Articles | Volume 21, issue 2
https://doi.org/10.5194/cp-21-327-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-21-327-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Strong volcanic-induced climatic shocks on historical Moselle wine production
Fredrik Charpentier Ljungqvist
CORRESPONDING AUTHOR
Department of History, Stockholm University, 106 91 Stockholm, Sweden
Bolin Centre for Climate Research, Stockholm University, 106 91 Stockholm, Sweden
Swedish Collegium for Advanced Study, Linneanum, Villavägen 6c, 752 36 Uppsala, Sweden
Bo Christiansen
Danish Meteorological Institute, Sankt Kjelds Plads 11, 2100 Copenhagen Ø, Denmark
Lea Schneider
Department of Geography, Justus-Liebig-University, 35390 Giessen, Germany
Center for international Development and Environmental Research, Justus-Liebig-University, 35390 Giessen, Germany
Peter Thejll
Danish Meteorological Institute, Sankt Kjelds Plads 11, 2100 Copenhagen Ø, Denmark
Related authors
Tzu Tung Chen, Rodney Edvinsson, Karin Modig, Hans W. Linderholm, and Fredrik Charpentier Ljungqvist
Clim. Past, 21, 185–210, https://doi.org/10.5194/cp-21-185-2025, https://doi.org/10.5194/cp-21-185-2025, 2025
Short summary
Short summary
We study the climate effects on mortality, using annual mortality records and meteorological data, in Sweden between 1749 and 1859. It is found that colder winter and spring temperatures increased mortality, while no statistically significant associations were observed between summer or autumn temperatures and mortality, and only weak associations existed with hydroclimate. Further research is needed about which specific diseases caused the mortality increase following cold winters and springs.
Fredrik Charpentier Ljungqvist, Bo Christiansen, Jan Esper, Heli Huhtamaa, Lotta Leijonhufvud, Christian Pfister, Andrea Seim, Martin Karl Skoglund, and Peter Thejll
Clim. Past, 19, 2463–2491, https://doi.org/10.5194/cp-19-2463-2023, https://doi.org/10.5194/cp-19-2463-2023, 2023
Short summary
Short summary
We study the climate signal in long harvest series from across Europe between the 16th and 18th centuries. The climate–harvest yield relationship is found to be relatively weak but regionally consistent and similar in strength and sign to modern climate–harvest yield relationships. The strongest climate–harvest yield patterns are a significant summer soil moisture signal in Sweden, a winter temperature and precipitation signal in Switzerland, and spring temperature signals in Spain.
Johannes P. Werner, Dmitry V. Divine, Fredrik Charpentier Ljungqvist, Tine Nilsen, and Pierre Francus
Clim. Past, 14, 527–557, https://doi.org/10.5194/cp-14-527-2018, https://doi.org/10.5194/cp-14-527-2018, 2018
Short summary
Short summary
We present a new gridded Arctic summer temperature reconstruction back to the first millennium CE. Our method respects the age uncertainties of the data, which results in a more precise reconstruction.
The spatial average shows a millennium-scale cooling trend which is reversed in the mid-19th century. While temperatures in the 10th century were probably as warm as in the 20th century, the spatial coherence of the recent warm episodes seems unprecedented.
The spatial average shows a millennium-scale cooling trend which is reversed in the mid-19th century. While temperatures in the 10th century were probably as warm as in the 20th century, the spatial coherence of the recent warm episodes seems unprecedented.
H. S. Sundqvist, D. S. Kaufman, N. P. McKay, N. L. Balascio, J. P. Briner, L. C. Cwynar, H. P. Sejrup, H. Seppä, D. A. Subetto, J. T. Andrews, Y. Axford, J. Bakke, H. J. B. Birks, S. J. Brooks, A. de Vernal, A. E. Jennings, F. C. Ljungqvist, K. M. Rühland, C. Saenger, J. P. Smol, and A. E. Viau
Clim. Past, 10, 1605–1631, https://doi.org/10.5194/cp-10-1605-2014, https://doi.org/10.5194/cp-10-1605-2014, 2014
Tzu Tung Chen, Rodney Edvinsson, Karin Modig, Hans W. Linderholm, and Fredrik Charpentier Ljungqvist
Clim. Past, 21, 185–210, https://doi.org/10.5194/cp-21-185-2025, https://doi.org/10.5194/cp-21-185-2025, 2025
Short summary
Short summary
We study the climate effects on mortality, using annual mortality records and meteorological data, in Sweden between 1749 and 1859. It is found that colder winter and spring temperatures increased mortality, while no statistically significant associations were observed between summer or autumn temperatures and mortality, and only weak associations existed with hydroclimate. Further research is needed about which specific diseases caused the mortality increase following cold winters and springs.
Fredrik Charpentier Ljungqvist, Bo Christiansen, Jan Esper, Heli Huhtamaa, Lotta Leijonhufvud, Christian Pfister, Andrea Seim, Martin Karl Skoglund, and Peter Thejll
Clim. Past, 19, 2463–2491, https://doi.org/10.5194/cp-19-2463-2023, https://doi.org/10.5194/cp-19-2463-2023, 2023
Short summary
Short summary
We study the climate signal in long harvest series from across Europe between the 16th and 18th centuries. The climate–harvest yield relationship is found to be relatively weak but regionally consistent and similar in strength and sign to modern climate–harvest yield relationships. The strongest climate–harvest yield patterns are a significant summer soil moisture signal in Sweden, a winter temperature and precipitation signal in Switzerland, and spring temperature signals in Spain.
Nicolaj Hansen, Peter L. Langen, Fredrik Boberg, Rene Forsberg, Sebastian B. Simonsen, Peter Thejll, Baptiste Vandecrux, and Ruth Mottram
The Cryosphere, 15, 4315–4333, https://doi.org/10.5194/tc-15-4315-2021, https://doi.org/10.5194/tc-15-4315-2021, 2021
Short summary
Short summary
We have used computer models to estimate the Antarctic surface mass balance (SMB) from 1980 to 2017. Our estimates lies between 2473.5 ± 114.4 Gt per year and 2564.8 ± 113.7 Gt per year. To evaluate our models, we compared the modelled snow temperatures and densities to in situ measurements. We also investigated the spatial distribution of the SMB. It is very important to have estimates of the Antarctic SMB because then it is easier to understand global sea level changes.
Bo Christiansen
Nonlin. Processes Geophys., 28, 409–422, https://doi.org/10.5194/npg-28-409-2021, https://doi.org/10.5194/npg-28-409-2021, 2021
Short summary
Short summary
In geophysics we often need to analyse large samples of high-dimensional fields. Fortunately but counterintuitively, such high dimensionality can be a blessing, and we demonstrate how this allows simple analytical results to be derived. These results include estimates of correlations between sample members and how the sample mean depends on the sample size. We show that the properties of high dimensionality with success can be applied to climate fields, such as those from ensemble modelling.
Torben Schmith, Peter Thejll, Peter Berg, Fredrik Boberg, Ole Bøssing Christensen, Bo Christiansen, Jens Hesselbjerg Christensen, Marianne Sloth Madsen, and Christian Steger
Hydrol. Earth Syst. Sci., 25, 273–290, https://doi.org/10.5194/hess-25-273-2021, https://doi.org/10.5194/hess-25-273-2021, 2021
Short summary
Short summary
European extreme precipitation is expected to change in the future; this is based on climate model projections. But, since climate models have errors, projections are uncertain. We study this uncertainty in the projections by comparing results from an ensemble of 19 climate models. Results can be used to give improved estimates of future extreme precipitation for Europe.
Stefanie Talento, Lea Schneider, Johannes Werner, and Jürg Luterbacher
Earth Syst. Dynam., 10, 347–364, https://doi.org/10.5194/esd-10-347-2019, https://doi.org/10.5194/esd-10-347-2019, 2019
Short summary
Short summary
Quantifying hydroclimate variability beyond the instrumental period is essential for putting fluctuations into long-term perspective and providing a validation for climate models. We evaluate, in a virtual setup, the potential for generating millennium-long summer precipitation reconstructions over south-eastern Asia.
We find that performing a real-world reconstruction with the current available proxy network is indeed feasible, as virtual-world reconstructions are skilful in most areas.
Johannes P. Werner, Dmitry V. Divine, Fredrik Charpentier Ljungqvist, Tine Nilsen, and Pierre Francus
Clim. Past, 14, 527–557, https://doi.org/10.5194/cp-14-527-2018, https://doi.org/10.5194/cp-14-527-2018, 2018
Short summary
Short summary
We present a new gridded Arctic summer temperature reconstruction back to the first millennium CE. Our method respects the age uncertainties of the data, which results in a more precise reconstruction.
