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Abstract. The consistency of an existing reconstructed

annual (December–November) temperature series for the

Lisbon region (Portugal) from 1600 onwards, based on

a European-wide reconstruction, with (1) five local bore-

hole temperature–depth profiles; (2) synthetic temperature–

depth profiles, generated from both reconstructed tempera-

tures and two regional paleoclimate simulations in Portu-

gal; (3) instrumental data sources over the twentieth cen-

tury; and (4) temperature indices from documentary sources

during the late Maunder Minimum (1675–1715) is assessed.

The low-frequency variability in the reconstructed temper-

ature in Portugal is not entirely consistent with local bore-

hole temperature–depth profiles and with the simulated re-

sponse of temperature in two regional paleoclimate simu-

lations driven by reconstructions of various climate forc-

ings. Therefore, the existing reconstructed series is calibrated

by adjusting its low-frequency variability to the simulations

(first-stage adjustment). The annual reconstructed series is

then calibrated in its location and scale parameters, using

the instrumental series and a linear regression between them

(second-stage adjustment). This calibrated series shows clear

footprints of the Maunder and Dalton minima, commonly re-

lated to changes in solar activity and explosive volcanic erup-

tions, and a strong recent-past warming, commonly related

to human-driven forcing. Lastly, it is also in overall agree-

ment with annual temperature indices over the late Maun-

der Minimum in Portugal. The series resulting from this

post-reconstruction adjustment can be of foremost relevance

to improve the current understanding of the driving mecha-

nisms of climate variability in Portugal.

1 Introduction

Climate reconstructions allow further insight into the cli-

matic variability beyond the relatively short instrumental pe-

riod, being commonly based on early instrumental records,

documentary evidence (namely, memoirs, diaries, chroni-

cles, weather logs, ship logbooks) and natural proxies, such

as boreholes, tree rings, corals, ice cores, speleothem records

and pollen profiles (Brázdil et al., 2005, 2010; Camuffo et

al., 2010; Li et al., 2010; Luterbacher et al., 2006; Pollack

and Huang, 2000). Historical climatology is critical for un-

derstanding the driving processes of climate variability not

only in the past, but also in the future. This is particularly

important when developing climate change projections for

the future under emission scenarios (IPCC, 2013).

Climate variability in Europe over the last millennium was

reconstructed based on both documentary evidence and natu-

ral proxies (e.g. Alcoforado et al., 2000; Brázdil et al., 2005,

2010; Camuffo et al., 2013; González-Rouco et al., 2009;

Luterbacher et al., 2006). European-wide temperature recon-

structions since 1500 have already been developed (Luter-

bacher et al., 2004; Xoplaki et al., 2005), as have continental-
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wide reconstructions for the last two millennia by Ahmed

et al. (2013). Temperature reconstructions in some Euro-

pean sites, based on both documentary data and instrumental

records since the 16th century, were carried out by Camuffo

et al. (2010). A temperature reconstruction for southern Por-

tugal during the late Maunder Minimum (LMM; 1675–1715)

was presented by Alcoforado et al. (2000). However, in Por-

tugal, most of the pre-instrumental records show numerous

temporal gaps and there is a substantial lack of natural prox-

ies with clear climatic signals (Alcoforado et al., 2012; Ca-

muffo et al., 2010; Luterbacher et al., 2006).

Borehole temperature–depth profiles can be used as pale-

oclimate proxies for climate reconstruction (e.g. Bodri and

Čermák, 1997; González-Rouco et al., 2009; Majorowicz et

al., 1999; Šafanda et al., 2007), as they provide indepen-

dent information on long-term temperature variability (Jones

et al., 2009). Borehole measurements are a complementary

temperature record to high-frequency air temperature series

recorded at weather stations and, through profile inversion

methods, may also enable validating low-frequency variabil-

ity in these series (e.g. Beltrami and Bourlon, 2004; Beltrami

and Mareschal, 1995; Beltrami et al., 2011; Chouinard and

Mareschal, 2007; González-Rouco et al., 2006; Gouirand

et al., 2007; Harris and Chapman, 1998; Harris and Gos-

nold, 1999; Nielsen and Beck, 1989; Pollack et al., 2006).

Some studies have been carried out using borehole temper-

ature logs measured in southern Portugal (e.g. Correia and

Šafanda, 1999, 2001; Šafanda et al., 2007). Borehole recon-

structions can also be compared to paleoclimate simulations

generated by Earth system models for validation purposes

(Beltrami et al., 2006; González-Rouco et al., 2009; Stevens

et al., 2008).

