Articles | Volume 11, issue 6
https://doi.org/10.5194/cp-11-825-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/cp-11-825-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
New insights into the reconstructed temperature in Portugal over the last 400 years
Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, Universidade de Trás-os-Montes e Alto Douro, UTAD, 5000-801 Vila Real, Portugal
M. F. Carneiro
Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, Universidade de Trás-os-Montes e Alto Douro, UTAD, 5000-801 Vila Real, Portugal
A. Correia
Department of Physics and Geophysical Centre of Évora, University of Évora, Évora, Portugal
M. J. Alcoforado
Centro de Estudos Geográficos, IGOT, Universidade de Lisboa, Ed. Faculdade de Letras, 1600-214 Lisboa, Portugal
E. Zorita
Institute for Coastal Research, Helmholtz-Zentrum Geesthacht, Geesthacht, Germany
J. J. Gómez-Navarro
Climate and Environmental Physics, Physics Institute and Oeschger Centre for Climate Change Research, University of Bern, 3012 Bern, Switzerland
Related authors
J. A. Santos, M. A. Reis, F. De Pablo, L. Rivas-Soriano, and S. M. Leite
Nat. Hazards Earth Syst. Sci., 13, 1745–1758, https://doi.org/10.5194/nhess-13-1745-2013, https://doi.org/10.5194/nhess-13-1745-2013, 2013
Kai Bellinghausen, Birgit Hünicke, and Eduardo Zorita
EGUsphere, https://doi.org/10.5194/egusphere-2024-2222, https://doi.org/10.5194/egusphere-2024-2222, 2024
Short summary
Short summary
We designed a tool to predict the storm surges at the Baltic Sea coast with a satisfactorily predictability (70 % correct predictions) using lead times of a few days. The proportion of false warnings is typically as low as 10 to 20 %. We could identify the relevant predictor regions and their patterns – such as low pressure systems and strong winds. Due to its short computing time the method can be used as a pre-warning system triggering the application of more sophisticated algorithms.
Marlene Klockmann, Udo von Toussaint, and Eduardo Zorita
Geosci. Model Dev., 17, 1765–1787, https://doi.org/10.5194/gmd-17-1765-2024, https://doi.org/10.5194/gmd-17-1765-2024, 2024
Short summary
Short summary
Reconstructions of climate variability before the observational period rely on climate proxies and sophisticated statistical models to link the proxy information and climate variability. Existing models tend to underestimate the true magnitude of variability, especially if the proxies contain non-climatic noise. We present and test a promising new framework for climate-index reconstructions, based on Gaussian processes, which reconstructs robust variability estimates from noisy and sparse data.
Nele Tim, Birgit Hünicke, and Eduardo Zorita
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-147, https://doi.org/10.5194/nhess-2023-147, 2023
Manuscript not accepted for further review
Short summary
Short summary
Our study analyses extreme precipitation over southern Africa in regional high-resolution atmospheric simulations of the past and future. We investigated heavy precipitation over Southern Africa, coastal South Africa, Cape Town, and the KwaZulu-Natal province in eastern South Africa. Coastal precipitation extremes are projected to intensify, double in intensity in KwaZulu-Natal, and weaken in Cape Town. Extremes are not projected to occur more often in the 21st century than in the last decades.
Nele Tim, Eduardo Zorita, Birgit Hünicke, and Ioana Ivanciu
Weather Clim. Dynam., 4, 381–397, https://doi.org/10.5194/wcd-4-381-2023, https://doi.org/10.5194/wcd-4-381-2023, 2023
Short summary
Short summary
As stated by the IPCC, southern Africa is one of the two land regions that are projected to suffer from the strongest precipitation reductions in the future. Simulated drying in this region is linked to the adjacent oceans, and prevailing winds as warm and moist air masses are transported towards the continent. Precipitation trends in past and future climate can be partly attributed to the strength of the Agulhas Current system, the current along the east and south coasts of southern Africa.
Kai Bellinghausen, Birgit Hünicke, and Eduardo Zorita
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-21, https://doi.org/10.5194/nhess-2023-21, 2023
Manuscript not accepted for further review
Short summary
Short summary
The prediction of extreme coastal sea level, e.g. caused by a storm surge, is operationally carried out with dynamical computer models. These models are expensive to run and still display some limitations in predicting the height of extremes. We present a successful purely data-driven machine learning model to predict extreme sea levels along the Baltic Sea coast a few days in advance. The method is also able to identify the critical predictors for the different Baltic Sea regions.
Zeguo Zhang, Sebastian Wagner, Marlene Klockmann, and Eduardo Zorita
Clim. Past, 18, 2643–2668, https://doi.org/10.5194/cp-18-2643-2022, https://doi.org/10.5194/cp-18-2643-2022, 2022
Short summary
Short summary
A bidirectional long short-term memory (LSTM) neural network was employed for the first time for past temperature field reconstructions. The LSTM method tested in our experiments using a limited calibration and validation dataset shows worse reconstruction skills compared to traditional reconstruction methods. However, a certain degree of reconstruction performance achieved by the nonlinear LSTM method shows that skill can be achieved even when using small samples with limited datasets.
H. E. Markus Meier, Madline Kniebusch, Christian Dieterich, Matthias Gröger, Eduardo Zorita, Ragnar Elmgren, Kai Myrberg, Markus P. Ahola, Alena Bartosova, Erik Bonsdorff, Florian Börgel, Rene Capell, Ida Carlén, Thomas Carlund, Jacob Carstensen, Ole B. Christensen, Volker Dierschke, Claudia Frauen, Morten Frederiksen, Elie Gaget, Anders Galatius, Jari J. Haapala, Antti Halkka, Gustaf Hugelius, Birgit Hünicke, Jaak Jaagus, Mart Jüssi, Jukka Käyhkö, Nina Kirchner, Erik Kjellström, Karol Kulinski, Andreas Lehmann, Göran Lindström, Wilhelm May, Paul A. Miller, Volker Mohrholz, Bärbel Müller-Karulis, Diego Pavón-Jordán, Markus Quante, Marcus Reckermann, Anna Rutgersson, Oleg P. Savchuk, Martin Stendel, Laura Tuomi, Markku Viitasalo, Ralf Weisse, and Wenyan Zhang
Earth Syst. Dynam., 13, 457–593, https://doi.org/10.5194/esd-13-457-2022, https://doi.org/10.5194/esd-13-457-2022, 2022
Short summary
Short summary
Based on the Baltic Earth Assessment Reports of this thematic issue in Earth System Dynamics and recent peer-reviewed literature, current knowledge about the effects of global warming on past and future changes in the climate of the Baltic Sea region is summarised and assessed. The study is an update of the Second Assessment of Climate Change (BACC II) published in 2015 and focuses on the atmosphere, land, cryosphere, ocean, sediments, and the terrestrial and marine biosphere.
Marcus Reckermann, Anders Omstedt, Tarmo Soomere, Juris Aigars, Naveed Akhtar, Magdalena Bełdowska, Jacek Bełdowski, Tom Cronin, Michał Czub, Margit Eero, Kari Petri Hyytiäinen, Jukka-Pekka Jalkanen, Anders Kiessling, Erik Kjellström, Karol Kuliński, Xiaoli Guo Larsén, Michelle McCrackin, H. E. Markus Meier, Sonja Oberbeckmann, Kevin Parnell, Cristian Pons-Seres de Brauwer, Anneli Poska, Jarkko Saarinen, Beata Szymczycha, Emma Undeman, Anders Wörman, and Eduardo Zorita
Earth Syst. Dynam., 13, 1–80, https://doi.org/10.5194/esd-13-1-2022, https://doi.org/10.5194/esd-13-1-2022, 2022
Short summary
Short summary
As part of the Baltic Earth Assessment Reports (BEAR), we present an inventory and discussion of different human-induced factors and processes affecting the environment of the Baltic Sea region and their interrelations. Some are naturally occurring and modified by human activities, others are completely human-induced, and they are all interrelated to different degrees. The findings from this study can largely be transferred to other comparable marginal and coastal seas in the world.
Enrique Pravia-Sarabia, Juan José Gómez-Navarro, Pedro Jiménez-Guerrero, and Juan Pedro Montávez
Atmos. Chem. Phys., 21, 13353–13368, https://doi.org/10.5194/acp-21-13353-2021, https://doi.org/10.5194/acp-21-13353-2021, 2021
Short summary
Short summary
Given the hazardous nature of medicanes, studies focused on understanding and quantifying the processes governing their formation have become paramount for present and future disaster risk reduction. Therefore, enhancing the modeling and forecasting capabilities of such events is of crucial importance. In this sense, the authors find that the microphysical processes, and specifically the wind--sea salt aerosol feedback, play a key role in their development and thus should not be neglected.
Ralf Weisse, Inga Dailidienė, Birgit Hünicke, Kimmo Kahma, Kristine Madsen, Anders Omstedt, Kevin Parnell, Tilo Schöne, Tarmo Soomere, Wenyan Zhang, and Eduardo Zorita
Earth Syst. Dynam., 12, 871–898, https://doi.org/10.5194/esd-12-871-2021, https://doi.org/10.5194/esd-12-871-2021, 2021
Short summary
Short summary
The study is part of the thematic Baltic Earth Assessment Reports – a series of review papers summarizing the knowledge around major Baltic Earth science topics. It concentrates on sea level dynamics and coastal erosion (its variability and change). Many of the driving processes are relevant in the Baltic Sea. Contributions vary over short distances and across timescales. Progress and research gaps are described in both understanding details in the region and in extending general concepts.