The spatial average shows a millennium-scale cooling trend which is reversed in the mid-19th century. While temperatures in the 10th century were probably as warm as in the 20th century, the spatial coherence of the recent warm episodes seems unprecedented.
The spatial average shows a millennium-scale cooling trend which is reversed in the mid-19th century. While temperatures in the 10th century were probably as warm as in the 20th century, the spatial coherence of the recent warm episodes seems unprecedented.
Bo Christiansen, Nis Jepsen, Rigel Kivi, Georg Hansen, Niels Larsen, and Ulrik Smith Korsholm
Atmos. Chem. Phys., 17, 9347–9364, https://doi.org/10.5194/acp-17-9347-2017, https://doi.org/10.5194/acp-17-9347-2017, 2017
Short summary
Short summary
Ozone soundings in the troposphere from nine Arctic stations covering the period 1984–2014 have been analyzed. Stations with the best data coverage show a consistent and significant temporal variation with a maximum near 2005 followed by a decrease. Some significant changes are found in the annual cycle in agreement with the notion that the ozone summer maximum is appearing earlier in the year. Such changes in Arctic ozone in the free troposphere have not been reported before.
H. S. Sundqvist, D. S. Kaufman, N. P. McKay, N. L. Balascio, J. P. Briner, L. C. Cwynar, H. P. Sejrup, H. Seppä, D. A. Subetto, J. T. Andrews, Y. Axford, J. Bakke, H. J. B. Birks, S. J. Brooks, A. de Vernal, A. E. Jennings, F. C. Ljungqvist, K. M. Rühland, C. Saenger, J. P. Smol, and A. E. Viau
Clim. Past, 10, 1605–1631, https://doi.org/10.5194/cp-10-1605-2014, https://doi.org/10.5194/cp-10-1605-2014, 2014
Related subject area
Subject: Proxy Use-Development-Validation | Archive: Historical Records | Timescale: Centennial-Decadal
Reconstruction of drought and long-rain chronologies since the 17th century in central Japan using intra-annual tree-ring oxygen isotope ratios and documentary records
The spatio-temporal evolution of the Chongzhen drought (1627–1644) in China and its impact on famine
Multiproxy tree ring reconstruction of glacier mass balance: insights from Pinus cembra trees growing near Silvretta Glacier (Swiss Alps)
Effects of weather and climate on fluctuations of grain prices in southwestern Bohemia, 1725–1824 CE
Climate and disease in historical urban space: evidence from 19th century Poznań, Poland
Climatic signatures in early modern European grain harvest yields
Pre-industrial temperature variability on the Swiss Plateau derived from the instrumental daily series of Bern and Zurich
Is it possible to estimate aerosol optical depth from historic colour paintings?
Meteorological and climatological triggers of notable past and present bark beetle outbreaks in the Czech Republic
Quantifying and reducing researcher subjectivity in the generation of climate indices from documentary sources
Documentary-based climate reconstructions in the Czech Lands 1501–2020 CE and their European context
Controlling water infrastructure and codifying water knowledge: institutional responses to severe drought in Barcelona (1620–1650)
Reassessing long-term drought risk and societal impacts in Shenyang, Liaoning Province, north-east China (1200–2015)
Climate records in ancient Chinese diaries and their application in historical climate reconstruction – a case study of Yunshan Diary
Reconstructions of droughts in Germany since 1500 – combining hermeneutic information and instrumental records in historical and modern perspectives
A survey of the impact of summer droughts in southern and eastern England, 1200–1700
A 424-year tree-ring-based Palmer Drought Severity Index reconstruction of Cedrus deodara D. Don from the Hindu Kush range of Pakistan: linkages to ocean oscillations
Droughts in the area of Poland in recent centuries in the light of multi-proxy data
Rogation ceremonies: a key to understanding past drought variability in northeastern Spain since 1650
The longest homogeneous series of grape harvest dates, Beaune 1354–2018, and its significance for the understanding of past and present climate
The weather behind words – new methodologies for integrated hydrometeorological reconstruction through documentary sources
Extreme droughts and human responses to them: the Czech Lands in the pre-instrumental period
Documentary data and the study of past droughts: a global state of the art
A 414-year tree-ring-based April–July minimum temperature reconstruction and its implications for the extreme climate events, northeast China
Streamflow variability over the 1881–2011 period in northern Québec: comparison of hydrological reconstructions based on tree rings and geopotential height field reanalysis
Temperature changes derived from phenological and natural evidence in South Central China from 1850 to 2008
Droughts in the Czech Lands, 1090–2012 AD
Temperature changes over the past 2000 yr in China and comparison with the Northern Hemisphere
Multi-periodic climate dynamics: spectral analysis of long-term instrumental and proxy temperature records
An open-access database of grape harvest dates for climate research: data description and quality assessment
Winter temperature variations over the middle and lower reaches of the Yangtze River since 1736 AD
Assessing extreme droughts in Spain during 1750–1850 from rogation ceremonies
Continental atmospheric circulation over Europe during the Little Ice Age inferred from grape harvest dates
Hydrometeorological extremes derived from taxation records for south-eastern Moravia, Czech Republic, 1751–1900 AD
A shift in the spatial pattern of Iberian droughts during the 17th century
Hiroto Iizuka, Kenjiro Sho, Zhen Li, Masaki Sano, Yoshikazu Kato, and Takeshi Nakatsuka
Clim. Past, 21, 133–144, https://doi.org/10.5194/cp-21-133-2025, https://doi.org/10.5194/cp-21-133-2025, 2025
Short summary
Short summary
In general, it is not easy to examine unseasonable weather years that have affected human history using a single proxy. In this study, we propose a new method to quantitatively extract drought/long-rainfall events over the past 400 years by integrating tree-ring cellulose oxygen isotope ratios and historical documentary records. The results can be utilized to investigate the relationship between climate and long human history.
Siying Chen, Yun Su, Xudong Chen, and Liang Emlyn Yang
Clim. Past, 20, 2287–2307, https://doi.org/10.5194/cp-20-2287-2024, https://doi.org/10.5194/cp-20-2287-2024, 2024
Short summary
Short summary
This study used 1802 drought and 1977 famine records from historical documents to reconstruct the spatial–temporal progression of the Chongzhen drought (1627–1644) in China and its impacts. We advance this research by reconstructing the annual spatial patterns and regional series of drought; demonstrating drought as the primary factor triggering famine; and identifying the transmission pathway of the drought's impacts and how social factors, especially human responses, regulated these impacts.
Jérôme Lopez-Saez, Christophe Corona, Lenka Slamova, Matthias Huss, Valérie Daux, Kurt Nicolussi, and Markus Stoffel
Clim. Past, 20, 1251–1267, https://doi.org/10.5194/cp-20-1251-2024, https://doi.org/10.5194/cp-20-1251-2024, 2024
Short summary
Short summary
Glaciers in the European Alps have been retreating since the 1850s. Monitoring glacier mass balance is vital for understanding global changes, but only a few glaciers have long-term data. This study aims to reconstruct the mass balance of the Silvretta Glacier in the Swiss Alps using stable isotopes and tree ring proxies. Results indicate increased glacier mass until the 19th century, followed by a sharp decline after the Little Ice Age with accelerated losses due to anthropogenic warming.
Rudolf Brázdil, Jan Lhoták, Kateřina Chromá, and Petr Dobrovolný
Clim. Past, 20, 1017–1037, https://doi.org/10.5194/cp-20-1017-2024, https://doi.org/10.5194/cp-20-1017-2024, 2024
Short summary
Short summary
The newly developed series of wheat, rye, barley, and oats prices from Sušice (southwestern Bohemia) for the period 1725–1824 CE is used to demonstrate effects of weather, climate, socio-economic, and societal factors on their fluctuations, with particular attention paid to years with extremely high prices. Cold spring temperatures and wet conditions from winter to summer were reflected in very high grain prices.
Grażyna Liczbińska, Jörg Peter Vögele, and Marek Brabec
Clim. Past, 20, 137–150, https://doi.org/10.5194/cp-20-137-2024, https://doi.org/10.5194/cp-20-137-2024, 2024
Short summary
Short summary
This study examines the relationship between temperature and precipitation as explanatory variables for the probability of death due to waterborne and airborne diseases in historical urban space. The lagged effects of temperature and precipitation on waterborne and airborne diseases were significant, except for the smooth lagged average monthly temperature effect for the latter. There was also significant spatial heterogeneity in the prevalence of deaths due to waterborne and airborne diseases.
