Articles | Volume 18, issue 12
https://doi.org/10.5194/cp-18-2583-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-18-2583-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Climate change detection and attribution using observed and simulated tree-ring width
Institute of Geography, University of Bern, Bern, Switzerland
Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
Department of Geology and Earth System Science Interdisciplinary
Center, University of Maryland, College Park, Maryland 20742, USA
Andrew Schurer
School of GeoSciences, The University of Edinburgh, Edinburgh, United Kingdom
Gabriele C. Hegerl
School of GeoSciences, The University of Edinburgh, Edinburgh, United Kingdom
Related authors
Richard Warren, Niklaus Emanuel Bartlome, Noémie Wellinger, Jörg Franke, Ralf Hand, Stefan Brönnimann, and Heli Huhtamaa
Clim. Past, 20, 2645–2662, https://doi.org/10.5194/cp-20-2645-2024, https://doi.org/10.5194/cp-20-2645-2024, 2024
Short summary
Short summary
This paper introduces the ClimeApp web application. The app provides quick access to the ModE-RA global climate reanalysis. Users can calculate and plot anomalies, composites, correlations, regressions and annual cycles across three different datasets and four climate variables. By re-examining the 1815 Tambora eruption, we demonstrate how combining results from different datasets and sources can help us investigate the historical palaeoclimate and integrate it into human history.
Nathan P. Gillett, Isla R. Simpson, Gabi Hegerl, Reto Knutti, Dann Mitchell, Aurélien Ribes, Hideo Shiogama, Dáithí Stone, Claudia Tebaldi, Piotr Wolski, Wenxia Zhang, and Vivek K. Arora
Geosci. Model Dev., 18, 4399–4416, https://doi.org/10.5194/gmd-18-4399-2025, https://doi.org/10.5194/gmd-18-4399-2025, 2025
Short summary
Short summary
Climate model simulations of the response to human and natural influences together, natural climate influences alone and greenhouse gases alone are key to quantifying human influence on the climate. The last set of such coordinated simulations underpinned key findings in the last Intergovernmental Panel on Climate Change (IPCC) report. Here we propose a new set of such simulations to be used in the next generation of attribution studies and to underpin the next IPCC report.
Michael N. Evans, Lucie J. Lücke, Kevin J. Fan, and Feng Zhu
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-364, https://doi.org/10.5194/essd-2025-364, 2025
Preprint under review for ESSD
Short summary
Short summary
We present a database of databases (DoD2k) for Common Era (1–2000 A.D.) paleoclimate research. The DoD2k leverages existing code and 5 curated databases, eliminates duplicates, and contains 4613 records. We analyze for common features across moisture and temperature sensitive records, and we test cave carbonate data simulations against observations. DoD2k is expected to be useful for detecting climate change on decadal timescales and for improving data models and paleoclimate reconstructions.
Ricarda Winkelmann, Donovan P. Dennis, Jonathan F. Donges, Sina Loriani, Ann Kristin Klose, Jesse F. Abrams, Jorge Alvarez-Solas, Torsten Albrecht, David Armstrong McKay, Sebastian Bathiany, Javier Blasco Navarro, Victor Brovkin, Eleanor Burke, Gokhan Danabasoglu, Reik V. Donner, Markus Drüke, Goran Georgievski, Heiko Goelzer, Anna B. Harper, Gabriele Hegerl, Marina Hirota, Aixue Hu, Laura C. Jackson, Colin Jones, Hyungjun Kim, Torben Koenigk, Peter Lawrence, Timothy M. Lenton, Hannah Liddy, José Licón-Saláiz, Maxence Menthon, Marisa Montoya, Jan Nitzbon, Sophie Nowicki, Bette Otto-Bliesner, Francesco Pausata, Stefan Rahmstorf, Karoline Ramin, Alexander Robinson, Johan Rockström, Anastasia Romanou, Boris Sakschewski, Christina Schädel, Steven Sherwood, Robin S. Smith, Norman J. Steinert, Didier Swingedouw, Matteo Willeit, Wilbert Weijer, Richard Wood, Klaus Wyser, and Shuting Yang
EGUsphere, https://doi.org/10.5194/egusphere-2025-1899, https://doi.org/10.5194/egusphere-2025-1899, 2025
This preprint is open for discussion and under review for Earth System Dynamics (ESD).
