and an analysis of its drivers. The area from Ireland to the Ukraine was affected but hardest hit was the triangle between Brussels, Paris and Lyon. The drought impacts lingered on until well into autumn and winter, affecting water supply and agriculture and livestock farming.
Moritz Buchmann, Michael Begert, Stefan Brönnimann, and Christoph Marty
The Cryosphere, 15, 4625–4636, https://doi.org/10.5194/tc-15-4625-2021, https://doi.org/10.5194/tc-15-4625-2021, 2021
Short summary
Short summary
We investigated the impacts of local-scale variations by analysing snow climate indicators derived from parallel snow measurements. We found the largest relative inter-pair differences for all indicators in spring and the smallest in winter. The findings serve as an important basis for our understanding of uncertainties of commonly used snow indicators and provide, in combination with break-detection methods, the groundwork in view of any homogenization efforts regarding snow time series.
Claudia Timmreck, Matthew Toohey, Davide Zanchettin, Stefan Brönnimann, Elin Lundstad, and Rob Wilson
Clim. Past, 17, 1455–1482, https://doi.org/10.5194/cp-17-1455-2021, https://doi.org/10.5194/cp-17-1455-2021, 2021
Short summary
Short summary
The 1809 eruption is one of the most recent unidentified volcanic eruptions with a global climate impact. We demonstrate that climate model simulations of the 1809 eruption show generally good agreement with many large-scale temperature reconstructions and early instrumental records for a range of radiative forcing estimates. In terms of explaining the spatially heterogeneous and temporally delayed Northern Hemisphere cooling suggested by tree-ring networks, the investigation remains open.
Noemi Imfeld, Leopold Haimberger, Alexander Sterin, Yuri Brugnara, and Stefan Brönnimann
Earth Syst. Sci. Data, 13, 2471–2485, https://doi.org/10.5194/essd-13-2471-2021, https://doi.org/10.5194/essd-13-2471-2021, 2021
Short summary
Short summary
Upper-air data form the backbone of reanalysis products, particularly in the pre-satellite era. However, historical upper-air data are error-prone because measurements at high altitude were especially challenging. Here, we present a collection of data from historical intercomparisons of radiosondes and error assessments reaching back to the 1930s that may allow us to better characterize such errors. The full database, including digitized data, images, and metadata, is made publicly available.
Rudolf Brázdil, Kateřina Chromá, Lukáš Dolák, Jan Řehoř, Ladislava Řezníčková, Pavel Zahradníček, and Petr Dobrovolný
Nat. Hazards Earth Syst. Sci., 21, 1355–1382, https://doi.org/10.5194/nhess-21-1355-2021, https://doi.org/10.5194/nhess-21-1355-2021, 2021
Short summary
Short summary
We present an analysis of fatalities attributable to weather conditions in the Czech Republic during the 2000–2019 period based on our own database created from newspaper reports, on the database of the Czech Statistical Office, and on the database of the police of the Czech Republic as well as on their comparison. Despite some uncertainties, generally declining trends in the number of fatalities appear for the majority of weather variables. The structure of fatalities is described in detail.
Stefan Brönnimann and Sylvia Nichol
Atmos. Chem. Phys., 20, 14333–14346, https://doi.org/10.5194/acp-20-14333-2020, https://doi.org/10.5194/acp-20-14333-2020, 2020
Short summary
Short summary
Historical column ozone data from New Zealand and the UK from the 1950s are digitised and re-evaluated. They allow studying the ozone layer prior to the era of ozone depletion. Day-to-day changes are addressed, which reflect the flow near the tropopause and hence may serve as a diagnostic for atmospheric circulation in a time and region of sparse radiosondes. A long-term comparison shows the amount of ozone depletion at southern mid-latitudes and indicates how far we are from full recovery.