Fredrik Charpentier Ljungqvist, Bo Christiansen, Jan Esper, Heli Huhtamaa, Lotta Leijonhufvud, Christian Pfister, Andrea Seim, Martin Karl Skoglund, and Peter Thejll
Clim. Past, 19, 2463–2491, https://doi.org/10.5194/cp-19-2463-2023, https://doi.org/10.5194/cp-19-2463-2023, 2023
Short summary
Short summary
We study the climate signal in long harvest series from across Europe between the 16th and 18th centuries. The climate–harvest yield relationship is found to be relatively weak but regionally consistent and similar in strength and sign to modern climate–harvest yield relationships. The strongest climate–harvest yield patterns are a significant summer soil moisture signal in Sweden, a winter temperature and precipitation signal in Switzerland, and spring temperature signals in Spain.
Yuri Brugnara, Chantal Hari, Lucas Pfister, Veronika Valler, and Stefan Brönnimann
Clim. Past, 18, 2357–2379, https://doi.org/10.5194/cp-18-2357-2022, https://doi.org/10.5194/cp-18-2357-2022, 2022
Short summary
Short summary
We digitized dozens of weather journals containing temperature measurements from in and around Bern and Zurich. They cover over a century before the creation of a national weather service in Switzerland. With these data we could create daily temperature series for the two cities that span the last 265 years. We found that the pre-industrial climate on the Swiss Plateau was colder than suggested by previously available instrumental data sets and about 2.5 °C colder than the present-day climate.
Christian von Savigny, Anna Lange, Anne Hemkendreis, Christoph G. Hoffmann, and Alexei Rozanov
Clim. Past, 18, 2345–2356, https://doi.org/10.5194/cp-18-2345-2022, https://doi.org/10.5194/cp-18-2345-2022, 2022
Short summary
Short summary
This study investigates the possibility of inferring information on aerosol optical depth from photographs of historic paintings. The idea – which has been applied in previous studies – is very interesting because it would provide an archive of the atmospheric aerosol loading covering many centuries. We show that twilight colours depend not only on the aerosol optical thickness, but also on several other parameters, making a quantitative estimate of aerosol optical depth very difficult.
Rudolf Brázdil, Petr Zahradník, Péter Szabó, Kateřina Chromá, Petr Dobrovolný, Lukáš Dolák, Miroslav Trnka, Jan Řehoř, and Silvie Suchánková
Clim. Past, 18, 2155–2180, https://doi.org/10.5194/cp-18-2155-2022, https://doi.org/10.5194/cp-18-2155-2022, 2022
Short summary
Short summary
Bark beetle outbreaks are important disturbances to Norway spruce forests. Their meteorological and climatological triggers are analysed for the main oubreaks over the territory of the Czech Republic based on newly created series of such outbreaks, covering the 1781–2021 CE period. The paper demonstrates the shift from windstorms as the main meteorological triggers of past outbreaks to effects of high temperatures and droughts together with windstorms in past decades.
George C. D. Adamson, David J. Nash, and Stefan W. Grab
Clim. Past, 18, 1071–1081, https://doi.org/10.5194/cp-18-1071-2022, https://doi.org/10.5194/cp-18-1071-2022, 2022
Short summary
Short summary
Descriptions of climate held in archives are a valuable source of past climate variability, but there is a large potential for error in assigning quantitative indices (e.g. −2, v. dry to +2, v. wet) to descriptive data. This is the first study to examine this uncertainty. We gave the same dataset to 71 postgraduate students and 6 professional scientists, findings that error can be minimized by taking an average of indices developed by eight postgraduates and only two professional climatologists.
Rudolf Brázdil, Petr Dobrovolný, Jiří Mikšovský, Petr Pišoft, Miroslav Trnka, Martin Možný, and Jan Balek
Clim. Past, 18, 935–959, https://doi.org/10.5194/cp-18-935-2022, https://doi.org/10.5194/cp-18-935-2022, 2022
Short summary
Short summary
The paper deals with 520-year series (1501–2020 CE) of temperature, precipitation, and four drought indices reconstructed from documentary evidence and instrumental observations for the Czech Lands. Basic features of their fluctuations, long-term trends, and periodicities as well as attribution to changes in external forcings and climate variability modes are analysed. Representativeness of Czech reconstructions at European scale is evaluated. The paper shows extreme character of past decades.
Santiago Gorostiza, Maria Antònia Martí Escayol, and Mariano Barriendos
Clim. Past, 17, 913–927, https://doi.org/10.5194/cp-17-913-2021, https://doi.org/10.5194/cp-17-913-2021, 2021
Short summary
Short summary
How did cities respond to drought during the 17th century? This article studies the strategies followed by the city government of Barcelona during the severely dry period from 1620 to 1650. Beyond the efforts to expand urban water supply sources and to improve the maintenance of the system, the city government decided to compile knowledge about water infrastructure into a book and to restrict access to it. This management strategy aimed to increase the city's control over water.
LingYun Tang, Neil Macdonald, Heather Sangster, Richard Chiverrell, and Rachel Gaulton
Clim. Past, 16, 1917–1935, https://doi.org/10.5194/cp-16-1917-2020, https://doi.org/10.5194/cp-16-1917-2020, 2020
Short summary
Short summary
A historical drought series (since 1200 CE) for Shenyang, NE China, shows 20th century droughts comparable in magnitude to recent severe droughts. Drought resilience driven by early 20th century societal/cultural changes reduced loss of life compared with the 1887 and 1891 droughts. A longer temporal analysis from integrated precipitation and historical records shows an earlier onset to droughts. Regional standardised precipitation indices could provide early warnings for drought development.
Siying Chen, Yun Su, Xiuqi Fang, and Jia He
Clim. Past, 16, 1873–1887, https://doi.org/10.5194/cp-16-1873-2020, https://doi.org/10.5194/cp-16-1873-2020, 2020
Short summary
Short summary
Private diaries are important sources of historical data for research on climate change. Through a case study of Yunshan Diary, authored by Bi Guo of the Yuan dynasty of China, this article demonstrates how to delve into climate information in ancient diaries, mainly including species distribution records, phenological records and daily weather descriptions. This article considers how to use these records to reconstruct climate change and extreme climatic events on various timescales.
Rüdiger Glaser and Michael Kahle
Clim. Past, 16, 1207–1222, https://doi.org/10.5194/cp-16-1207-2020, https://doi.org/10.5194/cp-16-1207-2020, 2020
Short summary
Short summary
A new study on droughts in Germany since 1500 reveals the long-term trend of single extreme events, as well as drier periods. Extreme droughts appeared in 1540, 1590, 1615, 1706, 1834, 1893, 1921, 1949 and 2018. Like today, droughts had manifold impacts such as harvest failures, water deficits, low water levels and forest fires. This had different societal consequences ranging from famine, disease, rising prices, migration and riots leading to subsidies and discussions on climate change.
Kathleen Pribyl
Clim. Past, 16, 1027–1041, https://doi.org/10.5194/cp-16-1027-2020, https://doi.org/10.5194/cp-16-1027-2020, 2020
Short summary
Short summary
Droughts pose a climatic hazard that can have a profound impacts on past societies. Using documentary sources, this paper studies the occurrence and impacts of spring–summer droughts in pre-industrial England from 1200 to 1700. The impacts most relevant to human livelihood, including the agricultural and pastoral sectors of agrarian production, and public health are evaluated.
Sarir Ahmad, Liangjun Zhu, Sumaira Yasmeen, Yuandong Zhang, Zongshan Li, Sami Ullah, Shijie Han, and Xiaochun Wang
Clim. Past, 16, 783–798, https://doi.org/10.5194/cp-16-783-2020, https://doi.org/10.5194/cp-16-783-2020, 2020
Short summary
Short summary
This study provides the opportunity to extend climatic records to preindustrial periods in northern Pakistan. The reconstructed March–August PDSIs for the past 424 years, going back to 1593 CE, enable scientists to know how these areas were prone to climatic extremes in the past. The instrumental data are limited in Pakistan; however, the Cedrus deodara tree that preserves physical characteristics of past climatic variabilities can provide insight into the trend of climatic changes.
Rajmund Przybylak, Piotr Oliński, Marcin Koprowski, Janusz Filipiak, Aleksandra Pospieszyńska, Waldemar Chorążyczewski, Radosław Puchałka, and Henryk Paweł Dąbrowski
Clim. Past, 16, 627–661, https://doi.org/10.5194/cp-16-627-2020, https://doi.org/10.5194/cp-16-627-2020, 2020
Short summary
Short summary
The paper presents the main features of droughts in Poland in the period 996–2015 based on proxy data (documentary and dendrochronological) and instrumental measurements of precipitation. More than 100 droughts were found in documentary sources from the mid-15th century to the end of the 18th century with a maximum in the second halves of the 17th and, particularly, the 18th century. The long-term frequency of droughts in Poland has been stable for the last two or three centuries.