Short summary
Short summary
The Tipping Points Modelling Intercomparison Project (TIPMIP) is an international collaborative effort to systematically assess tipping point risks in the Earth system using state-of-the-art coupled and stand-alone domain models. TIPMIP will provide a first global atlas of potential tipping dynamics, respective critical thresholds and key uncertainties, generating an important building block towards a comprehensive scientific basis for policy- and decision-making.
Mathew Williams, David T. Milodowski, T. Luke Smallman, Kyle G. Dexter, Gabi C. Hegerl, Iain M. McNicol, Michael O'Sullivan, Carla M. Roesch, Casey M. Ryan, Stephen Sitch, and Aude Valade
Biogeosciences, 22, 1597–1614, https://doi.org/10.5194/bg-22-1597-2025, https://doi.org/10.5194/bg-22-1597-2025, 2025
Short summary
Short summary
Southern African woodlands are important in both regional and global carbon cycles. A new carbon analysis created by combining satellite data with ecosystem modelling shows that the region has a neutral C balance overall but with important spatial variations. Patterns of biomass and C balance across the region are the outcome of climate controls on production and vegetation–fire interactions, which determine the mortality of vegetation and spatial variations in vegetation function.
Lauren R. Marshall, Anja Schmidt, Andrew P. Schurer, Nathan Luke Abraham, Lucie J. Lücke, Rob Wilson, Kevin J. Anchukaitis, Gabriele C. Hegerl, Ben Johnson, Bette L. Otto-Bliesner, Esther C. Brady, Myriam Khodri, and Kohei Yoshida
Clim. Past, 21, 161–184, https://doi.org/10.5194/cp-21-161-2025, https://doi.org/10.5194/cp-21-161-2025, 2025
Short summary
Short summary
Large volcanic eruptions have caused temperature deviations over the past 1000 years; however, climate model results and reconstructions of surface cooling using tree rings do not match. We explore this mismatch using the latest models and find a better match to tree-ring reconstructions for some eruptions. Our results show that the way in which eruptions are simulated in models matters for the comparison to tree-rings, particularly regarding the spatial spread of volcanic aerosol.
Colin Peter Morice, David I. Berry, Richard C. Cornes, Kathryn Cowtan, Thomas Cropper, Ed Hawkins, John J. Kennedy, Timothy J. Osborn, Nick A. Rayner, Beatriz R. Rivas, Andrew P. Schurer, Michael Taylor, Praveen R. Teleti, Emily J. Wallis, Jonathan Winn, and Elizabeth C. Kent
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-500, https://doi.org/10.5194/essd-2024-500, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
We present a new data set of global gridded surface air temperature change extending back to the 1780s. This is achieved using marine air temperature observations with newly available estimates of diurnal heating biases together with an updated land station database that includes bias adjustments for early thermometer enclosures. These developments allow the data set to extend further into the past than current data sets that use sea surface temperature rather than marine air temperature data.
Richard Warren, Niklaus Emanuel Bartlome, Noémie Wellinger, Jörg Franke, Ralf Hand, Stefan Brönnimann, and Heli Huhtamaa
Clim. Past, 20, 2645–2662, https://doi.org/10.5194/cp-20-2645-2024, https://doi.org/10.5194/cp-20-2645-2024, 2024
Short summary
Short summary
This paper introduces the ClimeApp web application. The app provides quick access to the ModE-RA global climate reanalysis. Users can calculate and plot anomalies, composites, correlations, regressions and annual cycles across three different datasets and four climate variables. By re-examining the 1815 Tambora eruption, we demonstrate how combining results from different datasets and sources can help us investigate the historical palaeoclimate and integrate it into human history.
Graeme Auld, Gabriele C. Hegerl, and Ioannis Papastathopoulos
Adv. Stat. Clim. Meteorol. Oceanogr., 9, 45–66, https://doi.org/10.5194/ascmo-9-45-2023, https://doi.org/10.5194/ascmo-9-45-2023, 2023
Short summary
Short summary
In this paper we consider the problem of detecting changes in the distribution of the annual maximum temperature, during the years 1950–2018, across Europe.
We find that, on average, the temperature that would be expected to be exceeded
approximately once every 100 years in the 1950 climate is expected to be exceeded once every 6 years in the 2018 climate. This is of concern due to the devastating effects on humans and natural systems that are caused by extreme temperatures.