Aleix Cortina-Guerra, Juan José Gomez-Navarro, Belen Martrat, Juan Pedro Montávez, Alessandro Incarbona, Joan O. Grimalt, Marie-Alexandrine Sicre, and P. Graham Mortyn
Clim. Past, 17, 1523–1532, https://doi.org/10.5194/cp-17-1523-2021, https://doi.org/10.5194/cp-17-1523-2021, 2021
Short summary
Short summary
During late 20th century a singular Mediterranean circulation episode called the Eastern Mediterranean Transient (EMT) event occurred. It involved changes on the seawater physical and biogeochemical properties, which can impact areas broadly. Here, using paleosimulations for the last 1000 years we found that the East Atlantic/Western Russian atmospheric mode was the main driver of the EMT-type events in the past, and enhancement of this mode was coetaneous with low solar insolation.
Oliver Bothe and Eduardo Zorita
Clim. Past, 17, 721–751, https://doi.org/10.5194/cp-17-721-2021, https://doi.org/10.5194/cp-17-721-2021, 2021
Short summary
Short summary
The similarity between indirect observations of past climates and information from climate simulations can increase our understanding of past climates. The further we look back, the more uncertain our indirect observations become. Here, we discuss the technical background for such a similarity-based approach to reconstruct past climates for up to the last 15 000 years. We highlight the potential and the problems.
Enrique Pravia-Sarabia, Juan José Gómez-Navarro, Pedro Jiménez-Guerrero, and Juan Pedro Montávez
Geosci. Model Dev., 13, 6051–6075, https://doi.org/10.5194/gmd-13-6051-2020, https://doi.org/10.5194/gmd-13-6051-2020, 2020
Short summary
Short summary
This work shows TITAM, a time-independent tracking algorithm specifically suited for Mediterranean tropical-like cyclones, often referred to as medicanes. The methodology developed has the capacity to track multiple simultaneous cyclones, the ability to track a medicane in the presence of intense extratropical lows, and the potential to separate the medicane from other similar structures by handling the intermittent loss of structure and managing the tilting of the axis.
Oliver Bothe and Eduardo Zorita
Clim. Past, 16, 341–369, https://doi.org/10.5194/cp-16-341-2020, https://doi.org/10.5194/cp-16-341-2020, 2020
Short summary
Short summary
One can use the similarity between sparse indirect observations of past climates and full fields of simulated climates to learn more about past climates. Here, we detail how one can compute uncertainty estimates for such reconstructions of past climates. This highlights the ambiguity of the reconstruction. We further show that such a reconstruction for European summer temperature agrees well with a more common approach.
Nele Tim, Eduardo Zorita, Kay-Christian Emeis, Franziska U. Schwarzkopf, Arne Biastoch, and Birgit Hünicke
Earth Syst. Dynam., 10, 847–858, https://doi.org/10.5194/esd-10-847-2019, https://doi.org/10.5194/esd-10-847-2019, 2019
Short summary
Short summary
Our study reveals that the latitudinal position and intensity of Southern Hemisphere trades and westerlies are correlated. In the last decades the westerlies have shifted poleward and intensified. Furthermore, the latitudinal shifts and intensity of the trades and westerlies impact the sea surface temperatures around southern Africa and in the South Benguela upwelling region. The future development of wind stress depends on the strength of greenhouse gas forcing.
Maria Pyrina, Eduardo Moreno-Chamarro, Sebastian Wagner, and Eduardo Zorita
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2019-50, https://doi.org/10.5194/esd-2019-50, 2019
Revised manuscript not accepted
Oliver Bothe, Sebastian Wagner, and Eduardo Zorita
Earth Syst. Sci. Data, 11, 1129–1152, https://doi.org/10.5194/essd-11-1129-2019, https://doi.org/10.5194/essd-11-1129-2019, 2019
Short summary
Short summary
Reconstructions try to extract a climate signal from paleo-observations. It is essential to understand their uncertainties. Similarly, comparing climate simulations and paleo-observations requires approaches to address their uncertainties. We describe a simple but flexible noise model for climate proxies for temperature on millennial timescales, which can assist these goals.
Salvador Gil-Guirado, Juan José Gómez-Navarro, and Juan Pedro Montávez
Clim. Past, 15, 1303–1325, https://doi.org/10.5194/cp-15-1303-2019, https://doi.org/10.5194/cp-15-1303-2019, 2019
Short summary
Short summary
The historical climatology has remarkable research potentialities. However, historical climatology has some methodological limitations. This study presents a new methodology (COST) that allows us to perform climate reconstructions with monthly resolution. The variability of the climatic series obtained are coherent with previous studies. The new proposed method is objective and is not affected by social changes, which allows us to perform studies in regions with different languages and cultures.
Francisco José Cuesta-Valero, Almudena García-García, Hugo Beltrami, Eduardo Zorita, and Fernando Jaume-Santero
Clim. Past, 15, 1099–1111, https://doi.org/10.5194/cp-15-1099-2019, https://doi.org/10.5194/cp-15-1099-2019, 2019
Short summary
Short summary
A database of North American long-term ground surface temperatures, from approximately 1300 CE to 1700 CE, was assembled from geothermal data. These temperatures are useful for studying the future stability of permafrost, as well as for evaluating simulations of preindustrial climate that may help to improve estimates of climate models’ equilibrium climate sensitivity. The database will be made available to the climate science community.
Oliver Bothe, Sebastian Wagner, and Eduardo Zorita
Clim. Past, 15, 307–334, https://doi.org/10.5194/cp-15-307-2019, https://doi.org/10.5194/cp-15-307-2019, 2019
Short summary
Short summary
Our understanding of future climate changes increases if different sources of information agree on past climate variations. Changing climates particularly impact local scales for which future changes in precipitation are highly uncertain. Here, we use information from observations, model simulations, and climate reconstructions for regional precipitation over the British Isles. We find these do not agree well on precipitation variations over the past few centuries.
Xing Yi, Birgit Hünicke, and Eduardo Zorita
Clim. Past Discuss., https://doi.org/10.5194/cp-2018-63, https://doi.org/10.5194/cp-2018-63, 2018
Revised manuscript not accepted
Short summary
Short summary
In this study, we analyse the outputs of Earth System Models to investigate the Arabian Sea upwelling for the last 1000 years and in the 21st century. Due to the orbital forcing of the models, the upwelling in the past is found to reveal a negative long-term trend, which matches the observed sediment records. In the future under the RCP8.5 scenario, the warming of the sea water tends to stabilize the surface layer and thus interrupts the upwelling.
Juan José Gómez-Navarro, Christoph C. Raible, Denica Bozhinova, Olivia Martius, Juan Andrés García Valero, and Juan Pedro Montávez
Geosci. Model Dev., 11, 2231–2247, https://doi.org/10.5194/gmd-11-2231-2018, https://doi.org/10.5194/gmd-11-2231-2018, 2018
Short summary
Short summary
We carry out and compare two high-resolution simulations of the Alpine region in the period 1979–2005. We aim to improve the understanding of the local mechanisms leading to extreme events in this complex region. We compare both simulations to precipitation observations to assess the model performance, and attribute major biases to either model or boundary conditions. Further, we develop a new bias correction technique to remove systematic errors in simulated precipitation for impact studies.
Sitar Karabil, Eduardo Zorita, and Birgit Hünicke
Earth Syst. Dynam., 9, 69–90, https://doi.org/10.5194/esd-9-69-2018, https://doi.org/10.5194/esd-9-69-2018, 2018
Short summary
Short summary
We analysed the contribution of atmospheric factors to interannual off-shore sea-level variability in the Baltic Sea region. We identified a different atmospheric circulation pattern that is more closely linked to sea-level variability than the NAO. The inverse barometer effect contributes to that link in the winter and summer seasons. Freshwater flux is connected to the link in summer and net heat flux in winter.The new atmospheric-pattern-related wind forcing plays an important role in summer.
Sitar Karabil, Eduardo Zorita, and Birgit Hünicke
Earth Syst. Dynam., 8, 1031–1046, https://doi.org/10.5194/esd-8-1031-2017, https://doi.org/10.5194/esd-8-1031-2017, 2017
Short summary
Short summary
We statistically analysed the mechanisms of the variability in decadal sea-level trends for the whole Baltic Sea basin over the last century. We used two different sea-level data sets and several climatic data sets. The results of this study showed that precipitation has a lagged effect on decadal sea-level trend variations from which the signature of atmospheric effect is removed. This detected underlying factor is not connected to oceanic forcing driven from the North Atlantic region.