The present study aims at analysing the consistency be-

tween the Luterbacher et al. (2004) and Xoplaki et al. (2005)

temperature reconstructions for the Lisbon region (Portugal)

over the period of 1600–1999 using (1) five local borehole

temperature–depth profiles; (2) synthetic temperature–depth

profiles, generated from gridded near-surface temperatures

produced by regional paleoclimate reconstructions and sim-

ulations; (3) instrumental data recorded in Lisbon over the

twentieth century; and (4) temperature indices from early

instrumental and documentary sources during the LMM

(1675–1715). This analysis allows a validation of the annual

mean reconstructed temperature in Portugal over the last 400

years. The identification of possible inconsistencies in the

above-mentioned data sources enables a post-reconstruction

adjustment of this time series. In effect, this calibrated time

series may help our understanding of past climate variabil-

ity in Portugal and its main driving mechanisms, namely the

role of external vs. internal forcing mechanisms in tempera-

ture variability. This attribution analysis provides critical in-

formation for model validation and for assessing the reliabil-

ity of regional climate change projections. The data sets and

methods are presented in Sect. 2, the results are discussed in

Sect. 3 and the main conclusions are summarized in Sect. 4.

2 Data and methods

2.1 Reconstructed temperatures

The reconstructed seasonal mean temperature in the grid box

38.5–39.0◦ N, 8.0–8.5◦W, which is located in the area of Lis-

bon (Portugal), for the period of 1600–1999 was extracted

from the Luterbacher et al. (2004) and Xoplaki et al. (2005)

European-wide reconstructions (Lut2004 henceforth). Data

is originally defined on a 0.5◦ latitude× 0.5◦ longitude grid.

From 1901 onwards this data set is based on instrumental

data from New et al. (2000). For the selected grid box, it

is largely based on temperature records from Lisbon. Since

the present study focuses on annual series, annual mean tem-

peratures were obtained by averaging the four values cor-

responding to winter (DJF), spring (MAM), summer (JJA)

and autumn (SON) mean temperatures (no monthly data are

available). Hence, annual means refer to the period from De-

cember of the previous year to November of that year (e.g.

annual mean of 1710 corresponds to the average taken from

December 1709 to November 1710).

2.2 Borehole data

The consistency of the Lut2004 reconstruction with bore-

hole measurements, retrieved from the only geothermal-

paleoclimatological observatory in Portugal (38.34◦ N;

7.58◦W), is assessed. This observatory is located about 5 km

northwest of Évora (southern Portugal) and about 100 km

east of Lisbon. More detailed information can be found in

Correia and Šafanda (2001) and Šafanda et al. (2007). Al-

though the borehole measurements were not taken in Lis-

bon, the variability in the 11-year moving averages of an-

nual mean temperatures in Évora and Lisbon is quite simi-

lar (not shown). In fact, the correlation coefficient is about

0.98 in their common instrumental period (1941–1999). The

means for Lisbon and Évora are 16.8 and 15.8 ◦C, respec-

tively, while both standard deviations are ca. 0.3 ◦C. Hence,

these borehole measurements are assumed to be representa-

tive of the measurements made in Lisbon, as they mostly cap-

ture long-term variability.

Five measurements (temperature logs) in the same bore-

hole, TGQC1, are considered herein; they were carried out

on 24 March 1997 (M1), 27 March 2000 (M2), 14 Novem-

ber 2002 (M3), 26 November 2003 (M4) and 28 Octo-

ber 2004 (M5). These five temperature logs were obtained

by measuring the equilibrium temperature with a thermis-

tor every 5.0 (M1), 1.0 (M2), 2.5 (M3 and M4) and 2.0 m

(M5) down to a depth of ∼ 190 m in the borehole. The bore-

hole is located in a region where the typical vegetation is old

cork trees. This vegetation type has not changed in the last

100 years, and the topography is subdued, with small eleva-

tion variations of tens of metres in the nearest few kilome-

tres. The rock type in the area is Hercynian age granite. Its

thermophysical properties were measured in four samples,
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collected in a quarry located in the same granitic body and

1.5 km eastwards of the borehole. Thermal conductivity val-

ues of 2.8± 0.2 W mK−1 and thermal diffusivity values of

1.3± 0.1 m2 s−1 were measured on polished surfaces of rock

samples. Heat production was calculated as 2± 1 W m−3

(Correia and Šafanda, 2001). The estimated heat flux density

for the borehole is 60 mW m−2, which was confirmed as an

a posteriori value of 58± 13 mW m−2 using the functional

space inversion method of Shen and Beck (1992).

