Articles | Volume 15, issue 2
https://doi.org/10.5194/cp-15-685-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-15-685-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Siberian tree-ring and stable isotope proxies as indicators of temperature and moisture changes after major stratospheric volcanic eruptions
Olga V. Churakova (Sidorova)
CORRESPONDING AUTHOR
Institute for Environmental Sciences, University of Geneva, 66 Bvd Carl Vogt, 1205 Geneva, Switzerland
Institute of Ecology and Geography, Siberian Federal University, Svobodny pr 79, 660041 Krasnoyarsk, Russian Federation
Marina V. Fonti
Institute of Ecology and Geography, Siberian Federal University, Svobodny pr 79, 660041 Krasnoyarsk, Russian Federation
Matthias Saurer
Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
Paul Scherrer Institute, 5232 Villigen – PSI, Switzerland
Sébastien Guillet
Institute for Environmental Sciences, University of Geneva, 66 Bvd Carl Vogt, 1205 Geneva, Switzerland
Christophe Corona
Université Blaise Pascal, Geolab, UMR 6042 CNRS, 4 rue Ledru, 63057 Clermont-Ferrand, France
Patrick Fonti
Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
Vladimir S. Myglan
Institute of Humanities, Siberian Federal University, Svobodny pr 82, 660041 Krasnoyarsk, Russian Federation
Alexander V. Kirdyanov
Institute of Ecology and Geography, Siberian Federal University, Svobodny pr 79, 660041 Krasnoyarsk, Russian Federation
V.N. Sukachev Institute of Forest SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, Akademgorodok 50, bld. 28, 660036 Krasnoyarsk, Russian Federation
Department of Geography, University of Cambridge, Downing Place, Cambridge CB2 3EN, UK
Oksana V. Naumova
Institute of Humanities, Siberian Federal University, Svobodny pr 82, 660041 Krasnoyarsk, Russian Federation
Dmitriy V. Ovchinnikov
V.N. Sukachev Institute of Forest SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, Akademgorodok 50, bld. 28, 660036 Krasnoyarsk, Russian Federation
Alexander V. Shashkin
V.N. Sukachev Institute of Forest SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, Akademgorodok 50, bld. 28, 660036 Krasnoyarsk, Russian Federation
Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Svobodny pr 79,
660041 Krasnoyarsk, Russian Federation
Irina P. Panyushkina
Laboratory of Tree-Ring Research, University of Arizona, 1215 E. Lowell St., Tucson, 85721, USA
Ulf Büntgen
Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
Department of Geography, University of Cambridge, Downing Place, Cambridge CB2 3EN, UK
Malcolm K. Hughes
Laboratory of Tree-Ring Research, University of Arizona, 1215 E. Lowell St., Tucson, 85721, USA
Eugene A. Vaganov
Institute of Ecology and Geography, Siberian Federal University, Svobodny pr 79, 660041 Krasnoyarsk, Russian Federation
V.N. Sukachev Institute of Forest SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, Akademgorodok 50, bld. 28, 660036 Krasnoyarsk, Russian Federation
Siberian Federal University, Rectorate, Svobodny pr 79/10, 660041 Krasnoyarsk, Russian Federation
Rolf T. W. Siegwolf
Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
Paul Scherrer Institute, 5232 Villigen – PSI, Switzerland
Markus Stoffel
Institute for Environmental Sciences, University of Geneva, 66 Bvd Carl Vogt, 1205 Geneva, Switzerland
Department of Earth Sciences, University of Geneva, 13 rue des Maraîchers, 1205 Geneva, Switzerland
Department F.A. Forel for Environmental and Aquatic Sciences, University of Geneva, 66 Boulevard Carl-Vogt, 1205 Geneva, Switzerland
Related authors
Bronwen L. Konecky, Nicholas P. McKay, Olga V. Churakova (Sidorova), Laia Comas-Bru, Emilie P. Dassié, Kristine L. DeLong, Georgina M. Falster, Matt J. Fischer, Matthew D. Jones, Lukas Jonkers, Darrell S. Kaufman, Guillaume Leduc, Shreyas R. Managave, Belen Martrat, Thomas Opel, Anais J. Orsi, Judson W. Partin, Hussein R. Sayani, Elizabeth K. Thomas, Diane M. Thompson, Jonathan J. Tyler, Nerilie J. Abram, Alyssa R. Atwood, Olivier Cartapanis, Jessica L. Conroy, Mark A. Curran, Sylvia G. Dee, Michael Deininger, Dmitry V. Divine, Zoltán Kern, Trevor J. Porter, Samantha L. Stevenson, Lucien von Gunten, and Iso2k Project Members
Earth Syst. Sci. Data, 12, 2261–2288, https://doi.org/10.5194/essd-12-2261-2020, https://doi.org/10.5194/essd-12-2261-2020, 2020
Kathrin M. Keller, Sebastian Lienert, Anil Bozbiyik, Thomas F. Stocker, Olga V. Churakova (Sidorova), David C. Frank, Stefan Klesse, Charles D. Koven, Markus Leuenberger, William J. Riley, Matthias Saurer, Rolf Siegwolf, Rosemarie B. Weigt, and Fortunat Joos
Biogeosciences, 14, 2641–2673, https://doi.org/10.5194/bg-14-2641-2017, https://doi.org/10.5194/bg-14-2641-2017, 2017
Marco M. Lehmann, Josie Geris, Ilja van Meerveld, Daniele Penna, Youri Rothfuss, Matteo Verdone, Pertti Ala-Aho, Matyas Arvai, Alise Babre, Philippe Balandier, Fabian Bernhard, Lukrecija Butorac, Simon Damien Carrière, Natalie C. Ceperley, Zuosinan Chen, Alicia Correa, Haoyu Diao, David Dubbert, Maren Dubbert, Fabio Ercoli, Marius G. Floriancic, Teresa E. Gimeno, Damien Gounelle, Frank Hagedorn, Christophe Hissler, Frédéric Huneau, Alberto Iraheta, Tamara Jakovljević, Nerantzis Kazakis, Zoltan Kern, Karl Knaebel, Johannes Kobler, Jiří Kocum, Charlotte Koeber, Gerbrand Koren, Angelika Kübert, Dawid Kupka, Samuel Le Gall, Aleksi Lehtonen, Thomas Leydier, Philippe Malagoli, Francesca Sofia Manca di Villahermosa, Chiara Marchina, Núria Martínez-Carreras, Nicolas Martin-StPaul, Hannu Marttila, Aline Meyer Oliveira, Gaël Monvoisin, Natalie Orlowski, Kadi Palmik-Das, Aurel Persoiu, Andrei Popa, Egor Prikaziuk, Cécile Quantin, Katja T. Rinne-Garmston, Clara Rohde, Martin Sanda, Matthias Saurer, Daniel Schulz, Michael Paul Stockinger, Christine Stumpp, Jean-Stéphane Venisse, Lukas Vlcek, Stylianos Voudouris, Björn Weeser, Mark E. Wilkinson, Giulia Zuecco, and Katrin Meusburger
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-409, https://doi.org/10.5194/essd-2024-409, 2024
Preprint under review for ESSD
Short summary
Short summary
This study describes a unique large-scale isotope dataset to study water dynamics in European forests. Researchers collected data from 40 beech and spruce forest sites in spring and summer 2023, using a standardized method to ensure consistency. The results show that water sources for trees change between seasons and vary by tree species. This large dataset offers valuable information for understanding plant water use, improving ecohydrological models, and mapping water cycles across Europe.
Jérôme Lopez-Saez, Christophe Corona, Lenka Slamova, Matthias Huss, Valérie Daux, Kurt Nicolussi, and Markus Stoffel
Clim. Past, 20, 1251–1267, https://doi.org/10.5194/cp-20-1251-2024, https://doi.org/10.5194/cp-20-1251-2024, 2024
Short summary
Short summary
Glaciers in the European Alps have been retreating since the 1850s. Monitoring glacier mass balance is vital for understanding global changes, but only a few glaciers have long-term data. This study aims to reconstruct the mass balance of the Silvretta Glacier in the Swiss Alps using stable isotopes and tree ring proxies. Results indicate increased glacier mass until the 19th century, followed by a sharp decline after the Little Ice Age with accelerated losses due to anthropogenic warming.
Nicolas Steeb, Virginia Ruiz-Villanueva, Alexandre Badoux, Christian Rickli, Andrea Mini, Markus Stoffel, and Dieter Rickenmann
Earth Surf. Dynam., 11, 487–509, https://doi.org/10.5194/esurf-11-487-2023, https://doi.org/10.5194/esurf-11-487-2023, 2023
Short summary
Short summary
Various models have been used in science and practice to estimate how much large wood (LW) can be supplied to rivers. This contribution reviews the existing models proposed in the last 35 years and compares two of the most recent spatially explicit models by applying them to 40 catchments in Switzerland. Differences in modelling results are discussed, and results are compared to available observations coming from a unique database.
Haoyu Diao, Philipp Schuler, Gregory R. Goldsmith, Rolf T. W. Siegwolf, Matthias Saurer, and Marco M. Lehmann
Hydrol. Earth Syst. Sci., 26, 5835–5847, https://doi.org/10.5194/hess-26-5835-2022, https://doi.org/10.5194/hess-26-5835-2022, 2022
Short summary
Short summary
We systematically investigate the uncertainties in previously observed isotopic offsets between plant source water and water extracted by cryogenic vacuum distillation. Our results show that hydrogen isotope exchange between organic material and water is a real phenomenon. However, the isotopic offsets are rather influenced by the actual amount of extracted water, sublimation, and evaporation. Our findings will help improve interpretations of ecohydrological processes in isotope-based studies.
Heli Huhtamaa, Markus Stoffel, and Christophe Corona
Clim. Past, 18, 2077–2092, https://doi.org/10.5194/cp-18-2077-2022, https://doi.org/10.5194/cp-18-2077-2022, 2022
Short summary
Short summary
Tree-ring data and written sources from northern Fennoscandia reveal that large 17th century eruptions had considerable climatic, agricultural, and socioeconomic impacts far away from the eruption locations. Yet, micro-regional investigation shows that the human consequences were commonly indirect, as various factors, like agro-ecosystems, resource availability, institutions, and personal networks, dictated how the volcanic cold pulses and related crop failures materialized on a societal level.
Helen Mackay, Gill Plunkett, Britta J. L. Jensen, Thomas J. Aubry, Christophe Corona, Woon Mi Kim, Matthew Toohey, Michael Sigl, Markus Stoffel, Kevin J. Anchukaitis, Christoph Raible, Matthew S. M. Bolton, Joseph G. Manning, Timothy P. Newfield, Nicola Di Cosmo, Francis Ludlow, Conor Kostick, Zhen Yang, Lisa Coyle McClung, Matthew Amesbury, Alistair Monteath, Paul D. M. Hughes, Pete G. Langdon, Dan Charman, Robert Booth, Kimberley L. Davies, Antony Blundell, and Graeme T. Swindles
Clim. Past, 18, 1475–1508, https://doi.org/10.5194/cp-18-1475-2022, https://doi.org/10.5194/cp-18-1475-2022, 2022
Short summary
Short summary
We assess the climatic and societal impact of the 852/3 CE Alaska Mount Churchill eruption using environmental reconstructions, historical records and climate simulations. The eruption is associated with significant Northern Hemisphere summer cooling, despite having only a moderate sulfate-based climate forcing potential; however, evidence of a widespread societal response is lacking. We discuss the difficulties of confirming volcanic impacts of a single eruption even when it is precisely dated.
Markus Stoffel, Christophe Corona, Francis Ludlow, Michael Sigl, Heli Huhtamaa, Emmanuel Garnier, Samuli Helama, Sébastien Guillet, Arlene Crampsie, Katrin Kleemann, Chantal Camenisch, Joseph McConnell, and Chaochao Gao
Clim. Past, 18, 1083–1108, https://doi.org/10.5194/cp-18-1083-2022, https://doi.org/10.5194/cp-18-1083-2022, 2022
Short summary
Short summary
The mid-17th century saw several volcanic eruptions, deteriorating climate, political instability, and famine in Europe, China, and Japan. We analyze impacts of the eruptions on climate but also study their socio-political context. We show that an unambiguous distinction of volcanic cooling or wetting from natural climate variability is not straightforward. It also shows that political instability, poor harvest, and famine cannot only be attributed to volcanic climatic impacts.
Sam White, Eduardo Moreno-Chamarro, Davide Zanchettin, Heli Huhtamaa, Dagomar Degroot, Markus Stoffel, and Christophe Corona
Clim. Past, 18, 739–757, https://doi.org/10.5194/cp-18-739-2022, https://doi.org/10.5194/cp-18-739-2022, 2022
Short summary
Short summary
This study examines whether the 1600 Huaynaputina volcano eruption triggered persistent cooling in the North Atlantic. It compares previous paleoclimate simulations with new climate reconstructions from natural proxies and historical documents and finds that the reconstructions are consistent with, but do not support, an eruption trigger for persistent cooling. The study also analyzes societal impacts of climatic change in ca. 1600 and the use of historical observations in model–data comparison.