Johann H. Jungclaus, Edouard Bard, Mélanie Baroni, Pascale Braconnot, Jian Cao, Louise P. Chini, Tania Egorova, Michael Evans, J. Fidel González-Rouco, Hugues Goosse, George C. Hurtt, Fortunat Joos, Jed O. Kaplan, Myriam Khodri, Kees Klein Goldewijk, Natalie Krivova, Allegra N. LeGrande, Stephan J. Lorenz, Jürg Luterbacher, Wenmin Man, Amanda C. Maycock, Malte Meinshausen, Anders Moberg, Raimund Muscheler, Christoph Nehrbass-Ahles, Bette I. Otto-Bliesner, Steven J. Phipps, Julia Pongratz, Eugene Rozanov, Gavin A. Schmidt, Hauke Schmidt, Werner Schmutz, Andrew Schurer, Alexander I. Shapiro, Michael Sigl, Jason E. Smerdon, Sami K. Solanki, Claudia Timmreck, Matthew Toohey, Ilya G. Usoskin, Sebastian Wagner, Chi-Ju Wu, Kok Leng Yeo, Davide Zanchettin, Qiong Zhang, and Eduardo Zorita
Geosci. Model Dev., 10, 4005–4033, https://doi.org/10.5194/gmd-10-4005-2017, https://doi.org/10.5194/gmd-10-4005-2017, 2017
Short summary
Short summary
Climate model simulations covering the last millennium provide context for the evolution of the modern climate and for the expected changes during the coming centuries. They can help identify plausible mechanisms underlying palaeoclimatic reconstructions. Here, we describe the forcing boundary conditions and the experimental protocol for simulations covering the pre-industrial millennium. We describe the PMIP4 past1000 simulations as contributions to CMIP6 and additional sensitivity experiments.
Maria Pyrina, Sebastian Wagner, and Eduardo Zorita
Clim. Past, 13, 1339–1354, https://doi.org/10.5194/cp-13-1339-2017, https://doi.org/10.5194/cp-13-1339-2017, 2017
Svenja E. Bierstedt, Birgit Hünicke, Eduardo Zorita, and Juliane Ludwig
Earth Syst. Dynam., 8, 639–652, https://doi.org/10.5194/esd-8-639-2017, https://doi.org/10.5194/esd-8-639-2017, 2017
Short summary
Short summary
We statistically analyse the relationship between the structure of migrating dunes in the southern Baltic and the driving wind conditions over the past 26 years, with the long-term aim of using migrating dunes as a proxy for past wind conditions at an interannual resolution.
Martina Messmer, Juan José Gómez-Navarro, and Christoph C. Raible
Earth Syst. Dynam., 8, 477–493, https://doi.org/10.5194/esd-8-477-2017, https://doi.org/10.5194/esd-8-477-2017, 2017
Short summary
Short summary
Low-pressure systems of type Vb may trigger heavy rainfall events over central Europe. This study aims at analysing the relative role of their moisture sources. For this, a set of sensitivity experiments encompassing changes in soil moisture and Atlantic Ocean and Mediterranean Sea SSTs are carried out with WRF. The latter moisture source stands out as the most relevant one. Furthermore, the regions most affected by Vb events in the future might be shifted from the Alps to the Balkan Peninsula.
Juan José Gómez-Navarro, Eduardo Zorita, Christoph C. Raible, and Raphael Neukom
Clim. Past, 13, 629–648, https://doi.org/10.5194/cp-13-629-2017, https://doi.org/10.5194/cp-13-629-2017, 2017
Short summary
Short summary
This contribution aims at assessing to what extent the analogue method, a classic technique used in other branches of meteorology and climatology, can be used to perform gridded reconstructions of annual temperature based on the limited information from available but un-calibrated proxies spread across different locations of the world. We conclude that it is indeed possible, albeit with certain limitations that render the method comparable to more classic techniques.
Xing Yi and Eduardo Zorita
Clim. Past Discuss., https://doi.org/10.5194/cp-2016-124, https://doi.org/10.5194/cp-2016-124, 2016
Revised manuscript not accepted
Short summary
Short summary
In this paper we study the upwelling in the Arabian Sea simulated in two Earth System Models for the last millennium and for the 21st century. Revealing a negative long-term trend due to the model orbital forcing, the upwelling over the last millennium is strongly correlated with the SST, the Indian summer Monsoon and the G.bulloides abundance observed in the sediment records. In the future scenarios the warming of the sea water tends to stabilize the surface layer and hinder the upwelling.
Nele Tim, Eduardo Zorita, Birgit Hünicke, Xing Yi, and Kay-Christian Emeis
Ocean Sci., 12, 807–823, https://doi.org/10.5194/os-12-807-2016, https://doi.org/10.5194/os-12-807-2016, 2016
Short summary
Short summary
The impact of external climate forcing on the four eastern boundary upwelling systems is investigated for the recent past and future. Under increased radiative forcing, upwelling-favourable winds should strengthen due to unequal heating of land and oceans. However, coastal upwelling simulated in ensembles of climate simulations do not show any imprint of external forcing neither for the past millennium nor for the future, with the exception of the strongest future scenario.
Svenja E. Bierstedt, Birgit Hünicke, Eduardo Zorita, Sebastian Wagner, and Juan José Gómez-Navarro
Clim. Past, 12, 317–338, https://doi.org/10.5194/cp-12-317-2016, https://doi.org/10.5194/cp-12-317-2016, 2016
X. Yi, B. Hünicke, N. Tim, and E. Zorita
Ocean Sci. Discuss., https://doi.org/10.5194/osd-12-2683-2015, https://doi.org/10.5194/osd-12-2683-2015, 2015
Revised manuscript not accepted
Short summary
Short summary
In this paper, we use the vertical water mass transport data provided by a high-resolution global ocean simulation to study the western Arabian Sea coastal upwelling system. Our results show that: 1). no significant long-term trend is detected in the upwelling time series. 2). the impact of Indian summer monsoon on the simulated upwelling is weak. 3). the upwelling is strongly affected by the sea level pressure gradient and the air temperature gradient.
J. J. Gómez-Navarro, C. C. Raible, and S. Dierer
Geosci. Model Dev., 8, 3349–3363, https://doi.org/10.5194/gmd-8-3349-2015, https://doi.org/10.5194/gmd-8-3349-2015, 2015
J. A. García-Valero, J. P. Montávez, J. J. Gómez-Navarro, and P. Jiménez-Guerrero
Nat. Hazards Earth Syst. Sci., 15, 2143–2159, https://doi.org/10.5194/nhess-15-2143-2015, https://doi.org/10.5194/nhess-15-2143-2015, 2015
Short summary
Short summary
This paper presents a study of extremely hot days (EHDs) in Spain and their connection with atmospheric dynamics. In addition, this work proposes a method that allows the detection of trends in the frequency of extreme events and their attribution to changes in atmospheric dynamics characterized through circulation types (CTs). The main CT-driven EHDs are identified. The increase in the EHD appearance is linked to the increase of the extreme CTs; however this only partially explains the trends.
J. J. Gómez-Navarro, O. Bothe, S. Wagner, E. Zorita, J. P. Werner, J. Luterbacher, C. C. Raible, and J. P Montávez
Clim. Past, 11, 1077–1095, https://doi.org/10.5194/cp-11-1077-2015, https://doi.org/10.5194/cp-11-1077-2015, 2015
N. Tim, E. Zorita, and B. Hünicke
Ocean Sci., 11, 483–502, https://doi.org/10.5194/os-11-483-2015, https://doi.org/10.5194/os-11-483-2015, 2015
Short summary
Short summary
The atmospheric drivers of the Benguela upwelling systems and its variability are statistically analysed with an ocean-only simulation over the last decades. Atmospheric upwelling-favourable conditions are southerly wind/wind stress, a strong subtropical anticyclone, and an ocean-land sea level pressure gradient as well as a negative ENSO and a positive AAO phase. No long-term trends of upwelling and of ocean-minus-land air pressure gradients, as supposed by Bakun, can be seen in our analysis.