The borehole temperature–depth profiles are herein com-

pared to synthetic temperature profiles (forward model), gen-

erated from both Lut2004 and annual mean near-surface tem-

peratures from two paleoclimate simulations, rather than ap-

plying the conventional procedure of inverting temperature

logs to reconstruct ground surface temperatures (e.g. Correia

and Šafanda, 2001). However, the uncertainties inherent in

these inversion models (Hartmann and Rath, 2005), mostly

due to errors in the estimation of subsurface parameters, are

also present in these forward models. The profiles were gen-

erated following the methodology described by Beltrami et

al. (2011), as explained below.

The temperature anomaly at depth z and time t , due to a

step change in surface temperature T0, is given by the solu-

tion of the one-dimensional heat diffusion equation (Carslaw

and Jaeger, 1959):

T (z, t)= T0 erfc

(
z

2
√

kt

)
, (1)

where erfc is the complementary error function and k is the

subsurface thermal diffusivity (Cermak and Rybach, 1982).

It has a value of 1.3× 10−6 m2 s−1, according to measure-

ments on cut and polished surfaces of local rock samples

(Correia and Šafanda, 2001). Generalizing this solution for

a series of K step changes at the surface, the induced tem-

perature anomalies at depth z are given by Mareschal and

Beltrami (1992):

Tt (z)= Ti (z)+

K∑
j=1

Tj

[
erfc

(
z

2
√

ktj

)

−erfc

(
z

2
√

ktj−1

)]
, (2)

where Ti (z) is the initial temperature profile.

2.3 Paleoclimate simulations

The two paleoclimate simulations were carried out with

the global circulation model (GCM) ECHO-G and then

dynamically downscaled with the regional climate model

(RCM) MM5. ECHO-G combines the HOPE-G ocean model

(Legutke and Voss, 1999) with the ECHAM4 atmospheric

model (Roeckner et al., 1996). The regional model em-

ploys a limited area domain that spans the Iberian Penin-

sula completely with a spatial resolution of 30 km. Three re-

constructed external forcings were used to consistently drive

both models: solar variability, atmospheric greenhouse gas

concentrations and radiative effects of stratospheric volcanic

aerosols. The skill of the MM5–ECHO-G setup to reproduce

the climate in the Iberian Peninsula has been previously eval-

uated by Gómez-Navarro et al. (2011), particularly with re-

spect to the ability of the regional model to reduce the warm

bias and to correct the winter variability over western Iberia

in the GCM run. Two paleoclimate simulations (Sim1 and

Sim2), only differing in their initial conditions, were used

as a broad estimation of the effect of internal variability (cf.

Gómez-Navarro et al., 2012; González-Rouco et al., 2003;

Zorita et al., 2005, 2007). Near-surface (2 m) temperatures

for the period of 1600–1989 are extracted from these simu-

lations. Their daily mean fields were bilinearly interpolated

from the original MM5 grid to the reconstructed tempera-

ture grid (0.5◦ latitude× 0.5◦ longitude) and extracted for the

above-defined Lisbon grid box (38.5–39.0◦ N, 8.0–8.5◦W).

Annual (December–November) means were then computed

from the raw 6-hourly data.

In order to identify low-frequency variability and trends in

the paleoclimate simulations, a data-adaptive filtering, based

on a singular spectral analysis (SSA), is applied (Ghil and

Vautard, 1991). SSA is based on the well-known princi-

pal component analysis, in which multiple dimensionality

is achieved by including time-lagged replicas of the origi-

nal time series. The resulting principal components are thus

linear combinations of different lags of this series, which is

equivalent to a time filtering with filter coefficients that are

related to the eigenvectors of the lagged-covariance matrix.