Luuk Dorren, Frédéric Berger, Franck Bourrier, Nicolas Eckert, Charalampos Saroglou, Massimiliano Schwarz, Markus Stoffel, Daniel Trappmann, Hans-Heini Utelli, and Christine Moos
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-32, https://doi.org/10.5194/nhess-2022-32, 2022
Publication in NHESS not foreseen
Short summary
Short summary
In the daily practice of rockfall hazard analysis, trajectory simulations are used to delimit runout zones. To do so, the expert needs to separate "realistic" from "unrealistic" simulated groups of trajectories. This is often done on the basis of reach probability values. This paper provides a basis for choosing a reach probability threshold value for delimiting the rockfall runout zone, based on recordings and simulations of recent rockfall events at 18 active rockfall sites in Europe.
Guoxiong Zheng, Martin Mergili, Adam Emmer, Simon Allen, Anming Bao, Hao Guo, and Markus Stoffel
The Cryosphere, 15, 3159–3180, https://doi.org/10.5194/tc-15-3159-2021, https://doi.org/10.5194/tc-15-3159-2021, 2021
Short summary
Short summary
This paper reports on a recent glacial lake outburst flood (GLOF) event that occurred on 26 June 2020 in Tibet, China. We find that this event was triggered by a debris landslide from a steep lateral moraine. As the relationship between the long-term evolution of the lake and its likely landslide trigger revealed by a time series of satellite images, this case provides strong evidence that it can be plausibly linked to anthropogenic climate change.
Rafael Poyatos, Víctor Granda, Víctor Flo, Mark A. Adams, Balázs Adorján, David Aguadé, Marcos P. M. Aidar, Scott Allen, M. Susana Alvarado-Barrientos, Kristina J. Anderson-Teixeira, Luiza Maria Aparecido, M. Altaf Arain, Ismael Aranda, Heidi Asbjornsen, Robert Baxter, Eric Beamesderfer, Z. Carter Berry, Daniel Berveiller, Bethany Blakely, Johnny Boggs, Gil Bohrer, Paul V. Bolstad, Damien Bonal, Rosvel Bracho, Patricia Brito, Jason Brodeur, Fernando Casanoves, Jérôme Chave, Hui Chen, Cesar Cisneros, Kenneth Clark, Edoardo Cremonese, Hongzhong Dang, Jorge S. David, Teresa S. David, Nicolas Delpierre, Ankur R. Desai, Frederic C. Do, Michal Dohnal, Jean-Christophe Domec, Sebinasi Dzikiti, Colin Edgar, Rebekka Eichstaedt, Tarek S. El-Madany, Jan Elbers, Cleiton B. Eller, Eugénie S. Euskirchen, Brent Ewers, Patrick Fonti, Alicia Forner, David I. Forrester, Helber C. Freitas, Marta Galvagno, Omar Garcia-Tejera, Chandra Prasad Ghimire, Teresa E. Gimeno, John Grace, André Granier, Anne Griebel, Yan Guangyu, Mark B. Gush, Paul J. Hanson, Niles J. Hasselquist, Ingo Heinrich, Virginia Hernandez-Santana, Valentine Herrmann, Teemu Hölttä, Friso Holwerda, James Irvine, Supat Isarangkool Na Ayutthaya, Paul G. Jarvis, Hubert Jochheim, Carlos A. Joly, Julia Kaplick, Hyun Seok Kim, Leif Klemedtsson, Heather Kropp, Fredrik Lagergren, Patrick Lane, Petra Lang, Andrei Lapenas, Víctor Lechuga, Minsu Lee, Christoph Leuschner, Jean-Marc Limousin, Juan Carlos Linares, Maj-Lena Linderson, Anders Lindroth, Pilar Llorens, Álvaro López-Bernal, Michael M. Loranty, Dietmar Lüttschwager, Cate Macinnis-Ng, Isabelle Maréchaux, Timothy A. Martin, Ashley Matheny, Nate McDowell, Sean McMahon, Patrick Meir, Ilona Mészáros, Mirco Migliavacca, Patrick Mitchell, Meelis Mölder, Leonardo Montagnani, Georgianne W. Moore, Ryogo Nakada, Furong Niu, Rachael H. Nolan, Richard Norby, Kimberly Novick, Walter Oberhuber, Nikolaus Obojes, A. Christopher Oishi, Rafael S. Oliveira, Ram Oren, Jean-Marc Ourcival, Teemu Paljakka, Oscar Perez-Priego, Pablo L. Peri, Richard L. Peters, Sebastian Pfautsch, William T. Pockman, Yakir Preisler, Katherine Rascher, George Robinson, Humberto Rocha, Alain Rocheteau, Alexander Röll, Bruno H. P. Rosado, Lucy Rowland, Alexey V. Rubtsov, Santiago Sabaté, Yann Salmon, Roberto L. Salomón, Elisenda Sánchez-Costa, Karina V. R. Schäfer, Bernhard Schuldt, Alexandr Shashkin, Clément Stahl, Marko Stojanović, Juan Carlos Suárez, Ge Sun, Justyna Szatniewska, Fyodor Tatarinov, Miroslav Tesař, Frank M. Thomas, Pantana Tor-ngern, Josef Urban, Fernando Valladares, Christiaan van der Tol, Ilja van Meerveld, Andrej Varlagin, Holm Voigt, Jeffrey Warren, Christiane Werner, Willy Werner, Gerhard Wieser, Lisa Wingate, Stan Wullschleger, Koong Yi, Roman Zweifel, Kathy Steppe, Maurizio Mencuccini, and Jordi Martínez-Vilalta
Earth Syst. Sci. Data, 13, 2607–2649, https://doi.org/10.5194/essd-13-2607-2021, https://doi.org/10.5194/essd-13-2607-2021, 2021
Short summary
Short summary
Transpiration is a key component of global water balance, but it is poorly constrained from available observations. We present SAPFLUXNET, the first global database of tree-level transpiration from sap flow measurements, containing 202 datasets and covering a wide range of ecological conditions. SAPFLUXNET and its accompanying R software package
sapfluxnetrwill facilitate new data syntheses on the ecological factors driving water use and drought responses of trees and forests.
Lasse Sander, Alexander Kirdyanov, Alan Crivellaro, and Ulf Büntgen
Geochronology, 3, 171–180, https://doi.org/10.5194/gchron-3-171-2021, https://doi.org/10.5194/gchron-3-171-2021, 2021
Short summary
Short summary
Coastal deposits can help us reconstruct the timing of climate-induced changes in the rates of past landscape evolution. In this study, we show that consistent ages for Holocene beach shorelines can be obtained by dating driftwood deposits. This finding is surprising, as the wood travels long distances through river systems before reaching the Arctic Ocean. The possibility to establish precise age control is a prerequisite to further investigate the regional drivers of long-term coastal change.
Peter M. Abbott, Gill Plunkett, Christophe Corona, Nathan J. Chellman, Joseph R. McConnell, John R. Pilcher, Markus Stoffel, and Michael Sigl
Clim. Past, 17, 565–585, https://doi.org/10.5194/cp-17-565-2021, https://doi.org/10.5194/cp-17-565-2021, 2021
Short summary
Short summary
Volcanic eruptions are a key source of climatic variability, and greater understanding of their past influence will increase the accuracy of future projections. We use volcanic ash from a 1477 CE Icelandic eruption in a Greenlandic ice core as a temporal fix point to constrain the timing of two eruptions in the 1450s CE and their climatic impact. Despite being the most explosive Icelandic eruption in the last 1200 years, the 1477 CE event had a limited impact on Northern Hemisphere climate.
Andreas Kääb, Tazio Strozzi, Tobias Bolch, Rafael Caduff, Håkon Trefall, Markus Stoffel, and Alexander Kokarev
The Cryosphere, 15, 927–949, https://doi.org/10.5194/tc-15-927-2021, https://doi.org/10.5194/tc-15-927-2021, 2021
Short summary
Short summary
We present a map of rock glacier motion over parts of the northern Tien Shan and time series of surface speed for six of them over almost 70 years.
This is by far the most detailed investigation of this kind available for central Asia.
We detect a 2- to 4-fold increase in rock glacier motion between the 1950s and present, which we attribute to atmospheric warming.
Relative to the shrinking glaciers in the region, this implies increased importance of periglacial sediment transport.
Bronwen L. Konecky, Nicholas P. McKay, Olga V. Churakova (Sidorova), Laia Comas-Bru, Emilie P. Dassié, Kristine L. DeLong, Georgina M. Falster, Matt J. Fischer, Matthew D. Jones, Lukas Jonkers, Darrell S. Kaufman, Guillaume Leduc, Shreyas R. Managave, Belen Martrat, Thomas Opel, Anais J. Orsi, Judson W. Partin, Hussein R. Sayani, Elizabeth K. Thomas, Diane M. Thompson, Jonathan J. Tyler, Nerilie J. Abram, Alyssa R. Atwood, Olivier Cartapanis, Jessica L. Conroy, Mark A. Curran, Sylvia G. Dee, Michael Deininger, Dmitry V. Divine, Zoltán Kern, Trevor J. Porter, Samantha L. Stevenson, Lucien von Gunten, and Iso2k Project Members
Earth Syst. Sci. Data, 12, 2261–2288, https://doi.org/10.5194/essd-12-2261-2020, https://doi.org/10.5194/essd-12-2261-2020, 2020
Michael Fehlmann, Mario Rohrer, Annakaisa von Lerber, and Markus Stoffel
Atmos. Meas. Tech., 13, 4683–4698, https://doi.org/10.5194/amt-13-4683-2020, https://doi.org/10.5194/amt-13-4683-2020, 2020
Short summary
Short summary
The Thies disdrometer is used to monitor precipitation intensity and its phase and thus may provide valuable information for the management of meteorological and hydrological risks. In this study, we characterize biases of this instrument using common reference instruments at a pre-alpine study site in Switzerland. We find a systematic underestimation of liquid precipitation amounts and suggest possible reasons for and corrections to this bias and relate these findings to other study sites.
Lara Klippel, Scott St. George, Ulf Büntgen, Paul J. Krusic, and Jan Esper
Clim. Past, 16, 729–742, https://doi.org/10.5194/cp-16-729-2020, https://doi.org/10.5194/cp-16-729-2020, 2020
Short summary
Short summary
The PAGES2k multiproxy database offers a new and unique opportunity to study the lack of long-term cooling trends in tree-ring data, which can be expected in Northern Hemisphere summers, particularly in the high latitudes, due to orbitally driven changes in solar irradiance. Tests of different influencing factors reveal that preserving millennial-scale cooling trends related to orbital forcing is not feasible in most tree-ring datasets.
Scott T. Allen, James W. Kirchner, Sabine Braun, Rolf T. W. Siegwolf, and Gregory R. Goldsmith
Hydrol. Earth Syst. Sci., 23, 1199–1210, https://doi.org/10.5194/hess-23-1199-2019, https://doi.org/10.5194/hess-23-1199-2019, 2019
Short summary
Short summary
We used stable isotopes of xylem water to study differences in the seasonal origin of water in more than 900 individual trees from three dominant species in 182 Swiss forested sites. We discovered that midsummer transpiration was mostly supplied by winter precipitation across diverse humid climates. Our findings provide new insights into tree vulnerability to droughts, transport of water (and thus solutes) in soils, and the climatic information conveyed by plant-tissue isotopes.
Petr Dobrovolný, Rudolf Brázdil, Miroslav Trnka, Michal Rybníček, Tomáš Kolář, Martin Možný, Tomáš Kyncl, and Ulf Büntgen
Clim. Past Discuss., https://doi.org/10.5194/cp-2018-160, https://doi.org/10.5194/cp-2018-160, 2018
Preprint withdrawn
Short summary
Short summary
Careful selection of available moisture-sensitive proxies resulted in a new reconstruction of short-term drought over the Czech Republic during the last 500 years. It consists of a synthesis of four different proxies and its high reconstruction skill demonstrates the clear advantage of a multi-proxy approach. The new chronology of Z-index shows that central Europe experienced the most severe 30-year late spring–early summer period of drought for the last 500 years.