Rudolf Brázdil, Petr Dobrovolný, Martin Bauch, Chantal Camenisch, Andrea Kiss, Oldřich Kotyza, Piotr Oliński, and Ladislava Řezníčková
Clim. Past, 16, 2125–2151, https://doi.org/10.5194/cp-16-2125-2020, https://doi.org/10.5194/cp-16-2125-2020, 2020
Short summary
Short summary
Previous studies related to historical droughts in the Czech Lands showed that the summers of 1531–1540 could represent the driest summer decade of the past 500 years. To confirm this hypothesis, documentary data from central Europe were collected and presented for individual summers and complemented by maps of precipitation and drought distribution to document corresponding weather patterns and their various impacts. The main droughts occurred in 1532, 1534–1536, 1538, and particularly in 1540.
Stefan Brönnimann
Clim. Past, 16, 1937–1952, https://doi.org/10.5194/cp-16-1937-2020, https://doi.org/10.5194/cp-16-1937-2020, 2020
Short summary
Short summary
Scientists often reconstruct climate from proxy data such as tree rings or historical documents. Here, I do the reverse and produce a weather diary from historical numerical weather data. Such "synthetic weather diaries" may be useful for historians, e.g. to compare with other sources or to study the weather experienced during a journey or a military operation. They could also help train machine-learning approaches, which could then be used to reconstruct weather from historical diaries.
Cited articles
Aeberhard, M.: Geschichte der alten Traubensorten, Arcadia Verlag, Solothurn, ISBN 9783941595026, 2005.
Agropiu: Tabelle di comparazione dei valori rifrattometrici, densimetrici ed alcool probabilmente nei mosti di uva, https://pdfslide.net/documents/tabelle-di-comparazione-dei-valori-di-comparazione-sim-jaulmes (last access: 10 May 2024), 2024.
Alexandre, P.: Le climat en Europe au moyen âge: contribution à l'histoire des variations climatiques de 1000 à 1425, d'après les narratives de l'Europe Occidentale, Ecole des hautes études en sciences sociales, Paris, 827 pp., 1987.
Almaraz, P.: Bordeaux wine quality and climate fluctuations during the last century: Changing temperatures and changing industry, Clim. Res., 64, 187, https://doi.org/10.3354/cr01314, 2015.
Altwegg, A., Pfister, C., and Schumacher, P.: Klimaerwärmung und Weinqualität am Zürichsee, Schweizerische Zeitschrift für Obst- und Weinbau, 8, 10–13, https://doi.org/10.21256/zhaw-28141, 2023.
Ashenfelter, O. and Storchman, K.: The Economics of Wine, Weather, and Climate Change, Rev. Environ. Econ. Policy, 10, 25-46, https://doi.org/10.1093/reep/rev018, 2016.
Baciocco, K. A., Davis, R. E., and Jones, G. V.: Climate and Bordeaux wine quality: identifying the key factors that differentiate vintages based on consensus rankings, J. Wine Res., 25, 75–90, https://doi.org/10.1080/09571264.2014.888649, 2014.
Bassermann-Jordan, F.: Geschichte des Weinbaus, Keller, Frankfur am Main, 1907.
Bhend, J., Franke, J., Folini, D., Wild, M., and Brönnimann, S.: An ensemble-based approach to climate reconstructions, Clim. Past, 8, 963–976, https://doi.org/10.5194/cp-8-963-2012, 2023.
Bonardi, L.: Vins de la comète, vins de la Saint-Martin, Des parallélismes œ no-climatiques entre France et Italie du Nord, Actes du colloque international Réchauffement climatiques, quels impacts probables sur les vignobles, 28–30 March 2007, Dijon, 2007.
Bonardi, L, Lorusso, D., and de Mastrovito, D.: Vins, vendanges et fluctuations climatiques. Enquête en Italie, Les Rencontres du Clos Vougeot (3-5 octobre 2019), Dijon, Centre Georges Chevrier, 113-127, 2020.
Brázdil, R., Zahradníček, P. Dobrovolný, P., Kotyza, O., and Valášek, H.: Historical and recent viticulture as a source of climatological knowledge in the Czech Republic, Geografie, 113, 351–371, https://doi.org/10.37040/geografie2008113040351, 2008.
Brönnimann, S., Frigerio, L., Schwander, M., Rohrer, M., Stucki, P., and Franke, J.: Causes of increased flood frequency in central Europe in the 19th century, Clim. Past, 15, 1395–1409, https://doi.org/10.5194/cp-15-1395-2019, 2019.