More formally, SSA corresponds to an eigenvalue decompo-

sition of a lagged-covariance matrix, with a Toeplitz struc-

ture, obtained from the original time series of the paleocli-

matic simulations. The rank, M , of this matrix is the average

of N/4–N/3, where N is the time series length (Plaut and

Vautard, 1994). For the paleoclimatic simulations M = 113

(N = 390). In this methodology, the original time series can

also be decomposed into a sum of M additive components

and can be partially rebuilt using only the leading “signal

modes”, thus filtering out background noise components (El-

sner and Tsonis, 1996; Vautard et al., 1992). In n-order SSA

filtering, the leading n modes are used to rebuild the origi-

nal time series. The lower the number of retained modes, the

stronger the time series smoothing. If all M modes are used,

the original time series is fully recovered.

Under the assumption that the aforementioned external

forcings used in the paleoclimate simulations are mainly

manifested by long-term temperature trends in western

Iberia, as suggested by Gómez-Navarro et al. (2012), similar

trends of reconstructed and simulated temperatures should

be expected. As SSA enables isolating data-adaptive non-

linear trends in the time series (Ghil and Vautard, 1991),

it can be used to correct discrepancies between long-term

trends of reconstructed and simulated temperature series. In

the present study, this approach was used to adjust the low-

frequency variability in the reconstructed series to the paleo-
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climate external forcings obtained from the simulations (ad-

justment of the Lut2004 reconstruction). Therefore, instead

of developing a new reconstruction, an adjustment of the al-

ready existing reconstruction was carried out herein (post-

reconstruction adjustment).

2.4 Instrumental data and indexed temperatures

The consistency of the Lut2004 reconstruction with the cor-

responding instrumental series (InstT) for the available pe-

riod of 1901–1999, recorded at the Lisboa-Geofísico meteo-

rological station and supplied by the European Climate As-

sessment and Dataset project (Klein Tank et al., 2002), was

also assessed. It should be stressed that Lut2004 is heavily

dependent on InstT, as previously stated, and a high temporal

correspondence between these two time series is thereby ex-

pected. A transfer function between InstT and Lut2004 was

determined by using a linear regression analysis. The result-

ing first-order regression polynomial was applied so as to

calibrate the Lut2004 reconstruction in the extended period

from 1600 onwards, thus correcting its location and scale

parameters. Lastly, annual indexed temperatures for south-

ern Portugal over the pre-instrumental period of 1675–1715

(LMM), developed by Alcoforado et al. (2000), were also

analysed for consistency assessment.

3 Results

3.1 Consistency with borehole measurements and

paleoclimate simulations

The consistency of the Lut2004 reconstruction with bore-

hole temperature–depth profiles and with paleoclimate sim-

ulations is assessed in this section. The five logs of bore-

hole measurements (M1, M2, M3, M4 and M5) are shown

in Fig. 1a. Their corresponding inverse geothermal gradients

were estimated using linear regressions applied to the data

from the bottom 140–180 m (Fig. 1b). Owing to the depo-

sition of fine material at the bottom of the borehole, there

is a local change in thermal conductivity at about 180 m.

As the borehole was drilled in a very homogeneous gran-

ite batholith, these changes are not due to changes in the

geological formation. In the present study, depths > 180 m

are not used for gradient estimations. These gradients range

from approximately 46 to 48 m ◦C−1 (ca. 0.021 ◦C m−1).

The corresponding root-mean squared error (RMSE) of each

estimated linear model is always < 0.01 ◦C (R-square ad-

justed > 99.9 %), which means that the errors in the estima-

tion of the geothermal gradients have only minor impacts

on the subsequent temperature–depth anomalies. The low

borehole depths require a word of caution, as some authors

have indicated that a depth of 200 m may be too shallow for

climate change assessments (Beltrami et al., 2011; Hamza

et al., 2007; Majorowicz et al., 1999). Indeed, the Global

Database of Borehole Temperatures and Climate Reconstruc-

Figure 1. (a) Borehole temperature logs (temperature vs. depth) for

M1, M2, M3, M4 and M5 from the Évora observatory (cf. legends).

(b) The same as (a), but only for the data from the bottom 140–

180 m. The outlined equations of the respective regression lines

(omitted) represent the corresponding estimated geothermal gradi-

ents (slope of the linear regression line).

tions from the University of Michigan and the World Data

Center for Paleoclimatology consider a depth of 200 m as a

minimum requirement for past climate reconstruction (Pol-

lack and Huang, 2000). Beltrami et al. (2011) also demon-

strated that the maximum depth of borehole profiles can have

a large impact on temperature–depth anomalies. Since no

other geothermal-paleoclimatological observatory is avail-

able in Portugal, the conclusions derived from these borehole

profiles may be provisional.