Virginia Ruiz-Villanueva, Alexandre Badoux, Dieter Rickenmann, Martin Böckli, Salome Schläfli, Nicolas Steeb, Markus Stoffel, and Christian Rickli
Earth Surf. Dynam., 6, 1115–1137, https://doi.org/10.5194/esurf-6-1115-2018, https://doi.org/10.5194/esurf-6-1115-2018, 2018
Daniele Penna, Luisa Hopp, Francesca Scandellari, Scott T. Allen, Paolo Benettin, Matthias Beyer, Josie Geris, Julian Klaus, John D. Marshall, Luitgard Schwendenmann, Till H. M. Volkmann, Jana von Freyberg, Anam Amin, Natalie Ceperley, Michael Engel, Jay Frentress, Yamuna Giambastiani, Jeff J. McDonnell, Giulia Zuecco, Pilar Llorens, Rolf T. W. Siegwolf, Todd E. Dawson, and James W. Kirchner
Biogeosciences, 15, 6399–6415, https://doi.org/10.5194/bg-15-6399-2018, https://doi.org/10.5194/bg-15-6399-2018, 2018
Short summary
Short summary
Understanding how water flows through ecosystems is needed to provide society and policymakers with the scientific background to manage water resources sustainably. Stable isotopes of hydrogen and oxygen in water are a powerful tool for tracking water fluxes, although the heterogeneity of natural systems and practical methodological issues still limit their full application. Here, we examine the challenges in this research field and highlight new perspectives based on interdisciplinary research.
Natalie Orlowski, Lutz Breuer, Nicolas Angeli, Pascal Boeckx, Christophe Brumbt, Craig S. Cook, Maren Dubbert, Jens Dyckmans, Barbora Gallagher, Benjamin Gralher, Barbara Herbstritt, Pedro Hervé-Fernández, Christophe Hissler, Paul Koeniger, Arnaud Legout, Chandelle Joan Macdonald, Carlos Oyarzún, Regine Redelstein, Christof Seidler, Rolf Siegwolf, Christine Stumpp, Simon Thomsen, Markus Weiler, Christiane Werner, and Jeffrey J. McDonnell
Hydrol. Earth Syst. Sci., 22, 3619–3637, https://doi.org/10.5194/hess-22-3619-2018, https://doi.org/10.5194/hess-22-3619-2018, 2018
Short summary
Short summary
To extract water from soils for isotopic analysis, cryogenic water extraction is the most widely used removal technique. This work presents results from a worldwide laboratory intercomparison test of cryogenic extraction systems. Our results showed large differences in retrieved isotopic signatures among participating laboratories linked to interactions between soil type and properties, system setup, extraction efficiency, extraction system leaks, and each lab’s internal accuracy.
Martin Beniston, Daniel Farinotti, Markus Stoffel, Liss M. Andreassen, Erika Coppola, Nicolas Eckert, Adriano Fantini, Florie Giacona, Christian Hauck, Matthias Huss, Hendrik Huwald, Michael Lehning, Juan-Ignacio López-Moreno, Jan Magnusson, Christoph Marty, Enrique Morán-Tejéda, Samuel Morin, Mohamed Naaim, Antonello Provenzale, Antoine Rabatel, Delphine Six, Johann Stötter, Ulrich Strasser, Silvia Terzago, and Christian Vincent
The Cryosphere, 12, 759–794, https://doi.org/10.5194/tc-12-759-2018, https://doi.org/10.5194/tc-12-759-2018, 2018
Short summary
Short summary
This paper makes a rather exhaustive overview of current knowledge of past, current, and future aspects of cryospheric issues in continental Europe and makes a number of reflections of areas of uncertainty requiring more attention in both scientific and policy terms. The review paper is completed by a bibliography containing 350 recent references that will certainly be of value to scholars engaged in the fields of glacier, snow, and permafrost research.
Ulf Büntgen and Paul J. Krusic
Biogeosciences Discuss., https://doi.org/10.5194/bg-2017-265, https://doi.org/10.5194/bg-2017-265, 2017
Revised manuscript not accepted
Short summary
Short summary
Changes in autumnal climate affecting the diversity and productivity of the ecosphere are arguably as important as vernal climatic changes. Here we present three examples of innovative, recent research in wildlife biology (big-game hunting), wood anatomy (tree-ring formation) and mycology (mushroom inventory), which refine our ability to better understand how varying environmental and climatic conditions impact the phenology, productiviy and diversity of different organisms in autumn.
Kathrin M. Keller, Sebastian Lienert, Anil Bozbiyik, Thomas F. Stocker, Olga V. Churakova (Sidorova), David C. Frank, Stefan Klesse, Charles D. Koven, Markus Leuenberger, William J. Riley, Matthias Saurer, Rolf Siegwolf, Rosemarie B. Weigt, and Fortunat Joos
Biogeosciences, 14, 2641–2673, https://doi.org/10.5194/bg-14-2641-2017, https://doi.org/10.5194/bg-14-2641-2017, 2017
Arndt Piayda, Maren Dubbert, Rolf Siegwolf, Matthias Cuntz, and Christiane Werner
Biogeosciences, 14, 2293–2306, https://doi.org/10.5194/bg-14-2293-2017, https://doi.org/10.5194/bg-14-2293-2017, 2017
Short summary
Short summary
Complex plant–soil interactions in the hydrological cycle of a Mediterranean cork oak ecosystem are investigated with stable water isotopes. Trees largely foster infiltration due to altered microclimatic conditions below crowns but compete with understorey plants for the same water source in deeper soil layers. The presence of understorey plants does not alter water losses compared to bare soil, but water utilization for carbon sequestration and nitrogen fixation is largely increased.
Christine Moos, Luuk Dorren, and Markus Stoffel
Nat. Hazards Earth Syst. Sci., 17, 291–304, https://doi.org/10.5194/nhess-17-291-2017, https://doi.org/10.5194/nhess-17-291-2017, 2017
Short summary
Short summary
The goal of this study was to quantify the effect of forests on the occurrence frequency and intensity of rockfalls. This was done based on 3-D rockfall simulations for different forest and non-forest scenarios on a virtual slope. The rockfall frequency and intensity below forested slopes is significantly reduced. Statistical models provide information on how specific forest and terrain parameters influence this reduction and they allow prediction and quantification of the forest effect.
Sonja G. Keel, Fortunat Joos, Renato Spahni, Matthias Saurer, Rosemarie B. Weigt, and Stefan Klesse
Biogeosciences, 13, 3869–3886, https://doi.org/10.5194/bg-13-3869-2016, https://doi.org/10.5194/bg-13-3869-2016, 2016
Short summary
Short summary
Records of stable oxygen isotope ratios in tree rings are valuable tools for reconstructing past climatic conditions. So far, they have not been used in global dynamic vegetation models. Here we present a model that simulates oxygen isotope ratios in tree rings. Our results compare well with measurements performed in European forests. The model is useful for studying oxygen isotope patterns of tree ring cellulose at large spatial and temporal scales.
O. Bouriaud, M. Teodosiu, A. V. Kirdyanov, and C. Wirth
Biogeosciences, 12, 6205–6217, https://doi.org/10.5194/bg-12-6205-2015, https://doi.org/10.5194/bg-12-6205-2015, 2015
Short summary
Short summary
Annual variations in wood density partially compensated ring-width variations in Picea abies. If neglected, annual biomass increment was underestimated by up to 15%. The relative prediction interval of plot-level annual biomass increment ranged from 20 to 40%. The uncertainty related to the allometric models parameters was only about 10%. The errors related to variations in wood density were much larger, the biggest component being the variability between trees.
M. Jochner, J. M. Turowski, A. Badoux, M. Stoffel, and C. Rickli
Earth Surf. Dynam., 3, 311–320, https://doi.org/10.5194/esurf-3-311-2015, https://doi.org/10.5194/esurf-3-311-2015, 2015
Short summary
Short summary
The export of coarse particulate organic matter (CPOM) from mountain catchments seems to be strongly linked to rising discharge, but the mechanism leading to this is unclear. We show that log jams in a steep headwater stream are an effective barrier for CPOM export. Exceptional discharge events play a dual role: First, they destroy existing jams, releasing stored material. Second, they intensify channel--hillslope coupling, thereby recruiting logs to the channel, around which new jams can form.
M. S. Studer, R. T. W. Siegwolf, M. Leuenberger, and S. Abiven
Biogeosciences, 12, 1865–1879, https://doi.org/10.5194/bg-12-1865-2015, https://doi.org/10.5194/bg-12-1865-2015, 2015
Short summary
Short summary
We present a new technique to label organic matter (OM) at its place of formation by the application of 13C, 18O and 2H through the gaseous phase. The label diffused into leaves was incorporated into assimilates and was detected in plant tissues. This technique can be applied in soil sciences, e.g. to trace the decomposition pathways of soil OM inputs, or in plant physiology and palaeoclimatic reconstruction, e.g. to further investigate the origin of the 18O and 2H signal in tree ring cellulose.
H. Frey, H. Machguth, M. Huss, C. Huggel, S. Bajracharya, T. Bolch, A. Kulkarni, A. Linsbauer, N. Salzmann, and M. Stoffel
The Cryosphere, 8, 2313–2333, https://doi.org/10.5194/tc-8-2313-2014, https://doi.org/10.5194/tc-8-2313-2014, 2014
Short summary
Short summary
Existing methods (area–volume relations, a slope-dependent volume estimation method, and two ice-thickness distribution models) are used to estimate the ice reserves stored in Himalayan–Karakoram glaciers. Resulting volumes range from 2955–4737km³. Results from the ice-thickness distribution models agree well with local measurements; volume estimates from area-related relations exceed the estimates from the other approaches. Evidence on the effect of the selected method on results is provided.
M. S. Studer, R. T. W. Siegwolf, and S. Abiven
Biogeosciences, 11, 1637–1648, https://doi.org/10.5194/bg-11-1637-2014, https://doi.org/10.5194/bg-11-1637-2014, 2014
Related subject area
Subject: Proxy Use-Development-Validation | Archive: Terrestrial Archives | Timescale: Holocene
A continental reconstruction of hydroclimatic variability in South America during the past 2000 years
A Holocene history of climate, fire, landscape evolution, and human activity in northeastern Iceland
A global compilation of diatom silica oxygen isotope records from lake sediment – trends and implications for climate reconstruction
BrGDGT-based seasonal paleotemperature reconstruction for the last 15 000 years from a shallow lake on the eastern Tibetan Plateau
Reconstructing 15 000 years of southern France temperatures from coupled pollen and molecular (branched glycerol dialkyl glycerol tetraether) markers (Canroute, Massif Central)
Pollen-based reconstructions of Holocene climate trends in the eastern Mediterranean region
Spatiotemporal Intertropical Convergence Zone dynamics during the last 3 millennia in northeastern Brazil and related impacts in modern human history
Holocene climates of the Iberian Peninsula: pollen-based reconstructions of changes in the west–east gradient of temperature and moisture
Holocene climate and oceanography of the coastal Western United States and California Current System
Reconstructing Holocene temperatures in time and space using paleoclimate data assimilation
Long-term trends in diatom diversity and palaeoproductivity: a 16 000-year multidecadal record from Lake Baikal, southern Siberia
A 406-year non-growing-season precipitation reconstruction in the southeastern Tibetan Plateau
Climatic variations during the Holocene inferred from radiocarbon and stable carbon isotopes in speleothems from a high-alpine cave
Winter–spring warming in the North Atlantic during the last 2000 years: evidence from southwest Iceland
Climate reconstructions based on GDGT and pollen surface datasets from Mongolia and Baikal area: calibrations and applicability to extremely cold–dry environments over the Late Holocene
Sampling density and date along with species selection influence spatial representation of tree-ring reconstructions
Changes in high-intensity precipitation on the northern Apennines (Italy) as revealed by multidisciplinary data over the last 9000 years
Neoglacial trends in diatom dynamics from a small alpine lake in the Qinling mountains of central China
Centennial- to millennial-scale monsoon changes since the last deglaciation linked to solar activities and North Atlantic cooling
Algal lipids reveal unprecedented warming rates in alpine areas of SW Europe during the industrial period
Reconstructing seasonality through stable-isotope and trace-element analyses of the Proserpine stalagmite, Han-sur-Lesse cave, Belgium: indications for climate-driven changes during the last 400 years
Two millennia of Main region (southern Germany) hydroclimate variability
Combining a pollen and macrofossil synthesis with climate simulations for spatial reconstructions of European climate using Bayesian filtering
Lignin oxidation products as a potential proxy for vegetation and environmental changes in speleothems and cave drip water – a first record from the Herbstlabyrinth, central Germany
How dry was the Younger Dryas? Evidence from a coupled δ2H–δ18O biomarker paleohygrometer applied to the Gemündener Maar sediments, Western Eifel, Germany
The 4.2 ka BP Event in the Mediterranean region: an overview
Technical note: Optimizing the utility of combined GPR, OSL, and Lidar (GOaL) to extract paleoenvironmental records and decipher shoreline evolution
The onset of neoglaciation in Iceland and the 4.2 ka event
Hydroclimatic variations in southeastern China during the 4.2 ka event reflected by stalagmite records
Fire, vegetation, and Holocene climate in a southeastern Tibetan lake: a multi-biomarker reconstruction from Paru Co
Climate impact on the development of Pre-Classic Maya civilisation
Synchronizing 10Be in two varved lake sediment records to IntCal13 14C during three grand solar minima
Technical note: Open-paleo-data implementation pilot – the PAGES 2k special issue
A chironomid-based record of temperature variability during the past 4000 years in northern China and its possible societal implications
Insights into Atlantic multidecadal variability using the Last Millennium Reanalysis framework
Three distinct Holocene intervals of stalagmite deposition and nondeposition revealed in NW Madagascar, and their paleoclimate implications
Examining bias in pollen-based quantitative climate reconstructions induced by human impact on vegetation in China
A dual-biomarker approach for quantification of changes in relative humidity from sedimentary lipid D∕H ratios
Pseudo-proxy tests of the analogue method to reconstruct spatially resolved global temperature during the Common Era
Development and evaluation of a system of proxy data assimilation for paleoclimate reconstruction
A chironomid-based mean July temperature inference model from the south-east margin of the Tibetan Plateau, China
Assessing performance and seasonal bias of pollen-based climate reconstructions in a perfect model world
Quantitative reconstruction of summer precipitation using a mid-Holocene δ13C common millet record from Guanzhong Basin, northern China
North Atlantic Oscillation controls on oxygen and hydrogen isotope gradients in winter precipitation across Europe; implications for palaeoclimate studies
A 368-year maximum temperature reconstruction based on tree-ring data in the northwestern Sichuan Plateau (NWSP), China
Inferring late-Holocene climate in the Ecuadorian Andes using a chironomid-based temperature inference model
A high-altitude peatland record of environmental changes in the NW Argentine Andes (24 ° S) over the last 2100 years
Technical note: The Linked Paleo Data framework – a common tongue for paleoclimatology
A Bayesian hierarchical model for reconstructing relative sea level: from raw data to rates of change
Inferring climate variability from nonlinear proxies: application to palaeo-ENSO studies
Mathurin A. Choblet, Janica C. Bühler, Valdir F. Novello, Nathan J. Steiger, and Kira Rehfeld
Clim. Past, 20, 2117–2141, https://doi.org/10.5194/cp-20-2117-2024, https://doi.org/10.5194/cp-20-2117-2024, 2024
Short summary
Short summary
Past climate reconstructions are essential for understanding climate mechanisms and drivers. Our focus is on the South American continent over the past 2000 years. We offer a new reconstruction that particularly utilizes data from speleothems, previously absent from continent-wide reconstructions. We use paleoclimate data assimilation, a reconstruction method that combines information from climate archives and climate simulations.