Ernesto Tejedor, Martín de Luis, Mariano Barriendos, José María Cuadrat, Jürg Luterbacher, and Miguel Ángel Saz
Clim. Past, 15, 1647–1664, https://doi.org/10.5194/cp-15-1647-2019, https://doi.org/10.5194/cp-15-1647-2019, 2019
Short summary
Short summary
We developed a new dataset of historical documents by compiling records (rogation ceremonies) from 13 cities in the northeast of the Iberian Peninsula (IP). These records were transformed into quantitative continuous data to develop drought indices (DIs). We regionalized them by creating three DIs (Ebro Valle, Mediterranean, and Mountain), which cover the period from 1650 to 1899 CE. We identified extreme drought years and periods which help to understand climate variability in the IP.
Thomas Labbé, Christian Pfister, Stefan Brönnimann, Daniel Rousseau, Jörg Franke, and Benjamin Bois
Clim. Past, 15, 1485–1501, https://doi.org/10.5194/cp-15-1485-2019, https://doi.org/10.5194/cp-15-1485-2019, 2019
Short summary
Short summary
In this paper we present the longest grape harvest date (GHD) record reconstructed to date, i.e. Beaune (France, Burgundy) 1354–2018. Drawing on unedited archive material, the series is validated using the long Paris temperature series that goes back to 1658 and was used to assess April-to-July temperatures from 1354 to 2018. The distribution of extremely early GHD is uneven over the 664-year-long period of the series and mirrors the rapid global warming from 1988 to 2018.
Salvador Gil-Guirado, Juan José Gómez-Navarro, and Juan Pedro Montávez
Clim. Past, 15, 1303–1325, https://doi.org/10.5194/cp-15-1303-2019, https://doi.org/10.5194/cp-15-1303-2019, 2019
Short summary
Short summary
The historical climatology has remarkable research potentialities. However, historical climatology has some methodological limitations. This study presents a new methodology (COST) that allows us to perform climate reconstructions with monthly resolution. The variability of the climatic series obtained are coherent with previous studies. The new proposed method is objective and is not affected by social changes, which allows us to perform studies in regions with different languages and cultures.
Rudolf Brázdil, Petr Dobrovolný, Miroslav Trnka, Ladislava Řezníčková, Lukáš Dolák, and Oldřich Kotyza
Clim. Past, 15, 1–24, https://doi.org/10.5194/cp-15-1-2019, https://doi.org/10.5194/cp-15-1-2019, 2019
Short summary
Short summary
The paper analyses extreme droughts of the pre-instrumental period (1501–1803) over the territory of the recent Czech Republic. In total, 16 droughts were selected for spring, summer and autumn each and 14 droughts for summer half-year (Apr–Sep). They are characterized by very low values of drought indices, high temperatures, low precipitation and by the influence of high-pressure situations. Selected extreme droughts are described in more detail. Effect of droughts on grain prices are studied.
Rudolf Brázdil, Andrea Kiss, Jürg Luterbacher, David J. Nash, and Ladislava Řezníčková
Clim. Past, 14, 1915–1960, https://doi.org/10.5194/cp-14-1915-2018, https://doi.org/10.5194/cp-14-1915-2018, 2018
Short summary
Short summary
The paper presents a worldwide state of the art of droughts fluctuations based on documentary data. It gives an overview of achievements related to different kinds of documentary evidence with their examples and an overview of papers presenting long-term drought chronologies over the individual continents, analysis of the most outstanding drought events, the influence of external forcing and large-scale climate drivers, and human impacts and responses. It recommends future research directions.
Shanna Lyu, Zongshan Li, Yuandong Zhang, and Xiaochun Wang
Clim. Past, 12, 1879–1888, https://doi.org/10.5194/cp-12-1879-2016, https://doi.org/10.5194/cp-12-1879-2016, 2016
Short summary
Short summary
This study presents a 414-year growing season minimum temperature reconstruction based on Korean pine tree-ring series at Laobai Mountain, northeast China. It developed a more than 400-year climate record in this area for the first time. This reconstruction showed six cold periods, seven warm periods, and natural disaster records of extreme climate events.
Pierre Brigode, François Brissette, Antoine Nicault, Luc Perreault, Anna Kuentz, Thibault Mathevet, and Joël Gailhard
Clim. Past, 12, 1785–1804, https://doi.org/10.5194/cp-12-1785-2016, https://doi.org/10.5194/cp-12-1785-2016, 2016
Short summary
Short summary
In this paper, we apply a new hydro-climatic reconstruction method on the Caniapiscau Reservoir (Canada), compare the obtained streamflow time series against time series derived from dendrohydrology by other authors on the same catchment, and study the natural streamflow variability over the 1881–2011 period. This new reconstruction is based on a historical reanalysis of global geopotential height fields and aims to produce daily streamflow time series (using a rainfall–runoff model).
J. Zheng, Z. Hua, Y. Liu, and Z. Hao
Clim. Past, 11, 1553–1561, https://doi.org/10.5194/cp-11-1553-2015, https://doi.org/10.5194/cp-11-1553-2015, 2015
Short summary
Short summary
In this paper we reconstruct the annual temperature anomalies in South Central China from 1850 to 2008, using phenodates of plants, snowfall days, and five tree-ring width chronologies. It is found that rapid warming has occurred since the 1990s, with an abrupt change around 1997, leading to unprecedented variability in warming; a cold interval dominated the 1860s, 1890s, and 1950s; warm decades occurred around 1850, 1870, and 1960; and the warmest decades were the 1990s–2000s.
R. Brázdil, P. Dobrovolný, M. Trnka, O. Kotyza, L. Řezníčková, H. Valášek, P. Zahradníček, and P. Štěpánek
Clim. Past, 9, 1985–2002, https://doi.org/10.5194/cp-9-1985-2013, https://doi.org/10.5194/cp-9-1985-2013, 2013
Q. Ge, Z. Hao, J. Zheng, and X. Shao
Clim. Past, 9, 1153–1160, https://doi.org/10.5194/cp-9-1153-2013, https://doi.org/10.5194/cp-9-1153-2013, 2013
H.-J. Lüdecke, A. Hempelmann, and C. O. Weiss
Clim. Past, 9, 447–452, https://doi.org/10.5194/cp-9-447-2013, https://doi.org/10.5194/cp-9-447-2013, 2013
V. Daux, I. Garcia de Cortazar-Atauri, P. Yiou, I. Chuine, E. Garnier, E. Le Roy Ladurie, O. Mestre, and J. Tardaguila
Clim. Past, 8, 1403–1418, https://doi.org/10.5194/cp-8-1403-2012, https://doi.org/10.5194/cp-8-1403-2012, 2012
Z.-X. Hao, J.-Y. Zheng, Q.-S. Ge, and W.-C. Wang
Clim. Past, 8, 1023–1030, https://doi.org/10.5194/cp-8-1023-2012, https://doi.org/10.5194/cp-8-1023-2012, 2012
F. Domínguez-Castro, P. Ribera, R. García-Herrera, J. M. Vaquero, M. Barriendos, J. M. Cuadrat, and J. M. Moreno
Clim. Past, 8, 705–722, https://doi.org/10.5194/cp-8-705-2012, https://doi.org/10.5194/cp-8-705-2012, 2012
P. Yiou, I. García de Cortázar-Atauri, I. Chuine, V. Daux, E. Garnier, N. Viovy, C. van Leeuwen, A. K. Parker, and J.-M. Boursiquot
Clim. Past, 8, 577–588, https://doi.org/10.5194/cp-8-577-2012, https://doi.org/10.5194/cp-8-577-2012, 2012
R. Brázdil, K. Chromá, H. Valášek, and L. Dolák
Clim. Past, 8, 467–481, https://doi.org/10.5194/cp-8-467-2012, https://doi.org/10.5194/cp-8-467-2012, 2012