J. J. Gómez-Navarro, J. P. Montávez, S. Wagner, and E. Zorita
Clim. Past, 9, 1667–1682, https://doi.org/10.5194/cp-9-1667-2013, https://doi.org/10.5194/cp-9-1667-2013, 2013
G. Esnaola, J. Sáenz, E. Zorita, A. Fontán, V. Valencia, and P. Lazure
Ocean Sci., 9, 655–679, https://doi.org/10.5194/os-9-655-2013, https://doi.org/10.5194/os-9-655-2013, 2013
J. A. Santos, M. A. Reis, F. De Pablo, L. Rivas-Soriano, and S. M. Leite
Nat. Hazards Earth Syst. Sci., 13, 1745–1758, https://doi.org/10.5194/nhess-13-1745-2013, https://doi.org/10.5194/nhess-13-1745-2013, 2013
O. Bothe, J. H. Jungclaus, D. Zanchettin, and E. Zorita
Clim. Past, 9, 1089–1110, https://doi.org/10.5194/cp-9-1089-2013, https://doi.org/10.5194/cp-9-1089-2013, 2013
Related subject area
Subject: Proxy Use-Development-Validation | Archive: Terrestrial Archives | Timescale: Centennial-Decadal
A past and present perspective on the European summer vapor pressure deficit
Drought reconstruction since 1796 CE based on tree-ring widths in the upper Heilongjiang (Amur) River basin in Northeast Asia and its linkage to Pacific Ocean climate variability
Drought increase since the mid-20th century in the northern South American Altiplano revealed by a 389-year precipitation record
Climate change detection and attribution using observed and simulated tree-ring width
Integrating plant wax abundance and isotopes for paleo-vegetation and paleoclimate reconstructions: a multi-source mixing model using a Bayesian framework
Do Southern Hemisphere tree rings record past volcanic events? A case study from New Zealand
Prospects for dendroanatomy in paleoclimatology – a case study on Picea engelmannii from the Canadian Rockies
Reconstructing past hydrology of eastern Canadian boreal catchments using clastic varved sediments and hydro-climatic modelling: 160 years of fluvial inflows
A 2600-year summer climate reconstruction in central Japan by integrating tree-ring stable oxygen and hydrogen isotopes
An overview on isotopic divergences – causes for instability of tree-ring isotopes and climate correlations
Proxy surrogate reconstructions for Europe and the estimation of their uncertainties
The 4.2 ka event in the central Mediterranean: new data from a Corchia speleothem (Apuan Alps, central Italy)
A 900-year New England temperature reconstruction from in situ seasonally produced branched glycerol dialkyl glycerol tetraethers (brGDGTs)
Leaf wax n-alkane distributions record ecological changes during the Younger Dryas at Trzechowskie paleolake (northern Poland) without temporal delay
Ground surface temperature reconstruction for the last 500 years obtained from permafrost temperatures observed in the SHARE STELVIO Borehole, Italian Alps
Decreasing Indian summer monsoon on the northern Indian sub-continent during the last 180 years: evidence from five tree-ring cellulose oxygen isotope chronologies
Recent climate variations in Chile: constraints from borehole temperature profiles
Spatio-temporal variability of Arctic summer temperatures over the past 2 millennia
Palaeoclimate significance of speleothems in crystalline rocks: a test case from the Late Glacial and early Holocene (Vinschgau, northern Italy)
Comparing proxy and model estimates of hydroclimate variability and change over the Common Era
Climate signals in a multispecies tree-ring network from central and southern Italy and reconstruction of the late summer temperatures since the early 1700s
Low-resolution Australasian palaeoclimate records of the last 2000 years
Climatic history of the northeastern United States during the past 3000 years
Experiments based on blue intensity for reconstructing North Pacific temperatures along the Gulf of Alaska
Spring temperature variability over Turkey since 1800 CE reconstructed from a broad network of tree-ring data
On the spatial and temporal variability of ENSO precipitation and drought teleconnection in mainland Southeast Asia
Interannual and (multi-)decadal variability in the sedimentary BIT index of Lake Challa, East Africa, over the past 2200 years: assessment of the precipitation proxy
A tree-ring perspective on temporal changes in the frequency and intensity of hydroclimatic extremes in the territory of the Czech Republic since 761 AD
Multi-century lake area changes in the Southern Altiplano: a tree-ring-based reconstruction
Optimal ranking regime analysis of TreeFlow dendrohydrological reconstructions
Expressions of climate perturbations in western Ugandan crater lake sediment records during the last 1000 years
Blue intensity and density from northern Fennoscandian tree rings, exploring the potential to improve summer temperature reconstructions with earlywood information
Reconstruction of the March–August PDSI since 1703 AD based on tree rings of Chinese pine (Pinus tabulaeformis Carr.) in the Lingkong Mountain, southeast Chinese loess Plateau
Forward modelling of tree-ring width and comparison with a global network of tree-ring chronologies
Reconstruction of northeast Asia spring temperature 1784–1990
COnstructing Proxy Records from Age models (COPRA)
A 560 yr summer temperature reconstruction for the Western Mediterranean basin based on stable carbon isotopes from Pinus nigra ssp. laricio (Corsica/France)
Isotopic and lithologic variations of one precisely-dated stalagmite across the Medieval/LIA period from Heilong Cave, central China
Modelling and climatic interpretation of the length fluctuations of Glaciar Frías (north Patagonian Andes, Argentina) 1639–2009 AD
A review of the South American monsoon history as recorded in stable isotopic proxies over the past two millennia
Identification of climatic state with limited proxy data
Multi-century tree-ring based reconstruction of the Neuquén River streamflow, northern Patagonia, Argentina
Extreme pointer years in tree-ring records of Central Spain as evidence of climatic events and the eruption of the Huaynaputina Volcano (Peru, 1600 AD)
Precipitation changes in the South American Altiplano since 1300 AD reconstructed by tree-rings
Fire history in western Patagonia from paired tree-ring fire-scar and charcoal records
Northern Hemisphere temperature patterns in the last 12 centuries
Viorica Nagavciuc, Simon L. L. Michel, Daniel F. Balting, Gerhard Helle, Mandy Freund, Gerhard H. Schleser, David N. Steger, Gerrit Lohmann, and Monica Ionita
Clim. Past, 20, 573–595, https://doi.org/10.5194/cp-20-573-2024, https://doi.org/10.5194/cp-20-573-2024, 2024
Short summary
Short summary
The main aim of this paper is to present the summer vapor pressure deficit (VPD) reconstruction dataset for the last 400 years over Europe based on δ18O records by using a random forest approach. We provide both a spatial and a temporal long-term perspective on the past summer VPD and new insights into the relationship between summer VPD and large-scale atmospheric circulation. This is the first gridded reconstruction of the European summer VPD over the past 400 years.
Yang Xu, Heli Zhang, Feng Chen, Shijie Wang, Mao Hu, Martín Hadad, and Fidel Roig
Clim. Past, 19, 2079–2092, https://doi.org/10.5194/cp-19-2079-2023, https://doi.org/10.5194/cp-19-2079-2023, 2023
Short summary
Short summary
We reconstructed the monthly mean self-calibrating Palmer drought severity index for May–July in the upper Heilongjiang (Amur) Basin since 1796. Our analysis suggests that the dry/wet variability in this basin is related to several large-scale climate stresses and atmospheric circulation patterns (El Niño–Southern Oscillation). The cause of drought is primarily a reduction in advective water vapor transport, rather than precipitation circulation processes.
Mariano S. Morales, Doris B. Crispín-DelaCruz, Claudio Álvarez, Duncan A. Christie, M. Eugenia Ferrero, Laia Andreu-Hayles, Ricardo Villalba, Anthony Guerra, Ginette Ticse-Otarola, Ernesto C. Rodríguez-Ramírez, Rosmery LLocclla-Martínez, Joali Sanchez-Ferrer, and Edilson J. Requena-Rojas
Clim. Past, 19, 457–476, https://doi.org/10.5194/cp-19-457-2023, https://doi.org/10.5194/cp-19-457-2023, 2023
Short summary
Short summary
In this study, we develop the first tree-ring-based precipitation reconstruction for the northern South American Altiplano back to 1625 CE. We established that the occurrence rate of extreme dry events together with a shift in mean dry conditions for the late 20th–beginning of the 21st century is unprecedented in the past 389 years, consistent with other paleoclimatic records. Our reconstruction provides valuable information about El Niño–Southern Oscillation influences on local precipitation.
Jörg Franke, Michael N. Evans, Andrew Schurer, and Gabriele C. Hegerl
Clim. Past, 18, 2583–2597, https://doi.org/10.5194/cp-18-2583-2022, https://doi.org/10.5194/cp-18-2583-2022, 2022
Short summary
Short summary
Detection and attribution is a statistical method to evaluate if external factors or random variability have caused climatic changes. We use for the first time a comparison of simulated and observed tree-ring width that circumvents many limitations of previous studies relying on climate reconstructions. We attribute variability in temperature-limited trees to strong volcanic eruptions and for the first time detect a spatial pattern in the growth of moisture-sensitive trees after eruptions.
Deming Yang and Gabriel J. Bowen
Clim. Past, 18, 2181–2210, https://doi.org/10.5194/cp-18-2181-2022, https://doi.org/10.5194/cp-18-2181-2022, 2022
Short summary
Short summary
Plant wax lipid ratios and their isotopes are used in vegetation and paleoclimate reconstructions. While studies often use either type of data, both can inform the mixing pattern of source plants. We developed a statistic model that evaluates ratios and isotopes together. Through case studies, we showed that the approach allows more detailed interpretations of vegetation and paleoclimate than traditional methods. This evolving framework can include more geochemical tracers in the future.
Philippa A. Higgins, Jonathan G. Palmer, Chris S. M. Turney, Martin S. Andersen, and Fiona Johnson
Clim. Past, 18, 1169–1188, https://doi.org/10.5194/cp-18-1169-2022, https://doi.org/10.5194/cp-18-1169-2022, 2022
Short summary
Short summary
We studied eight New Zealand tree species and identified differences in their responses to large volcanic eruptions. The response is dependent on the species and how well it can tolerate stress, but substantial within-species differences are also observed depending on site factors, including altitude and exposure. This has important implications for tree-ring temperature reconstructions because site selection and compositing methods can change the magnitude of observed volcanic cooling.
Kristina Seftigen, Marina V. Fonti, Brian Luckman, Miloš Rydval, Petter Stridbeck, Georg von Arx, Rob Wilson, and Jesper Björklund
Clim. Past, 18, 1151–1168, https://doi.org/10.5194/cp-18-1151-2022, https://doi.org/10.5194/cp-18-1151-2022, 2022
Short summary
Short summary
New proxies and improvements in existing methodologies are needed to advance paleoclimate research. This study explored dendroanatomy, the analysis of wood anatomical parameters in dated tree rings, of Engelmann spruce from the Columbia Icefield area, Canada, as a proxy of past temperatures. Our new parameters compare favorably with state of the art proxy parameters from X-ray and visible light techniques, particularly with respect to the temporal stability of the temperature signal.