Nicolò Ardenghi, David J. Harning, Jonathan H. Raberg, Brooke R. Holman, Thorvaldur Thordarson, Áslaug Geirsdóttir, Gifford H. Miller, and Julio Sepúlveda
Clim. Past, 20, 1087–1123, https://doi.org/10.5194/cp-20-1087-2024, https://doi.org/10.5194/cp-20-1087-2024, 2024
Short summary
Short summary
Analysing a sediment record from Stóra Viðarvatn (NE Iceland), we reveal how natural factors and human activities influenced environmental changes (erosion, wildfires) over the last 11 000 years. We found increased fire activity around 3000 and 1500 years ago, predating human settlement, likely driven by natural factors like precipitation shifts. Declining summer temperatures increased erosion vulnerability, exacerbated by farming and animal husbandry, which in turn may have reduced wildfires.
Philip Meister, Anne Alexandre, Hannah Bailey, Philip Barker, Boris K. Biskaborn, Ellie Broadman, Rosine Cartier, Bernhard Chapligin, Martine Couapel, Jonathan R. Dean, Bernhard Diekmann, Poppy Harding, Andrew C. G. Henderson, Armand Hernandez, Ulrike Herzschuh, Svetlana S. Kostrova, Jack Lacey, Melanie J. Leng, Andreas Lücke, Anson W. Mackay, Eniko Katalin Magyari, Biljana Narancic, Cécile Porchier, Gunhild Rosqvist, Aldo Shemesh, Corinne Sonzogni, George E. A. Swann, Florence Sylvestre, and Hanno Meyer
Clim. Past, 20, 363–392, https://doi.org/10.5194/cp-20-363-2024, https://doi.org/10.5194/cp-20-363-2024, 2024
Short summary
Short summary
This paper presents the first comprehensive compilation of diatom oxygen isotope records in lake sediments (δ18OBSi), supported by lake basin parameters. We infer the spatial and temporal coverage of δ18OBSi records and discuss common hemispheric trends on centennial and millennial timescales. Key results are common patterns for hydrologically open lakes in Northern Hemisphere extratropical regions during the Holocene corresponding to known climatic epochs, i.e. the Holocene Thermal Maximum.
Xiaohuan Hou, Nannan Wang, Zhe Sun, Kan Yuan, Xianyong Cao, and Juzhi Hou
Clim. Past, 20, 335–348, https://doi.org/10.5194/cp-20-335-2024, https://doi.org/10.5194/cp-20-335-2024, 2024
Short summary
Short summary
We present an ice-free season temperature based on brGDGTs over last 15 kyr on the eastern Tibetan Plateau (TP). The result shows that Holocene Thermal Maximum occurred during 8–3.5 ka, which lags behind pollen-based temperature recorded in same core, indicating a significant seasonal bias between different proxies. We also investigated previously published brGDGT-based temperatures on the TP to determine the pattern of Holocene temperature changes and possible reasons for the diverse records.
Léa d'Oliveira, Lucas Dugerdil, Guillemette Ménot, Allowen Evin, Serge D. Muller, Salomé Ansanay-Alex, Julien Azuara, Colline Bonnet, Laurent Bremond, Mehmet Shah, and Odile Peyron
Clim. Past, 19, 2127–2156, https://doi.org/10.5194/cp-19-2127-2023, https://doi.org/10.5194/cp-19-2127-2023, 2023
Short summary
Short summary
In southern Europe, Holocene climate variability is characterized by a strong heterogeneity whose patterns are still poorly understood. Here, a multi-proxy approach (pollen and biomarkers) is applied to the Canroute sequence to reconstruct the climatic variation over the last 15 000 years in southern Massif Central, France. Results reveal that reconstructions of regional climate trends notably differ depending on proxies and sites, notably concerning the presence of a Holocene thermal maximum.
Esmeralda Cruz-Silva, Sandy P. Harrison, I. Colin Prentice, Elena Marinova, Patrick J. Bartlein, Hans Renssen, and Yurui Zhang
Clim. Past, 19, 2093–2108, https://doi.org/10.5194/cp-19-2093-2023, https://doi.org/10.5194/cp-19-2093-2023, 2023
Short summary
Short summary
We examined 71 pollen records (12.3 ka to present) in the eastern Mediterranean, reconstructing climate changes. Over 9000 years, winters gradually warmed due to orbital factors. Summer temperatures peaked at 4.5–5 ka, likely declining because of ice sheets. Moisture increased post-11 kyr, remaining high from 10–6 kyr before a slow decrease. Climate models face challenges in replicating moisture transport.
Giselle Utida, Francisco W. Cruz, Mathias Vuille, Angela Ampuero, Valdir F. Novello, Jelena Maksic, Gilvan Sampaio, Hai Cheng, Haiwei Zhang, Fabio Ramos Dias de Andrade, and R. Lawrence Edwards
Clim. Past, 19, 1975–1992, https://doi.org/10.5194/cp-19-1975-2023, https://doi.org/10.5194/cp-19-1975-2023, 2023
Short summary
Short summary
We reconstruct the Intertropical Convergence Zone (ITCZ) behavior during the past 3000 years over northeastern Brazil based on oxygen stable isotopes of stalagmites. Paleoclimate changes were mainly forced by the tropical South Atlantic and tropical Pacific sea surface temperature variability. We describe an ITCZ zonal behavior active around 1100 CE and the period from 1500 to 1750 CE. The dataset also records historical droughts that affected modern human population in this area of Brazil.
Mengmeng Liu, Yicheng Shen, Penelope González-Sampériz, Graciela Gil-Romera, Cajo J. F. ter Braak, Iain Colin Prentice, and Sandy P. Harrison
Clim. Past, 19, 803–834, https://doi.org/10.5194/cp-19-803-2023, https://doi.org/10.5194/cp-19-803-2023, 2023
Short summary
Short summary
We reconstructed the Holocene climates in the Iberian Peninsula using a large pollen data set and found that the west–east moisture gradient was much flatter than today. We also found that the winter was much colder, which can be expected from the low winter insolation during the Holocene. However, summer temperature did not follow the trend of summer insolation, instead, it was strongly correlated with moisture.
Hannah M. Palmer, Veronica Padilla Vriesman, Caitlin M. Livsey, Carina R. Fish, and Tessa M. Hill
Clim. Past, 19, 199–232, https://doi.org/10.5194/cp-19-199-2023, https://doi.org/10.5194/cp-19-199-2023, 2023
Short summary
Short summary
To better understand and contextualize modern climate change, this systematic review synthesizes climate and oceanographic patterns in the Western United States and California Current System through the most recent 11.75 kyr. Through a literature review and coded analysis of past studies, we identify distinct environmental phases through time and linkages between marine and terrestrial systems. We explore climate change impacts on ecosystems and human–environment interactions.
Michael P. Erb, Nicholas P. McKay, Nathan Steiger, Sylvia Dee, Chris Hancock, Ruza F. Ivanovic, Lauren J. Gregoire, and Paul Valdes
Clim. Past, 18, 2599–2629, https://doi.org/10.5194/cp-18-2599-2022, https://doi.org/10.5194/cp-18-2599-2022, 2022
Short summary
Short summary
To look at climate over the past 12 000 years, we reconstruct spatial temperature using natural climate archives and information from model simulations. Our results show mild global mean warmth around 6000 years ago, which differs somewhat from past reconstructions. Undiagnosed seasonal biases in the data could explain some of the observed temperature change, but this still would not explain the large difference between many reconstructions and climate models over this period.
Anson W. Mackay, Vivian A. Felde, David W. Morley, Natalia Piotrowska, Patrick Rioual, Alistair W. R. Seddon, and George E. A. Swann
Clim. Past, 18, 363–380, https://doi.org/10.5194/cp-18-363-2022, https://doi.org/10.5194/cp-18-363-2022, 2022
Short summary
Short summary
We investigated the diversity of algae called diatoms in Lake Baikal, the oldest and deepest lake in the world, because algae sit at the base of aquatic foodwebs and provide energy (in the form of primary production) for other organisms to use. Diatom diversity and primary production have been influenced by both long-term and abrupt climate change over the past 16 000 years. The shape of these responses appears to be time-period specific.
Maierdang Keyimu, Zongshan Li, Bojie Fu, Guohua Liu, Fanjiang Zeng, Weiliang Chen, Zexin Fan, Keyan Fang, Xiuchen Wu, and Xiaochun Wang
Clim. Past, 17, 2381–2392, https://doi.org/10.5194/cp-17-2381-2021, https://doi.org/10.5194/cp-17-2381-2021, 2021
Short summary
Short summary
We created a residual tree-ring width chronology and reconstructed non-growth-season precipitation (NGSP) over the period spanning 1600–2005 in the southeastern Tibetan Plateau (SETP), China. Reconstruction model verification as well as similar variations of NGSP reconstruction and Palmer Drought Severity Index reconstructions from the surrounding region indicate the reliability of the present reconstruction. Our reconstruction is representative of NGSP variability of a large region in the SETP.
Caroline Welte, Jens Fohlmeister, Melina Wertnik, Lukas Wacker, Bodo Hattendorf, Timothy I. Eglinton, and Christoph Spötl
Clim. Past, 17, 2165–2177, https://doi.org/10.5194/cp-17-2165-2021, https://doi.org/10.5194/cp-17-2165-2021, 2021
Short summary
Short summary
Stalagmites are valuable climate archives, but unlike other proxies the use of stable carbon isotopes (δ13C) is still difficult. A stalagmite from the Austrian Alps was analyzed using a new laser ablation method for fast radiocarbon (14C) analysis. This allowed 14C and δ13C to be combined, showing that besides soil and bedrock a third source is contributing during periods of warm, wet climate: old organic matter.
Nora Richter, James M. Russell, Johanna Garfinkel, and Yongsong Huang
Clim. Past, 17, 1363–1383, https://doi.org/10.5194/cp-17-1363-2021, https://doi.org/10.5194/cp-17-1363-2021, 2021
Short summary
Short summary
We present a reconstruction of winter–spring temperatures developed using organic proxies preserved in well-dated lake sediments from southwest Iceland to assess seasonal temperature changes in the North Atlantic region over the last 2000 years. The gradual warming trend observed in our record is likely influenced by sea surface temperatures, which are sensitive to changes in ocean circulation and seasonal insolation, during the winter and spring season.
