Articles | Volume 21, issue 3
https://doi.org/10.5194/cp-21-719-2025
https://doi.org/10.5194/cp-21-719-2025
Research article
 | 
02 Apr 2025
Research article |  | 02 Apr 2025

Deglaciation and abrupt events in a coupled comprehensive atmosphere–ocean–ice-sheet–solid-earth model

Uwe Mikolajewicz, Marie-Luise Kapsch, Clemens Schannwell, Katharina D. Six, Florian A. Ziemen, Meike Bagge, Jean-Philippe Baudouin, Olga Erokhina, Veronika Gayler, Volker Klemann, Virna L. Meccia, Anne Mouchet, and Thomas Riddick

Related authors

Impact of Greenland Ice Sheet disintegration on atmosphere and ocean disentangled
Malena Andernach, Marie-Luise Kapsch, and Uwe Mikolajewicz
Earth Syst. Dynam., 16, 451–474, https://doi.org/10.5194/esd-16-451-2025,https://doi.org/10.5194/esd-16-451-2025, 2025
Short summary
Patterns of changing surface climate variability from the Last Glacial Maximum to present in transient model simulations
Elisa Ziegler, Nils Weitzel, Jean-Philippe Baudouin, Marie-Luise Kapsch, Uwe Mikolajewicz, Lauren Gregoire, Ruza Ivanovic, Paul J. Valdes, Christian Wirths, and Kira Rehfeld
Clim. Past, 21, 627–659, https://doi.org/10.5194/cp-21-627-2025,https://doi.org/10.5194/cp-21-627-2025, 2025
Short summary
Modelling Mediterranean ocean biogeochemistry of the Last Glacial Maximum
Katharina D. Six, Uwe Mikolajewicz, and Gerhard Schmiedl
Clim. Past, 20, 1785–1816, https://doi.org/10.5194/cp-20-1785-2024,https://doi.org/10.5194/cp-20-1785-2024, 2024
Short summary
Towards spatio-temporal comparison of simulated and reconstructed sea surface temperatures for the last deglaciation
Nils Weitzel, Heather Andres, Jean-Philippe Baudouin, Marie-Luise Kapsch, Uwe Mikolajewicz, Lukas Jonkers, Oliver Bothe, Elisa Ziegler, Thomas Kleinen, André Paul, and Kira Rehfeld
Clim. Past, 20, 865–890, https://doi.org/10.5194/cp-20-865-2024,https://doi.org/10.5194/cp-20-865-2024, 2024
Short summary
A multi-model assessment of the early last deglaciation (PMIP4 LDv1): a meltwater perspective
Brooke Snoll, Ruza Ivanovic, Lauren Gregoire, Sam Sherriff-Tadano, Laurie Menviel, Takashi Obase, Ayako Abe-Ouchi, Nathaelle Bouttes, Chengfei He, Feng He, Marie Kapsch, Uwe Mikolajewicz, Juan Muglia, and Paul Valdes
Clim. Past, 20, 789–815, https://doi.org/10.5194/cp-20-789-2024,https://doi.org/10.5194/cp-20-789-2024, 2024
Short summary

Related subject area

Subject: Climate Modelling | Archive: Modelling only | Timescale: Milankovitch
Antarctic climate response in Last Interglacial simulations using the Community Earth System Model (CESM2)
Mira Berdahl, Gunter R. Leguy, William H. Lipscomb, Bette L. Otto-Bliesner, Esther C. Brady, Robert A. Tomas, Nathan M. Urban, Ian Miller, Harriet Morgan, and Eric J. Steig
Clim. Past, 20, 2349–2371, https://doi.org/10.5194/cp-20-2349-2024,https://doi.org/10.5194/cp-20-2349-2024, 2024
Short summary
Pattern scaling of simulated vegetation change in North Africa during glacial cycles
Mateo Duque-Villegas, Martin Claussen, Thomas Kleinen, Jürgen Bader, and Christian H. Reick
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-61,https://doi.org/10.5194/cp-2024-61, 2024
Revised manuscript accepted for CP
Short summary
Large-ensemble simulations of the North American and Greenland ice sheets at the Last Glacial Maximum with a coupled atmospheric general circulation–ice sheet model
Sam Sherriff-Tadano, Ruza Ivanovic, Lauren Gregoire, Charlotte Lang, Niall Gandy, Jonathan Gregory, Tamsin L. Edwards, Oliver Pollard, and Robin S. Smith
Clim. Past, 20, 1489–1512, https://doi.org/10.5194/cp-20-1489-2024,https://doi.org/10.5194/cp-20-1489-2024, 2024
Short summary
New estimation of critical insolation–CO2 relationship for triggering glacial inception
Stefanie Talento, Matteo Willeit, and Andrey Ganopolski
Clim. Past, 20, 1349–1364, https://doi.org/10.5194/cp-20-1349-2024,https://doi.org/10.5194/cp-20-1349-2024, 2024
Short summary
Toward generalized Milankovitch theory (GMT)
Andrey Ganopolski
Clim. Past, 20, 151–185, https://doi.org/10.5194/cp-20-151-2024,https://doi.org/10.5194/cp-20-151-2024, 2024
Short summary

Cited articles

Albrecht, T., Winkelmann, R., and Levermann, A.: Glacial-cycle simulations of the Antarctic Ice Sheet with the Parallel Ice Sheet Model (PISM) – Part 2: Parameter ensemble analysis, The Cryosphere, 14, 633–656, https://doi.org/10.5194/tc-14-633-2020, 2020. a
Albrecht, T., Bagge, M., and Klemann, V.: Feedback mechanisms controlling Antarctic glacial-cycle dynamics simulated with a coupled ice sheet–solid Earth model, The Cryosphere, 18, 4233–4255, https://doi.org/10.5194/tc-18-4233-2024, 2024. a, b
Annan, J. D., Hargreaves, J. C., and Mauritsen, T.: A new global surface temperature reconstruction for the Last Glacial Maximum, Clim. Past, 18, 1883–1896, https://doi.org/10.5194/cp-18-1883-2022, 2022. a, b, c, d, e, f, g, h
Arakawa, A. and Lamb, V. R.: Computational Design of the Basic Dynamical Processes of the UCLA General Circulation Model, Elsevier, 173–265, https://doi.org/10.1016/b978-0-12-460817-7.50009-4, 1977. a
Bard, E., Hamelin, B., and Delanghe-Sabatier, D.: Deglacial Meltwater Pulse 1B and Younger Dryas Sea Levels Revisited with Boreholes at Tahiti, Science, 327, 1235–1237, https://doi.org/10.1126/science.1180557, 2010. a
Download
Short summary
A fully coupled atmosphere–ocean–ice-sheet–solid-earth model was applied to simulate the time from the Last Glacial Maximum (about 25 000 years before the present) to the pre-industrial period. The model simulations are compared to observational estimates. During this climate transition, the model simulates several abrupt changes in the North Atlantic region, which are initiated by different processes. The underlying mechanisms are analysed and described. 
Share