Antoine Gagnon-Poiré, Pierre Brigode, Pierre Francus, David Fortin, Patrick Lajeunesse, Hugues Dorion, and Annie-Pier Trottier
Clim. Past, 17, 653–673, https://doi.org/10.5194/cp-17-653-2021, https://doi.org/10.5194/cp-17-653-2021, 2021
Short summary
Short summary
A very high quality 160-year-long annually laminated (varved) sediment sequence of fluvial origin was recently discovered in an especially deep lake in Labrador. Each varve represents 1 hydrological year. A significant relation between varves' physical parameters (i.e., thickness and grain size extracted from each annual lamination) and river discharge instrumental observations provided the opportunity to develop regional discharge reconstructions beyond the instrumental period.
Takeshi Nakatsuka, Masaki Sano, Zhen Li, Chenxi Xu, Akane Tsushima, Yuki Shigeoka, Kenjiro Sho, Keiko Ohnishi, Minoru Sakamoto, Hiromasa Ozaki, Noboru Higami, Nanae Nakao, Misao Yokoyama, and Takumi Mitsutani
Clim. Past, 16, 2153–2172, https://doi.org/10.5194/cp-16-2153-2020, https://doi.org/10.5194/cp-16-2153-2020, 2020
Short summary
Short summary
In general, it is not easy to reconstruct past climate variations over a wide band of frequencies using a single proxy. Here, we propose a new method to reconstruct past summer climate seamlessly from annual to millennial timescales by integrating tree-ring cellulose oxygen and hydrogen isotope ratios. The result can be utilized to investigate various scales of climatological phenomena in the past and climate–society relationships in long human history.
Martine M. Savard and Valérie Daux
Clim. Past, 16, 1223–1243, https://doi.org/10.5194/cp-16-1223-2020, https://doi.org/10.5194/cp-16-1223-2020, 2020
Short summary
Short summary
Climatic reconstructions based on tree-ring isotopic series convey key information on past conditions prevailing in forested regions. However, in some cases, the relations between isotopes and climate appear unstable over time, generating isotopic divergences. Former reviews have thoroughly discussed the divergence concept for tree-ring width but not for isotopes. Here we present a synopsis of the isotopic divergence problem and suggest collaborative work for improving climatic reconstructions.
Oliver Bothe and Eduardo Zorita
Clim. Past, 16, 341–369, https://doi.org/10.5194/cp-16-341-2020, https://doi.org/10.5194/cp-16-341-2020, 2020
Short summary
Short summary
One can use the similarity between sparse indirect observations of past climates and full fields of simulated climates to learn more about past climates. Here, we detail how one can compute uncertainty estimates for such reconstructions of past climates. This highlights the ambiguity of the reconstruction. We further show that such a reconstruction for European summer temperature agrees well with a more common approach.
Ilaria Isola, Giovanni Zanchetta, Russell N. Drysdale, Eleonora Regattieri, Monica Bini, Petra Bajo, John C. Hellstrom, Ilaria Baneschi, Piero Lionello, Jon Woodhead, and Alan Greig
Clim. Past, 15, 135–151, https://doi.org/10.5194/cp-15-135-2019, https://doi.org/10.5194/cp-15-135-2019, 2019
Short summary
Short summary
To understand the natural variability in the climate system, the hydrological aspect (dry and wet conditions) is particularly important for its impact on our societies. The reconstruction of past precipitation regimes can provide a useful tool for forecasting future climate changes. We use multi-proxy time series (oxygen and carbon isotopes, trace elements) from a speleothem to investigate circulation pattern variations and seasonality effects during the dry 4.2 ka event in central Italy.
Daniel R. Miller, M. Helen Habicht, Benjamin A. Keisling, Isla S. Castañeda, and Raymond S. Bradley
Clim. Past, 14, 1653–1667, https://doi.org/10.5194/cp-14-1653-2018, https://doi.org/10.5194/cp-14-1653-2018, 2018
Short summary
Short summary
We measured biomarker production over a year in a small inland lake in the northeastern USA. Understanding biomarkers in the modern environment helps us improve reconstructions of past climate from lake sediment records. We use these results to interpret a 900-year decadally resolved temperature record from this lake. Our record highlights multi-decadal oscillations in temperature superimposed on a long-term cooling trend, providing novel insight into climate dynamics of the region.
Bernhard Aichner, Florian Ott, Michał Słowiński, Agnieszka M. Noryśkiewicz, Achim Brauer, and Dirk Sachse
Clim. Past, 14, 1607–1624, https://doi.org/10.5194/cp-14-1607-2018, https://doi.org/10.5194/cp-14-1607-2018, 2018
Short summary
Short summary
Abundances of plant biomarkers are compared with pollen data in a 3000-year climate archive covering the Late Glacial to Holocene transition in northern Poland. Both parameters synchronously show the rapid onset (12680–12600 yr BP) and termination
(11580–11490 yr BP) of the Younger Dryas cold interval in the study area. This demonstrates the suitability of such proxies to record pronounced changes in vegetation cover without significant delay.
Mauro Guglielmin, Marco Donatelli, Matteo Semplice, and Stefano Serra Capizzano
Clim. Past, 14, 709–724, https://doi.org/10.5194/cp-14-709-2018, https://doi.org/10.5194/cp-14-709-2018, 2018
Short summary
Short summary
The reconstruction of ground surface temperature for the last 500 years, obtained at the deepest mountain permafrost borehole of the world (Stelvio Pass, 3000 m a.s.l., Italian Alps), is presented here. The main difference with respect to MAAT reconstructions obtained through other proxy data for all of Europe relates to post Little Ice Age (LIA) events. Indeed at this site a stronger cooling of ca 1 °C between 1940 and 1989 and even a more abrupt warming between 1990 and 2011 was detected.
Chenxi Xu, Masaki Sano, Ashok Priyadarshan Dimri, Rengaswamy Ramesh, Takeshi Nakatsuka, Feng Shi, and Zhengtang Guo
Clim. Past, 14, 653–664, https://doi.org/10.5194/cp-14-653-2018, https://doi.org/10.5194/cp-14-653-2018, 2018
Short summary
Short summary
We have constructed a regional tree ring cellulose oxygen isotope record using a total of five chronologies obtained from the Himalaya. Centennial changes in the regional tree ring record indicate a trend of weakened Indian summer monsoon (ISM) intensity since 1820. Decreasing ISM activity is also observed in various high-resolution ISM records from southwest China and Southeast Asia, and may be the result of reduced land–ocean thermal contrasts since 1820.
Carolyne Pickler, Edmundo Gurza Fausto, Hugo Beltrami, Jean-Claude Mareschal, Francisco Suárez, Arlette Chacon-Oecklers, Nicole Blin, Maria Teresa Cortés Calderón, Alvaro Montenegro, Rob Harris, and Andres Tassara
Clim. Past, 14, 559–575, https://doi.org/10.5194/cp-14-559-2018, https://doi.org/10.5194/cp-14-559-2018, 2018
Short summary
Short summary
We compiled 31 temperature–depth profiles to reconstruct the ground surface temperature of the last 500 years in northern Chile. They suggest that the region experienced a cooling from 1850 to 1980 followed by a warming of 1.9 K. The cooling could coincide with a cooling interval in 1960. The warming is greater than that of proxy reconstructions for nearby regions and model simulations. These differences could be due to differences in spatial and temporal resolution between data and models.
Johannes P. Werner, Dmitry V. Divine, Fredrik Charpentier Ljungqvist, Tine Nilsen, and Pierre Francus
Clim. Past, 14, 527–557, https://doi.org/10.5194/cp-14-527-2018, https://doi.org/10.5194/cp-14-527-2018, 2018
Short summary
Short summary
We present a new gridded Arctic summer temperature reconstruction back to the first millennium CE. Our method respects the age uncertainties of the data, which results in a more precise reconstruction.
The spatial average shows a millennium-scale cooling trend which is reversed in the mid-19th century. While temperatures in the 10th century were probably as warm as in the 20th century, the spatial coherence of the recent warm episodes seems unprecedented.
The spatial average shows a millennium-scale cooling trend which is reversed in the mid-19th century. While temperatures in the 10th century were probably as warm as in the 20th century, the spatial coherence of the recent warm episodes seems unprecedented.
Gabriella Koltai, Hai Cheng, and Christoph Spötl
Clim. Past, 14, 369–381, https://doi.org/10.5194/cp-14-369-2018, https://doi.org/10.5194/cp-14-369-2018, 2018
Short summary
Short summary
Here we present a multi-proxy study of flowstones in fractures of crystalline rocks with the aim of assessing the palaeoclimate significance of this new type of speleothem archive. Our results indicate a high degree of spatial heterogeneity, whereby changes in speleothem mineralogy and carbon isotope composition are likely governed by aquifer-internal processes. In contrast, the oxygen isotope composition reflects first-order climate variability.
PAGES Hydro2k Consortium
Clim. Past, 13, 1851–1900, https://doi.org/10.5194/cp-13-1851-2017, https://doi.org/10.5194/cp-13-1851-2017, 2017
Short summary
Short summary
Water availability is fundamental to societies and ecosystems, but our understanding of variations in hydroclimate (including extreme events, flooding, and decadal periods of drought) is limited due to a paucity of modern instrumental observations. We review how proxy records of past climate and climate model simulations can be used in tandem to understand hydroclimate variability over the last 2000 years and how these tools can also inform risk assessments of future hydroclimatic extremes.