F. Domínguez-Castro, R. García-Herrera, P. Ribera, and M. Barriendos
Clim. Past, 6, 553–563, https://doi.org/10.5194/cp-6-553-2010, https://doi.org/10.5194/cp-6-553-2010, 2010
Cited articles
Allen, R. C. and Unger, R. W.: The Allen-Unger Global Commodity Prices Database, Res. Data J. Human. Social Sci., 4, 81–90, https://doi.org/10.1163/24523666-00401006, 2019. a
Anchukaitis, K. J. and Smerdon, J. E.: Progress and uncertainties in global and hemispheric temperature reconstructions of the Common Era, Quaternary Sci. Rev., 286, 107537, https://doi.org/10.1016/j.quascirev.2022.107537, 2022. a
Anchukaitis, K. J., Breitenmoser, P., Briffa, K. R., Buchwal, A., Büntgen, U., Cook, E. R., D'Arrigo, R. D., Esper, J., Evans, M. N., Frank, D., Grudd, H., Gunnarson, B., Hughes, M., Kirdyanov, A., Körner, C., Krusic, P., Luckman, B., Melvin, T. M., Salzer, M., Shashkin, A., Timmreck, C., Vaganov, E., and Wilson, R. J. S.: Tree rings and volcanic cooling, Nat. Geosci., 5, 836–837, https://doi.org/10.1038/ngeo1645, 2012. a, b
Anchukaitis, K. J., Wilson, R., Briffa, K. R., Büntgen, U., Cook, E. R., D'Arrigo, R., Davi, N., Esper, J., Frank, D., Gunnarson, B. E., Hegerl, G., Helama, S., Klesse, S., Krusic, P., Linderholm, H. W., Myglan, V., Osborn, T. J., Zhang, P., Rydval, M., Schneider, L. Z., and Zorita, E.: Last millennium Northern Hemisphere summer temperatures from tree rings: Part II, spatially resolved reconstructions, Quaternary Sci. Rev., 163, 1–22, https://doi.org/10.1016/j.quascirev.2017.02.020, 2017. a, b, c, d, e
Andrade, C., Fonseca, A., Santos, J. A., Bois, B., and Jones, G. V.: Historic changes and future projections in Köppen–Geiger climate classifications in major wine regions worldwide, Climate, 12, 94, https://doi.org/10.3390/cli12070094, 2024. a
Bock, A., Sparks, T. H., Estrella, N., and Menzel, A.: Climate-induced changes in grapevine yield and must sugar content in Franconia (Germany) between 1805 and 2010, PloS One, 8, e69015, https://doi.org/10.1371/journal.pone.0069015, 2013. a
Brönnimann, S. and Krämer, D.: Tambora and the “Year Without a Summer” of 1816: A Perspective on Earth and Human Systems Science, Oeschger Centre for Climate Change Research, University of Bern, Bern, 48 pp., https://doi.org/10.4480/GB2016.G90.01, 2016. a
Büntgen, U., Frank, D. C., Nievergelt, D., and Esper, J.: Summer temperature variations in the European Alps, AD 755–2004, J. Climate, 19, 5606–5623, https://doi.org/10.1175/JCLI3917.1, 2006. a, b, c, d
Büntgen, U., Allen, K., Anchukaitis, K. J., Arseneault, D., Boucher, É., Bräuning, A., Chatterjee, S., Cherubini, P., Churakova, O. V., Corona, C., Gennaretti, F., Griessinger, J., Guillet, S., Guiot, J., Gunnarson, B., Helama, S., Hochreuther, P., Hughes, M. K., Huybers, P., Kirdyanov, A. V., Krusic, P. J., Ludescher, J., Meier, W. J.-H., Myglan, V. S., Nicolussi, K., Oppenheimer, C., Reinig, F., Salzer, M. W., Seftigen, K., Stine, A. R., Stoffel, M., St. George, S., Tejedor, E., Trevino, A., Trouet, V., Wang, J., Wilson, R., Yang, B., Xu, G., and Esper, J.: The influence of decision-making in tree ring-based climate reconstructions, Nat. Commun., 12, 3411, https://doi.org/10.1038/s41467-021-23627-6, 2021. a
Burke, A., Innes, H. M., Crick, L., Anchukaitis, K. J., Byrne, M. P., Hutchison, W., McConnell, J. R., Moore, K. A., Rae, J. W., Sigl, M., and Wilson, R.: High sensitivity of summer temperatures to stratospheric sulfur loading from volcanoes in the Northern Hemisphere, P. Natl. Acad. Sci. USA, 120, e2221810120, https://doi.org/10.1073/pnas.2221810120, 2023. a
Chim, M. M., Aubry, T. J., Abraham, N. L., Marshall, L., Mulcahy, J., Walton, J., and Schmidt, A.: Climate projections very likely underestimate future volcanic forcing and its climatic effects, Geophys. Res. Lett., 50, e2023GL103743, https://doi.org/10.1029/2023GL103743, 2023. a
Chree, C.: Some Phenomena of Sunspots and of Terrestrial Magnetism at Kew Observatory, Philos. T. Roy. Soc. Lond., 212, 75–116, https://doi.org/10.1098/rsta.1913.0003, 1913. a
Chree, C.: Some phenomena of sunspots and of terrestrial magnetism. Part II, Philos. T. Roy. Soc. Lond., 213, 245–277, https://doi.org/10.1098/rsta.1914.0006, 1914. a
Christiansen, B. and Ljungqvist, F. C.: Challenges and perspectives for large-scale temperature reconstructions of the past two millennia, Rev. Geophys., 55, 40–96, https://doi.org/10.1002/2016RG000521, 2017. a
Chuine, I., Yiou, P., Viovy, N., Seguin, B., Daux, V., and Ladurie Le Roy, E.: Grape ripening as a past climate indicator, Nature, 432, 289–290, https://doi.org/10.1038/432289a, 2004. a
Cook, B. I. and Wolkovich, E. M.: Climate change decouples drought from early wine grape harvests in France, Nat. Clim. Change, 6, 715–719, https://doi.org/10.1038/nclimate2960, 2016. a
Cook, E. R., Seager, R., Kushnir, Y., Briffa, K. R., Büntgen, U., Frank, D., Krusic, P. J., Tegel, W., van der Schrier, G., Andreu-Hayles, L., Baillie, M., Baittinger, C., Bleicher, N., Bonde, N., Brown, D., Carrer, M., Cooper, R., Čufar, K., Dittmar, C., Esper, J., Griggs, C., Gunnarson, B., Günther, B., Gutierrez, E., Haneca, K., Helama, S., Herzig, F., Heussner, K.-U., Hofmann, J., Janda, P., Kontic, R., Köse, N., Kyncl, T., Levanič, T., Linderholm, H., Manning, S., Melvin, T. M., Miles, D., Neuwirth, B., Nicolussi, K., Nola, P., Panayotov, M., Popa, I., Rothe, A., Seftigen, K., Seim, A., Svarva, H., Svoboda, M., Thun, T., Timonen, M., Touchan, R., Trotsiuk, V., Trouet, V., Walder, F., Wa·ny, T., Wilson, R., and Zang, C.: Old World megadroughts and pluvials during the Common Era, Sci. Adv., 1, e1500561, https://doi.org/10.1126/sciadv.1500561, 2015. a, b
D'Arrigo, R., Wilson, R., and Anchukaitis, K. J.: Volcanic cooling signal in tree ring temperature records for the past millennium, J. Geophys. Res.-Atmos., 118, 9000–9010, https://doi.org/10.1002/jgrd.50692, 2013. a
D'Arrigo, R., Klinger, P., Newfield, T., Rydval, M., and Wilson, R.: Complexity in crisis: The volcanic cold pulse of the 1690s and the consequences of Scotland's failure to copes, J. Volcanol. Geoth. Res., 389, 106746, https://doi.org/10.1016/j.jvolgeores.2019.106746, 2020. a
de Cortaázar Atauri, I. G., Duchêne, E., Destrac, A., Barbeau, G., De Rességuier, L., Lacombe, T., Parker, A. K., Saurin, N., and Van Leeuwen, C.: Grapevine phenology in France: from past observations to future evolutions in the context of climate change, OENO One, 51, 115–126, https://doi.org/10.20870/oeno-one.2017.51.2.1622, 2017. a
Dobrovolný, P., Moberg, A., Brázdil, R., Pfister, C., Glaser, R., Wilson, R., van Engelen, A., Limanówka, D., Kiss, A., Halíčková, M., Macková, J., Riemann, D., Luterbacher, J., and Böhm, R.: Monthly, seasonal and annual temperature reconstructions for Central Europe derived from documentary evidence and instrumental records since AD 1500, Climatic Change, 101, 69–107, https://doi.org/10.1007/s10584-009-9724-x, 2010. a, b, c, d
Drappier, J., Thibon, C., Rabot, A., and Geny-Denis, L.: Relationship between wine composition and temperature: Impact on Bordeaux wine typicity in the context of global warming, Crit. Rev. Food Sci. Nutr., 59, 14–30, https://doi.org/10.1080/10408398.2017.1355776, 2019. a