The five temperature–depth anomaly profiles (M1–5) are

reproduced in Fig. 2a with their estimated geothermal gra-

dients having been removed. M1, M2, M3 and M4 show a

more pronounced near-surface warming than M5. Overall,

these profiles suggest strong recent-past warming trends in

near-surface air temperatures.

The synthetic temperature–depth anomaly profiles, gener-

ated from the Lut2004 reconstruction and from the two pale-

oclimate simulations, are also shown in Fig. 2a. The 11-year
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Figure 2. (a) Temperature–depth anomaly profiles for M1, M2,

M3, M4 and M5, with respect to the estimated geothermal gradi-

ents in Fig. 1b, along with the synthetic profiles generated from

Lut2004 (reconstructed temperature), CalT (calibrated tempera-

ture), and Sim1 and Sim2 (paleoclimate simulations) retrieved for

a grid box near Lisbon, Portugal (cf. legends). (b) Chronograms of

the 11-year running mean anomalies of Lut2004, CalT, and Sim1

and Sim2 for the period of 1600–1989. The SSA-filtered ensemble

mean temperature from the two simulations (SSA trend) is also dis-

played. The 11-year running means of InstT (instrumental annual

mean temperature) anomalies are depicted for the period of 1901–

1999, along with the respective linear trend. Note that anomalies in

each series are with respect to their common period (1901–1989).

running means of their anomalies over the period 1600–1989

are plotted in Fig. 2b. The chronograms of the two simula-

tions, as well as their individual profiles, are indeed very sim-

ilar to the corresponding ensemble mean chronograms and

profiles (not shown). In fact, the correlation coefficient be-

tween the 11-year running means of the two simulations is

as high as +0.82. This is indicative of the large influence of

external forcings in the long-term variability in temperature.

Conversely to the simulations, which exhibit a strong warm-

ing trend since the 1830s, Lut2004 only depicts a recent-past

upward trend and a cooling trend during the nineteenth cen-

tury (Fig. 2b). Although the recent-past warming trend in

Lut2004 is clearly corroborated by InstT, the cooling trend is

neither supported by simulations (Fig. 2b) nor by any scien-

tific evidence from previous studies. As a result, the synthetic

temperature–depth anomaly profile obtained from Lut2004

is clearly different from the profiles obtained from the five

borehole measurements and from the paleoclimate simula-

tions (Fig.2a).

The discussion above suggests a remarkable agreement be-

tween the low-frequency variability in near-surface tempera-

ture from two independent sources (borehole measurements

and paleoclimate simulations driven by reconstructed forc-

ing). However, whereas the paleoclimate simulations agree

well with the borehole temperature–depth profiles, the re-

constructed temperature for Portugal (Lut2004) is not en-

tirely consistent with the long-term trends revealed by these

new sources. In fact, its linear trend is nearly 0 over the

whole period and there is no signature of cool or warm pe-

riods. This disagreement between simulations and Lut2004

was already reported by Gómez-Navarro et al. (2011). As

such, the low-frequency variability in the Lut2004 recon-

struction are herein adjusted to be more coherent with the

borehole data and simulations. To achieve this aim, the en-

semble mean temperature from the two simulations was low-

pass filtered by a two-order SSA. The filtered series (SSA

trend in Fig. 2b) highlights the signature of the external

forcings in near-surface temperature and was then added to

the Lut2004 reconstruction. The resulting calibrated series

(CalT=Lut2004+SSA trend) is also shown in Fig. 2b.

The SSA trend clearly shows a warming trend since the

1830s and a relatively cool period during the LMM (1670–

1730). This is also in line with previous studies on the im-

pact of solar activity on global temperatures (e.g. Eddy, 1983;

Frenzel, 1994). The period from 1730 to 1800 recorded an-

nual mean temperatures close to the baseline, followed by

an anomalously cold period until the 1830s, which is asso-

ciated with the Dalton Minimum, also a period of low solar

activity (Wagner and Zorita, 2005). The strong upward trend

in CalT from the 1830s onwards is now in clear agreement

with the paleoclimate simulations and InstT (in the twentieth

century). The LMM (ca. 1670–1730) and Dalton Minimum

(ca. 1790–1830) are also clearly depicted in CalT. Further-

more, the temperature–depth anomaly profile from CalT is

similar to the profiles from the five borehole measurements

and paleoclimate simulations (Fig. 2a). This represents an

important validation of CalT.