Giovanni Leonelli, Anna Coppola, Maria Cristina Salvatore, Carlo Baroni, Giovanna Battipaglia, Tiziana Gentilesca, Francesco Ripullone, Marco Borghetti, Emanuele Conte, Roberto Tognetti, Marco Marchetti, Fabio Lombardi, Michele Brunetti, Maurizio Maugeri, Manuela Pelfini, Paolo Cherubini, Antonello Provenzale, and Valter Maggi
Clim. Past, 13, 1451–1471, https://doi.org/10.5194/cp-13-1451-2017, https://doi.org/10.5194/cp-13-1451-2017, 2017
Short summary
Short summary
We analyze a tree-ring network from several sites distributed along the Italian Peninsula with the aims of detecting common climate drivers of tree growth and of reconstructing the past climate. We detect the main climatic drivers modulating tree-ring width (RW) and tree-ring maximum latewood density (MXD) and we reconstruct late summer temperatures since the early 1700s using a MXD chronology: this reconstruction is representative of a wide area around the Italian Peninsula.
Bronwyn C. Dixon, Jonathan J. Tyler, Andrew M. Lorrey, Ian D. Goodwin, Joëlle Gergis, and Russell N. Drysdale
Clim. Past, 13, 1403–1433, https://doi.org/10.5194/cp-13-1403-2017, https://doi.org/10.5194/cp-13-1403-2017, 2017
Short summary
Short summary
Existing sedimentary palaeoclimate records in Australasia were assessed for suitability for examining the last 2 millennia. A small number of high-quality records were identified, and new Bayesian age models were constructed for each record. Findings suggest that Australasian record chronologies and confidence in proxy–climate relationships are the main factors limiting appropriate data for examining Common Era climate variability. Recommendations for improving data accessibility are provided.
Jennifer R. Marlon, Neil Pederson, Connor Nolan, Simon Goring, Bryan Shuman, Ann Robertson, Robert Booth, Patrick J. Bartlein, Melissa A. Berke, Michael Clifford, Edward Cook, Ann Dieffenbacher-Krall, Michael C. Dietze, Amy Hessl, J. Bradford Hubeny, Stephen T. Jackson, Jeremiah Marsicek, Jason McLachlan, Cary J. Mock, David J. P. Moore, Jonathan Nichols, Dorothy Peteet, Kevin Schaefer, Valerie Trouet, Charles Umbanhowar, John W. Williams, and Zicheng Yu
Clim. Past, 13, 1355–1379, https://doi.org/10.5194/cp-13-1355-2017, https://doi.org/10.5194/cp-13-1355-2017, 2017
Short summary
Short summary
To improve our understanding of paleoclimate in the northeastern (NE) US, we compiled data from pollen, tree rings, lake levels, testate amoeba from bogs, and other proxies from the last 3000 years. The paleoclimate synthesis supports long-term cooling until the 1800s and reveals an abrupt transition from wet to dry conditions around 550–750 CE. Evidence suggests the region is now becoming warmer and wetter, but more calibrated data are needed, especially to capture multidecadal variability.
Rob Wilson, Rosanne D'Arrigo, Laia Andreu-Hayles, Rose Oelkers, Greg Wiles, Kevin Anchukaitis, and Nicole Davi
Clim. Past, 13, 1007–1022, https://doi.org/10.5194/cp-13-1007-2017, https://doi.org/10.5194/cp-13-1007-2017, 2017
Short summary
Short summary
Blue intensity shows great potential for reconstructing past summer temperatures from conifer trees growing at high latitude or the treeline. However, conifer species that express a strong colour difference between the heartwood and sapwood can impart a long-term trend bias in the resultant reconstructions. Herein, we highlight this issue using eight mountain hemlock sites across the Gulf of Alaska and explore how a non-biased reconstruction of past temperature could be derived using such data.
Nesibe Köse, H. Tuncay Güner, Grant L. Harley, and Joel Guiot
Clim. Past, 13, 1–15, https://doi.org/10.5194/cp-13-1-2017, https://doi.org/10.5194/cp-13-1-2017, 2017
Timo A. Räsänen, Ville Lindgren, Joseph H. A. Guillaume, Brendan M. Buckley, and Matti Kummu
Clim. Past, 12, 1889–1905, https://doi.org/10.5194/cp-12-1889-2016, https://doi.org/10.5194/cp-12-1889-2016, 2016
Short summary
Short summary
El Niño-Southern Oscillation (ENSO) is linked to severe droughts and floods in mainland Southeast Asia. This research provides a more accurate and uniform picture of the spatio-temporal effects of ENSO on precipitation (1980–2013) and improves our understanding of long-term (1650–2004) ENSO teleconnection and its variability over the study area. The results reveal not only recognisable spatio-temporal patterns but also a high degree of variability and non-stationarity in the effects of ENSO.
Laura K. Buckles, Dirk Verschuren, Johan W. H. Weijers, Christine Cocquyt, Maarten Blaauw, and Jaap S. Sinninghe Damsté
Clim. Past, 12, 1243–1262, https://doi.org/10.5194/cp-12-1243-2016, https://doi.org/10.5194/cp-12-1243-2016, 2016
Short summary
Short summary
This paper discusses the underlying mechanisms of a method that uses specific membrane lipids present in the sediments of an African tropical lake to determine past changes in rainfall. With this method, past dry periods in the last 25 000 years can be assessed.
P. Dobrovolný, M. Rybníček, T. Kolář, R. Brázdil, M. Trnka, and U. Büntgen
Clim. Past, 11, 1453–1466, https://doi.org/10.5194/cp-11-1453-2015, https://doi.org/10.5194/cp-11-1453-2015, 2015
Short summary
Short summary
A new data set of 3194 oak (Quercus spp.) ring width samples collected across the Czech Republic and covering the past 1250 years was analysed. The temporal distribution of negative and positive TRW extremes occurring is regular with no indication of clustering. Negative TRW extremes coincided with above-average March-May and June-August temperature means and below-average precipitation totals. Positive extremes coincided with higher summer precipitation, while temperatures were mostly normal.
M. S. Morales, J. Carilla, H. R. Grau, and R. Villalba
Clim. Past, 11, 1139–1152, https://doi.org/10.5194/cp-11-1139-2015, https://doi.org/10.5194/cp-11-1139-2015, 2015
Short summary
Short summary
A 601-year lake area reconstruction in NW Argentina and SW Bolivia, characterized the occurrence of annual to multi-decadal lake area fluctuations and its main oscillation modes of variability. Our reconstruction points out that the late 20th century decrease in lake area was exceptional over the period 1407–2007. A persistent negative trend in lake area is clear in the reconstruction and consistent with glacier retreat and other climate proxies from the Altiplano and the tropical Andes.
S. A. Mauget
Clim. Past, 11, 1107–1125, https://doi.org/10.5194/cp-11-1107-2015, https://doi.org/10.5194/cp-11-1107-2015, 2015
Short summary
Short summary
A new approach to time series analysis - the ORR method - was used to evaluate reconstructed western US streamflow records during 1500-2007. This method shows an interesting pattern of alternating drought and wet periods during the late 16th and 17th centuries, a period with relatively few drought or wet periods during the 18th century, and the and the reappearance of alternating dry and wet periods during the 19th and early 20th centuries.