Lucas Dugerdil, Sébastien Joannin, Odile Peyron, Isabelle Jouffroy-Bapicot, Boris Vannière, Bazartseren Boldgiv, Julia Unkelbach, Hermann Behling, and Guillemette Ménot
Clim. Past, 17, 1199–1226, https://doi.org/10.5194/cp-17-1199-2021, https://doi.org/10.5194/cp-17-1199-2021, 2021
Short summary
Short summary
Since the understanding of Holocene climate change appears to be a relevant issue for future climate change, the paleoclimate calibrations have to be improved. Here, surface samples from Mongolia and Siberia were analyzed to provide new calibrations for pollen and biomarker climate models. These calibrations appear to be more powerful than global calibrations, especially in an arid central Asian context. These calibrations will improve the understanding of monsoon Holocene oscillations.
Justin T. Maxwell, Grant L. Harley, Trevis J. Matheus, Brandon M. Strange, Kayla Van Aken, Tsun Fung Au, and Joshua C. Bregy
Clim. Past, 16, 1901–1916, https://doi.org/10.5194/cp-16-1901-2020, https://doi.org/10.5194/cp-16-1901-2020, 2020
Short summary
Short summary
We found that increasing the density of chronologies in the tree-ring network resulted in estimated soil moisture conditions that better matched the spatial variability of the values that were instrumentally recorded for droughts and, to a lesser extent, pluvials. By sampling trees in 2010 compared to 1980, the sensitivity of tree rings to soil moisture decreased in the southern portion of our region, where severe drought conditions have been absent over recent decades.
Stefano Segadelli, Federico Grazzini, Veronica Rossi, Margherita Aguzzi, Silvia Marvelli, Marco Marchesini, Alessandro Chelli, Roberto Francese, Maria Teresa De Nardo, and Sandro Nanni
Clim. Past, 16, 1547–1564, https://doi.org/10.5194/cp-16-1547-2020, https://doi.org/10.5194/cp-16-1547-2020, 2020
Short summary
Short summary
In an attempt to consolidate trends in the hydrological cycle induced by recent warming, we conducted a multidisciplinary study combining meteorological data, climate proxies from the literature, and original coring and pollen data acquired in an area that has been hit by record-breaking precipitation events. A detailed study of recent flash-flood deposits compared with fossil peat bog and lake sediments supports the expected increase in precipitation intensity during warm climatic phases.
Bo Cheng, Jennifer Adams, Jianhui Chen, Aifeng Zhou, Qing Zhang, and Anson W. Mackay
Clim. Past, 16, 543–554, https://doi.org/10.5194/cp-16-543-2020, https://doi.org/10.5194/cp-16-543-2020, 2020
Short summary
Short summary
The Qinling mountains in China are biodiversity rich. We studied one of the high-latitude lakes on Mount Taibai with a view to looking at how aquatic diversity responded to long-term changes in climate over the past 3500 years. We specifically looked at a group of single-celled algae called diatoms, as they are very sensitive to the environment. We found that these algae changed gradually over time, but they showed abrupt change during the period known as the Little Ice Age, about 400 years ago.
Xingxing Liu, Youbin Sun, Jef Vandenberghe, Peng Cheng, Xu Zhang, Evan J. Gowan, Gerrit Lohmann, and Zhisheng An
Clim. Past, 16, 315–324, https://doi.org/10.5194/cp-16-315-2020, https://doi.org/10.5194/cp-16-315-2020, 2020
Short summary
Short summary
The East Asian summer monsoon and winter monsoon are anticorrelated on a centennial timescale during 16–1 ka. The centennial monsoon variability is connected to changes of both solar activity and North Atlantic cooling events during the Early Holocene. Then, North Atlantic cooling became the major forcing of events during the Late Holocene. This work presents the great challenge and potential to understand the response of the monsoon system to global climate changes in the past and the future.
Antonio García-Alix, Jaime L. Toney, Gonzalo Jiménez-Moreno, Carmen Pérez-Martínez, Laura Jiménez, Marta Rodrigo-Gámiz, R. Scott Anderson, Jon Camuera, Francisco J. Jiménez-Espejo, Dhais Peña-Angulo, and María J. Ramos-Román
Clim. Past, 16, 245–263, https://doi.org/10.5194/cp-16-245-2020, https://doi.org/10.5194/cp-16-245-2020, 2020
Short summary
Short summary
In this paper we identify warming thresholds, rates, and forcing mechanisms from a novel alpine temperature record of the southern Iberian Peninsula during the Common Era in order to contextualize the modern warming and its potential impact on these vulnerable alpine ecosystems. To do so, we have developed and applied the first lacustrine temperature calibration in alpine lakes for algal compounds, called long-chain alkyl diols, which is a significant advance in biomarker paleothermometry.
Stef Vansteenberge, Niels J. de Winter, Matthias Sinnesael, Sophie Verheyden, Steven Goderis, Stijn J. M. Van Malderen, Frank Vanhaecke, and Philippe Claeys
Clim. Past, 16, 141–160, https://doi.org/10.5194/cp-16-141-2020, https://doi.org/10.5194/cp-16-141-2020, 2020
Short summary
Short summary
We measured the chemical composition (trace-element concentrations and stable-isotope ratios) of a Belgian speleothem that deposited annual layers. Our sub-annual resolution dataset allows us to investigate how the chemistry of this speleothem recorded changes in the environment and climate in northwestern Europe. We then use this information to reconstruct climate change during the 16th and 17th century on the seasonal scale and demonstrate that environmental change drives speleothem chemistry.
Alexander Land, Sabine Remmele, Jutta Hofmann, Daniel Reichle, Margaret Eppli, Christian Zang, Allan Buras, Sebastian Hein, and Reiner Zimmermann
Clim. Past, 15, 1677–1690, https://doi.org/10.5194/cp-15-1677-2019, https://doi.org/10.5194/cp-15-1677-2019, 2019
Short summary
Short summary
With the use of precipitation sensitive oak ring-width series from the Main River region (southern Germany) a 2000-year long hydroclimate reconstruction has been developed. The ring series are sensitive to the sum of rainfall from 26 February to 6 July. This region suffered from severe, long-lasting droughts in the past two millennia (e.g., AD 500/510s, 940s, 1170s, 1390s and 1160s). In the AD 550s, 1050s, 1310s and 1480s, multi-year periods with high rainfall hit the region.
Nils Weitzel, Andreas Hense, and Christian Ohlwein
Clim. Past, 15, 1275–1301, https://doi.org/10.5194/cp-15-1275-2019, https://doi.org/10.5194/cp-15-1275-2019, 2019
Short summary
Short summary
A new method for probabilistic spatial reconstructions of past climate states is presented, which combines pollen data with a multi-model ensemble of climate simulations in a Bayesian framework. The approach is applied to reconstruct summer and winter temperature in Europe during the mid-Holocene. Our reconstructions account for multiple sources of uncertainty and are well suited for quantitative statistical analyses of the climate under different forcing conditions.
Inken Heidke, Denis Scholz, and Thorsten Hoffmann
Clim. Past, 15, 1025–1037, https://doi.org/10.5194/cp-15-1025-2019, https://doi.org/10.5194/cp-15-1025-2019, 2019
Short summary
Short summary
This is the first quantitative study of lignin biomarkers in stalagmites and cave drip water. Lignin is only produced by higher plants; therefore, its analysis can be used to reconstruct the vegetation of the past. We compared our lignin results with stable isotope and trace element records from the same samples and found correlations or similarities with P, Ba, U and Mg concentrations as well as δ13C values. These results can help to better interpret other vegetation proxies.
Johannes Hepp, Lorenz Wüthrich, Tobias Bromm, Marcel Bliedtner, Imke Kathrin Schäfer, Bruno Glaser, Kazimierz Rozanski, Frank Sirocko, Roland Zech, and Michael Zech
Clim. Past, 15, 713–733, https://doi.org/10.5194/cp-15-713-2019, https://doi.org/10.5194/cp-15-713-2019, 2019
Monica Bini, Giovanni Zanchetta, Aurel Perşoiu, Rosine Cartier, Albert Català, Isabel Cacho, Jonathan R. Dean, Federico Di Rita, Russell N. Drysdale, Martin Finnè, Ilaria Isola, Bassem Jalali, Fabrizio Lirer, Donatella Magri, Alessia Masi, Leszek Marks, Anna Maria Mercuri, Odile Peyron, Laura Sadori, Marie-Alexandrine Sicre, Fabian Welc, Christoph Zielhofer, and Elodie Brisset
Clim. Past, 15, 555–577, https://doi.org/10.5194/cp-15-555-2019, https://doi.org/10.5194/cp-15-555-2019, 2019
Short summary
Short summary
The Mediterranean region has returned some of the clearest evidence of a climatically dry period occurring approximately 4200 years ago. We reviewed selected proxies to infer regional climate patterns between 4.3 and 3.8 ka. Temperature data suggest a cooling anomaly, even if this is not uniform, whereas winter was drier, along with dry summers. However, some exceptions to this prevail, where wetter condition seems to have persisted, suggesting regional heterogeneity.
Amy J. Dougherty, Jeong-Heon Choi, Chris S. M. Turney, and Anthony Dosseto
Clim. Past, 15, 389–404, https://doi.org/10.5194/cp-15-389-2019, https://doi.org/10.5194/cp-15-389-2019, 2019
Áslaug Geirsdóttir, Gifford H. Miller, John T. Andrews, David J. Harning, Leif S. Anderson, Christopher Florian, Darren J. Larsen, and Thor Thordarson
Clim. Past, 15, 25–40, https://doi.org/10.5194/cp-15-25-2019, https://doi.org/10.5194/cp-15-25-2019, 2019
Short summary
Short summary
Compositing climate proxies in sediment from seven Iceland lakes documents abrupt summer cooling between 4.5 and 4.0 ka, statistically indistinguishable from 4.2 ka. Although the decline in summer insolation was an important factor, a combination of superposed changes in ocean circulation and explosive Icelandic volcanism were likely responsible for the abrupt perturbation recorded by our proxies. Lake and catchment proxies recovered to a colder equilibrium state following the perturbation.
Haiwei Zhang, Hai Cheng, Yanjun Cai, Christoph Spötl, Gayatri Kathayat, Ashish Sinha, R. Lawrence Edwards, and Liangcheng Tan
Clim. Past, 14, 1805–1817, https://doi.org/10.5194/cp-14-1805-2018, https://doi.org/10.5194/cp-14-1805-2018, 2018
Short summary
Short summary
The collapses of several Neolithic cultures in China are considered to have been associated with abrupt climate change during the 4.2 ka BP event; however, the hydroclimate of this event in China is still poorly known. Based on stalagmite records from monsoonal China, we found that north China was dry but south China was wet during this event. We propose that the rain belt remained longer at its southern position, giving rise to a pronounced humidity gradient between north and south China.
Alice Callegaro, Dario Battistel, Natalie M. Kehrwald, Felipe Matsubara Pereira, Torben Kirchgeorg, Maria del Carmen Villoslada Hidalgo, Broxton W. Bird, and Carlo Barbante
Clim. Past, 14, 1543–1563, https://doi.org/10.5194/cp-14-1543-2018, https://doi.org/10.5194/cp-14-1543-2018, 2018
Short summary
Short summary
Holocene fires and vegetation are reconstructed using different molecular markers with a single analytical method, applied for the first time to lake sediments from Tibet. The early Holocene shows oscillations between grasses and conifers, with smouldering fires represented by levoglucosan peaks, and high-temperature fires represented by PAHs. The lack of human FeSts excludes local human influence on fire and vegetation changes. Late Holocene displays an increase in local to regional combustion.
Kees Nooren, Wim Z. Hoek, Brian J. Dermody, Didier Galop, Sarah Metcalfe, Gerald Islebe, and Hans Middelkoop
Clim. Past, 14, 1253–1273, https://doi.org/10.5194/cp-14-1253-2018, https://doi.org/10.5194/cp-14-1253-2018, 2018
Short summary
Short summary
We present two new palaeoclimatic records for the central Maya lowlands, adding valuable new insights to the impact of climate change on the development of Maya civilisation. Lake Tuspan's diatom record is indicative of precipitation changes at a local scale, while a beach ridge elevation record from the world's largest late Holocene beach ridge plain provides a regional picture.
Markus Czymzik, Raimund Muscheler, Florian Adolphi, Florian Mekhaldi, Nadine Dräger, Florian Ott, Michał Słowinski, Mirosław Błaszkiewicz, Ala Aldahan, Göran Possnert, and Achim Brauer
Clim. Past, 14, 687–696, https://doi.org/10.5194/cp-14-687-2018, https://doi.org/10.5194/cp-14-687-2018, 2018
Short summary
Short summary
Our results provide a proof of concept for facilitating 10Be in varved lake sediments as a novel synchronization tool required for investigating leads and lags of proxy responses to climate variability. They also point to some limitations of 10Be in these archives mainly connected to in-lake sediment resuspension processes.