Lucie J. Lücke, Andrew P. Schurer, Matthew Toohey, Lauren R. Marshall, and Gabriele C. Hegerl
Clim. Past, 19, 959–978, https://doi.org/10.5194/cp-19-959-2023, https://doi.org/10.5194/cp-19-959-2023, 2023
Short summary
Short summary
Evidence from tree rings and ice cores provides incomplete information about past volcanic eruptions and the Sun's activity. We model past climate with varying solar and volcanic scenarios and compare it to reconstructed temperature. We confirm that the Sun's influence was small and that uncertain volcanic activity can strongly influence temperature shortly after the eruption. On long timescales, independent data sources closely agree, increasing our confidence in understanding of past climate.
Andrew P. Schurer, Gabriele C. Hegerl, Hugues Goosse, Massimo A. Bollasina, Matthew H. England, Michael J. Mineter, Doug M. Smith, and Simon F. B. Tett
Clim. Past, 19, 943–957, https://doi.org/10.5194/cp-19-943-2023, https://doi.org/10.5194/cp-19-943-2023, 2023
Short summary
Short summary
We adopt an existing data assimilation technique to constrain a model simulation to follow three important modes of variability, the North Atlantic Oscillation, El Niño–Southern Oscillation and the Southern Annular Mode. How it compares to the observed climate is evaluated, with improvements over simulations without data assimilation found over many regions, particularly the tropics, the North Atlantic and Europe, and discrepancies with global cooling following volcanic eruptions are reconciled.
Ed Hawkins, Philip Brohan, Samantha N. Burgess, Stephen Burt, Gilbert P. Compo, Suzanne L. Gray, Ivan D. Haigh, Hans Hersbach, Kiki Kuijjer, Oscar Martínez-Alvarado, Chesley McColl, Andrew P. Schurer, Laura Slivinski, and Joanne Williams
Nat. Hazards Earth Syst. Sci., 23, 1465–1482, https://doi.org/10.5194/nhess-23-1465-2023, https://doi.org/10.5194/nhess-23-1465-2023, 2023
Short summary
Short summary
We examine a severe windstorm that occurred in February 1903 and caused significant damage in the UK and Ireland. Using newly digitized weather observations from the time of the storm, combined with a modern weather forecast model, allows us to determine why this storm caused so much damage. We demonstrate that the event is one of the most severe windstorms to affect this region since detailed records began. The approach establishes a new tool to improve assessments of risk from extreme weather.
Davide Zanchettin, Claudia Timmreck, Myriam Khodri, Anja Schmidt, Matthew Toohey, Manabu Abe, Slimane Bekki, Jason Cole, Shih-Wei Fang, Wuhu Feng, Gabriele Hegerl, Ben Johnson, Nicolas Lebas, Allegra N. LeGrande, Graham W. Mann, Lauren Marshall, Landon Rieger, Alan Robock, Sara Rubinetti, Kostas Tsigaridis, and Helen Weierbach
Geosci. Model Dev., 15, 2265–2292, https://doi.org/10.5194/gmd-15-2265-2022, https://doi.org/10.5194/gmd-15-2265-2022, 2022
Short summary
Short summary
This paper provides metadata and first analyses of the volc-pinatubo-full experiment of CMIP6-VolMIP. Results from six Earth system models reveal significant differences in radiative flux anomalies that trace back to different implementations of volcanic forcing. Surface responses are in contrast overall consistent across models, reflecting the large spread due to internal variability. A second phase of VolMIP shall consider both aspects toward improved protocol for volc-pinatubo-full.
Jina Jeong, Jonathan Barichivich, Philippe Peylin, Vanessa Haverd, Matthew Joseph McGrath, Nicolas Vuichard, Michael Neil Evans, Flurin Babst, and Sebastiaan Luyssaert
Geosci. Model Dev., 14, 5891–5913, https://doi.org/10.5194/gmd-14-5891-2021, https://doi.org/10.5194/gmd-14-5891-2021, 2021
Short summary
Short summary
We have proposed and evaluated the use of four benchmarks that leverage tree-ring width observations to provide more nuanced verification targets for land-surface models (LSMs), which currently lack a long-term benchmark for forest ecosystem functioning. Using relatively unbiased European biomass network datasets, we identify the extent to which presumed biases in the much larger International Tree-Ring Data Bank might degrade the validation of LSMs.
Cited articles
Allen, M. R. and Stott, P. A.: Estimating signal amplitudes in optimal
fingerprinting, part I: theory, Clim. Dynam., 21, 477–491,
https://doi.org/10.1007/s00382-003-0313-9, 2003.