K. Mills, D. B. Ryves, N. J. Anderson, C. L. Bryant, and J. J. Tyler
Clim. Past, 10, 1581–1601, https://doi.org/10.5194/cp-10-1581-2014, https://doi.org/10.5194/cp-10-1581-2014, 2014
J. A. Björklund, B. E. Gunnarson, K. Seftigen, J. Esper, and H. W. Linderholm
Clim. Past, 10, 877–885, https://doi.org/10.5194/cp-10-877-2014, https://doi.org/10.5194/cp-10-877-2014, 2014
Q. Cai, Y. Liu, Y. Lei, G. Bao, and B. Sun
Clim. Past, 10, 509–521, https://doi.org/10.5194/cp-10-509-2014, https://doi.org/10.5194/cp-10-509-2014, 2014
P. Breitenmoser, S. Brönnimann, and D. Frank
Clim. Past, 10, 437–449, https://doi.org/10.5194/cp-10-437-2014, https://doi.org/10.5194/cp-10-437-2014, 2014
M. Ohyama, H. Yonenobu, J.-N. Choi, W.-K. Park, M. Hanzawa, and M. Suzuki
Clim. Past, 9, 261–266, https://doi.org/10.5194/cp-9-261-2013, https://doi.org/10.5194/cp-9-261-2013, 2013
S. F. M. Breitenbach, K. Rehfeld, B. Goswami, J. U. L. Baldini, H. E. Ridley, D. J. Kennett, K. M. Prufer, V. V. Aquino, Y. Asmerom, V. J. Polyak, H. Cheng, J. Kurths, and N. Marwan
Clim. Past, 8, 1765–1779, https://doi.org/10.5194/cp-8-1765-2012, https://doi.org/10.5194/cp-8-1765-2012, 2012
S. Szymczak, M. M. Joachimski, A. Bräuning, T. Hetzer, and J. Kuhlemann
Clim. Past, 8, 1737–1749, https://doi.org/10.5194/cp-8-1737-2012, https://doi.org/10.5194/cp-8-1737-2012, 2012
Y. F. Cui, Y. J. Wang, H. Cheng, K. Zhao, and X. G. Kong
Clim. Past, 8, 1541–1550, https://doi.org/10.5194/cp-8-1541-2012, https://doi.org/10.5194/cp-8-1541-2012, 2012
P. W. Leclercq, P. Pitte, R. H. Giesen, M. H. Masiokas, and J. Oerlemans
Clim. Past, 8, 1385–1402, https://doi.org/10.5194/cp-8-1385-2012, https://doi.org/10.5194/cp-8-1385-2012, 2012
M. Vuille, S. J. Burns, B. L. Taylor, F. W. Cruz, B. W. Bird, M. B. Abbott, L. C. Kanner, H. Cheng, and V. F. Novello
Clim. Past, 8, 1309–1321, https://doi.org/10.5194/cp-8-1309-2012, https://doi.org/10.5194/cp-8-1309-2012, 2012
J. D. Annan and J. C. Hargreaves
Clim. Past, 8, 1141–1151, https://doi.org/10.5194/cp-8-1141-2012, https://doi.org/10.5194/cp-8-1141-2012, 2012
I. A. Mundo, M. H. Masiokas, R. Villalba, M. S. Morales, R. Neukom, C. Le Quesne, R. B. Urrutia, and A. Lara
Clim. Past, 8, 815–829, https://doi.org/10.5194/cp-8-815-2012, https://doi.org/10.5194/cp-8-815-2012, 2012
M. Génova
Clim. Past, 8, 751–764, https://doi.org/10.5194/cp-8-751-2012, https://doi.org/10.5194/cp-8-751-2012, 2012
M. S. Morales, D. A. Christie, R. Villalba, J. Argollo, J. Pacajes, J. S. Silva, C. A. Alvarez, J. C. Llancabure, and C. C. Soliz Gamboa
Clim. Past, 8, 653–666, https://doi.org/10.5194/cp-8-653-2012, https://doi.org/10.5194/cp-8-653-2012, 2012
A. Holz, S. Haberle, T. T. Veblen, R. De Pol-Holz, and J. Southon
Clim. Past, 8, 451–466, https://doi.org/10.5194/cp-8-451-2012, https://doi.org/10.5194/cp-8-451-2012, 2012
F. C. Ljungqvist, P. J. Krusic, G. Brattström, and H. S. Sundqvist
Clim. Past, 8, 227–249, https://doi.org/10.5194/cp-8-227-2012, https://doi.org/10.5194/cp-8-227-2012, 2012
Cited articles
Alcoforado, M. J., Nunes, M. F., Garcia, J. C., and Taborda, J. P.: Temperature and precipitation reconstruction in southern Portugal during the late Maunder Minimum (AD 1675–1715), Holocene, 10, 333–340, 2000.
Alcoforado, M. J., Vaquero, J. M., Trigo, R. M., and Taborda, J. P.: Early Portuguese meteorological measurements (18th century), Clim. Past, 8, 353–371, https://doi.org/10.5194/cp-8-353-2012, 2012.
Beltrami, H. and Mareschal, J.-C.: Resolution of ground temperature histories inverted from borehole temperature data, Global Planet. Change, 11, 57–70, 1995.
Beltrami, H. and Bourlon, E.: Ground warming patterns in the Northern Hemisphere during the last five centuries, Earth Planet. Sc. Lett., 227, 169–177, 2004.
Beltrami, H., González-Rouco, J. F., and Stevens, M. B.: Subsurface temperatures during the last millennium: model and observation, Geophys. Res. Lett., 33, L09705, https://doi.org/10.1029/2006GL026050, 2006.
Beltrami, H., Smerdon, J. E., Matharoo, G. S., and Nickerson, N.: Impact of maximum borehole depths on inverted temperature histories in borehole paleoclimatology, Clim. Past, 7, 745–756, https://doi.org/10.5194/cp-7-745-2011, 2011.
Bodri, L. and Čermák, V.: Reconstruction of remote climate changes from borehole temperatures, Global Planet. Change, 15, 47–57, 1997.
Brázdil, R., Pfister, C., Wanner, H., Storch, H., and Luterbacher, J.: Historical Climatology In Europe – The State Of The Art, Clim. Change, 70, 363–430, 2005.
Brázdil, R., Dobrovolný, P., Luterbacher, J., Moberg, A., Pfister, C., Wheeler, D., and Zorita, E.: European climate of the past 500 years: new challenges for historical climatology, Clim. Change, 101, 7–40, 2010.
Camuffo, D., Bertolin, C., Barriendos, M., Dominguez-Castro, F., Cocheo, C., Enzi, S., Sghedoni, M., Valle, A., Garnier, E., Alcoforado, M. J., Xoplaki, E., Luterbacher, J., Diodato, N., Maugeri, M., Nunes, M. F., and Rodriguez, R.: 500-year temperature reconstruction in the Mediterranean Basin by means of documentary data and instrumental observations, Clim. Change, 101, 169–199, 2010.
Camuffo, D., Bertolin, C., Diodato, N., Cocheo, C., Barriendos, M., Dominguez-Castro, F., Garnier, E., Alcoforado, M. J., and Nunes, M. F.: Western Mediterranean precipitation over the last 300 years from instrumental observations, Clim. Change, 117, 85–101, 2013.
Carslaw, H. S. and Jaeger, J. C.: Conduction of Heat in Solids, Oxford Univ. Press, New York, 1959.
Cermak, V. and Rybach, L.: Thermal conductivity and specific heat of minerals and rocks, in: Landolt-Börnstein – Group V Geophysics, edited by: Subvolume, A. and Angenheister, G., Springer Berlin Heidelberg, 341–343, 1982.
Chouinard, C. and Mareschal, J. C.: Selection of borehole temperature depth profiles for regional climate reconstructions, Clim. Past, 3, 297–313, https://doi.org/10.5194/cp-3-297-2007, 2007.
Correia, A. and Šafanda, J.: Preliminary ground surface temperature history in mainland Portugal reconstructed from borehole temperature logs, Tectonophysics, 306, 269–275, https://doi.org/10.1016/S0040-1951(99)00060-8, 1999.
Correia, A. and Šafanda, J.: Ground surface temperature history at a single site in southern Portugal reconstructed from borehole temperatures, Global Planet. Change, 29, 155–165, 2001.
Eddy, J. A.: The Maunder Minimum – a Reappraisal, Sol. Phys., 89, 195–207, 1983.
Elsner, J. B. and Tsonis, A. A.: Singular spectrum analysis: a new tool in time series analysis, Plenum Press, New York, London, 1996.
Frenzel, B.: Climatic Trends and anomalies in Europe 1675–1715, High resolution spatio-temporal reconstructions from direct meteorological observations and proxy data. Methods and Results, Gustav Fischer Verlag, Stuttgart, Jena and New York, 1994.
Ghil, M. and Vautard, R.: Interdecadal Oscillations and the Warming Trend in Global Temperature Time-Series, Nature, 350, 324–327, https://doi.org/10.1038/350324a0, 1991.
Gómez-Navarro, J. J., Montavez, J. P., Jerez, S., Jimenez-Guerrero, P., Lorente-Plazas, R., Gonzalez-Rouco, J. F., and Zorita, E.: A regional climate simulation over the Iberian Peninsula for the last millennium, Clim. Past, 7, 451–472, https://doi.org/10.5194/cp-7-451-2011, 2011.
Gómez-Navarro, J. J., Montávez, J. P., Jiménez-Guerrero, P., Jerez, S., Lorente-Plazas, R., González-Rouco, J. F., and Zorita, E.: Internal and external variability in regional simulations of the Iberian Peninsula climate over the last millennium, Clim. Past, 8, 25–36, https://doi.org/10.5194/cp-8-25-2012, 2012.
González-Rouco, F., von Storch, H., and Zorita, E.: Deep soil temperature as proxy for surface air-temperature in a coupled model simulation of the last thousand years, Geophys. Res. Lett., 30, 2116, https://doi.org/10.1029/2003GL018264, 2003.
González-Rouco, J. F., Beltrami, H., Zorita, E., and von Storch, H.: Simulation and inversion of borehole temperature profiles in surrogate climates: Spatial distribution and surface coupling, Geophys. Res. Lett., 33, L01703, https://doi.org/10.1029/2005GL024693, 2006.
González-Rouco, J. F., Beltrami, H., Zorita, E., and Stevens, M. B.: Borehole climatology: a discussion based on contributions from climate modeling, Clim. Past, 5, 97–127, https://doi.org/10.5194/cp-5-97-2009, 2009.
Gouirand, I., Moberg, A., and Zorita, E.: Climate variability in Scandinavia for the past millennium simulated by an atmosphere-ocean general circulation model, Tellus A, 59, 30–49, https://doi.org/10.1111/j.1600-0870.2006.00207.x, 2007.
Hamza, V. M., Cavalcanti, A. S. B., and Benyosef, L. C. C.: Surface thermal perturbations of the recent past at low latitudes – inferences based on borehole temperature data from Eastern Brazil, Clim. Past, 3, 513–526, 2007.