Darrell S. Kaufman and PAGES 2k special-issue editorial team
Clim. Past, 14, 593–600, https://doi.org/10.5194/cp-14-593-2018, https://doi.org/10.5194/cp-14-593-2018, 2018
Short summary
Short summary
We explain the procedure used to attain a high and consistent level of data stewardship across a special issue of the journal Climate of the Past. We discuss the challenges related to (1) determining which data are essential for public archival, (2) using data generated by others, and (3) understanding data citations. We anticipate that open-data sharing in paleo sciences will accelerate as the advantages become more evident and as practices that reduce data loss become the accepted convention.
Haipeng Wang, Jianhui Chen, Shengda Zhang, David D. Zhang, Zongli Wang, Qinghai Xu, Shengqian Chen, Shijin Wang, Shichang Kang, and Fahu Chen
Clim. Past, 14, 383–396, https://doi.org/10.5194/cp-14-383-2018, https://doi.org/10.5194/cp-14-383-2018, 2018
Short summary
Short summary
The chironomid-inferred temperature record from Gonghai Lake exhibits a stepwise decreasing trend since 4 ka. A cold event in the Era of Disunity, the Sui-Tang Warm Period, the Medieval Warm Period and the Little Ice Age can all be recognized in our record, as well as in many other temperature reconstructions in China. Local wars in Shanxi Province, documented in the historical literature during the past 2700 years, are statistically significantly correlated with changes in temperature.
Hansi K. A. Singh, Gregory J. Hakim, Robert Tardif, Julien Emile-Geay, and David C. Noone
Clim. Past, 14, 157–174, https://doi.org/10.5194/cp-14-157-2018, https://doi.org/10.5194/cp-14-157-2018, 2018
Short summary
Short summary
The Atlantic Multidecadal Oscillation (AMO) is prominent in the climate system. We study the AMO over the last 2000 years using a novel proxy framework, the Last Millennium Reanalysis. We find that the AMO is linked to continental warming, Arctic sea ice retreat, and an Atlantic precipitation shift. Low clouds decrease globally. We find no distinct multidecadal spectral peak in the AMO over the last 2 millennia, suggesting that human activities may have enhanced the AMO in the modern era.
Ny Riavo Gilbertinie Voarintsoa, Loren Bruce Railsback, George Albert Brook, Lixin Wang, Gayatri Kathayat, Hai Cheng, Xianglei Li, Richard Lawrence Edwards, Amos Fety Michel Rakotondrazafy, and Marie Olga Madison Razanatseheno
Clim. Past, 13, 1771–1790, https://doi.org/10.5194/cp-13-1771-2017, https://doi.org/10.5194/cp-13-1771-2017, 2017
Short summary
Short summary
This research has been an investigation of two stalagmites from two caves in NW Madagascar to reconstruct the region's paleoenvironmental changes, and to understand the linkage of such changes to the dynamics of the ITCZ. Stable isotopes, mineralogy, and petrography suggest wetter climate conditions than today during the early and late Holocene, when the mean ITCZ was south, and drier during the mid-Holocene when the ITCZ was north.
Wei Ding, Qinghai Xu, and Pavel E. Tarasov
Clim. Past, 13, 1285–1300, https://doi.org/10.5194/cp-13-1285-2017, https://doi.org/10.5194/cp-13-1285-2017, 2017
Short summary
Short summary
Pollen-based past climate reconstruction for regions with long-term human occupation is always controversial. We examined the bias induced by the human impact on vegetation in a climate reconstruction for temperate eastern China by comparing the deviations in the reconstructed results for a fossil record based on two pollen–climate calibration sets. Climatic signals in pollen assemblages are indeed obscured by human impact; however, the extent of the bias could be assessed.
Oliver Rach, Ansgar Kahmen, Achim Brauer, and Dirk Sachse
Clim. Past, 13, 741–757, https://doi.org/10.5194/cp-13-741-2017, https://doi.org/10.5194/cp-13-741-2017, 2017
Short summary
Short summary
Currently, reconstructions of past changes in the hydrological cycle are usually qualitative, which is a major drawback for testing the accuracy of models in predicting future responses. Here we present a proof of concept of a novel approach to deriving quantitative paleohydrological data, i.e. changes in relative humidity, from lacustrine sediment archives, employing a combination of organic geochemical methods and plant physiological modeling.
Juan José Gómez-Navarro, Eduardo Zorita, Christoph C. Raible, and Raphael Neukom
Clim. Past, 13, 629–648, https://doi.org/10.5194/cp-13-629-2017, https://doi.org/10.5194/cp-13-629-2017, 2017
Short summary
Short summary
This contribution aims at assessing to what extent the analogue method, a classic technique used in other branches of meteorology and climatology, can be used to perform gridded reconstructions of annual temperature based on the limited information from available but un-calibrated proxies spread across different locations of the world. We conclude that it is indeed possible, albeit with certain limitations that render the method comparable to more classic techniques.
Atsushi Okazaki and Kei Yoshimura
Clim. Past, 13, 379–393, https://doi.org/10.5194/cp-13-379-2017, https://doi.org/10.5194/cp-13-379-2017, 2017
Short summary
Short summary
Data assimilation has been successfully applied in the field of paleoclimatology to reconstruct past climate. However, data reconstructed from proxies have been assimilated, as opposed to the actual proxy values, which prevented full utilization of the information recorded in the proxies. This study propose a new data assimilation system in which actual proxy data are directly assimilated.
Enlou Zhang, Jie Chang, Yanmin Cao, Hongqu Tang, Pete Langdon, James Shulmeister, Rong Wang, Xiangdong Yang, and Ji Shen
Clim. Past, 13, 185–199, https://doi.org/10.5194/cp-13-185-2017, https://doi.org/10.5194/cp-13-185-2017, 2017
Short summary
Short summary
This paper reports the first development of sub-fossil chironomid-based mean July temperature transfer functions from China. The transfer functions yield reliable reconstructions that are comparable to the instrumental record. The application of this new tool will provide long-term quantitative palaeoclimate estimates from south-western China which is a critical region for understanding the dynamic and evolution of the Indian Ocean south-west Monsoon system.
Kira Rehfeld, Mathias Trachsel, Richard J. Telford, and Thomas Laepple
Clim. Past, 12, 2255–2270, https://doi.org/10.5194/cp-12-2255-2016, https://doi.org/10.5194/cp-12-2255-2016, 2016
Short summary
Short summary
Indirect evidence on past climate comes from the former composition of ecological communities such as plants, preserved as pollen grains in sediments of lakes. Transfer functions convert relative counts of species to a climatologically meaningful scale (e.g. annual mean temperature in degrees C). We show that the fundamental assumptions in the algorithms impact the reconstruction results in he idealized model world, in particular if the reconstructed variables were not ecologically relevant.
Qing Yang, Xiaoqiang Li, Xinying Zhou, Keliang Zhao, and Nan Sun
Clim. Past, 12, 2229–2240, https://doi.org/10.5194/cp-12-2229-2016, https://doi.org/10.5194/cp-12-2229-2016, 2016
Short summary
Short summary
The fossilized seeds of common millet are suited to the production of quantitative Holocene precipitation reconstructions. Our reconstructed results showed that summer precipitation from 7.7–3.4 ka BP was ~ 50 mm, or 17 % higher than present levels. Maximal mean summer precipitation peaked at 414 mm during 6.1–5.5 ka BP, ~ 109 mm, or 36 % higher than today, indicating the EASM peaked at this time. This work can provide a new proxy for further research into continuous paleoprecipitation sequences.
Michael Deininger, Martin Werner, and Frank McDermott
Clim. Past, 12, 2127–2143, https://doi.org/10.5194/cp-12-2127-2016, https://doi.org/10.5194/cp-12-2127-2016, 2016
Short summary
Short summary
This study investigates the NAO (Northern Atlantic Oscillation)-related mechanisms that control winter precipitation stable oxygen and hydrogen isotope gradients across Europe. The results show that past longitudinal stable oxygen and hydrogen isotope gradients in European rainfall stored in palaeoclimate archives (e.g. speleothems) can be used to infer the past winter NAO modes from its variations.
Liangjun Zhu, Yuandong Zhang, Zongshan Li, Binde Guo, and Xiaochun Wang
Clim. Past, 12, 1485–1498, https://doi.org/10.5194/cp-12-1485-2016, https://doi.org/10.5194/cp-12-1485-2016, 2016
Short summary
Short summary
We present a 368-year late summer maximum temperature reconstruction based on spruce tree rings. It touches on the critical topic of climate reconstruction in the eastern edge of Tibetan Plateau and represents an extension and enhancement of climate records for this area. The Little Ice Age was well represented and 20th century warming was not obvious in this reconstruction. This temperature variation may be affected by global land–sea atmospheric circulation as well as solar and volcanic forcing.
Frazer Matthews-Bird, Stephen J. Brooks, Philip B. Holden, Encarni Montoya, and William D. Gosling
Clim. Past, 12, 1263–1280, https://doi.org/10.5194/cp-12-1263-2016, https://doi.org/10.5194/cp-12-1263-2016, 2016
Short summary
Short summary
Chironomidae are a family of two-winged aquatic fly of the order Diptera. The family is species rich (> 5000 described species) and extremely sensitive to environmental change, particualy temperature. Across the Northern Hemisphere, chironomids have been widely used as paleotemperature proxies as the chitinous remains of the insect are readily preserved in lake sediments. This is the first study using chironomids as paleotemperature proxies in tropical South America.
Karsten Schittek, Sebastian T. Kock, Andreas Lücke, Jonathan Hense, Christian Ohlendorf, Julio J. Kulemeyer, Liliana C. Lupo, and Frank Schäbitz
Clim. Past, 12, 1165–1180, https://doi.org/10.5194/cp-12-1165-2016, https://doi.org/10.5194/cp-12-1165-2016, 2016
Short summary
Short summary
Cushion peatlands are versatile climate archives for the study of past environmental changes. We present the environmental history for the last 2100 years of Cerro Tuzgle peatland, which is located in the NW Argentine Puna. The results reflect prominent late Holocene climate anomalies and provide evidence that Northern Hemisphere climate oscillations were extensive. Volcanic forcing at the beginning of the 19th century seems to have had an impact on climatic settings in the Central Andes
Nicholas P. McKay and Julien Emile-Geay
Clim. Past, 12, 1093–1100, https://doi.org/10.5194/cp-12-1093-2016, https://doi.org/10.5194/cp-12-1093-2016, 2016
Short summary
Short summary
The lack of accepted data formats and data standards in paleoclimatology is a growing problem that slows progress in the field. Here, we propose a preliminary data standard for paleoclimate data, general enough to accommodate all the proxy and measurement types encountered in a large international collaboration (PAGES 2k). We also introduce a data format for such structured data (Linked Paleo Data, or LiPD), leveraging recent advances in knowledge representation (Linked Open Data).
Niamh Cahill, Andrew C. Kemp, Benjamin P. Horton, and Andrew C. Parnell
Clim. Past, 12, 525–542, https://doi.org/10.5194/cp-12-525-2016, https://doi.org/10.5194/cp-12-525-2016, 2016
Short summary
Short summary
We propose a Bayesian model for the reconstruction and analysis of former sea levels. The model provides a single, unifying framework for reconstructing and analyzing sea level through time with fully quantified uncertainty. We illustrate our approach using a case study of Common Era (last 2000 years) sea levels from New Jersey.
J. Emile-Geay and M. Tingley
Clim. Past, 12, 31–50, https://doi.org/10.5194/cp-12-31-2016, https://doi.org/10.5194/cp-12-31-2016, 2016
Short summary
Short summary
Ignoring nonlinearity in palaeoclimate records (e.g. continental run-off proxies) runs the risk of severely overstating changes in climate variability. Even with the correct model and parameters, some information is irretrievably lost by such proxies. However, we find that a simple empirical transform can do much to improve the situation, and makes them amenable to classical analyses. Doing so on two palaeo-ENSO records markedly changes some of the quantitative inferences made from such records.
Cited articles
Abaimov, A. P., Bondarev, A. I., Yzrzanova, O. V., Shitova, S. A.: Polar
forests of Krasnoyarsk region, Nauka Press, Novosibirsk, 208 pp., 1997.
Barinov, V. V., Myglan, V. S., Taynik, A. V., Ojdupaa, O. Ch., Agatova, A.
R., and Churakova (Sidorova), O. V.: Extreme climatic events in Altai-Sayan
region as indicator of major volcanic eruptions, Geophys. Proc. Bios., 17,
45–61, https://doi.org/10.21455/GPB2018.3-3, 2018.
Battipaglia, G., Cherubini, P., Saurer, M., Siegwolf, R. T. W., Strumia, S.,
and Cotrufo, M. F.: Volcanic explosive eruptions of the Vesuvio decrease
tree-ring growth but not photosynthetic rates in the surrounding forests,
Global Change Biol., 13, 1–16, 2007.