Bindoff, N. L., Stott, P. A., AchutaRao, K. M., Allen, M. R., Gillett, N.,
Gutzler, D., Hansingo, K., Hegerl, G., Yu, H., Jain, S., Mokhov, I. I.,
Overland, J., Perlwitz, J., Sebbari, R., and Zhang, X.: Detection and
Attribution of Climate Change: from Global to Regional, in: Climate Change
2013 – The Physical Science Basis. Contribution of Working Group I to the
Fifth Assessment Report of the Intergovernmental Panel on Climate Change,
Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA,
867–952, https://doi.org/10.1017/CBO9781107415324.022, 2014.
Breitenmoser, P., Brönnimann, S., and Frank, D.: Forward modelling of tree-ring width and comparison with a global network of tree-ring chronologies, Clim. Past, 10, 437–449, https://doi.org/10.5194/cp-10-437-2014, 2014.
Brönnimann, S., Franke, J., Nussbaumer, S. U., Zumbühl, H. J.,
Steiner, D., Trachsel, M., Hegerl, G. C., Schurer, A., Worni, M., Malik, A.,
Flückiger, J., and Raible, C. C.: Last phase of the Little Ice Age
forced by volcanic eruptions, Nat. Geosci., 12, 650–656,
https://doi.org/10.1038/s41561-019-0402-y, 2019.
Cook, E. R.: A Time Series Analysis Approach to Tree-Ring Standardization,
The University of Arizona, 1985.
Cook, E. R. and Kairiukstis, L. A. (Eds.): Methods of Dendrochronology,
Springer Netherlands, Dordrecht, https://doi.org/10.1007/978-94-015-7879-0, 1990.
Cook, E. R., Briffa, K. R., Meko, D. M., Graybill, D. A., and Funkhouser, G.: The “segment length curse” in long tree-ring chronology development for palaeoclimatic studies, The Holocene, 5, 229–237, https://doi.org/10.1177/095968369500500211, 1995.
Cook, E. R., Meko, D. M., Stahle, D. W., and Cleaveland, M. K.: Drought
Reconstructions for the Continental United States, Drought Reconstructions for the Continental United States, J. Climate, 12, 1145–1162, 1999.
Cook, E. R., Woodhouse, C. A., Eakin, C. M., Meko, D. M., and Stahle, D. W.:
Long-Term Aridity Changes in the Western United States, Science, 306,
1015–1018, https://doi.org/10.1126/science.1102586, 2004.
Cook, E. R., Anchukaitis, K. J., Buckley, B. M., D'Arrigo, R. D., Jacoby, G.
C., and Wright, W. E.: Asian Monsoon Failure and Megadrought During the Last
Millennium, Science, 328, 486–489, https://doi.org/10.1126/science.1185188, 2010.
Crowley, T. J. and Unterman, M. B.: Technical details concerning development of a 1200 yr proxy index for global volcanism, Earth Syst. Sci. Data, 5, 187–197, https://doi.org/10.5194/essd-5-187-2013, 2013.
DelSole, T., Trenary, L., Yan, X., and Tippett, M. K.: Confidence intervals
in optimal fingerprinting, Clim. Dynam., 52, 4111–4126,
https://doi.org/10.1007/s00382-018-4356-3, 2019.
Esper, J., Schneider, L., Smerdon, J. E., Schöne, B. R., and
Büntgen, U.: Signals and memory in tree-ring width and density data,
Dendrochronologia, 35, 62–70, https://doi.org/10.1016/j.dendro.2015.07.001, 2015.
Evans, M. N., Reichert, B. K., Kaplan, A., Anchukaitis, K. J., Vaganov, E.
A., Hughes, M. K., and Cane, M. A.: A forward modeling approach to
paleoclimatic interpretation of tree-ring data, J. Geophys. Res., 111,
G03008, https://doi.org/10.1029/2006JG000166, 2006.
Evans, M. N., Tolwinski-Ward, S. E., Thompson, D. M., and Anchukaitis, K.
J.: Applications of proxy system modeling in high resolution
paleoclimatology, Quaternary Sci. Rev., 76, 16–28,
https://doi.org/10.1016/j.quascirev.2013.05.024, 2013.
Evans, M. N., Smerdon, J. E., Kaplan, A., Tolwinski-Ward, S. E., and
González-Rouco, J. F.: Climate field reconstruction uncertainty arising
from multivariate and nonlinear properties of predictors, Geophys. Res.
