Articles | Volume 18, issue 12
https://doi.org/10.5194/cp-18-2545-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-18-2545-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Statistical reconstruction of daily temperature and sea level pressure in Europe for the severe winter 1788/89
Duncan Pappert
Institute of Geography, University of Bern, Bern, Switzerland
Oeschger Centre for Climate Research, University of Bern, Bern, Switzerland
Mariano Barriendos
Department of History and Archaeology, University of Barcelona, Barcelona, Spain
Yuri Brugnara
Institute of Geography, University of Bern, Bern, Switzerland
Oeschger Centre for Climate Research, University of Bern, Bern, Switzerland
Noemi Imfeld
Institute of Geography, University of Bern, Bern, Switzerland
Oeschger Centre for Climate Research, University of Bern, Bern, Switzerland
Sylvie Jourdain
Direction de la Climatologie et des Service Climatiques, Météo-France, Toulouse, France
Rajmund Przybylak
Faculty of Earth Sciences and Spatial Management, Nicolaus Copernicus University, Torun, Poland
Centre for Climate Change Research, Nicolaus Copernicus University, Torun, Poland
Christian Rohr
Oeschger Centre for Climate Research, University of Bern, Bern, Switzerland
Institute of History, University of Bern, Bern, Switzerland
Stefan Brönnimann
CORRESPONDING AUTHOR
Institute of Geography, University of Bern, Bern, Switzerland
Oeschger Centre for Climate Research, University of Bern, Bern, Switzerland
Related authors
Duncan Pappert, Alexandre Tuel, Dim Coumou, Mathieu Vrac, and Olivia Martius
Weather Clim. Dynam., 6, 769–788, https://doi.org/10.5194/wcd-6-769-2025, https://doi.org/10.5194/wcd-6-769-2025, 2025
Short summary
Short summary
This study compares the dynamical structures that characterise long-lasting (persistent) and short hot spells in Western Europe. We find differences in large-scale atmospheric flow patterns during the events and particular soil moisture evolutions, which can account for the variation in event duration. There is variability in how drivers combine in individual events. Understanding persistent heat extremes can help improve their representation in models and ultimately their prediction.
Duncan Pappert, Yuri Brugnara, Sylvie Jourdain, Aleksandra Pospieszyńska, Rajmund Przybylak, Christian Rohr, and Stefan Brönnimann
Clim. Past, 17, 2361–2379, https://doi.org/10.5194/cp-17-2361-2021, https://doi.org/10.5194/cp-17-2361-2021, 2021
Short summary
Short summary
This paper presents temperature and pressure measurements from the 37 stations of the late 18th century network of the Societas Meteorologica Palatina, in addition to providing an inventory of the available observations, most of which have been digitised. The quality of the recovered series is relatively good, as demonstrated by two case studies. Early instrumental data such as these will help to explore past climate and weather extremes in Europe in greater detail.
Rajmund Przybylak, Andrzej Araźny, Przemysław Wyszyński, Garima Singh, and Konrad Chmist
EGUsphere, https://doi.org/10.5194/egusphere-2025-4313, https://doi.org/10.5194/egusphere-2025-4313, 2025
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
This study presents and analyses a newly discovered unique series of meteorological measurements from Greenland, covering the period 1806–1813. This record, the longest instrumental dataset from the Arctic before 1840, provides valuable information for improving knowledge about the climate of that period. The analysis shows that it was one of the coldest intervals in the past two millennia. Intense volcanic activity and low solar activity are proposed as the main reasons for this cold period.
Rajmund Przybylak, Andrzej Araźny, Janusz Filipiak, Piotr Oliński, Przemysław Wyszyński, and Artur Szwaba
Clim. Past, 21, 1501–1519, https://doi.org/10.5194/cp-21-1501-2025, https://doi.org/10.5194/cp-21-1501-2025, 2025
Short summary
Short summary
A comprehensive database of strong winds up until AD 1600 was created based on documentary evidence for the area within the modern-day borders of Poland. Three types of documentary sources were used: handwritten and unpublished, published, and “secondary” literature. The database contains detailed information about occurrences of strong wind (the location, time, duration and indexation for intensity, extent and character of damage) and the exact textual content of the original weather note.
Nicolás Duque-Gardeazabal, Andrew R. Friedman, and Stefan Brönnimann
Hydrol. Earth Syst. Sci., 29, 3277–3295, https://doi.org/10.5194/hess-29-3277-2025, https://doi.org/10.5194/hess-29-3277-2025, 2025
Short summary
Short summary
Understanding hydrological variability is essential for ecological conservation and sustainable development. Evapotranspiration influences the carbon cycle, and finding what causes its variability is important for ecosystems. This study shows that ENSO (El Niño–Southern Oscillation) influences not only South America’s rainfall, soil moisture, radiation, and evaporation but also other phenomena in the Atlantic Ocean. The impacts change regionally depending on the season analysed and have implications for heat extremes.
Duncan Pappert, Alexandre Tuel, Dim Coumou, Mathieu Vrac, and Olivia Martius
Weather Clim. Dynam., 6, 769–788, https://doi.org/10.5194/wcd-6-769-2025, https://doi.org/10.5194/wcd-6-769-2025, 2025
Short summary
Short summary
This study compares the dynamical structures that characterise long-lasting (persistent) and short hot spells in Western Europe. We find differences in large-scale atmospheric flow patterns during the events and particular soil moisture evolutions, which can account for the variation in event duration. There is variability in how drivers combine in individual events. Understanding persistent heat extremes can help improve their representation in models and ultimately their prediction.
Christian Pfister, Stefan Brönnimann, Laurent Litzenburger, Peter Thejll, Andres Altwegg, Rudolf Brázdil, Andrea Kiss, Erich Landsteiner, Fredrik Charpentier Ljungqvist, and Thomas Pliemon
EGUsphere, https://doi.org/10.5194/egusphere-2025-3242, https://doi.org/10.5194/egusphere-2025-3242, 2025
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
Narrative historical records of wine production in Central Europe date back to 1200. A study of taxes paid to authorities in the French-Luxembourg Moselle region, Germany, and the Swiss Plateau over the last few centuries shows that wine yields provide indirect indications of summer temperatures when the impact of heavy frosts is taken into account. This enables climate reconstructions based on tree rings to be refined and confirmed. Occasionally, poor harvests gave rise to witch hunts.