Boettger, T., Haupt, M., Knöller, K., Weise, S., Waterhouse, G. S.,
Rinne, K. T., Loader, N. J., Sonninen, E., Jungner, H., Masson-Delmotte, V.,
Stievenard, M., Guillemin, M.-T., Pierre, M., Pazdur, A., Leuenberger, M.,
Filot, M., Saurer, M., Reynolds, C. E., Helle, G., and Schleser, G. H.: Wood
cellulose preparation methods and mass spectrometric analyses of
δ13C, δ18O, and non ex-changeable δ2H
values in cellulose, sugar, and starch: An inter-laboratory comparison, Anal.
Chem., 79, 4603–4612, https://doi.org/10.1021/ac0700023, 2007.
Boike, J., Kattenstroth, B., Abramova, K., Bornemann, N., Chetverova, A.,
Fedorova, I., Fröb, K., Grigoriev, M., Grüber, M., Kutzbach, L.,
Langer, M., Minke, M., Muster, S., Piel, K., Pfeiffer, E.-M., Stoof, G.,
Westermann, S., Wischnewski, K., Wille, C., and Hubberten, H.-W.: Baseline
characteristics of climate, permafrost and land cover from a new permafrost
observatory in the Lena River Delta, Siberia (1998–2011), Biogeosciences,
10, 2105–2128, https://doi.org/10.5194/bg-10-2105-2013, 2013.
Briffa, K. R., Jones, P. D., Schweingruber, F. H., Osborn, T. J.: Influence
of volcanic eruptions on Northern Hemisphere summer temperature over the past
600 years, Nature, 393, 450–455, 1998.
Bryukhanova, M. V., Fonti, P., Kirdyanov, A. V., Siegwolf, R., Saurer, M.,
Pochebyt, N. P., Churakova, O. V., and Prokushkin, A. S.: The response of
δ13C, δ18O and cell anatomy of Larix gmelinii tree rings to differing soil active layer depths,
Dendrochronologia, 34, 51–59, 2015.
Büntgen, U., Myglan, V. S., Ljungqvist, F. C., McCormick, M., Di Cosmo,
N., Sigl, M., Jungclaus, J., Wagner, S., Krusic, P. J., Esper, J., Kaplan, J.
O., de Vaan, M. A. C., Luterbacher, J., Wacker, L., Tegel, W., and Kirdyanov,
A. V.: Cooling and societal change during the Late Antique Little Ice Age
from 536 to around 660 AD, Nat. Geosci., 9, 231–236, 2016.
Castagneri, D., Fonti, P., von Arx, G., and Carrer, M.: How does climate
influence xylem morphogenesis over the growing season? Insights from
long-term intra-ring anatomy in Picea abies, Ann. Botany, 19,
1011–1020, https://doi.org/10.1093/aob/mcw274, 2017.
Cernusak, L., Ubierna, N., Winter, K., Holtum, J. A. M., Marshall, J. D., and
Farquhar, G. D.: Environmental and physiological determinants of carbon
isotope discrimination in terrestrial Plants, New Phytol., 200, 950–965,
2013.
Cernusak, L., Barbour, M., Arndt, S., Cheesman, A., English, N., Field, T.,
Helliker, B., Holloway-Phillips, M., Holtum, J., Kahmen, A., Mcnerney, F.,
Munksgaard, N., Simonin, K., Song, X., Stuart-Williams, H., West, J., and
Farquhar, G.: Stable isotopes in leaf water of terrestrial plants, Plant Cell
Environ., 39, 1087–1102, 2016.
Churakova (Sidorova), O. V., Bryukhanova, M., Saurer, M., Boettger, T.,
Naurzbaev, M., Myglan, V. S., Vaganov, E. A., Hughes, M. K., Siegwolf, R. T.
W.: A cluster of stratospheric volcanic eruptions in the AD 530s recorded in
Siberian tree rings, Global Planet. Change, 122, 140–150, 2014.
Churakova (Sidorova), O. V., Shashkin, A. V., Siegwolf, R., Spahni, R.,
Launois, T., Saurer, M., Bryukhanova, M. V., Benkova, A. V., Kupzova, A .V.,
Vaganov, E. A., Peylin, P., Masson-Delmotte, V., and Roden, J.: Application
of eco-physiological models to the climatic interpretation of
δ13C and δ18O measured in Siberian larch
tree-rings, Dendrochronologa, 39, 51–59, https://doi.org/10.1016/j.dendro.2015.12.008,
2016.
Cook, E., Briffa, K., Shiyatov, S., and Mazepa, V.: Tree-ring standardization
and growth trend estimation, in: Methods of dendrochronology: applications in
the environmental sciences, edited by: Cook, E. R. and Kairiukstis, L. A.,
Springer, 104–123, 1990.
Cook, E. R. and Krusic, P. J. (Eds.): Program ARSTAN: A Tree-Ring
Standardization Program Based on De-trending and Autoregressive Time Series
Modeling, with Interactive Graphics (ARSTAN), Tree-Ring Laboratory, Lamont
Doherty Earth Observatory of Columbia University Palisades, NY, 2008.
Craig, H.: Isotopic variations in meteoric waters, Science, 133, 1702–1703,
1961.
Crowley, T. J. and Unterman, M. B.: Technical details concerning development
of a 1200 yr proxy index for global volcanism, Earth Syst. Sci. Data, 5,
187–197, https://doi.org/10.5194/essd-5-187-2013, 2013.
Cuny, H. E., Rathgeber, C. B. K., Frank, D., Fonti, P., and Fournier, M.:
Kinetics of tracheid development explain conifer tree-ring structure, New
Phytol., 203, 1231–1241, 2014.
D'Arrigo, R. D., Jacoby, G. C., Frank, D., Pederson, N. D., Cook, E., Buckly,
B. M., Nachin, B., Mijidorj, R., and Dugarjav, C.: 1738-years of Mongolian
temperature variability inferred from a tree-ring width chronology of
Siberian pine, Geophys. Res. Lett., 28, 543–546, 2001.
Dansgaard, W.: Stable isotopes in precipitation, Tellus, 16, 436–468, 1964.
Dawson, T. E., Mambelli, S., Plamboeck, A. H., Templer, P. H., and Tu, K. P.:
Stable isotopes in plant ecology, Annu. Rev. Ecol. Syst., 33, 507–559, 2004.
Dongmann, G., Förstel, H., and Wagener, K.: 18O-rich oxygen from
land photosynthesis, Nature-New Biol., 240, 127–128, 1972.
Eschbach, W., Nogler, P., Schär, E., and Schweingruber, F. H.: Technical
advances in the radiodensitometrical determination of wood density,
Dendrochronologia, 13, 155–168, 2015.
Esper, J., Büntgen, U., Hartl-Meier, C., Oppenheimer, C., and Schneider,
L.: Northern Hemisphere temperature anomalies during 1450s period of
ambiguous volcanic forcing, Bull. Volcanology, 79, 41,
https://doi.org/10.1007/s00445-017-1125-9, 2017.
Esper, J., St. George, S., Anchukaitis, K., D'Arrigo, R., Ljungqvist, F.,
Luterbacher, J., Schneider, L., Stoffel, M., Wilson, R., and Büntgen, U.:
Large-scale, millennial-length temperature reconstructions from tree-rings,
Dendrochronologia, 50, 81–90, 2018.
Farquhar, G. D.: Stable Isotopes and Plant Carbon-Water Relations, Academic
Press, San Diego, 47–70, 1982.
Farquhar, G. D. and Lloyd, J.: Carbon and oxygen isotope effects in the
exchange of carbon dioxide between terrestrial plants and the atmosphere, in:
Stable Isotopes and Plant Carbon-Water Relations, edited by: Ehleringer, J.
R., Hall, A. E., Farquhar, G. D., Academic Press, San Diego, 47–70, 1993.
Farquhar, G. D., Ehleringer, J. R., and Hubick, K. T.: Carbon Isotope
Discrimination and Photosynthesis, Annu. Rev. Plant Phys., 40, 503–537,
1989.
Fonti, P., Bryukhanova, M. V., Myglan, V. S., Kirdyanov, A. V., Naumova, O.
V., and Vaganov, E. A.: Temperature-induced responses of xylem structure of
Larix sibirica (Pinaceae) from Russian Altay, Am. J. Bot., 100,
1–12, 2013.
Francey, R. J., Allison, C. E., Etheridge D. M., Trudinger, C. M.,
Langenfelds, R. L., Michel, E., and Steele, L. P.: A 1000-year high precision
record of δ13C in atmospheric CO2, Tellus B, 51, 170–193,
1999.
Fritts, H. C.: Tree-rings and climate, Academy Press, London, New York, San
Francisco, 567 pp., 1976.
Furst, G. G.: Methods of Anatomical and Histochemical Research of Plant
Tissue, Nauka, Moscow, 156 pp., 1979.
Gao, C., Robock, A., and Ammann, C.: Volcanic forcing of climate over the
past 1500 years: An improved ice core-based index for climate models, J.
Geophys. Res.-Atmos., 113, D23111, https://doi.org/10.1029/2008jd010239, 2008.
Gennaretti, F., Huard, D., Naulier, M., Savard, M., Bégin, C.,
Arseneault, D., and Guiot, J.: Bayesian multiproxy temperature reconstruction
with black spruce ring widths and stable isotopes from the northern Quebec
taiga, Clim. Dynam., 49, 4107–4119, https://doi.org/10.1007/s00382-017-3565-5, 2017.
Gillett, N. P., Weaver, A. J., Zwiers, F. W., and Wehner, M. F.: Detection of
volcanic influence on global precipitation, Geophys. Res. Lett., 31, L12217,
https://doi.org/10.1029/2004GL020044, 2004.
Groisman, P. Ya.: Possible regional climate consequences of the Pinatubo
eruption, Geophys. Res. Lett., 19, 1603–1606, 1992.
Gu, L., Baldocchi, D. D., Wofsy, S. C., Munger, J. W., Michalsky, J. J.,
Urbanski, S. P., and Boden, T. A.: Response of a deciduous forest to the
Mount Pinatubo eruption: Enhanced photosynthesis, Science, 299, 2035–2038,
2003.
Guillet, S., Corona, C., Stoffel, M., Khodri M., Lavigne F., Ortega, P.,
Eckert, N., Dkengne Sielenou, P., Daux, V., Churakova, O. V., Davi, N.,
Edouard, J.-L., Zhang, Y., Luckman, B. H., Myglan, V. S., Guiot, J.,
Beniston, M., Masson-Delmotte, V., and Oppenheimer, C.: Climate response to
the 1257 Samalas eruption revealed by proxy records, Nat. Geosci., 10,
123–128, https://doi.org/10.1038/ngeo2875, 2017.
Hansen, J., Sato, M., Ruedy, R., Lacis, A., Asamoah, K., Borenstein, S.,
Brown, E., Cairns, B., Caliri, G., Campbell, M., Curran, B., de Castro, S.,
Druyan, L., Fox, M., Johnson, C., Lerner, J., McCormick, M.P., Miller, R.,
Minnis, P., Morrison, A., Pandolfo, L., Ramberrann, I., Zaucker, F.,
Robinson, M., Russell P., Shah, K., Stone, P., Tegen, I., Thomason, L.,
Wilder, J., and Wilson, H.: A Pinatubo climate modeling investigation, in:
The Mount Pinatubo Eruption: Effects on the Atmosphere and Climate, NATO ASI
Series vol. 42, edited by: Fiocco, G., Fua, D., and Visconti, G.,
Springer-Verlag, 233–272, 1996.
Harrington, C. R.: The Year without a summer? World climate in 1816, Canadian
Museum of Nature, Ottawa, ISBN 0660130637, 1992.
Helama, S., Arppe, L., Uusitalo, J., Holopainen, J., Mäkelä, H. M.,
Mäkinen, H., Mielikäinen, K., Nöjd, P., Sutinen, R.,
Taavitsainen, J.-P., Timonen, M., and Oinonen, M.: Volcanic dust veils from
sixth century tree-ring isotopes linked to reduced irradiance, primary
production and human health, Sci. Rep., 8, 1339,
https://doi.org/10.1038/s41598-018-19760-w, 2018.
Hughes, M. K., Vaganov, E. A., Shiyatov, S. G., Touchan, R., and Funkhouser,
G.: Twentieth-century summer warmth in northern Yakutia in a 600-year
context, Holocene, 9, 603–608, 1999.
Iles, C. E. and Hegerl, G. C.: The global precipitation response to volcanic
eruptions in the CMIP5 models, Environ. Res. Lett., 9, 104012,
https://doi.org/10.1088/1748-9326/9/10/104012, 2014.
Joseph, R. and Zeng, N.: Seasonally modulated tropical drought induced by
volcanic aerosol, J. Climate, 24, 2045–2060, 2011.