Bundesamt für Landwirtschaft BLW: Das Weinjahr 1970–2021, https://www.blw.admin.ch/blw/de/home/suche.html#weinjahr (last access: 4 February 2023), 2023.
Büntgen, U., Frank, D., and Nievergelt, C.: Summer temperature variations in the European Alps, A.D. 755–2004, J. Climate, 19, 5606–5623, https://doi.org/10.1175/JCLI3917.1, 2006.
Burgdorf, A.-M., Brönnimann, S., Adamson, G., Amano, T., Aono, Y., Barriopedro, D., Bullon, T., Camenisch, C., Camuffo, D., Daux, V., del Rosario Prieto, M., Dobrovolny, P., Gallego, D., Garcia-Herrera, R., Gergis, J., Grab, S., Hannaford, M. J., Holopainen, J., Kelso, C., Kern, Z., Kiss, A., Lin Kuan-Hui, E., Loader, N. J., Mozny, M., Nash, D., Nicholson, S. E., Pfister, C., Rodrigo, F. S., Rutishauser, T., Sharma, S., Takacs, K., Vargas, E. T., and Vega, I.: DOCU-CLIM: A global documentary climate dataset for climate reconstructions, Sci. Data, 10, 402, https://doi.org/10.1038/s41597-023-02303-y, 2023.
Camenisch, C., Brázdil, R., Kiss, A., Pfister, C., Wetter, O., Rohr, C., Contino, A., and Retsö, D.: Extreme heat and drought in 1473 and their impacts in Europe in the context of the early 1470s, Reg. Environ. Change, 20, 19, https://doi.org/10.1007/s10113-020-01601-0, 2020.
Chuine, I., Yiou, P., Viovy, N., Seguin, B., Daux, V., and Le Roy Ladurie, E.: Grape ripening as a past climate indicator, Nature, 432, 89–290, https://doi.org/10.1038/432289a, 2004.
Combe, B. and Smart, R.: Veraison, in: The Oxford Companion to Wine, 4th Edn., edited by: Robinson, J., Oxford University Press, Oxford, 26–27, ISBN 9780198705383, 2015.
Cook, B. and Wolkovich, E.: Climate change decouples drought from early wine grape harvests in France, Nat. Clim. Change, 6, 715–720, https://doi.org/10.1038/nclimate2960, 2016.
Daux, V., Garcia de Cortazar-Atauri, I., Yiou, P., Chuine, I., Garnier, E., Le Roy Ladurie, E., Mestre, O., and Tardaguila, J.: An open access database of grape harvest dates for climate research: data description and quality assessment, Clim. Past, 8, 1403–1418, https://doi.org/10.5194/cp-8-1403-2012, 2012.
Dochnahl, F. A.: Chronik von Neustadt an der Haardt und den umliegenden Orten […] unter besonderer Berücksichtigung der Weinjahre, Neustadt an der Haard, Verlag von Gottschick Witters Buchhandlung, https://www.digitale-sammlungen.de/de/view/bsb10482125?page=5 (last access: 17 March 2023), 1867.
Garnier, E., Daux, V., and Yiou, P.: Grapevine harvest dates in Besançon (France) between 1525 and 1847: social outcomes or climatic evidence?, Climatic Change, 104, 703–727, https://doi.org/10.1007/s10584-010-9810-0, 2011.
Gladstones, J. S.: Wine, terroir and climate change, Hyde Park Press, Adelaide, ISBN 1862549249, 2011.
Glaser, R.: Klimageschichte Mitteleuropas, 1200 Jahre Wetter, Klima, Katastrophen, Wiss. Buchges., Darmstadt, ISBN 3896786040, 2013.
Gloden, N.: Weinbauchronik der Luxemburger Mosel von 1900 bis 1964 […] reprint from “De Letzeburger Wönzer”, https://agriculture.public.lu/dam-assets/veroeffentlichungen/berichte/weinbau/weinjahr/Weinbauchronik-1900bis1964.pdf (last access: 10 May 2024), 1964.