Noemi Imfeld and Stefan Brönnimann
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-249, https://doi.org/10.5194/essd-2025-249, 2025
Preprint under review for ESSD
Short summary
Short summary
We extend Swiss daily climate reconstructions from 1763 to 2020 to six additional variables at 1×1 km resolution using analogue resampling and data assimilation. Wind and temperature reconstructions show reasonable skill, while humidity and sunshine duration perform less well. Application to historical wild fire events demonstrates the data set’s potential for impact studies. This is the first Swiss data set providing several variables at a high-resolution of 1x1 km and going back to 1763.
Marcos Marín-Martín, Ernesto Tejedor, Gerardo Benito, Miguel A. Saz, Mariano Barriendos, Edurne Martínez del Castillo, Jan Esper, and Martín de Luis
EGUsphere, https://doi.org/10.5194/egusphere-2025-2530, https://doi.org/10.5194/egusphere-2025-2530, 2025
Short summary
Short summary
The Mediterranean faces more extreme weather. To understand these changes beyond short modern records, we studied Spanish pine tree rings, reconstructing over 500 years of rainfall. Our findings show that while past centuries had wet and dry periods, recent decades have experienced an unprecedented surge in both severe droughts and extreme wet events. This long-term view helps assess current climate shifts and their impact on ecosystems and water resources, highlighting the need for adaptation.
Lucas Pfister, Lena Wilhelm, Yuri Brugnara, Noemi Imfeld, and Stefan Brönnimann
Weather Clim. Dynam., 6, 571–594, https://doi.org/10.5194/wcd-6-571-2025, https://doi.org/10.5194/wcd-6-571-2025, 2025
Short summary
Short summary
Our work compares different machine learning approaches for creating long-term classifications of daily atmospheric circulation patterns using input data from surface meteorological observations. Our comparison reveals that a feedforward neural network performs best at this task. Using this model, we present a daily reconstruction of a commonly used weather type classification for central Europe that dates back to 1728.
Garima Singh, Rajmund Przybylak, Przemysław Wyszyński, Andrzej Araźny, and Konrad Chmist
Clim. Past, 21, 877–895, https://doi.org/10.5194/cp-21-877-2025, https://doi.org/10.5194/cp-21-877-2025, 2025
Short summary
Short summary
This study aims to determine the nature of the climate in Labrador in historical times (late 18th century), which is crucial to understanding past climate changes in the Arctic and their causes. It is equally important to estimate the range of natural climate variability, which can help in correctly recognizing the causes of present and future climate changes – especially the influence of humans on climate. The analysis shows a significant warming from historical to present times.
Richard Warren, Niklaus Emanuel Bartlome, Noémie Wellinger, Jörg Franke, Ralf Hand, Stefan Brönnimann, and Heli Huhtamaa
Clim. Past, 20, 2645–2662, https://doi.org/10.5194/cp-20-2645-2024, https://doi.org/10.5194/cp-20-2645-2024, 2024
Short summary
Short summary
This paper introduces the ClimeApp web application. The app provides quick access to the ModE-RA global climate reanalysis. Users can calculate and plot anomalies, composites, correlations, regressions and annual cycles across three different datasets and four climate variables. By re-examining the 1815 Tambora eruption, we demonstrate how combining results from different datasets and sources can help us investigate the historical palaeoclimate and integrate it into human history.
Peter Stucki, Lucas Pfister, Yuri Brugnara, Renate Varga, Chantal Hari, and Stefan Brönnimann
Clim. Past, 20, 2327–2348, https://doi.org/10.5194/cp-20-2327-2024, https://doi.org/10.5194/cp-20-2327-2024, 2024
Short summary
Short summary
In our work, we reconstruct the weather of the extremely cold and wet summer in 1816 using a weather forecasting model to obtain high-resolution, three-dimensional weather simulations. We refine our simulations with surface pressure and temperature observations, representing a novel approach for this period. Our results show that this approach yields detailed and accurate weather reconstructions, opening the door to analyzing past weather events and their impacts in detail.
Stefan Brönnimann, Janusz Filipiak, Siyu Chen, and Lucas Pfister
Clim. Past, 20, 2219–2235, https://doi.org/10.5194/cp-20-2219-2024, https://doi.org/10.5194/cp-20-2219-2024, 2024
Short summary
Short summary
The year 1740 was the coldest in central Europe since at least 1421. New monthly global climate reconstructions, together with daily weather reconstructions, allow a detailed view of this climatic event. Following several severe cold spells in January and February, a persistent circulation pattern with blocking over the British Isles caused northerly flow towards western Europe during a large part of the year. It was one of the strongest, arguably unforced excursions in European temperature.
Rajmund Przybylak, Garima Singh, Przemysław Wyszyński, Andrzej Araźny, and Konrad Chmist
Clim. Past, 20, 1451–1470, https://doi.org/10.5194/cp-20-1451-2024, https://doi.org/10.5194/cp-20-1451-2024, 2024
Short summary
Short summary
The purpose of this study is to recognise the nature of the climate in historical times (second half of 18th century) in Greenland. Such knowledge is important for validating Greenland temperature reconstructions based on both modelling works and various proxies. The two unique series of old meteorological observations from Greenland we used indicated that temperature in the study period was comparable to that of the early 20th-century Arctic warming but lower than that of the present day.