Kirdyanov, A. V., Treydte, K. S., Nikolaev, A., Helle, G., and Schleser, G.
H.: Climate signals in tree-ring width, wood density and δ13C
from larches in Eastern Siberia (Russia), Chem. Geol., 252, 31–41,
https://doi.org/10.1016/j.chemgeo.2008.01.023, 2008.
Körner, Ch.: Paradigm shift in plant growth control, Curr. Opin. Plant
Biol., 25, 107–114, 2015.
Lavigne, F., Degeai, J.-P., Komorowski, J.-C., Guillet, S., Robert, V.,
Lahitte, P., Oppenheimer, C., Stoffel, M., Vidal, C.M., Suro, I.P., Wassmer,
P., Hajdas, I., Hadmoko, D. S., and Belizal, E.: Source of the great A.D.
1257 mystery eruption unveiled, Samalas volcano, Rinjani Volcanic Complex,
Indonesia, P. Natl. Acad. Sci., 110, 16742–16747,
https://doi.org/10.1073/pnas.1307520110, 2013.
Lenz, O., Schär, E., and Schweingruber F. H.: Methodische Probleme bei
der radiographisch-densitometrischen Bestimmung der Dichte und der
Jahrrinbreiten von Holz, Holzforschung, 30, 114–123, 1976.
Loader, N. J., Robertson, I., Barker, A. C., Switsur, V. R., and Waterhouse,
J. S.: Improved technique for the batch processing of small whole wood
samples to alpha-cellulose, Chem. Geol., 136, 313–317, 1997.
Loader, N. J., Young, G. H. F., Grudd, H., and McCarroll, D.: Stable carbon
isotopes from Torneträsk, norther Sweden provide a millennial length
reconstruction of summer sunshine and its relationship to Arctic circulation,
Quaternary Sci. Rev., 62, 97–113, 2013.
McCarroll, D. and Loader, N. J.: Stable isotopes in tree rings, Quaternary
Sci. Rev., 23, 771–801, 2004.
Meronen, H., Henriksson, S. V., Räisänen, P., and Laaksonen, A.:
Climate effects of northern hemisphere volcanic eruptions in an Earth System
Model, Atmos. Res., 114–115, 107–118, 2012.
Munro, M. A. R., Brown, P. M., Hughes, M. K., and Garcia, E. M. R.: Image
analysis of tracheid dimensions for dendrochronological use, in: Tree Rings,
Environment and Humanity: Proceedings of the International Conference.
Tucson, Arizona, 17–21 May 1994, edited by: Dean, J. S., Meko, D. M.,
Swetnam, T. W., Radiocarbon, Tucson, 843–851, 1996.
Myglan, V. S., Oidupaa, O. Ch., Kirdyanov, A. V., and Vaganov, E. A.:
1929-year tree-ring chronology for Altai-Sayan region (Western Tuva), J.
Archeol. Ethnogr. Anthropol. Eurasia, 4, 25–31, 2008.
Naurzbaev, M. M., Vaganov, E. A., Sidorova, O. V., and Schweingruber, F. H.:
Summer temperatures in eastern Taimyr inferred from a 2427-year late-Holocene
tree-ring chronology and earlier floating series, Holocene, 12, 727–736,
2002.
Panofsky, H. A. and Brier, G. W.: Some applications of statistics to
meteorology, Mineral Industries Extension Services, College of Mineral
Industries, Pennsylvania State University, 224 pp., 1958.
Panyushkina, I. P., Hughes, M. K., Vaganov, E. A., and Munro, M. A. R.:
Summer temperature in northern Yakutia since AD 1642 reconstructed from
radial dimensions of larch tracheids, Can. J. Forest Res., 33, 1–10, 2003.
Peng, Y., Shen, C., Wang, W.-C., and Xu, Y.: Response of summer precipitation
over Eastern China to large volcanic eruptions, J. Climate, 23, 818–824,
2009.
R Core Team: R: A Language and Environment for Statistical Computing, Vienna,
Austria, 2016.
Robock, A.: Volcanic eruptions and climate, Rev. Geophys., 38, 191–219,
2000.
Robock, A. and Liu, Y.: The volcanic signal in Goddard Institute for Space
Studies three-imensional model simulations, J. Climate, 7, 44–55, 1994.
Roden, J. S. and Siegwolf, R: Is the dual isotope conceptual model fully
operational?, Tree Physiol., 32, 1179–1182, 2012.
Saurer, M., Robertson, I., Siegwolf, R., and Leuenberger, M.: Oxygen isotope
analysis of cellulose: an interlaboratory comparison, Anal. Chem., 70,
2074–2080, 1998.
Saurer, M., Kirdyanov, A. V., Prokushkin, A. S., Rinne, K. T., and Siegwolf,
R. T. W.: The impact of an inverse climate-isotope relationship in soil water
on the oxygen-isotope composition of Larix gmelinii in Siberia, New
Phytol., 209, 955–964, 2016.
Scheidegger, Y., Saurer, M., Bahn, M., and Siegwolf, R.: Linking stable
oxygen and carbon isotopes with stomatal conductance and photosynthetic
capacity: a conceptual model, Oecologia, 125, 350–357,
https://doi.org/10.1007/s004420000466, 2000.
Schneider, L., Smerdon, J. E., Büntgen, U., Wilson, R. J. S., Myglan, V.
S., Kirdyanov, A. V., anf Esper, J.: Revising mid-latitude summer
temperatures back to A.D. 600 based on a wood density network, Geophys. Res.
Lett., 42, GL063956, https://doi.org/10.1002/2015gl063956, 2015.
Schweingruber, F. H.: Tree rings and environment dendroecology, Paul Haupt
Publ., Bern, Stuttgart, Vienna, 609 pp., 1996.
Sidorova, O. V.: Long-term climatic changes and the larch radial growth on
the northern Middle Siberia and the Northeastern Yakutia in the Late
Holocene, PhD Diss., V.N. Sukachev Institute of Forest, Krasnoyarsk, 2003.
Sidorova, O. V. and Naurzbaev, Ì.Ì.: Response of Larix cajanderi to climatic changes at the upper timberline and in the Indigirka
River valley, Lesovedenie, 2, 73–75, 2002 (in Russian).
Sidorova, O. V., Naurzbaev, M. M., and Vaganov, E. A.: Response of tree-ring
chronologies growing on the Northern Eurasia to powerful volcanic eruptions,
Problems of ecological monitoring and ecosystem modeling, 20, 60–72, 2005.
Sidorova, O. V., Siegwolf, R. T. W., Saurer, M., Naurzbaev, M. M., and
Vaganov, E. A.: Isotopic composition (δ13C,
δ18O) in Siberian tree-ring chronology, J. Geophys.
Res.-Biogeo., 113, 1–13, 2008.
Sidorova, O. V., Siegwolf, R., Saurer, M., Naurzbaev, M., Shashkin, A. V.,
and Vaganov, E. A.: Spatial patterns of climatic changes in the Eurasian
north reflected in Siberian larch tree-ring parameters and stable isotopes,
Global Change Biol., 16, 1003–1018, https://doi.org/10.1111/j.1365-2486.2009.02008.x,
2010.
Sidorova, O. V., Saurer, M., Myglan, V. S., Eichler, A., Schwikowski, M.,
Kirdyanov, A. V., Bryukhanova, M. V., Gerasimova, O. V., Kalugin, I., Daryin,
A., and Siegwolf, R.: A multi-proxy approach for revealing recent climatic
changes in the Russian Altai, Clim. Dynam., 38, 175–188, 2011.
Sidorova, O. V., Siegwolf, R., Myglan, V. S., Loader, N. J., Helle, G., and
Saurer, M.: The application of tree-rings and stable isotopes for
reconstructions of climate conditions in the Altai-Sayan Mountain region,
Clim. Change, 120, 153–167, https://doi.org/10.1007/s10584-013-0805-5, 2012.
Sigl, M., Winstrup, M., and McConnell, J. R.: Timing and climate forcing of
volcanic eruptions for the past 2500 years, Nature, 523, 543–549,
https://doi.org/10.1038/nature14565, 2015.
Sprenger, M., Tetzlaff, D., Buttle, J. M., Laudon, H., Leistert, H.,
Mitchell, C., Snelgrove, J., Weiler, M., and Soulsby, C.: Measuring and
modelling stable isotopes of mobile and bulk soil water, Vadose Zone J., 17,
170149, https://doi.org/10.2136/vzj2017.08.0149, 2017.
Sternberg, L. S. O.: Oxygen stable isotope ratios of tree-ring cellulose: The
next phase of understanding, New Phytol., 181, 553–562, 2009.
Stirzaker, D.: Elementary Probability density functions, 2nd edn., Cambridge,
538 pp., 2003.
Stoffel, M., Khodri, M., Corona, C., Guillet, S., Poulain, V., Bekki, S.,
Guiot, J., Luckman, B. H., Oppenheimer, C., Lebas, N., Beniston, M., and
Masson-Delmotte, V.: Estimates of volcanic-induced cooling in the Northern
Hemisphere over the past 1500 years, Nat. Geosci., 8, 784–788, 2015.
Stothers, R. B.: Mystery cloud of AD 536, Nature, 307, 344–345,
https://doi.org/10.1038/307344a0, 1984.
Stothers, R. B.: Climatic and Demographic Consequences of the Massive
Volcanic Eruption of 1258, Clim. Change, 45, 361–374, 2000.
Sugimoto, A., Yanagisawa, N., Fujita, N., and Maximov, T. C.: Importance of
permafrost as a source of water for plants in east Siberian taiga, Ecol.
Res., 17, 493–503, 2002.
Toohey, M. and Sigl, M.: Volcanic stratospheric sulfur injections and aerosol
optical depth from 500 BCE to 1900 CE, Earth Syst. Sci. Data, 9, 809–831,
https://doi.org/10.5194/essd-9-809-2017, 2017.
Vaganov, E. A., Hughes, M. K., Kirdyanov, A. K., Schweingruber, F. H., and
Silkin, P. P.: Influence of snowfall and melt timing on tree growth in
subarctic Eurasia, Nature, 400, 149–151, 1999.
Vaganov, E. A., Hughes, M. K., and Shashkin, A. V.: Growth dynamics of
conifer tree rings, Springer Verlag, Berlin, 353 pp., 2006.
Wegmann, M., Brönnimann, S., Bhend, J., Franke, J., Folini, D., Wild, M.,
and Luterbacher, J.: Volcanic influence on European summer precipitation
through monsoons: Possible cause for “years without summer”, J. Climate,
27, 3683–3691, https://doi.org/10.1175/JCLI-D-13-00524.1, 2014.
Wigley, T. M. L., Briffa, K. R., and Jones, P. D.: On the Average Value of
Correlated Time Series, with Applications in Dendroclimatology and
Hydrometeorology, J. Climate Appl. Meteorol., 23, 201–213,
https://doi.org/10.1175/15200450(1984)023.0201, 1984.
Wiles, G. C., D'Arrigo, R. D., Barclay, D., Wilson, R. S., Jarvis, S. K.,
Vargo, L., and Frank, D.: Surface air temperature variability reconstructed
with tree rings for the Gulf of Alaska over the past 1200 years, Holocene,
24, 198–208, https://doi.org/10.1177/0959683613516815, 2014.
Wilson, R., Anchukaitis, K., Briffa, K. R., Büntgen, U., Cook, E.,
D'Arrigo, R., Davi, N., Esper, J., Frank, D., Gunnarson, B., Hegerl, G.,
Helama, S., Klesse, S., Krusic, P. J., Linderholm, H. W., Myglan, V., Osborn,
T. J., Rydval, M., Schneider, L., Schurer, A., Wiles, G., Zhang, P., and
Zorita, P.: Last millennium Northern Hemisphere summer temperatures from tree
rings, Part I: the long-term context, Quaternary Sci. Rev., 134, 1–18, 2016.
Zielinski, G. A.: Use of paleo-records in determining variability within the
volcanism-climate system, Quaternary Sci. Rev., 19, 417–438, 2000.
Zielinski, G. A., Mayewski, P. A., Meeker, L. D., Whitlow, S., Twickler, M.
S., Morrison, M., Meese, D. A., Gow, A. J., and Alley, R. B.: Record of
volcanism since 7000 BC from the GISP2 Greenland ice core implications for
the volcano-climate system, Science, 264, 948–952, 1994.
Short summary
We present a unique dataset of multiple tree-ring and stable isotope parameters, representing temperature-sensitive Siberian ecotones, to assess climatic impacts after six large stratospheric volcanic eruptions at 535, 540, 1257, 1640, 1815, and 1991 CE. Besides the well-documented effects of temperature derived from tree-ring width and latewood density, stable carbon and oxygen isotopes in tree-ring cellulose provide information about moisture and sunshine duration changes after the events.
We present a unique dataset of multiple tree-ring and stable isotope parameters, representing...