Harris, R. N. and Chapman, D. S.: Geothermics and climate change: 1. Analysis of borehole temperatures with emphasis on resolving power, J. Geophys. Res.-Sol. Ea., 103, 7363–7370, 1998.
Harris, R. N. and Gosnold, W. D.: Comparisons of borehole temperature–depth profiles and surface air temperatures in the northern plains of the USA, Geophys. J. Int., 138, 541–548, 1999.
Hartmann, A. and Rath, V.: Uncertainties and shortcomings of ground surface temperature histories derived from inversion of temperature logs, J. Geophys. Eng., 2, 299–311, https://doi.org/10.1088/1742-2132/2/4/S02, 2005.
IPCC: Climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp., 2013.
Jones, P. D., Briffa, K. R., Osborn, T. J., Lough, J. M., van Ommen, T. D., Vinther, B. M., Luterbacher, J., Wahl, E. R., Zwiers, F. W., Mann, M. E., Schmidt, G. A., Ammann, C. M., Buckley, B. M., Cobb, K. M., Esper, J., Goosse, H., Graham, N., Jansen, E., Kiefer, T., Kull, C., Kuttel, M., Mosley-Thompson, E., Overpeck, J. T., Riedwyl, N., Schulz, M., Tudhope, A. W., Villalba, R., Wanner, H., Wolff, E., and Xoplaki, E.: High-resolution palaeoclimatology of the last millennium: a review of current status and future prospects, Holocene, 19, 3–49, 2009.
Klein Tank, A. M. G., Wijngaard, J. B., Können, G. P., Böhm, R., Demarée, G., Gocheva, A., Mileta, M., Pashiardis, S., Hejkrlik, L., Kern-Hansen, C., Heino, R., Bessemoulin, P., Müller-Westermeier, G., Tzanakou, M., Szalai, S., Pálsdóttir, T., Fitzgerald, D., Rubin, S., Capaldo, M., Maugeri, M., Leitass, A., Bukantis, A., Aberfeld, R., van Engelen, A. F. V., Forland, E., Mietus, M., Coelho, F., Mares, C., Razuvaev, V., Nieplova, E., Cegnar, T., Antonio López, J., Dahlström, B., Moberg, A., Kirchhofer, W., Ceylan, A., Pachaliuk, O., Alexander, L. V., and Petrovic, P.: Daily dataset of 20th-century surface air temperature and precipitation series for the European Climate Assessment, Int. J. Climatol., 22, 1441–1453, 2002.
Legutke, S. and Voss, R.: The Hamburg atmosphere–ocean coupled circulation model ECHOG, Germany DKRZ Tech. Rep. 18, Dtsch. Klimarechenzentrum, Hamburg, 1999.
Li, B., Nychka, D. W., and Ammann, C. M.: The Value of Multiproxy Reconstruction of Past Climate, J. Am. Stat. Assoc., 105, 883–895, 2010.
Luterbacher, J., Dietrich, D., Xoplaki, E., Grosjean, M., and Wanner, H.: European seasonal and annual temperature variability, trends, and extremes since 1500, Science, 303, 1499–1503, 2004.
Luterbacher, J., Xoplaki, E., Casty, C., Wanner, H., Pauling, A., Küttel, M., Rutishauser, T., Brönnimann, S., Fischer, E., Fleitmann, D., Gonzalez-Rouco, F. J., García-Herrera, R., Barriendos, M., Rodrigo, F., Gonzalez-Hidalgo, J. C., Saz, M. A., Gimeno, L., Ribera, P., Brunet, M., Paeth, H., Rimbu, N., Felis, T., Jacobeit, J., Dünkeloh, A., Zorita, E., Guiot, J., Türkes, M., Alcoforado, M. J., Trigo, R., Wheeler, D., Tett, S., Mann, M. E., Touchan, R., Shindell, D. T., Silenzi, S., Montagna, P., Camuffo, D., Mariotti, A., Nanni, T., Brunetti, M., Maugeri, M., Zerefos, C., Zolt, S. D., Lionello, P., Nunes, M. F., Rath, V., Beltrami, H., Garnier, E., and Ladurie, E. L. R.: Chapter 1 Mediterranean climate variability over the last centuries: A review, in: Mediterranean climate variability, edited by: Lionello, P., Malanotte-Rizzoli, P., and Boscolo, R., Elsevier, 27–148, 2006.
Majorowicz, J. A., Šafanda, J., Harris, R. N., and Skinner, W. R.: Large ground surface temperature changes of the last three centuries inferred from borehole temperatures in the Southern Canadian Prairies, Saskatchewan, Global Planet. Change, 20, 227–241, 1999.
Mareschal, J. C. and Beltrami, H.: Evidence for recent warming from perturbed geothermal gradients: examples from eastern Canada, Clim. Dynam., 6, 135–143, 1992.
New, M., Hulme, M., and Jones, P.: Representing twentieth-century space-time climate variability. Part II: Development of 1901–1996 monthly grids of terrestrial surface climate, J. Climate, 13, 2217–2238, 2000.
Nielsen, S. B. and Beck, A. E.: Heat-Flow Density Values and Paleoclimate Determined from Stochastic Inversion of 4 Temperature Depth Profiles from the Superior Province of the Canadian Shield, Tectonophysics, 164, 345–359, 1989.
Pfister, C.: Monthly temperature and precipitation in central Europe from 1525–1979: quantifying documentary evidence on weather and its effects, in: Climate since A.D. 1500, edited by: Bradley, R. S. and Jones, P. D., Routledge, London, 118–142, 1995.
Plaut, G. and Vautard, R.: Spells of Low-Frequency Oscillations and Weather Regimes in the Northern-Hemisphere, J. Atmos. Sci., 51, 210–236, 1994.
Pollack, H. N. and Huang, S. P.: Climate reconstruction from subsurface temperatures, Annu. Rev. Earth. Pl. Sc., 28, 339–365, 2000.
Pollack, H. N., Huang, S. P., and Smerdon, J. E.: Five centuries of climate change in Australia: the view from underground, J. Quaternary Sci., 21, 701–706, 2006.
Roeckner, E., Arpe, K., Bengtsson, L., Christoph, M., Claussen, M., Dumenil, L., Esch, M., Giorgetta, M., Schlese, U., and Schulzweida, U.: The atmospheric general circulation model ECHAM4: model description and simulation of present-day climate, Max-Planck-Institut für Meterologie, Hamburg, Germany Tech. Rep., 218, 90 pp., 1996.
Šafanda, J., Rajver, D., Correia, A., and Dedecek, P.: Repeated temperature logs from Czech, Slovenian and Portuguese borehole climate observatories, Clim. Past, 3, 453–462, https://doi.org/10.5194/cp-3-453-2007, 2007.
Shen, P. Y. and Beck, A. E.: Paleoclimate Change and Heat-Flow Density Inferred from Temperature Data in the Superior Province of the Canadian Shield, Global Planet. Change, 98, 143–165, 1992.
Sneyers, R.: On the Statistical Analysis of Series of Observations, Secretariat of the World Meteorological Organization, Geneve, Switzerland, 1990.
Sneyers, R.: Use and measure of statistical methods for detection of climatic change, in: Climate Change Detection Project, Report on the Informal Planning Meeting on Statistical Procedures for Climate Change Detection, WCDMP, 20, Geneve, Switzerland, 176–181, 1992.
Stevens, M. B., González-Rouco, J. F., and Beltrami, H.: North American climate of the last millennium: Underground temperatures and model comparison, J. Geophys. Res.-Earth, 113, F01008, https://doi.org/10.1029/2006JF000705, 2008.
Taborda, J. P., Alcoforado, M. J., and Garcia, J. C.: Climate in southern Portugal in the 18th century. Reconstruction based on documentary and early instrumental sources (in Portuguese, with extended English summary), University of Lisbon, Geo-Ecologia, 2, CEG, Lisboa, ISBN: 972-636-144-3, 2004.
Vautard, R., Yiou, P., and Ghil, M.: Singular-Spectrum Analysis – a Toolkit for Short, Noisy Chaotic Signals, Physica D, 58, 95–126, 1992.
von Storch, H., Zorita, E., and Gonzalez-Rouco, F.: Assessment of three temperature reconstruction methods in the virtual reality of a climate simulation, Int. J. Earth Sci., 98, 67–82, 2009.
Wagner, S. and Zorita, E.: The influence of volcanic, solar and the Dalton Minimum (1790–1830): CO2 forcing on the temperatures in a model study, Clim. Dyn., 25, 205–218, 2005.
Xoplaki, E., Luterbacher, J., Paeth, H., Dietrich, D., Steiner, N., Grosjean, M., and Wanner, H.: European spring and autumn temperature variability and change of extremes over the last half millennium, Geophys. Res. Lett., 32, L15713, https://doi.org/10.1029/2005GL023424, 2005.
Zorita, E., González-Rouco, J. F., von Storch, H., Montávez, J. P., and Valero, F.: Natural and anthropogenic modes of surface temperature variations in the last thousand years, Geophys. Res. Lett., 32, L08707, https://doi.org/10.1029/2004GL021563, 2005.
Zorita, E., Gonzalez-Rouco, F., and von Storch, H.: Comments on "Testing the Fidelity of Methods Used in Proxy-Based Reconstructions of Past Climate", J. Climate, 20, 3693–3698, 2007.