Lett., 41, 9127–9134, https://doi.org/10.1002/2014GL062063, 2014.
Eyring, V., Gillett, N. P., Achuta Rao, K. M., Barimalala, R., Barreiro
Parrillo, M., Bellouin, N., Cassou, C., Durack, P. J., Kosaka, Y., McGregor,
H., Min, S., Morgenstern, O., and Sun, Y.: Chapter 3: Human Influence on the
Climate System, in: Climate Change 2021: The Physical Science Basis.
Contribution of Working Group I to the Sixth Assessment Report of the
Intergovernmental Panel on Climate Change, Cambridge University Press,
Cambridge, United Kingdom and New York, NY, USA, 423–552,
https://doi.org/10.1017/9781009157896.005, 2021.
Fan, Y. and van den Dool, H.: Climate Prediction Center global monthly soil moisture data set at 0.5∘ resolution for 1948 to present, J. Geophys. Res., 109, D10102, https://doi.org/10.1029/2003JD004345, 2004.
Fischer, E. M., Luterbacher, J., Zorita, E., Tett, S. F. B., Casty, C., and
Wanner, H.: European climate response to tropical volcanic eruptions over
the last half millennium, Geophys. Res. Lett., 34, L05707,
https://doi.org/10.1029/2006GL027992, 2007.
Frank, D., Büntgen, U., Böhm, R., Maugeri, M., and Esper, J.: Warmer
early instrumental measurements versus colder reconstructed temperatures:
shooting at a moving target, Quaternary Sci. Rev., 26, 3298–3310,
https://doi.org/10.1016/j.quascirev.2007.08.002, 2007.
Franke, J., Frank, D., Raible, C. C., Esper, J., and Brönnimann, S.:
Spectral biases in tree-ring climate proxies, Nat. Clim. Change, 3,
360–364, https://doi.org/10.1038/nclimate1816, 2013.
Franke, J., Brönnimann, S., Bhend, J., and Brugnara, Y.: Ensemble Kalman Fitting Paleo-Reanalysis Version 1.1, World Data Center for Climate (WDCC) at DKRZ [data set], http://cera-www.dkrz.de/WDCC/ui/Compact.jsp?acronym=EKF400_v1.1 (last access: 24 November 2022), 2017.
Franke, J., Evans, M. N., Schurer, A. P., and Hegerl, G. C.: NOAA/WDS Paleoclimatology - Northern Hemisphere Observed and Simulated Tree Ring Width Data 1401-2000 CE, NOAA National Centers for Environmental Information [data set], https://doi.org/10.25921/8hpf-a451, 2022.
Gao, C., Robock, A., and Ammann, C.: Volcanic forcing of climate over the
past 1500 years: An improved ice core-based index for climate models, J.
Geophys. Res., 113, D23111, https://doi.org/10.1029/2008JD010239, 2008.
Gillett, N. P., Kirchmeier-Young, M., Ribes, A., Shiogama, H., Hegerl, G.
C., Knutti, R., Gastineau, G., John, J. G., Li, L., Nazarenko, L.,
Rosenbloom, N., Seland, Ø., Wu, T., Yukimoto, S., and Ziehn, T.:
Constraining human contributions to observed warming since the
pre-industrial period, Nat. Clim. Change, 11, 207–212,
https://doi.org/10.1038/s41558-020-00965-9, 2021.
Harris, I., Jones, P. D., Osborn, T. J., and Lister, D. H.: Updated
high-resolution grids of monthly climatic observations – the CRU TS3.10
Dataset, Int. J. Climatol., 34, 623–642, https://doi.org/10.1002/joc.3711, 2014.
Harris, I., Jones, P. D., Osborn, T. J., and Lister, D. H.: Updated high-resolution grids of monthly climatic observations – the CRU TS3.10 Dataset: updated high-resolution grids of monthly climatic observations, Int. J. Climatol., 34, 623–642, https://doi.org/10.1002/joc.3711, 2014 (data available at:
https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_3.23/, last access: 15 December 2015).
Hasselmann, K.: On the signal-to-noise problem in atmospheric response
studies, in: Meteorology of Tropical Oceans, Royal Meteorological Society,
London, UK, 251–259, 1979.
Hasselmann, K.: Optimal Fingerprints for the Detection of Time-dependent
Climate Change, J. Climate, 6, 1957–1971,
https://doi.org/10.1175/1520-0442(1993)006<1957:OFFTDO>2.0.CO;2, 1993.