Christian Pfister, Stefan Brönnimann, Andres Altwegg, Rudolf Brázdil, Laurent Litzenburger, Daniele Lorusso, and Thomas Pliemon
Clim. Past, 20, 1387–1399, https://doi.org/10.5194/cp-20-1387-2024, https://doi.org/10.5194/cp-20-1387-2024, 2024
Short summary
Short summary
This bottle of Riesling from the traditional Bassermann Jordan winery in Deidesheim (Germany) is a relic of the premium wine harvested in 1811. It was named “Comet Wine” after the bright comet that year. The study shows that wine quality can be used to infer summer weather conditions over the past 600 years. After rainy summers with cold winds, wines turned sour, while long periods of high pressure led to excellent qualities. Since 1990, only good wines have been produced due to rapid warming.
Stefan Brönnimann, Yuri Brugnara, and Clive Wilkinson
Clim. Past, 20, 757–767, https://doi.org/10.5194/cp-20-757-2024, https://doi.org/10.5194/cp-20-757-2024, 2024
Short summary
Short summary
The early 20th century warming – the first phase of global warming in the 20th century – started from a peculiar cold state around 1910. We digitised additional ship logbooks for these years to study this specific climate state and found that it is real and likely an overlap of several climatic anomalies, including oceanic variability (La Niña) and volcanic eruptions.
Noemi Imfeld, Koen Hufkens, and Stefan Brönnimann
Clim. Past, 20, 659–682, https://doi.org/10.5194/cp-20-659-2024, https://doi.org/10.5194/cp-20-659-2024, 2024
Short summary
Short summary
Climate and weather in spring are important because they can have far-reaching impacts, e.g. on plant growth, due to cold spells. Here, we study changes in climate and phenological indices for the period from 1763 to 2020 based on newly published reconstructed fields of daily temperature and precipitation for Switzerland. We look at three cases of extreme spring conditions, namely a warm spring in 1862, two frost events in 1873 and 1957, and three cold springs in 1785, 1837, and 1852.
Rajmund Przybylak, Piotr Oliński, Marcin Koprowski, Elżbieta Szychowska-Krąpiec, Marek Krąpiec, Aleksandra Pospieszyńska, and Radosław Puchałka
Clim. Past, 19, 2389–2408, https://doi.org/10.5194/cp-19-2389-2023, https://doi.org/10.5194/cp-19-2389-2023, 2023
Short summary
Short summary
The present paper upgrades our knowledge of Poland’s climate in the period 1001–1500 using multiproxy data. Four new climate reconstructions have been constructed – three based on dendrochronological data (since the 12th century) and one on documentary evidence (since the 15th century). The results should help improve the knowledge of climate change in Europe, particularly in central Europe.
Thomas Pliemon, Ulrich Foelsche, Christian Rohr, and Christian Pfister
Clim. Past, 19, 2237–2256, https://doi.org/10.5194/cp-19-2237-2023, https://doi.org/10.5194/cp-19-2237-2023, 2023
Short summary
Short summary
Louis Morin consistently recorded precipitation intensity and duration between 1665 and 1713. We use these records to reconstruct precipitation totals. This reconstruction is validated by several methods and then presented using precipitation indexes. What is exceptional about this dataset is the availability of a sub-daily resolution and the low number of missing data points over the entire observation period.
Eric Samakinwa, Christoph C. Raible, Ralf Hand, Andrew R. Friedman, and Stefan Brönnimann
Clim. Past Discuss., https://doi.org/10.5194/cp-2023-67, https://doi.org/10.5194/cp-2023-67, 2023
Publication in CP not foreseen
Short summary
Short summary
In this study, we nudged a stand-alone ocean model MPI-OM to proxy-reconstructed SST. Based on these model simulations, we introduce new estimates of the AMOC variations during the period 1450–1780 through a 10-member ensemble simulation with a novel nudging technique. Our approach reaffirms the known mechanisms of AMOC variability and also improves existing knowledge of the interplay between the AMOC and the NAO during the AMOC's weak and strong phases.
Ralf Hand, Eric Samakinwa, Laura Lipfert, and Stefan Brönnimann
Geosci. Model Dev., 16, 4853–4866, https://doi.org/10.5194/gmd-16-4853-2023, https://doi.org/10.5194/gmd-16-4853-2023, 2023
Short summary
Short summary
ModE-Sim is an ensemble of simulations with an atmosphere model. It uses observed sea surface temperatures, sea ice conditions, and volcanic aerosols for 1420 to 2009 as model input while accounting for uncertainties in these conditions. This generates several representations of the possible climate given these preconditions. Such a setup can be useful to understand the mechanisms that contribute to climate variability. This paper describes the setup of ModE-Sim and evaluates its performance.
Stefan Brönnimann and Yuri Brugnara
Clim. Past, 19, 1435–1445, https://doi.org/10.5194/cp-19-1435-2023, https://doi.org/10.5194/cp-19-1435-2023, 2023
Short summary
Short summary
We present the weather diaries of the Kirch family from 1677–1774 containing weather observations made in Leipzig and Guben and, from 1701 onward, instrumental observations made in Berlin. We publish the imaged diaries (10 445 images) and the digitized measurements (from 1720 onward). This is one of the oldest and longest meteorological records from Germany. The digitized pressure data show good agreement with neighbouring stations, highlighting their potential for weather reconstruction.
Stefan Brönnimann
Clim. Past, 19, 1345–1357, https://doi.org/10.5194/cp-19-1345-2023, https://doi.org/10.5194/cp-19-1345-2023, 2023
Short summary
Short summary
Weather reconstructions could help us to better understand the mechanisms leading to, and the impacts caused by, climatic changes. This requires daily weather information such as diaries. Here I present the weather diary by Georg Christoph Eimmart from Nuremberg covering the period 1695–1704. This was a particularly cold period in Europe, and the diary helps to better characterize this climatic anomaly.
Noemi Imfeld, Lucas Pfister, Yuri Brugnara, and Stefan Brönnimann
Clim. Past, 19, 703–729, https://doi.org/10.5194/cp-19-703-2023, https://doi.org/10.5194/cp-19-703-2023, 2023
Short summary
Short summary
Climate reconstructions give insights into monthly and seasonal climate variability of the past few hundred years. However, to understand past extreme weather events and to relate them to impacts, for example to periods of extreme floods, reconstructions on a daily timescale are needed. Here, we present a reconstruction of 258 years of high-resolution daily temperature and precipitation fields for Switzerland covering the period 1763 to 2020, which is based on instrumental measurements.