3.2 Consistency with instrumental data

The consistency between InstT and CalT has been assessed

by a linear regression in their common period (1901–1989).

The corresponding scatter plot shows that linear regression

provides a good fitting, with a correlation coefficient above

0.90 (Fig. 3), explaining about 82 % of the total variance

(R-square adjusted), and an RMSE of 0.22. According to

Fisher’s test, this least-squares linear regression model is sta-

tistically significant at a 99 % confidence level (p < 0.01).

A bootstrap procedure with 10 000 resamples shows that the

95 % confidence interval for the correlation coefficient be-

tween InstT and CalT is [0.87, 0.93], supporting Fisher’s test.

Therefore, CalT clearly reproduces the observed temperature

www.clim-past.net/11/825/2015/ Clim. Past, 11, 825–834, 2015
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Figure 3. Scatter plot of InstT and CalT anomalies over their com-

mon period (1901–1989). The corresponding regression line, cali-

bration equation and R-squared measure (determination coefficient)

are also shown.

in Portugal in InstT. A three-order polynomial fitting, with a

robust regression using the bisquare weighting method, pro-

vides a slightly better adjustment (R-square adjusted of 83 %

and RMSE of 0.21), but its extrapolation for the lowest tem-

peratures (outside the range of values used in the model fit-

ting, not shown) is not reliable and was discarded. The corre-

sponding linear regression polynomial is applied to a second-

stage adjustment of location and scale parameters in CalT.

This allows expressing CalT in absolute temperature values

instead of anomalies (Fig. 4a). Additionally, taking into ac-

count the high coherency between CalT and InstT, CalT was

extended from 1989 to 1999 using InstT values. In order to

confirm long-term trends in CalT, the non-parametric pro-

gressive Mann–Kendall test is applied (Sneyers, 1990, 1992).

The forward and backward Kendall t parameters for CalT

jointly depict a warming trend from the 1830s onwards; this

is particularly noteworthy from the 1930s onwards (Fig. 4b).

The uncertainties in the CalT series are a combination of

the original uncertainties in the Lut2004 data set plus addi-

tional uncertainties related to the non-linear trend used in the

adjustment. The uncertainties in the Lut2004 data set are dis-

cussed in Luterbacher et al. (2004) but are only available for

the European mean reconstruction. Hence, it is not possible

to have a local estimate of these uncertainties. The uncertain-

ties in trend estimation can be estimated through the assess-

ment of the consistency between Sim1 and Sim2. For this

purpose, the SSA filtering was applied separately to Sim1

and Sim2. The mean absolute difference between the two

non-linear trends obtained from Sim1 and Sim2 provides a

measure of the uncertainty related to the simulations. It has

an approximate value of 0.05 ◦C. However, this number pro-

vides just a lower bound, since it does not explicitly consider

uncertainties related to the simulation itself, which are diffi-

cult to assess due to the limited number of available simula-

tions with similar characteristics.

Figure 4. Chronogram of (a) CalT (calibrated annual mean temper-

ature) in the period of 1600–1999 and InstT (instrumental series) in

the period of 1901–1999. Estimated errors are shaded grey, with

a mean error of 0.05 ◦C. (b) Forward (u(t)) and backward (u′(t))

series of the normalized Kendall t parameter from the progressive

Mann–Kendall analysis of CalT. The 95 % confidence interval for

the no-trend hypothesis in grey shading.

3.3 Consistency with precipitation indices

In previous studies, temperature in southern Portugal was

analysed during the LMM (1675–1715) by Alcoforado et

al. (2000), and during the eighteenth century by Taborda et

al. (2004) and Alcoforado et al. (2012). In these studies, re-

search was based on documentary evidence, such as diaries,

ecclesiastical rogation ceremonies (pro pluvia and pro seren-

itate), Misericórdias and municipal institutional sources, as

well as on early instrumental data. From this documentary

evidence, basic data were transformed into indices on an or-

dinal scale, following the methodology developed by Pfis-

ter (1995). Monthly temperatures were originally indexed on

a scale from 0 to±1. Annual indices (December–November)