Hegerl, G. and Zwiers, F.: Use of models in detection and attribution of
climate change, WIREs Clim. Change, 2, 570–591,
https://doi.org/10.1002/wcc.121, 2011.
Hegerl, G. C., Storch, H. von, Hasselmann, K., Santer, B. D., Cubasch, U.,
and Jones, P. D.: Detecting Greenhouse-Gas-Induced Climate Change with an
Optimal Fingerprint Method, J. Climate, 9, 2281–2306,
https://doi.org/10.1175/1520-0442(1996)009<2281:DGGICC>2.0.CO;2, 1996.
Hegerl, G. C., Crowley, T. J., Baum, S. K., Kim, K.-Y., and Hyde, W. T.:
Detection of volcanic, solar and greenhouse gas signals in
paleo-reconstructions of Northern Hemispheric temperature, Geophys. Res.
Lett., 30, 1242, https://doi.org/10.1029/2002GL016635, 2003.
Hegerl, G. C., Crowley, T. J., Hyde, W. T., and Frame, D. J.: Climate
sensitivity constrained by temperature reconstructions over the past seven
centuries, Nature, 440, 1029–1032, https://doi.org/10.1038/nature04679, 2006.
Hu, J., Emile-Geay, J., and Partin, J.: Correlation-based interpretations of
paleoclimate data – where statistics meet past climates, Earth Planet. Sc. Lett., 459, 362–371, https://doi.org/10.1016/j.epsl.2016.11.048, 2017.
Huang, J., van den Dool, H., M., and Georgarakos, K. P.: Analysis of
Model-Calculated Soil Moisture over the United States (1931–1993) and
Applications to Long-Range Temperature Forecasts, J. Climate, 9, 1350–1362,
https://doi.org/10.1175/1520-0442(1996)009<1350:AOMCSM>2.0.CO;2, 1996.
Iles, C. E. and Hegerl, G. C.: Systematic change in global patterns of
streamflow following volcanic eruptions, Nat. Geosci., 8, 838–842,
https://doi.org/10.1038/ngeo2545, 2015.
Iles, C. E., Hegerl, G. C., Schurer, A. P., and Zhang, X.: The effect of
volcanic eruptions on global precipitation, J. Geophys. Res.-Atmos., 118,
8770–8786, https://doi.org/10.1002/jgrd.50678, 2013.
Lücke, L. J., Hegerl, G. C., Schurer, A. P., and Wilson, R.: Effects of
Memory Biases on Variability of Temperature Reconstructions, J. Climate, 32, 8713–8731, https://doi.org/10.1175/JCLI-D-19-0184.1, 2019.
McGregor, H. V., Evans, M. N., Goosse, H., Leduc, G., Martrat, B., Addison,
J. A., Mortyn, P. G., Oppo, D. W., Seidenkrantz, M.-S., Sicre, M.-A.,
Phipps, S. J., Selvaraj, K., Thirumalai, K., Filipsson, H. L., and Ersek,
V.: Robust global ocean cooling trend for the pre-industrial Common Era,
Nat. Geosci., 8, 671–677, https://doi.org/10.1038/ngeo2510, 2015.
Meko, D., Stockton, C. W., and Boggess, W. R.: The Tree-Ring Record of
severe sustained Drought, J. Am. Water Resour. As., 31, 789–801,
https://doi.org/10.1111/j.1752-1688.1995.tb03401.x, 1995.
Miller, G. H., Geirsdóttir, Á., Zhong, Y., Larsen, D. J.,
Otto-Bliesner, B. L., Holland, M. M., Bailey, D. A., Refsnider, K. A.,
Lehman, S. J., Southon, J. R., Anderson, C., Björnsson, H., and
Thordarson, T.: Abrupt onset of the Little Ice Age triggered by volcanism
and sustained by sea-ice/ocean feedbacks, Geophys. Res. Lett., 39, L02708,
https://doi.org/10.1029/2011GL050168, 2012.
Neukom, R., Steiger, N., Gómez-Navarro, J. J., Wang, J., and Werner, J.
P.: No evidence for globally coherent warm and cold periods over the
preindustrial Common Era, Nature, 571, 550–554,
https://doi.org/10.1038/s41586-019-1401-2, 2019.
Osborn, T. J., Briffa, K. R., and Jones, P. D.: Adjusting variance for
sample-size in tree-ring chronologies and other regional mean series,
Dendrochronologia, 15, 89–99, 1997.