Moritz Buchmann, Gernot Resch, Michael Begert, Stefan Brönnimann, Barbara Chimani, Wolfgang Schöner, and Christoph Marty
The Cryosphere, 17, 653–671, https://doi.org/10.5194/tc-17-653-2023, https://doi.org/10.5194/tc-17-653-2023, 2023
Short summary
Short summary
Our current knowledge of spatial and temporal snow depth trends is based almost exclusively on time series of non-homogenised observational data. However, like other long-term series from observations, they are susceptible to inhomogeneities that can affect the trends and even change the sign. To assess the relevance of homogenisation for daily snow depths, we investigated its impact on trends and changes in extreme values of snow indices between 1961 and 2021 in the Swiss observation network.
Jianquan Dong, Stefan Brönnimann, Tao Hu, Yanxu Liu, and Jian Peng
Earth Syst. Sci. Data, 14, 5651–5664, https://doi.org/10.5194/essd-14-5651-2022, https://doi.org/10.5194/essd-14-5651-2022, 2022
Short summary
Short summary
We produced a new dataset of global station-based daily maximum wet-bulb temperature (GSDM-WBT) through the calculation of wet-bulb temperature, data quality control, infilling missing values, and homogenization. The GSDM-WBT covers the complete daily series of 1834 stations from 1981 to 2020. The GSDM-WBT dataset handles stations with many missing values and possible inhomogeneities, which could better support the studies on global and regional humid heat events.
Chantal Camenisch, Fernando Jaume-Santero, Sam White, Qing Pei, Ralf Hand, Christian Rohr, and Stefan Brönnimann
Clim. Past, 18, 2449–2462, https://doi.org/10.5194/cp-18-2449-2022, https://doi.org/10.5194/cp-18-2449-2022, 2022
Short summary
Short summary
We present a novel approach to assimilate climate information contained in chronicles and annals from the 15th century to generate climate reconstructions of the Burgundian Low Countries, taking into account uncertainties associated with the descriptions of narrative sources. Our study aims to be a first step towards a more quantitative use of available information contained in historical texts, showing how Bayesian inference can help the climate community with this endeavor.
Yuri Brugnara, Chantal Hari, Lucas Pfister, Veronika Valler, and Stefan Brönnimann
Clim. Past, 18, 2357–2379, https://doi.org/10.5194/cp-18-2357-2022, https://doi.org/10.5194/cp-18-2357-2022, 2022
Short summary
Short summary
We digitized dozens of weather journals containing temperature measurements from in and around Bern and Zurich. They cover over a century before the creation of a national weather service in Switzerland. With these data we could create daily temperature series for the two cities that span the last 265 years. We found that the pre-industrial climate on the Swiss Plateau was colder than suggested by previously available instrumental data sets and about 2.5 °C colder than the present-day climate.
Yuri Brugnara, Michael Horn, and Isabella Salvador
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-290, https://doi.org/10.5194/essd-2022-290, 2022
Manuscript not accepted for further review
Short summary
Short summary
We provide the only known long temperature and pressure instrumental record for the south-eastern Alps covering the first half of the 19th century. It was measured in the town of Rovereto, in the Adige valley, between 1800–1839 by a physics teacher. The data are complemented with measurements from Bolzano/Bozen for 1842–1849 and are converted to modern units and homogenized to account for changes in observation times and exposure of the instruments.
Thomas Pliemon, Ulrich Foelsche, Christian Rohr, and Christian Pfister
Clim. Past, 18, 1685–1707, https://doi.org/10.5194/cp-18-1685-2022, https://doi.org/10.5194/cp-18-1685-2022, 2022
Short summary
Short summary
We have digitized and analyzed meteorological variables (temperature, direction of the movement of the clouds, and cloud cover), which were noted by Louis Morin in the period 1665–1713 in Paris. This time period is characterized by cold winters and autumns and moderate springs and summers. A low frequency of westerlies in the winter months leads to a cooling. Morin's measurements seem to be trustworthy. Only cloud cover in quantitative terms should be taken with caution.
Gilles Delaygue, Stefan Brönnimann, and Philip D. Jones
Weather Clim. Dynam. Discuss., https://doi.org/10.5194/wcd-2022-33, https://doi.org/10.5194/wcd-2022-33, 2022
Revised manuscript not accepted
Short summary
Short summary
We test whether any association between solar activity and meteorological conditions in the north Atlantic – European sector could be detected. We find associations consistent with those found by previous studies, with a slightly better statistical significance, and with less methodological biases which have impaired previous studies. Our study should help strengthen the recognition of meteorological impacts of solar activity.
Moritz Buchmann, John Coll, Johannes Aschauer, Michael Begert, Stefan Brönnimann, Barbara Chimani, Gernot Resch, Wolfgang Schöner, and Christoph Marty
The Cryosphere, 16, 2147–2161, https://doi.org/10.5194/tc-16-2147-2022, https://doi.org/10.5194/tc-16-2147-2022, 2022
Short summary
Short summary
Knowledge about inhomogeneities in a data set is important for any subsequent climatological analysis. We ran three well-established homogenization methods and compared the identified break points. By only treating breaks as valid when detected by at least two out of three methods, we enhanced the robustness of our results. We found 45 breaks within 42 of 184 investigated series; of these 70 % could be explained by events recorded in the station history.
Stefan Brönnimann, Peter Stucki, Jörg Franke, Veronika Valler, Yuri Brugnara, Ralf Hand, Laura C. Slivinski, Gilbert P. Compo, Prashant D. Sardeshmukh, Michel Lang, and Bettina Schaefli
Clim. Past, 18, 919–933, https://doi.org/10.5194/cp-18-919-2022, https://doi.org/10.5194/cp-18-919-2022, 2022
Short summary
Short summary
Floods in Europe vary on time scales of several decades. Flood-rich and flood-poor periods alternate. Recently floods have again become more frequent. Long time series of peak stream flow, precipitation, and atmospheric variables reveal that until around 1980, these changes were mostly due to changes in atmospheric circulation. However, in recent decades the role of increasing atmospheric moisture due to climate warming has become more important and is now the main driver of flood changes.