can then vary from 0 to ±12. The consistency between CalT

and the corresponding annual indexed temperatures is as-

sessed by their respective scatter plots (Fig. 5). For a per-

fect agreement, the documented temperature extremes (cold

or hot years) should be reflected by coherent CalT anoma-

lies, i.e. all data pairs in the scatter plots should be either in

the top-right or bottom-left quadrants (positively aligned se-

ries). There is an overall agreement between CalT and the

annual temperature index (> 80 % of all years are in the top-

right or bottom-left quadrants, with a correlation coefficient

of 0.76). Therefore, this agreement also provides a valida-

tion of CalT for the period of 1675–1715. However, as the

SSA filtering does not significantly modify the interannual

variability within this relatively short time period (LMM),
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Figure 5. Scatter plot of CalT in the period of 1675–1715 as a

function of the annual temperature indices. Light (dark) grey circles

represent cold (hot) years from documentary evidence. Circles with

black edges indicate agreement between the two data sets. Years

with “0” index are omitted for the sake of readability of the plot. The

horizontal line corresponds to CalT mean. Some labels are omitted

for the sake of clarity.

the aforementioned agreement also applies between Lut2004

and the annual temperature index (not shown).

4 Summary and conclusions

The consistency of the reconstructed annual temperature

series in Portugal (Lut2004) is assessed by using five

borehole temperature–depth profiles, synthetic temperature–

depth profiles generated from both the Lut2004 reconstruc-

tion and paleoclimate simulations, instrumental data (In-

stT) and indexed temperatures during the LMM. While

the paleoclimate simulations agree well with the borehole

temperature–depth profiles with regard to the long-term vari-

ability, the same does not apply to the Lut2004 recon-

struction. In fact, the long-term trends in Lut2004 are not

fully consistent with borehole data and simulations. The late

Maunder and Dalton minima, clearly reflected in the pale-

oclimate simulations and well-documented in the literature,

in association with changes in solar activity (Eddy, 1983),

are absent from the Lut2004 reconstruction. Moreover, there

is a cooling trend throughout the nineteenth century that is

not supported by previous studies. Therefore, the Lut2004

reconstruction was calibrated by adjusting its low-frequency

variability to the paleoclimatic simulations, also in agree-

ment with local borehole data. Documentary sources in Por-

tugal during the LMM (1675–1715) also show high agree-

ment with CalT, thus providing an additional validation for

the LMM.

These results suggest some inconsistencies in the low-

frequency variability in temperature in Portugal between the

Lut2004 reconstruction and borehole data or simulations. In

effect, the absence of clear long-term trends in Lut2004 is

not coherent with the significant changes in radiative forcing

throughout the last 400 years and the important role played

by these external forcings on temperature variability over

western Iberia (Gómez-Navarro et al., 2012). The frequent

temporal gaps in the pre-instrumental records and the sub-

stantial lack of natural proxies with clear climatic signals

in Portugal (Alcoforado et al., 2012; Camuffo et al., 2010;

Luterbacher et al., 2006) may partially explain this limitation

in the reproduction of the low-frequency variability in the

Lut2004 reconstruction. An important loss of low-frequency

variance caused by the method used in Lut2004 was also

found by von Storch et al. (2009). Nevertheless, a more de-

tailed assessment of the causes for this shortcoming is be-

yond the scope of the present study, as this study does not

develop a new reconstruction for comparison but rather an

adjustment of an existing reconstruction.

CalT adjusts the low-frequency variability in the Lut2004

reconstruction so as to be more consistent with local bore-

hole measurements and regional climate simulations. It can

thus be of foremost relevance in forthcoming research on cli-

matic variability in Portugal. A reliable representation of the

low-frequency variability in temperature in Portugal, includ-

ing its long-term trends, is critical for understanding the role

played by external vs. internal forcings in regional climate

variability and change. Due to the relatively coarse spatial

resolution of data generated by state-of-the-art GCMs, the

latter are not suitable for regional-scale assessments. Since

such scales are precisely the focus of this study, tempera-

ture series from two high-resolution regional paleoclimatic

simulations (Sim1 and Sim2) are employed instead of GCM

runs. These two simulations were documented and validated

in previous studies. Unfortunately, there are only two avail-

able simulations covering Portugal with such high-resolution

characteristics. Hence, it is not possible to increase the en-

semble size of model simulations, though it would be very

useful for uncertainty assessments. In forthcoming research,

new regional paleoclimatic simulations over Portugal, also

using different models, should be used to enhance the robust-

ness and evaluate the significance of the current adjustment.
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