Hand, R., Samakinwa, E., Lipfert, L., and Brönnimann, S.: ModE-Sim – A medium size AGCM ensemble to study climate variability during the modern era (1420 to 2009), Geosci. Model Dev., 16, 4853–4866, https://doi.org/10.5194/gmd-16-4853-2023, 2023.
Jones, G. V. and Davis, R. E.: Using a synoptic climatological approach to understand climate-viticulture relationships, Int. J. Climatol., 20, 813–837, https://doi.org/10.1002/1097-0088(20000630)20:8<813::AID-JOC495>3.0.CO;2-W, 2000.
Jones, G. V., White, M. A., Cooper, O. A., and Storchmann, K.: Climate Change and Global Wine Quality, Climatic Change, 73, 319–343, https://doi.org/10.1007/s10584-005-4704-2, 2005.
Kiss, A., Wilson, R., and Bariska, I.: An experimental 392-year documentary-based multi-proxy (vine and grain) reconstruction of May–July temperatures for Kõszeg, West-Hungary, Int. J. Biometeorol., 55, 595–611, https://doi.org/10.1007/s00484-010-0367-4, 2011.
Labbé, T. and Gaveau, F.: Les dates de vendange à Dijon: établissement critique et révision archivistique d'une série ancienne, Revue Historique, 657, 19–51, https://doi.org/10.3917/rhis.111.0019, 2011.
Labbé, T., Pfister, C., Brönnimann, S., Rousseau, D., Franke, J., and Bois, B.: The longest homogeneous series of grape harvest dates, Beaune 1354–2018, and its significance for the understanding of past and present climate, Clim. Past, 15, 1485–1501, https://doi.org/10.5194/cp-15-1485-2019, 2019.
Lahr, E.: Un siècle d'Observations météorologiques appliquée à l'étude du Climat Luxembourgeois, Gran-Duché de Luxembourg, Service météorologique et hydrographique, Imprimerie Bourg-Bourger, Luxembourg, 1950.
Lauer, W. and Frankenberg, P.: Zur Rekonstruktion des Klimas im Bereich der Rheinpfalz seit Mitte des 16. Jahrhunderts mit Hilfe von Zeitreihen der Weinquantität und Weinqualität, Gustav Fischer, Stuttgart, 1–52, 1986.
Litzenburger, L.: Une ville face au climat. Metz à la fin du Moyen Âge (1400–1530), Presses Universitaires de Nancy, Nancy, ISBN 2814302256, 2015.
Loose, R.: Gustav Schübler (1787–1834): Professor für Naturgeschichte und Botanik in Tübingen, Franz Steiner, Stuttgart, ISBN 978-3-515-13254-1, 2022.
Lorusso, D.: Il clima del Vino. Metodi di Riconstruzione e impatti economici delle fluttuazioni climatiche nelle regioni vitivinicole (Secoli XVII–XX), PhD thesis, Università di Milano, https://air.unimi.it/retrieve/dfa8b991-0f57-748b-e053-3a05fe0a3a96/phd_unimi_R09333.pdf (last access: 4 August 2022), 2013.
Lorusso, D.: Dates de vendanges et qualité des millésimes en Bourgogne entre XVIII et XXI siècle, in: Bourgogne(s) viticole(s): enjeux et perspectives historiques d'un territoire, edited by: Wolikow, S. and Jacquet, O., EUD, Dijon, 63–77, ISBN 978-2364412637, 2018.
Lundstad, E., Brugnara, Y., Pappert, D., Kopp, J., Hürzeler, A., Andersson, A., Chimani, B., Cornes, R., Demarée, G., Filipiak, J., Gates, L. Ives, G.L., Jones, J., M., Jourdain, S., Kiss, A., Nicholson, S. E., Przybylak, R., Jones, P., Rousseau, D., Tinz, B., Rodrigo, F. S., Grab, S., Fernando Domínguez-Castro, F., Slonosky, V., Cooper, J., Brunet, M., and Brönnimann, S.: Global historical climate database – HCLIM, Sci. Data, 10, 44, https://doi.org/10.1038/s41597-022-01919-w, 2023.
McIntyre, J.: Wine studies in the humanities and social sciences: a report on symposia and the state of the field, J. Wine Res., 28, 159–164, https://doi.org/10.1080/09571264.2017.1309645, 2017.