PAGES2k Consortium: A global multiproxy database for temperature
reconstructions of the Common Era, Scientific Data, 4, 170088,
https://doi.org/10.1038/sdata.2017.88, 2017.
PAGES 2k Consortium: Consistent multidecadal variability in global
temperature reconstructions and simulations over the Common Era, Nat.
Geosci., 12, 643–649, https://doi.org/10.1038/s41561-019-0400-0, 2019.
PAGES 2k-PMIP3 group: Continental-scale temperature variability in PMIP3 simulations and PAGES 2k regional temperature reconstructions over the past millennium, Clim. Past, 11, 1673–1699, https://doi.org/10.5194/cp-11-1673-2015, 2015.
Pawlowicz, R.: M_Map: A Mapping package for MATLAB, version 1.4m, EOAS UBC [code], https://www.eoas.ubc.ca/~rich/map.html, last access: 30 March 2022.
Polson, D., Hegerl, G. C., Zhang, X., and Osborn, T. J.: Causes of Robust
Seasonal Land Precipitation Changes, 26, 6679–6697,
https://doi.org/10.1175/JCLI-D-12-00474.1, 2013a.
Polson, D., Hegerl, G. C., Allan, R. P., and Sarojini, B. B.: Have
greenhouse gases intensified the contrast between wet and dry regions?,
Geophys. Res. Lett., 40, 4783–4787, https://doi.org/10.1002/grl.50923, 2013b.
Rao, M. P., Cook, B. I., Cook, E. R., D'Arrigo, R. D., Krusic, P. J.,
Anchukaitis, K. J., LeGrande, A. N., Buckley, B. M., Davi, N. K., Leland,
C., and Griffin, K. L.: European and Mediterranean hydroclimate responses to
tropical volcanic forcing over the last millennium, Geophys. Res. Lett., 44,
5104–5112, https://doi.org/10.1002/2017GL073057, 2017.
Santer, B. D.: Influence of Satellite Data Uncertainties on the Detection of
Externally Forced Climate Change, 300, 1280–1284,
https://doi.org/10.1126/science.1082393, 2003.
Santer, B. D., Wigley, T. M. L., and Jones, P. D.: Correlation methods in
fingerprint detection studies, Clim. Dynam., 8, 265–276,
https://doi.org/10.1007/BF00209666, 1993.
Schurer, A., Tett, S. F. B., Mineter, M., and Hegerl, G. C.: Euroclim500 - Causes of change in European mean and extreme climate over the past 500 years: climate variable output from HadCM3 numerical model, NCAS British Atmospheric Data Centre [data set],
http://catalogue.ceda.ac.uk/uuid/b6c714aad70936d663e2e235aa91187c (last access: 15 December 2015), 2013.
Schurer, A. P., Hegerl, G. C., Mann, M. E., Tett, S. F. B., and Phipps, S.
J.: Separating Forced from Chaotic Climate Variability over the Past
Millennium, J. Climate, 26, 6954–6973, https://doi.org/10.1175/JCLI-D-12-00826.1, 2013.
Schurer, A. P., Tett, S. F. B., and Hegerl, G. C.: Small influence of solar
variability on climate over the past millennium, Nat. Geosci., 7, 104–108,
https://doi.org/10.1038/ngeo2040, 2014.
Sigl, M., Winstrup, M., McConnell, J. R., Welten, K. C., Plunkett, G.,
Ludlow, F., Büntgen, U., Caffee, M., Chellman, N., Dahl-Jensen, D.,
Fischer, H., Kipfstuhl, S., Kostick, C., Maselli, O. J., Mekhaldi, F.,
Mulvaney, R., Muscheler, R., Pasteris, D. R., Pilcher, J. R., Salzer, M.,
Schüpbach, S., Steffensen, J. P., Vinther, B. M., and Woodruff, T. E.:
Timing and climate forcing of volcanic eruptions for the past 2,500 years,
Nature, 523, 543–549, https://doi.org/10.1038/nature14565, 2015.
Smerdon, J. E., Kaplan, A., Zorita, E., González-Rouco, J. F., and
Evans, M. N.: Spatial performance of four climate field reconstruction
methods targeting the Common Era, Geophys. Res. Lett., 38, L11705,
https://doi.org/10.1029/2011GL047372, 2011.
St. George, S.: An overview of tree-ring width records across the Northern
Hemisphere, Quaternary Sci. Rev., 95, 132–150,
https://doi.org/10.1016/j.quascirev.2014.04.029, 2014.