Daniel Steinfeld, Adrian Peter, Olivia Martius, and Stefan Brönnimann
EGUsphere, https://doi.org/10.5194/egusphere-2022-92, https://doi.org/10.5194/egusphere-2022-92, 2022
Preprint archived
Short summary
Short summary
We assess the performance of various fire weather indices to predict wildfire occurrence in Northern Switzerland. We find that indices responding readily to weather changes have the best performance during spring; in the summer and autumn seasons, indices that describe persistent hot and dry conditions perform best. We demonstrate that a logistic regression model trained on local historical fire activity can outperform existing fire weather indices.
Gerardo Benito, Olegario Castillo, Juan A. Ballesteros-Cánovas, Maria Machado, and Mariano Barriendos
Hydrol. Earth Syst. Sci., 25, 6107–6132, https://doi.org/10.5194/hess-25-6107-2021, https://doi.org/10.5194/hess-25-6107-2021, 2021
Short summary
Short summary
Climate change is expected to increase the intensity of floods, but changes are difficult to project. We compiled historical and modern flood data of the Rio Duero (Spain) to evaluate flood hazards beyond decadal climate cycles. Historical floods were obtained from documentary sources, identifying 69 floods over 1250–1871 CE. Discharges were calculated from reported flood heights. Flood frequency using historical datasets showed the most robust results, guiding climate change adaptation.
Duncan Pappert, Yuri Brugnara, Sylvie Jourdain, Aleksandra Pospieszyńska, Rajmund Przybylak, Christian Rohr, and Stefan Brönnimann
Clim. Past, 17, 2361–2379, https://doi.org/10.5194/cp-17-2361-2021, https://doi.org/10.5194/cp-17-2361-2021, 2021
Short summary
Short summary
This paper presents temperature and pressure measurements from the 37 stations of the late 18th century network of the Societas Meteorologica Palatina, in addition to providing an inventory of the available observations, most of which have been digitised. The quality of the recovered series is relatively good, as demonstrated by two case studies. Early instrumental data such as these will help to explore past climate and weather extremes in Europe in greater detail.
Moritz Buchmann, Michael Begert, Stefan Brönnimann, and Christoph Marty
The Cryosphere, 15, 4625–4636, https://doi.org/10.5194/tc-15-4625-2021, https://doi.org/10.5194/tc-15-4625-2021, 2021
Short summary
Short summary
We investigated the impacts of local-scale variations by analysing snow climate indicators derived from parallel snow measurements. We found the largest relative inter-pair differences for all indicators in spring and the smallest in winter. The findings serve as an important basis for our understanding of uncertainties of commonly used snow indicators and provide, in combination with break-detection methods, the groundwork in view of any homogenization efforts regarding snow time series.
Claudia Timmreck, Matthew Toohey, Davide Zanchettin, Stefan Brönnimann, Elin Lundstad, and Rob Wilson
Clim. Past, 17, 1455–1482, https://doi.org/10.5194/cp-17-1455-2021, https://doi.org/10.5194/cp-17-1455-2021, 2021
Short summary
Short summary
The 1809 eruption is one of the most recent unidentified volcanic eruptions with a global climate impact. We demonstrate that climate model simulations of the 1809 eruption show generally good agreement with many large-scale temperature reconstructions and early instrumental records for a range of radiative forcing estimates. In terms of explaining the spatially heterogeneous and temporally delayed Northern Hemisphere cooling suggested by tree-ring networks, the investigation remains open.
Noemi Imfeld, Leopold Haimberger, Alexander Sterin, Yuri Brugnara, and Stefan Brönnimann
Earth Syst. Sci. Data, 13, 2471–2485, https://doi.org/10.5194/essd-13-2471-2021, https://doi.org/10.5194/essd-13-2471-2021, 2021
Short summary
Short summary
Upper-air data form the backbone of reanalysis products, particularly in the pre-satellite era. However, historical upper-air data are error-prone because measurements at high altitude were especially challenging. Here, we present a collection of data from historical intercomparisons of radiosondes and error assessments reaching back to the 1930s that may allow us to better characterize such errors. The full database, including digitized data, images, and metadata, is made publicly available.
Santiago Gorostiza, Maria Antònia Martí Escayol, and Mariano Barriendos
Clim. Past, 17, 913–927, https://doi.org/10.5194/cp-17-913-2021, https://doi.org/10.5194/cp-17-913-2021, 2021
Short summary
Short summary
How did cities respond to drought during the 17th century? This article studies the strategies followed by the city government of Barcelona during the severely dry period from 1620 to 1650. Beyond the efforts to expand urban water supply sources and to improve the maintenance of the system, the city government decided to compile knowledge about water infrastructure into a book and to restrict access to it. This management strategy aimed to increase the city's control over water.
Stefan Brönnimann and Sylvia Nichol
Atmos. Chem. Phys., 20, 14333–14346, https://doi.org/10.5194/acp-20-14333-2020, https://doi.org/10.5194/acp-20-14333-2020, 2020
Short summary
Short summary
Historical column ozone data from New Zealand and the UK from the 1950s are digitised and re-evaluated. They allow studying the ozone layer prior to the era of ozone depletion. Day-to-day changes are addressed, which reflect the flow near the tropopause and hence may serve as a diagnostic for atmospheric circulation in a time and region of sparse radiosondes. A long-term comparison shows the amount of ozone depletion at southern mid-latitudes and indicates how far we are from full recovery.
Stefan Brönnimann
Clim. Past, 16, 1937–1952, https://doi.org/10.5194/cp-16-1937-2020, https://doi.org/10.5194/cp-16-1937-2020, 2020
Short summary
Short summary
Scientists often reconstruct climate from proxy data such as tree rings or historical documents. Here, I do the reverse and produce a weather diary from historical numerical weather data. Such "synthetic weather diaries" may be useful for historians, e.g. to compare with other sources or to study the weather experienced during a journey or a military operation. They could also help train machine-learning approaches, which could then be used to reconstruct weather from historical diaries.