Molitor, D., Udelhoven, T., Ney, S., Hoffmann, I., and Pfister, L: Historical vintage descriptions from Luxembourg – an indicator for the climatic conditions in the past?, Vitis, 55, 23–30, https://doi.org/10.5073/vitis.2016.55.23-30, 2016.
Mostwägungen: Mostwägungen Luxemburg 1910 bis 2020, parallel dazu Weinbauchronik mit qualitativen Qualitätsschätzungen – Moststatistiken detailliert 1910 bis 2020, https://agriculture.public.lu/de/weinbau-oenologie/publikationen/online-archiv.html (last access: 7 November 2022), 2020.
Müller, C. K. (Ed.): Joh[ann] Heinrich Waser […] und sein statistischer Nachlass, Fortgeführt bis zur Gegenwart, Zürcher Jahrbuch für Gemeinnützigkeit 1877, 88–167, Zurich, 1878.
Müller, K.: Geschichte des Badischen Weinbaus. Mit einer badischen Weinchronik und einer Darstellung der Klimaschwankungen im letzten Jahrtausend, Lahr, Schauenburg, 1953.
Nabholz, H.: Zürcher Stadtbücher des XIV. und XV. Jahrhunderts, in: Vol. 3, Hirzel, Zürich, 1908.
Pejml, K.: Příspěvek ke znalosti kolísání klimatu v Čechách v 16. až 18. stol. (Contribution to the knowledge of climate fluctuations in Bohemia from the 16th to 18th centuries). Meteorologické zprávy, 27, 90-95, 1974.
Pfaff, K.: Württembergische Weinchronik. Ein Bericht über die Quantität und Qualität des Weins und die darauf einwirkenden Witterungsverhältnisse […], Konrad Meychardt, Esslingen, 1865.
Pfister, C. and Wanner, H.: Climate and Society in Europe. The last thousand years, Haupt, Bern, ISBN 978-3-258-08234-9, 2021.
Pfister, C., Brönnimann, S., Altwegg, A., Brázdil, R., Litzenburger, L., Lorusso, D., and Pliemon, T.: Annual wine must quality data from Germany, Luxembourg, France and the Swiss Plateau for 1420 to 2019, BORIS Repository [data set], https://doi.org/10.48620/317, 2023.
Reichen, L., Burgdorf, A. M., Brönnimann, S., Franke, J., Hand, R., Valler, V., Samakinwa, E., Brugnara, Y., and Rutishauser, T.: A decade of cold Eurasian winters reconstructed for the early 19th century, Nat. Commun., 13, 2116, https://doi.org/10.1038/s41467-022-29677-8, 2022.
Reuss, J. J.: Musta et vina nectarina examine hydrostatica explorata, Dissertation, University of Tübingen, Tübingen, 1773.
Rheintalisches Weinbüchlein: Rheintalisches Weinbüchlein […] des sogenannten Weinlaufs nebst einem Anhang der Weinpreise von Weinfelden und Konstanz, St. Gallen, 1803.
Rima, A.: Considerazioni su una serie agraria biseculare: la produzione di di vino nel Rheingau (1791–1950), Geofisica e Meteorologia, 12, 1–11, 1963.
Schübler, G.: Über die Verhältnisse des Weinbaues in Würtemberg [sic!] vom Jahr 1236–1830 und wichtigere sich darauf beziehende Witterungserscheinungen, Stuttgart und Tübingen, Cottasche Buchhandlung, 80 pp., 1831.
Schwander, M., Brönnimann, S., and Delaygue, G.: Reconstruction of Central European daily weather types back to 1763, Int. J. Climatol., 37, 30–44, https://doi.org/10.1002/joc.4974, 2017.
Schweizerisches Idiotikon: Article “Winrechnung” [Wine account settlement] in Idiotikon Bd. 6, Spalte 136, https://digital.idiotikon.ch/idtkn/idmobil.htm#!page/60136/mode/1up (last access: 10 May 2024), 1905.
Sonderegger, S.: Landwirtschaftliche Entwicklung in der spätmittelalterlicher Nordostschweiz, St. Gallen, ISBN 3908048222, 1994.