Droulia, F. and Charalampopoulos, I.: A review on the observed climate change in Europe and its impacts on viticulture, Atmosphere, 13, 837, https://doi.org/10.3390/atmos13050837, 2022. a
Eddy, J. A.: The Maunder Minimum, Science, 192, 1189–1202, https://doi.org/10.1126/science.192.4245.1189, 1976. a
Edwards, J., Anchukaitis, K. J., Gunnarson, B. E., Pearson, C., Seftigen, K., von Arx, G., and Linderholm, H. W.: The origin of tree-ring reconstructed summer cooling in northern Europe during the 18th century eruption of Laki, Paleoceanogr. Paleoclimatol., 37, e2021PA004386, https://doi.org/10.1029/2021PA004386, 2022. a
Esper, J., Büntgen, U., Luterbacher, J., and Krusic, P. J.: Testing the hypothesis of post-volcanic missing rings in temperature sensitive dendrochronological data, Dendrochronologia, 31, 216–222, https://doi.org/10.1016/j.dendro.2012.11.002, 2013a. a
Esper, J., Schneider, L., Krusic, P. J., Luterbacher, J., Büntgen, U., Timonen, M., Sirocko, F., and Zorita, E.: European summer temperature response to annually dated volcanic eruptions over the past nine centuries, Bull. Volcanol., 75, 1–14, https://doi.org/10.1007/s00445-013-0736-z, 2013b. a
Esper, J., Schneider, L., Smerdon, J. E., Schöne, B. R., and Büntgen, U.: Signals and memory in tree-ring width and density data, Dendrochronologia, 35, 62–70, https://doi.org/10.1016/j.dendro.2015.07.001, 2015. a, b, c
Esper, J., Krusic, P. J., Ljungqvist, F. C., Luterbacher, J., Carrer, M., Cook, E., Davi, N. K., Hartl-Meier, C., Kirdyanov, A., Konter, O., Myglan, V., Timonen, M., Treydte, K., Trouet, V., Villalba, R., Yang, B., and Büntgen, U.: Ranking of tree-ring based temperature reconstructions of the past millennium, Quaternary Sci. Rev., 145, 134–151, https://doi.org/10.1016/j.quascirev.2019.106074, 2016. a
Esper, J., Büntgen, U., Hartl-Meier, C., Oppenheimer, C., and Schneider, L.: Northern Hemisphere temperature anomalies during the 1450s period of ambiguous volcanic forcing, Bull. Volcanol., 79, 41, https://doi.org/10.1007/s00445-017-1125-9, 2017. a
Fischer, E. M., Luterbacher, J., Zorita, E., Tett, S., Casty, C., and Wanner, H.: European climate response to tropical volcanic eruptions over the last half millennium, Geophys. Res. Lett., 34, L05707, https://doi.org/10.1029/2006GL027992, 2007. a
Garcia de Cortazar-Atauri, I., Daux, V., Garnier, E., Yiou, P., Viovy, N., Seguin, B., Boursiquot, J., Parker, A., Van Leeuwen, C., and Chuine, I.: Climate reconstructions from grape harvest dates: Methodology and uncertainties, Holocene, 20, 599–608, https://doi.org/10.1177/0959683609356585, 2010. a
Garnier, E., Daux, V., Yiou, P., and García de Cortázar-Atauri, I.: Grapevine harvest dates in Besançon (France) between 1525 and 1847: Social outcomes or climatic evidence?, Climatic Change, 104, 703–727, https://doi.org/10.1007/s10584-010-9810-0, 2011. a
Guerreau, A.: Climat et vendanges (XIVe–XIXe siècles): révisions et compléments, Histoire & Mesure, 10, 89–147, 1995. a
Guillet, S., Corona, C., Stoffel, M., Khodri, M., Lavigne, F., Ortega, P., Eckert, N., Sielenou, P. D., Daux, V., Churakova (Sidorova), O. V., Davi, N., Edouard, J.-L., Zhang, Y., Luckman, B. H., Myglan, V. S., Guiot, J., Beniston, M., Masson-Delmotte V., and Oppenheimer, C.: Climate response to the Samalas volcanic eruption in 1257 revealed by proxy records, Nat. Geosci., 10, 123–128, https://doi.org/10.1038/ngeo2875, 2017. a, b, c
Guillet, S., Corona, C., Ludlow, F., Oppenheimer, C., and Stoffel, M.: Climatic and societal impacts of a “forgotten” cluster of volcanic eruptions in 1108–1110 CE, Sci. Rep., 10, 1–10, https://doi.org/10.1038/s41598-020-63339-3, 2020. a
Guiot, J., Bernigaud, N., Bondeau, A., Bouby, L., and Cramer, W.: Viticulture extension in response to global climate change drivers – lessons from the past and future projections, Clim. Past, 19, 1219–1244, https://doi.org/10.5194/cp-19-1219-2023, 2023. a
Hartl-Meier, C., Büntgen, U., Smerdon, J. E., Zorita, E., Krusic, P. J., Ljungqvist, F. C., Schneider, L., and Esper, J.: Temperature covariance in tree ring reconstructions and model simulations over the past millennium, Geophys. Res. Lett., 44, 9458–9469, https://doi.org/10.1002/2017GL073239, 2017. a, b, c, d, e
Huhtamaa, H., Stoffel, M., and Corona, C.: Recession or resilience? Long-range socioeconomic consequences of the 17th century volcanic eruptions in northern Fennoscandia, Clim. Past, 18, 2077–2092, https://doi.org/10.5194/cp-18-2077-2022, 2022. a, b
Jones, G. V., White, M. A., Cooper, O. R., and Storchmann, K.: Climate change and global wine quality, Climatic Change, 73, 319–343, https://doi.org/10.1007/s10584-005-4704-2, 2005. a
Jungclaus, J. H., Bard, E., Baroni, M., Braconnot, P., Cao, J., Chini, L. P., Egorova, T., Evans, M., González-Rouco, J. F., Goosse, H., Hurtt, G. C., Joos, F., Kaplan, J. O., Khodri, M., Klein Goldewijk, K., Krivova, N., LeGrande, A. N., Lorenz, S. J., Luterbacher, J., Man, W., Maycock, A. C., Meinshausen, M., Moberg, A., Muscheler, R., Nehrbass-Ahles, C., Otto-Bliesner, B. I., Phipps, S. J., Pongratz, J., Rozanov, E., Schmidt, G. A., Schmidt, H., Schmutz, W., Schurer, A., Shapiro, A. I., Sigl, M., Smerdon, J. E., Solanki, S. K., Timmreck, C., Toohey, M., Usoskin, I. G., Wagner, S., Wu, C.-J., Yeo, K. L., Zanchettin, D., Zhang, Q., and Zorita, E.: The PMIP4 contribution to CMIP6 – Part 3: The last millennium, scientific objective, and experimental design for the PMIP4 past1000 simulations, Geosci. Model Dev., 10, 4005–4033, https://doi.org/10.5194/gmd-10-4005-2017, 2017. a
Kain, R.: Tithe as an index of pre-industrial agricultural production, Agric. Hist. Rev., 27, 73–81, 1979. a
Keenan, D.: Grape harvest dates are poor indicators of summer warmth, Theor. Appl. Climatol., 87, 255–256, https://doi.org/10.1007/s00704-006-0197-9, 2007. a
Kiss, A., Wilson, R., and Bariska, I.: An experimental 392-year-based multi-proxy (vine and grain) reconstruction of May–July temperatures for Kőszeg, West-Hungary, Int. J. Biometeorol., 55, 595–611, https://doi.org/10.1007/s00484-010-0367-4, 2011. a
Körner, C.: The cold range limit of trees, Trends Ecol. Evol., 36, 979–989, https://doi.org/10.1016/j.tree.2021.06.011, 2021. a
Labbé, T., Pfister, C., Brönnimann, S., Rousseau, D., Franke, J., and Bois, B.: The longest homogeneous series of grape harvest dates, Beaune 1354–2018, and its significance for the understanding of past and present climate, Clim. Past, 15, 1485–1501, https://doi.org/10.5194/cp-15-1485-2019, 2019. a, b
Lachiver, M.: Vins, vignes et vignerons. Histoire du vignoble français, Fayard, Paris, 718 pp., ISBN 9782213612553, 1988. a
Ladurie Le Roy, E. and Baulant, M.: Grape harvests from the fifteenth through the nineteenth centuries, J. Interdisciplin. Hist., 10, 839–849, https://doi.org/10.2307/203075, 1980. a
Landsteiner, E.: The crisis of wine production in late sixteenth-century central Europe: Climatic causes and economic consequences, Climatic Change, 43, 323–334, https://doi.org/10.1023/A:1005590115970, 1999. a