Cited articles
Allan, R., Endfield, G., Damodaran, V., Adamson, G., Hannaford, M., Carroll, F., Macdonald, N., Groom, N., Jones, J., Williamson, F., Hendy, E., Holper, P., Arroyo-Mora, J. P., Hughes, L., Bickers, R., and Bliuc, A.-M.:
Toward integrated historical climate research: the example of Atmospheric Circulation Reconstructions over the Earth, WIREs Clim. Change, 7, 164–174, https://doi.org/10.1002/wcc.379, 2016.
Auer, I., Böhm, R., Jurkovic, A., Lipa, W., Orlik, A., Potzmann, R., Schoner, W., Ungersböck, M., Matulla, C., Briffa, K., Jones, P. D., Efthymiadis, D., Brunetti, M., Nanni, T., Maugeri, M., Mercalli, L., Mestre, O., Moisselin, J.-M., Begert, M., Müller-Westermeier, G., Kveton, V., Bochnicek, O., Statsny, P., Lapin, M., Szalai, S., Szentimrey, T., Cegnar, T., Dolinar, M., Gajic-Capka, M., Zaninovic, K., Majstorovic, Z., and Nieplova, E.:
HISTALP — Historical instrumental climatological surface time series of the Greater Alpine Region, Int. J. Climatol., 27, 17–46, https://doi.org/10.1002/joc.1377, 2007.
Barriendos, M. and Llasat, M. C.:
The Case of the `Maldá' Anomaly in the Western Mediterranean basin (AD 1760–1800): An Example of a Strong Climatic Variability, Climatic Change, 61, 191–216, 2003.
Barriendos, M., Peña, J. C., Martín-Vide, J., Jönsson, P., and Demarée, G.:
The Winter of 1788–1789 in the Iberian Peninsula from Meteorological Reading Observations and Proxy-Data Records, in: Giuseppe Toaldo e il Suo Tempo – Nel bicentenario della morte, Atti del Convegno, Padova, 10–13 novembre 1997, edited by: Pigatto, L., Cittadella, Bertoncello Artigrafiche, 921–941, 2000.
Barriendos, M., Martín-Vide, J., Peña, J. C., and Rodríguez, R.:
Daily Meteorological Observations in Cádiz – San Fernando. Analysis of the Documentary Sources and the Instrumental Data Content (1786–1996), Climatic Change, 53, 151–170, 2002.
Bhend, J., Franke, J., Folini, D., Wild, M., and Brönnimann, S.:
An ensemble-based approach to climate reconstructions, Clim. Past, 8, 963–976, https://doi.org/10.5194/cp-8-963-2012, 2012.
Bontron, G. and Obled, C.:
L'adaptation probabiliste des prévisions météorologiques pour la prévision hydrologique, Houille Blanche, 1, 23–28, https://doi.org/10.1051/lhb:200501002, 2005.
Brázdil, R., Valášek, H., and Macková, J.:
Climate in the Czech Lands during the 1780s in Light of the Daily Weather Records of Parson Karel Bernard Hein of Hodonice (Southwestern Moravia): Comparison of Documentary and Instrumental Data, Climatic Change, 60, 297327, https://doi.org/10.1023/A:1026045902062, 2003.
Brázdil, R., Demarée, G. R., Deutsch, M., Garnier, E., Kiss, A., Luterbacher, J., Macdonald, N., Rohr, C., Dobrovolný, P., Kolář, P., and Chromá, K.:
European floods during the winter 1783/1784: scenarios of an extreme event during the “Little Ice Age”, Theor. Appl. Climatol., 100, 163–189, https://doi.org/10.1007/s00704-009-0170-5, 2010.
Brönnimann, S., Allan, R. Ashcroft, L., Baer, S., Barriendos, M., Brázdil, R., Brugnara, Y., Brunet, M., Brunetti, M., Chimani, B., Cornes, R., Domínguez-Castro, F., Filipiak, J., Founda, D., García Herrera, R., Gergis, J., Grab, S., Hannak, L., Huhtamaa, H., Jacobsen, K. S., Jones, P., Jourdain, S., Kiss, A., Lin, K. E., Lorrey, A., Lundstad, E., Luterbacher, J., Mauelshagen, F., Maugeri, M., Maughan, N., Neukom, R., Moberg, A., Nicholson, S., Noone, S., Nordli, Ø., Ólafsdóttir, K. B., Pearce, P. R., Pfister, L., Pribyl, K., Przybylak, R., Pudmenzky, C., Rasol, D., Reichenbach, D., Řezníčková, L., Rodrigo, F. S., Rohr, C., Skrynyk, O., Slonosky, V., Thorne, P. Valente, M. A., Vaquero, J. M., Westcottt, N. E., Williamson, F., and Wyszyński, P.:
Unlocking Pre-1850 Instrumental Meteorological Records: A Global Inventory, B. Am. Meteorol. Soc., 100, ES389–ES413, https://doi.org/10.1175/BAMS-D-19-0040.1, 2019.
Brugnara, Y., Auchmann, R., Brönnimann, S., Allan, R. J., Auer, I., Barriendos, M., Bergström, H., Bhend, J., Brázdil, R., Compo, G. P., Cornes, R. C., Dominguez-Castro, F., van Engelen, A. F. V., Filipiak, J., Holopainen, J., Jourdain, S., Kunz, M., Luterbacher, J., Maugeri, M., Mercalli, L., Moberg, A., Mock, C. J., Pichard, G., Řezníčková, L., van der Schrier, G., Slonosky, V., Ustrnul, Z., Valente, M. A., Wypych, A., and Yin, X.:
A collection of sub-daily pressure and temperature observations for the early instrumental period with a focus on the “year without a summer” 1816, Clim. Past, 11, 1027–1047, https://doi.org/10.5194/cp-11-1027-2015, 2015.