St. George, S. and Ault, T. R.: The imprint of climate within Northern
Hemisphere trees, Quaternary Sci. Rev., 89, 1–4,
https://doi.org/10.1016/j.quascirev.2014.01.007, 2014.
Stevenson, S., Fasullo, J. T., Otto-Bliesner, B. L., Tomas, R. A., and Gao,
C.: Role of eruption season in reconciling model and proxy responses to
tropical volcanism, P. Natl. Acad. Sci. USA, 114, 1822–1826,
https://doi.org/10.1073/pnas.1612505114, 2017.
Tolwinski-Ward, S. E., Evans, M. N., Hughes, M. K., and Anchukaitis, K. J.:
An efficient forward model of the climate controls on interannual variation
in tree-ring width, Clim. Dynam., 36, 2419–2439,
https://doi.org/10.1007/s00382-010-0945-5, 2011a.
Tolwinski-Ward, S. E., Evans, M. N., Hughes, M. K., and Anchukaitis, K. J.:
Erratum to: An efficient forward model of the climate controls on
interannual variation in tree-ring width, Clim. Dynam., 36, 2441–2445,
https://doi.org/10.1007/s00382-011-1062-9, 2011b.
Tolwinski-Ward, S. E., Anchukaitis, K. J., and Evans, M. N.: Bayesian parameter estimation and interpretation for an intermediate model of tree-ring width, Clim. Past, 9, 1481–1493, https://doi.org/10.5194/cp-9-1481-2013, 2013.
Tolwinski-Ward, S. E., Tingley, M. P., Evans, M. N., Hughes, M. K., and
Nychka, D. W.: Probabilistic reconstructions of local temperature and soil
moisture from tree-ring data with potentially time-varying climatic
response, Clim. Dynam., 44, 791–806, https://doi.org/10.1007/s00382-014-2139-z,
2015.
Toohey, M. and Sigl, M.: Volcanic stratospheric sulfur injections and aerosol optical depth from 500 BCE to 1900 CE, Earth Syst. Sci. Data, 9, 809–831, https://doi.org/10.5194/essd-9-809-2017, 2017.
Vaganov, E. A., Hughes, M. K., and Šaškin, A. V.: Growth dynamics of
conifer tree rings: images of past and future environments, Springer,
Berlin, 354 pp., ISBN 978-3-540-26086-8, 2006.
van den Dool, H.: Performance and analysis of the constructed analogue
method applied to U.S. soil moisture over 1981–2001, J. Geophys. Res., 108,
8617, https://doi.org/10.1029/2002JD003114, 2003.
Wang, J., Emile-Geay, J., Guillot, D., Smerdon, J. E., and Rajaratnam, B.: Evaluating climate field reconstruction techniques using improved emulations of real-world conditions, Clim. Past, 10, 1–19, https://doi.org/10.5194/cp-10-1-2014, 2014.
Wigley, T. M. L., Briffa, K. R., and Jones, P. D.: On the Average Value of
Correlated Time Series, with Applications in Dendroclimatology and
Hydrometeorology, J. Appl. Meteorol. Clim., 23, 201–213,
https://doi.org/10.1175/1520-0450(1984)023<0201:OTAVOC>2.0.CO;2, 1984.
Wilson, R., Cook, E., D'Arrigo, R., Riedwyl, N., Evans, M. N., Tudhope, A.,
and Allan, R.: Reconstructing ENSO: the influence of method, proxy data,
climate forcing and teleconnections, J. Quaternary Sci., 25, 62–78,
https://doi.org/10.1002/jqs.1297, 2010.
Zhao, S., Pederson, N., D'Orangeville, L., HilleRisLambers, J., Boose, E.,
Penone, C., Bauer, B., Jiang, Y., and Manzanedo, R. D.: The International
Tree-Ring Data Bank (ITRDB) revisited: Data availability and global
ecological representativity, J. Biogeogr., 46, 355–368,
https://doi.org/10.1111/jbi.13488, 2019.
Short summary
Detection and attribution is a statistical method to evaluate if external factors or random variability have caused climatic changes. We use for the first time a comparison of simulated and observed tree-ring width that circumvents many limitations of previous studies relying on climate reconstructions. We attribute variability in temperature-limited trees to strong volcanic eruptions and for the first time detect a spatial pattern in the growth of moisture-sensitive trees after eruptions.
Detection and attribution is a statistical method to evaluate if external factors or random...