Staab, J., Seeliger, H. R., and Schleicher, W.: Schloss Johannisberg – Neun Jahrhunderte Weinkultur am Rhein, Woschek, Gütersloh, ISBN 978-3924744359, 2001.
Staatliche Weinbaustation: Das Weinjahr NNNN und seine Ernteergebnisse, Veröffentlichung der Staatlichen Weinbaustation 1966–2020, https://agriculture.public.lu/dam-assets/publications/ivv/archiv/moststat-weinjahr/weinjahr-1967.pdf (lat access: 23 Janiary 2023), 2023.
Statec Luxembourg – Service Central de la Statistique et des Etudes Economiques Luxembourg (Ed.), Statistiques Historiques 1839–1989, Luxembourg, 129–136, https://agriculture.public.lu/dam-assets/publications/ivv/archiv/geschichte/Statistiques-historiques-1839-1989.pdf (last access: 18 September 2023), 1989.
Thur, H.: Weinchronik, in: Briedeler Geschichten 2, Annalen Regesten und Urkundenverzeichnis, Im Selbstverlag, Briedel, 296–306, 2016.
Valler, V., Franke, J., Brugnara, Y., and Brönnimann, S.: An updated global atmospheric paleo-reanalysis covering the last 400 years, Geosci. Data J., 9, 89–107, https://doi.org/10.1002/gdj3.121, 2022.
Valler, V., Franke, J., Brugnara, Y., Samakinwa, E., Hand, R., Lundstad, E., Burgdorf, A.-M., Lipfert, L., Friedman, A. R., and Brönnimann, S.: ModE-RA – a global monthly paleo-reanalysis of the modern era (1421–2008), Sci. Data, 11, 36, https://doi.org/10.1038/s41597-023-02733-8, 2024.
Weinbaustatistik: Weinbaustatistik, 1874–1973, Staatsarchiv Schaffhausen HZ 6036, 1973.
Wein Schatzung: Wein Schatzung, so alle Jahr auff Martiny gemacht wird. Steckborn am Under Seh (1569–1817), Zentralbibliothek Zürich, Zürich, Ms 2091, 1817.
Wetter, O. and Pfister, C.: An underestimated record-breaking event – why summer 1540 was likely warmer than 2003, Clim. Past, 9, 41–56, https://doi.org/10.5194/cp-9-41-2013, 2013.
Weusthoff, T.: Weather type classification at MeteoSwiss: introduction of new automatic classification schemes, Arbeitsberichte der MeteoSchweiz, 235, 46, 2011.
Wildberger, W.: Schaffhauser Martinischlag. Obrigkeitliche Schatzungen von Getreide und Wein auf Martini der Jahre 1466 bis 1895 mit landwirtschaftlich-historischen Nachrichten […] Schaffhausen, Carl Schochs Buchhandlung, https://www.google.ch/books/edition/Schaffhauser_Martinschlag/Hx01AQAAIAAJ?hl=de&gbpv=1&dq=inauthor:"W.+Wildberger"&printsec=frontcover (last access: 10 May 2024), 1896.
Co-editor-in-chief
This is a very interesting proxy development based on grape production. So far, grape harvest dates (ghd) are well-known proxies of past temperatures from April to July that can generate very accurate and fascinating time series (see Labbé et al. 2019, https://doi.org/10.5194/cp-15-1485-2019). However, the analysis of wine must has not yet been considered, although the present manuscript shows that it is a highly potential climate proxy when other related information is missing. This study opens the door to exciting future studies
This is a very interesting proxy development based on grape production. So far, grape harvest...
Short summary
This bottle of Riesling from the traditional Bassermann Jordan winery in Deidesheim (Germany) is a relic of the premium wine harvested in 1811. It was named “Comet Wine” after the bright comet that year. The study shows that wine quality can be used to infer summer weather conditions over the past 600 years. After rainy summers with cold winds, wines turned sour, while long periods of high pressure led to excellent qualities. Since 1990, only good wines have been produced due to rapid warming.
This bottle of Riesling from the traditional Bassermann Jordan winery in Deidesheim (Germany) is...