Brugnara, Y., Pfister, L., Villiger, L., Rohr, C., Isotta, F. A., and Brönnimann, S.:
Early instrumental meteorological observations in Switzerland: 1708–1873, Earth Syst. Sci. Data, 12, 1179–1190, https://doi.org/10.5194/essd-12-1179-2020, 2020.
Brunet, M., Brugnara, Y., Noone, S., Stephens, A., Valente, M. A., Ventura, C., Jones, P., Gilabert, A., Brönnimann, S., Luterbacher, J., Allan, R., Brohan, P., Compo G. P.:
Best Practice Guidelines for Climate Data and Metadata Formatting, Quality Control and Submission, Copernicus Climate Change Services, https://doi.org/10.24381/kctk-8j22, 2020.
Brunetti, M., Maugeri, M., Monti, F., and Nanni, T.:
Temperature and precipitation variability in Italy in the last two centuries from homogenised instrumental time series, Int. J. Climatol., 26, 345–381, https://doi.org/10.1002/joc.1251, 2006.
Buehler, T., Raible, C. C., and Stocker, T. F.:
The relationship of winter season North Atlantic blocking frequencies to extreme cold or dry spells in the ERA-40, Tellus, 63, 212–222, https://doi.org/10.1111/j.1600-0870.2010.00492.x, 2011.
Camuffo, D.:
Freezing of the Venetian lagoon since the 9th century A. D. in comparison to the climate of Western Europe and England, Climatic Change, 10, 43–66, https://doi.org/10.1007/BF00140556, 1987.
Camuffo, D. and Jones, P. (Eds.): Improved Understanding of past Climatic Variability from Early Daily European Instrumental Sources, Springer, Netherlands, https://doi.org/10.1023/A:1014902904197, 2002.
Cattiaux, J., Vautard, R., Cassou, C., Yiou, P., Masson-Delmotte, V., and Codron, F.:
Winter 2010 in Europe: A cold extreme in a warming climate, Geophys. Res. Lett., 37, L20704, https://doi.org/10.1029/2010GL044613, 2010.
Chai, T. and Draxler, R. R.:
Root mean square error (RMSE) or mean absolute error (MAE)? – Arguments against avoiding RMSE in the literature, Geosci. Model Dev., 7, 1247–1250, https://doi.org/10.5194/gmd-7-1247-2014, 2014.
Cornes, R., van der Schrier, G., van den Besselaar, E. JM., and Jones, P. D.:
An Ensemble Version of the E-OBS Temperature and Precipitation Datasets, J. Geophys. Res.-Atmos., 123, 9391–9409, https://doi.org/10.1029/2017JD028200, 2018.
Cornes, R. C.:
Early Meteorological Data from London and Paris: Extending the North Atlantic Oscillation Series, PhD thesis, University of East Anglia, Norwich, UK, 233 pp., 2010.
Cotte, L.:
Mémoire sur l'hiver rigoureux de 1788–1789 etc., J. Phys-Paris, 24, 337–350, 1789.
Craddock, J. M.:
Methods of comparing annual rainfall records for climatic purposes, Weather, 34, 332–346, https://doi.org/10.1002/j.1477-8696.1979.tb03465.x, 1979.
Cram, T. A., Compo, G. P., Yin, X., Allan R. J., McColl, C., Vose, R. S., Whitaker, J. S., Matsui, N., Ashcroft, L., Auchmann, R., Bessemoulin, P., Brandsma, T., Brohan, P., Brunet, M., Comeaux, J., Crouthamel, R., Gleason Jr, B. E., Groisman, P. Y., Hersbach, H., Jones, P. D., Jónsson, T., Jourdain, S., Kelly, G., Knapp, K. R., Kruger, A., Kubota, H., Lentini, G., Lorrey, A., Lott, N., Lubker, S. J., Luterbacher, J., Marshall, G. J., Maugeri, M., Mock, C. J., Mok, H. Y., Nordli, Ø., Rodwell, M. J., Ross, T. F., Schuster, D., Srnec, L., Valente, M. A., Vizi, Z., Wang, X. L., Westcott, N., Woollen, J. S., and Worley, S. J.:
The International Surface Pressure Databank version 2, Geosci. Data J., 2, 31–46, https://doi.org/10.1002/gdj3.25, 2015.
Csernus-Molnár, I., Kiss, A., and Pócsik, E.:
18th-Century Daily Measurements and Weather Observations in the Se-Carpathian Basin: A Preliminary Analysis of the Timisoara Series (1780–1803), J. Env. Geo., 7, 1–9, https://doi.org/10.2478/jengeo-2014-0001, 2014.
Damodaran, V., Allan, R., Ogilvie, A. E. J., Demarée, G. R., Gergis, J., Mikami, T., Mikhail, A., Nicholson, S. E., Norrgård, S., and Hamilton, J.:
The 1780s: Global Climate Anomalies, Floods, Droughts, and Famines, in: The Palgrave Handbook of Climate History, edited by: White, S., Pfister, C., and Mauelshagen, F., Palgrave Macmillan, UK, https://doi.org/10.1057/978-1-137-43020-5, 517–550, 2018.
Dawson, A. G., Kirkbride, M. P., and Cole, H.:
Atmospheric effects in Scotland of the AD 1783–84 Laki eruption in Iceland, Holocene, 31, 830–843, https://doi.org/10.1177/0959683620988052, 2021.
Dizerens, C., Lenggenhager, S., Schwander, M., Buck, A., and Foffa, S.:
The 1956 Cold Wave in Western Europe, in: Historical Weather Extremes in Reanalyses, edited by: Brönnimann, S., Geographica Bernensia, G92, 101–111, https://doi.org/10.4480/GB2017.G92.09, 2017.
Fagan, B.:
The Little Ice Age – how climate made history 1300–1850, Basic Books, New York, ISBN-10 0465022723, 2001.
