Articles | Volume 18, issue 3
Research article
01 Apr 2022
Research article |  | 01 Apr 2022

Northern Hemisphere atmospheric history of carbon monoxide since preindustrial times reconstructed from multiple Greenland ice cores

Xavier Faïn, Rachael H. Rhodes, Philip Place, Vasilii V. Petrenko, Kévin Fourteau, Nathan Chellman, Edward Crosier, Joseph R. McConnell, Edward J. Brook, Thomas Blunier, Michel Legrand, and Jérôme Chappellaz

Related authors

A 2000-year temperature reconstruction on the East Antarctic plateau, from argon-nitrogen and water stable isotopes in the Aurora Basin North ice core
Aymeric P. M. Servettaz, Anaïs J. Orsi, Mark A. J. Curran, Andrew D. Moy, Amaelle Landais, Joseph R. McConnell, Trevor J. Popp, Emmanuel Le Meur, Xavier Faïn, and Jérôme Chappelaz
Clim. Past Discuss.,,, 2022
Preprint under review for CP
Short summary
Historical porosity data in polar firn
Kévin Fourteau, Laurent Arnaud, Xavier Faïn, Patricia Martinerie, David M. Etheridge, Vladimir Lipenkov, and Jean-Marc Barnola
Earth Syst. Sci. Data, 12, 1171–1177,,, 2020
Short summary
Estimation of gas record alteration in very low-accumulation ice cores
Kévin Fourteau, Patricia Martinerie, Xavier Faïn, Alexey A. Ekaykin, Jérôme Chappellaz, and Vladimir Lipenkov
Clim. Past, 16, 503–522,,, 2020
Short summary
Multi-tracer study of gas trapping in an East Antarctic ice core
Kévin Fourteau, Patricia Martinerie, Xavier Faïn, Christoph F. Schaller, Rebecca J. Tuckwell, Henning Löwe, Laurent Arnaud, Olivier Magand, Elizabeth R. Thomas, Johannes Freitag, Robert Mulvaney, Martin Schneebeli, and Vladimir Ya. Lipenkov
The Cryosphere, 13, 3383–3403,,, 2019
Short summary
Analytical constraints on layered gas trapping and smoothing of atmospheric variability in ice under low-accumulation conditions
Kévin Fourteau, Xavier Faïn, Patricia Martinerie, Amaëlle Landais, Alexey A. Ekaykin, Vladimir Ya. Lipenkov, and Jérôme Chappellaz
Clim. Past, 13, 1815–1830,,, 2017
Short summary

Related subject area

Subject: Carbon Cycle | Archive: Ice Cores | Timescale: Holocene
Millennial variations in atmospheric CO2 during the early Holocene (11.7–7.4 ka)
Jinhwa Shin, Jinho Ahn, Jai Chowdhry Beeman, Hun-Gyu Lee, Jaemyeong Mango Seo, and Edward J. Brook
Clim. Past, 18, 2063–2075,,, 2022
Short summary
High resolution measurements of carbon monoxide along a late Holocene Greenland ice core: evidence for in situ production
X. Faïn, J. Chappellaz, R. H. Rhodes, C. Stowasser, T. Blunier, J. R. McConnell, E. J. Brook, S. Preunkert, M. Legrand, T. Debois, and D. Romanini
Clim. Past, 10, 987–1000,,, 2014
What could have caused pre-industrial biomass burning emissions to exceed current rates?
G. R. van der Werf, W. Peters, T. T. van Leeuwen, and L. Giglio
Clim. Past, 9, 289–306,,, 2013

Cited articles

Allan, D.: Statistics of atomic frequency standards, P. IEEE, 54, 221–230,, 1966. a
Butler, J. H., Battle, M. O., Bender, M., Montzka, S. A., Clarke, A. D., Saltzman, E. S., Sucher, C. M., Severinghaus, J. P., and Elkins, J. W.: A record of atmospheric halocarbons during the twentieth century from polar firn air, Nature, 399, 749–755, 1999. a
Clark, I. D., Henderson, L., Chappellaz, J., Fisher, D., Koerner, R., Worthy, D. E. J., Kotzer, T., Norman, A. L., and Barnola, J. M.: CO2 isotopes as tracers of firn air diffusion and age in an Arctic ice cap with summer melting, Devon Island, Canada, J. Geophys. Res.-Atmos., 112, D01301,, 2007. a
Collins, W. J., Lamarque, J.-F., Schulz, M., Boucher, O., Eyring, V., Hegglin, M. I., Maycock, A., Myhre, G., Prather, M., Shindell, D., and Smith, S. J.: AerChemMIP: quantifying the effects of chemistry and aerosols in CMIP6, Geosci. Model Dev., 10, 585–607,, 2017. a, b
Conte, L., Szopa, S., Séférian, R., and Bopp, L.: The oceanic cycle of carbon monoxide and its emissions to the atmosphere, Biogeosciences, 16, 881–902,, 2019. a
Short summary
Carbon monoxide (CO) is a regulated pollutant and one of the key components determining the oxidizing capacity of the atmosphere. In this study, we analyzed five ice cores from Greenland at high resolution for CO concentrations by coupling laser spectrometry with continuous melting. By combining these new datasets, we produced an upper-bound estimate of past atmospheric CO abundance since preindustrial times for the Northern Hemisphere high latitudes, covering the period from 1700 to 1957 CE.