Le Roy Ladurie, E. and Goy, J.: Tithe and Agrarian History from the Fourteenth to the Nineteenth Century: An Essay in Comparative History, Cambridge University Press, Cambridge, 217 pp., https://doi.org/10.1017/CBO9780511897412, 1982. a
Le Roy Ladurie, E., Daux, V., and Luterbacher, J.: Le climat de Bourgogne et d'ailleurs XIVe–XXe siècle, Hist. Econ. Soc., 25, 421–436, 2006. a
Ljungqvist, F. C., Seim, A., Krusic, P. J., González-Rouco, J. F., Werner, J. P., Cook, E. R., Zorita, E., Luterbacher, J., Xoplaki, E., Destouni, G., García-Bustamante, E., Aguilar, C. A. M., Seftigen, K., Wang, J., Gagen, M. H., Esper, J., Solomina, O., Fleitmann, D., and Büntgen, U.: European warm-season temperature and hydroclimate since 850 CE, Environ. Res. Lett., 14, 084015, https://doi.org/10.1088/1748-9326/ab2c7e, 2019. a, b, c, d
Ljungqvist, F. C., Thejll, P., Björklund, J., Gunnarson, B. E., Piermattei, A., Rydval, M., Seftigen, K., Støve, B., and Büntgen, U.: Assessing non-linearity in European temperature-sensitive tree-ring data, Dendrochronologia, 59, 125652, https://doi.org/10.1016/j.dendro.2019.125652, 2020. a
Ljungqvist, F. C., Seim, A., and Huhtamaa, H.: Climate and society in European history, Wiley Interdisciplin. Rev.: Clim. Change, 12, e691, https://doi.org/10.1002/wcc.691, 2021. a
Ljungqvist, F. C., Thejll, P., Christiansen, B., Seim, A., Hartl, C., and Esper, J.: The significance of climate variability on early modern European grain prices, Cliometrica, 16, 29–77, https://doi.org/10.1007/s11698-021-00224-7, 2022. a
Ljungqvist, F. C., Christiansen, B., Esper, J., Huhtamaa, H., Leijonhufvud, L., Pfister, C., Seim, A., Skoglund, M. K., and Thejll, P.: Climatic signatures in early modern European grain harvest yields, Clim. Past, 19, 2463–2491, https://doi.org/10.5194/cp-19-2463-2023, 2023. a
Ljungqvist, F. C., Seim, A., and Collet, D.: Famines in medieval and early modern Europe – Connecting climate and society, Wiley Interdisciplin. Rev.: Clim. Change, 15, e859, https://doi.org/10.1002/wcc.859, 2024. a
Luterbacher, J., Dietrich, D., Xoplaki, E., Grosjean, M., and Wanner, H.: European seasonal and annual temperature variability, trends, and extremes since 1500, Science, 303, 1499–1503, https://doi.org/10.1126/science.1093877, 2004. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x
Luterbacher, J., Werner, J. P., Smerdon, J. E., Fernández-Donado, L., González-Rouco, F., Barriopedro, D., Ljungqvist, F. C., Büntgen, U., Zorita, E., Wagner, S., Esper, J., Frank, D., Barriendos, M., Bertolin, C., Bothe, O., Brázdil, R., Camuffo, D., Dobrovolný, P., Gagen, M., García-Bustamante, E., Ge, Q., Gómez-Navarro, J., Guiot, J., Hao, Z., Hegerl, G., Holmgren, K., Jungclaus, J., Klimenko, V., Martín-Chivelet, J., McCarroll, D., Pfister, C., Roberts, N., Schindler, A., Schurer, A., Solomina, O., Toreti, A., von Gunten, L., Wahl, E., Wanner, H., Wetter, O., Xoplaki, E., Yuan, N., Zanchettin, D., Zhang, H., and Zerefos, C.: European summer temperatures since Roman times, Environ. Res. Lett., 11, 024001, https://doi.org/10.1088/1748-9326/11/2/024001, 2016. a, b
Malheiro, A. C., Santos, J. A., Fraga, H., and Pinto, J. G.: Climate change scenarios applied to viticultural zoning in Europe, Clim. Res., 43, 163–177, https://doi.org/10.3354/cr00918, 2010. a
Martin, P., Brown, T. A., George, T. S., Gunnarson, B., Loader, N. J., Ross, P., Wishart, J., and Wilson, R.: Climatic controls on the survival and loss of ancient types of barley on North Atlantic Islands, Climatic Change, 176, 1–20, https://doi.org/10.1007/s10584-022-03474-0, 2023. a
Maurer, C., Hammerl, C., Koch, E., Hammerl, T., and Pokorny, E.: Extreme grape harvest data of Austria, Switzerland and France from AD 1523 to 2007 compared to corresponding instrumental/reconstructed temperature data and various documentary sources, Theor. Appl. Climatol., 106, 55–68, https://doi.org/10.1007/s00704-011-0410-3, 2011. a
Meier, M., Fuhrer, J., and Holzkämper, A.: Changing risk of spring frost damage in grapevines due to climate change? A case study in the Swiss Rhone Valley, Int. J. Biometeorol., 62, 991–1002, https://doi.org/10.1007/s00484-018-1501-y, 2018. a, b, c
Meier, N., Rutishauser, T., Pfister, C., Wanner, H., and Luterbacher, J.: Grape harvest dates as a proxy for Swiss April to August temperature reconstructions back to AD 1480, Geophys. Res. Lett., 34, L20705, https://doi.org/10.1029/2007GL031381, 2007. a
Miller, G. H., Geirsdóttir, Á., Zhong, Y., Larsen, D. J., Otto-Bliesner, B. L., Holland, M. M., Bailey, D. A., Refsnider, K. A., Lehman, S. J., Southon, J. R., Anderson, C., Björnsson, H., and Thordarson, T.: Abrupt onset of the Little Ice Age triggered by volcanism and sustained by sea-ice/ocean feedbacks, Geophys. Res. Lett., 39, L02708, https://doi.org/10.1029/2011GL050168, 2012. a
Morales-Castilla, I., de Cortázar-Atauri, I. G., Cook, B. I., Lacombe, T., Parker, A., van Leeuwen, C., Nicholas, K. A., and Wolkovich, E. M.: Diversity buffers winegrowing regions from climate change losses, P. Natl. Acad. Sci. USA, 117, 2864–2869, https://doi.org/10.1073/pnas.1906731117, 2020. a
Možný, M., Brázdil, R., Dobrovolný, P., and Trnka, M.: April–August temperatures in the Czech Lands, 1499–2015, reconstructed from grape-harvest dates, Clim. Past, 12, 1421–1434, https://doi.org/10.5194/cp-12-1421-2016, 2016a. a
Možný, M., Brázdil, R., Dobrovolný, P., Trnka, M., Potopová, V., Hlavinka, P., Zahradníček, P., Štěpánek, P., and Žalud, Z.: Drought reconstruction based on grape harvest dates for the Czech Lands, 1499–2012, Clim. Res., 70, 119–132, https://doi.org/10.3354/cr01423, 2016b. a
Mullins, M. G., Bouquet, A., and Williams, L. E.: Biology of the Grapevine, Cambridge University Press, Cambridge, 252 pp., ISBN 9780521305075, 1992. a
NOAA – National Oceanic and Atmospheric Administration's: Paleoclimatology Program: Paleoclimatology, NOAA [data set], https://www.ncei.noaa.gov/products/paleoclimatology (last access: 30 January 2025), 2025. a
Oppenheimer, C.: Eruptions that Shook the World, Cambridge University Press, Cambridge, 406 pp., ISBN 978-0-521-64112-8, 2011. a
Pauling, A., Luterbacher, J., Casty, C., and Wanner, H.: Five hundred years of gridded high-resolution precipitation reconstructions over Europe and the connection to large-scale circulation, Clim. Dynam., 26, 387–405, https://doi.org/10.1007/s00382-005-0090-8, 2006. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u
Pfister, C.: Die Fluktuationen der Weinmosterträge im schweizerischen Weinland vom 16. bis ins frühe 19. Jahrhundert: klimatische Ursachen und sozioökonomische Bedeutung, Schweizerische Zeitschrift für Geschichte, 31, 445–491, 1981. a
Pfister, C.: Klimageschichte der Schweiz 1525–1860. Das Klima der Schweiz und seine Bedeutung in der Geschichte von Bevölkerung und Landwirtschaft, in: vol. 2, Verlag Paul Haupt, Bern, 245 and 174 pp., ISBN 9783258039565, 1984. a
Pfister, C., Brönnimann, S., Altwegg, A., Brázdil, R., Litzenburger, L., Lorusso, D., and Pliemon, T.: 600 years of wine must quality and April to August temperatures in western Europe 1420–2019, Clim. Past, 20, 1387–1399, https://doi.org/10.5194/cp-20-1387-2024, 2024. a, b, c
Rao, M. P., Cook, E. R., Cook, B. I., Anchukaitis, K. J., D'Arrigo, R. D., Krusic, P. J., and LeGrande, A. N.: A double bootstrap approach to Superposed Epoch Analysis to evaluate response uncertainty, Dendrochronologia, 55, 119–124, https://doi.org/10.1016/j.dendro.2019.05.001, 2019. a, b
R Core Team: R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/ (last access: 28 January 2025), 2022. a
Robock, A.: Volcanic eruptions and climate, Rev. Geophys., 38, 191–219, https://doi.org/10.1029/1998RG000054, 2000. a
Rydval, M., Loader, N. J., Gunnarson, B. E., Druckenbrod, D. L., Linderholm, H. W., Moreton, S. G., Wood, C. V., and Wilson, R.: Reconstructing 800 years of summer temperatures in Scotland from tree rings, Clim. Dynam., 49, 2951–2974, https://doi.org/10.1007/s00382-016-3478-8, 2017. a
Schauberger, P. and Walker, A.: openxlsx: Read, Write and Edit xlsx Files, r package version 4.2.5, CRAN, https://CRAN.R-project.org/package=openxlsx (last access: 12 January 2025), 2021. a
Schneider, L., Smerdon, J. E., Büntgen, U., Wilson, R. J., Myglan, V. S., Kirdyanov, A. V., and Esper, J.: Revising midlatitude summer temperatures back to AD 600 based on a wood density network, Geophys. Res. Lett., 42, 4556–4562, https://doi.org/10.1002/2015GL063956, 2015. a
Schneider, L., Smerdon, J. E., Pretis, F., Hartl-Meier, C., and Esper, J.: A new archive of large volcanic events over the past millennium derived from reconstructed summer temperatures, Environ. Res. Lett., 12, 094005, https://doi.org/10.1088/1748-9326/aa7a1b, 2017. a, b
Sigl, M., Winstrup, M., McConnell, J. R., Welten, K. C., Plunkett, G., Ludlow, F., Büntgen, U., Caffee, M., Chellman, N., Dahl-Jensen, D., Fischer, H., Kipfstuhl, S., Kostick, C., Maselli, O. J., Mekhaldi, F., Mulvaney, R., Muscheler, R., Pasteris, D. R., Pilcher, J. R., Salzer, M., Schüpbach, S., Steffensen, J. P., Vinther, B. M., and Woodruff, T. E.: Timing and climate forcing of volcanic eruptions for the past 2,500 years, Nature, 523, 543–549, https://doi.org/10.1038/nature14565, 2015. a, b, c
Skoglund, M. K.: Farming at the margin: Climatic impacts on harvest yields and agricultural practices in Central Scandinavia, c. 1560–1920, Agricult. Hist. Rev., 71, 203–233, 2023. a
Squintu, A. A., van der Schrier, G., Brugnara, Y., and Tank, A. K.: Homogenization of daily temperature series in the European Climate Assessment and Dataset, Int. J. Climatol., 39, 1243–1261, https://doi.org/10.1002/joc.5874, 2019. a
Steinhilber, F., Beer, J., and Fröhlich, C.: Total solar irradiance during the Holocene, Geophys. Res. Lett., 36, L19704, https://doi.org/10.1029/2009GL040142, 2009. a
Stoffel, M., Corona, C., Ludlow, F., Sigl, M., Huhtamaa, H., Garnier, E., Helama, S., Guillet, S., Crampsie, A., Kleemann, K., Camenisch, C., McConnell, J., and Gao, C.: Climatic, weather, and socio-economic conditions corresponding to the mid-17th-century eruption cluster, Clim. Past, 18, 1083–1108, https://doi.org/10.5194/cp-18-1083-2022, 2022. a
Tingley, M. P., Stine, A. R., and Huybers, P.: Temperature reconstructions from tree-ring densities overestimate volcanic cooling, Geophys. Res. Lett., 41, 7838–7845, https://doi.org/10.1002/2014GL061268, 2014. a
Toohey, M., Krüger, K., Sigl, M., Stordal, F., and Svensen, H.: Climatic and societal impacts of a volcanic double event at the dawn of the Middle Ages, Climatic Change, 136, 401–412, https://doi.org/10.1007/s10584-016-1648-7, 2016. a
Trouet, V. and Van Oldenborgh, G. J.: KNMI Climate Explorer: a web-based research tool for high-resolution paleoclimatology, Tree-Ring Res., 69, 3–13, https://doi.org/10.3959/1536-1098-69.1.3, 2013. a
Urhausen, S., Brienen, S., Kapala, A., and Simmer, C.: Climatic conditions and their impact on viticulture in the Upper Moselle region, Climatic Change, 109, 349–373, https://doi.org/10.1007/s10584-011-0059-z, 2011. a
van der Schrier, G., Jones, P., and Briffa, K.: The sensitivity of the PDSI to the Thornthwaite and Penman-Monteith parameterizations for potential evapotranspiration, J. Geophys. Res.-Atmos., 116, D03106, https://doi.org/10.1029/2010JD015001, 2011. a
van Leeuwen, C., Sgubin, G., Bois, B., Ollat, N., Swingedouw, D., Zito, S., and Gambetta, G. A.: Climate change impacts and adaptations of wine production, Nat. Rev. Earth Environ., 5, 258–275, https://doi.org/10.1038/s43017-024-00521-5, 2024. a
Venios, X., Korkas, E., Nisiotou, A., and Banilas, G.: Grapevine responses to heat stress and global warming, Plants, 9, 1754, https://doi.org/10.3390/plants9121754, 2020. a
von Storch, H. and Zwiers, F.: Statistical Analysis in Climate Research, Cambridge University Press, Cambridge, 484 pp., ISBN 9780521450713, 1999. a
Wanner, H., Pfister, C., and Neukom, R.: The variable European Little Ice Age, Quaternary Sci. Rev., 287, 107531, https://doi.org/10.1016/j.quascirev.2022.107531, 2022. a, b
Wei, T. and Simko, V.: R package `corrplot': Visualization of a Correlation Matrix (Version 0.92), GitHub [code], https://github.com/taiyun/corrplot (last access: 30 January 2025), 2021. a
White, S., Moreno-Chamarro, E., Zanchettin, D., Huhtamaa, H., Degroot, D., Stoffel, M., and Corona, C.: The 1600 CE Huaynaputina eruption as a possible trigger for persistent cooling in the North Atlantic region, Clim. Past, 18, 739–757, https://doi.org/10.5194/cp-18-739-2022, 2022. a
Wilson, R., Anchukaitis, K., Briffa, K. R., Büntgen, U., Cook, E., D'Arrigo, R., Davi, N. N., Esper, J. H., Frank, D., Gunnarson, B., Hegerl, G., Helama, S., Klesse, S., Krusic, P. J., Linderholm, H. W., Myglan, V., Osborn, T. J., Rydval, M., Schneider, L., Schurer, A., and Zorita, E.: Last millennium Northern Hemisphere summer temperatures from tree rings: Part I: The long term context, Quaternary Sci. Rev., 134, 1–18, https://doi.org/10.1016/j.quascirev.2015.12.005, 2016. a, b
WMO: Time series, WMO [data set], https://climexp.knmi.nl/getindices.cgi?WMO=KNMIData/labrijn&STATION=Tdebilt&TYPE=i (last access: 30 January 2025), 2025. a
Xoplaki, E., Luterbacher, J., Paeth, H., Dietrich, D., Steiner, N., Grosjean, M., and Wanner, H.: European spring and autumn temperature variability and change of extremes over the last half millennium, Geophys. Res. Lett., 32, L15713, https://doi.org/10.1029/2005GL023424, 2005. a, b
Yiou, P., García de Cortázar-Atauri, I., Chuine, I., Daux, V., Garnier, E., Viovy, N., van Leeuwen, C., Parker, A. K., and Boursiquot, J.-M.: Continental atmospheric circulation over Europe during the Little Ice Age inferred from grape harvest dates, Clim. Past, 8, 577–588, https://doi.org/10.5194/cp-8-577-2012, 2012. a
Short summary
We study the climatic signal, with a focus on volcanic-induced shocks, in two long annual records of wine production quantity (spanning 1444–1786) from present-day Luxembourg, close to the northern limit of viticulture in Europe. Highly significant wine production declines are found during years following major volcanic events. Furthermore, warmer and drier climate conditions favoured wine production, with spring and summer conditions being the most important ones.
We study the climatic signal, with a focus on volcanic-induced shocks, in two long annual...