Fessehaye, M., Brugnara., Y., Savage, M. J., Brönnimann, S.:
A note on air temperature and precipitation variability and extremes over Asmara: 1914–2015, Int. J. Climatol., 39, 5215–5227, https://doi.org/10.1002/joc.6134, 2019.
Flückiger, S., Brönnimann, S., Holzkämper, A., Fuhrer, J., Krämer, D., Pfister, C., and Rohr, C.:
Simulating crop yield losses in Switzerland for historical and present Tambora climate scenarios, Environ. Res. Lett., 12, L074026, https://doi.org/10.1088/1748-9326/aa7246, 2017.
Franke, J., Brönnimann, S., Bhend, J., and Brugnara, Y.:
A monthly global paleo-reanalysis of the atmosphere from 1600 to 2005 for studying past climatic variations, Scientific Data, 4, 170076, https://doi.org/10.1038/sdata.2017.76, 2017.
Gisler, O.:
Das Wetter zu Ende des 18. Jahrhunderts, Geogr. Helv., 40, 205–222, https://doi.org/10.5194/gh-40-205-1985, 1985.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.:
The ERA5 global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020.
Hobday, A., Alexander, L. V., Perkins, S. E., Smale, D., Straub, S. C., Oliver, E. CJ., Benthuysen, J., Burrows, M. T., Donat, M. G., Feng, M., Holbrook, N. J., Moore, P., Scannell, H. A., Gupta, A. S., and Wernberg, T.:
A hierarchical approach to defining marine heatwaves, Prog. Oceanogr., 141, 227–238, https://doi.org/10.1016/j.pocean.2015.12.014, 2016.
Hofstra, N., Haylock, M., New, M., and Jones, P. D.:
Testing E-OBS European high-resolution gridded data set of daily precipitation and surface temperature, J. Geophys. Res., 114, D21101, https://doi.org/10.1029/2009JD011799, 2009.
Horton, P., Jaboyedoff, M., Metzger, R., Obled, C., and Marty, R.:
Spatial relationship between the atmospheric circulation and the precipitation measured in the western Swiss Alps by means of the analogue method, Nat. Hazards Earth Syst. Sci., 12, 777–784, https://doi.org/10.5194/nhess-12-777-2012, 2012.
Houtekamer, P. L. and Mitchell, H. L.: A Sequential Ensemble Kalman Filter for Atmospheric Data Assimilation, Mon. Weather Rev., 129, 123–137, https://doi.org/10.1175/1520-0493(2001)129<0123:ASEKFF>2.0.CO;2, 2001.
Jolliffe, I. T. and Stephenson, D. B. (Eds.): Forecast verification: A practitioner's guide in atmospheric science, 2nd edn., Wiley-Blackwell, Chichester, UK, https://doi.org/10.1002/9781119960003, 2012.
Kalman, R. E.:
A New Approach to Linear Filtering and Prediction Problems, J. Basic Eng.-T. ASME, 82, 35–45, https://doi.org/10.1115/1.3662552, 1960.
Kington, J. A.:
Daily weather mapping from 1781: A detailed synoptic examination of weather and climate during the decade leading up to the French revolution, Climatic Change, 3, 7–36, https://doi.org/10.1007/BF02423166, 1980.
Kington, J. A.:
The Weather of the 1780s Over Europe, Cambridge University Press, Cambridge, https://doi.org/10.1017/CBO9780511735721, 1988.
Kington, J. A.:
Climate and Weather, HarperCollins Publishers, London, UK, ISBN 10 0007185014, 2010.
Kruizinga, S. and Murphy, A. H.:
Use of an Analogue Procedure to Formulate Objective Probabilistic Temperature Forecasts in The Netherlands, Mon. Weather Rev., 111, 2244–2254, https://doi.org/10.1175/1520-0493(1983)111<2244:UOAAPT>2.0CO;2, 1983.
Lorenz, E. N.:
Atmospheric Predictability as Revealed by Naturally Occurring Analogues, J. Atmos. Sci., 26, 636–646, https://doi.org/10.1175/1520-0469(1969)26<636:APARBN>2.0.CO;2, 1969.
Mazón, J., Barriendos, M., Prohom, M., Rodríguez, R., Blanch, A., and Ripoll, R.:
Reconstruction of long temperature series of Barcelona, 11th Annual Meeting European Meteorological Society, Berlin, Germany, 12–16/09, 2011, EMS Annual Meeting Abstracts, 8, EMS2011-193-2, ISSN 1812-7053, 2011.
Murphy, A. H.:
Skills scores based on the mean square error and their relationships to the correlation coefficient, Mon. Weather Rev., 116, 2417–2424, https://doi.org/10.1175/1520-0493(1988)116<2417:SSBOTM>2.0.CO;2, 1988.
Pappert, D., Brugnara, Y., Jourdain, S., Pospieszyńska, A., Przybylak, R., Rohr, C., and Brönnimann, S.:
Unlocking weather observations from the Societas Meteorologica Palatina (1781–1792), Clim. Past, 17, 2361–2379, https://doi.org/10.5194/cp-17-2361-2021, 2021.
Parker, D. E., Legg, T. P., and Folland, C. K.:
A new daily Central England Temperature Series, 1772–1991, Int. J. Climatol., 12, 317–342, 1992.
Pfahl, S.: Characterising the relationship between weather extremes in Europe and synoptic circulation features, Nat. Hazards Earth Syst. Sci., 14, 1461–1475, https://doi.org/10.5194/nhess-14-1461-2014, 2014.
Pfister, L., Hupfer, F., Brugnara, Y., Munz, L., Villiger, L., Meyer, L., Schwander, M., Isotta, F. A., Rohr, C., and Brönnimann, S.:
Early instrumental meteorological measurements in Switzerland, Clim. Past, 15, 1345–1361, https://doi.org/10.5194/cp-15-1345-2019, 2019.
Pfister, L., Brönnimann, S., Schwander, M., Isotta, F. A., Horton, P., and Rohr, C.:
Statistical reconstruction of daily precipitation and temperature fields in Switzerland back to 1864, Clim. Past, 16, 663–678, https://doi.org/10.5194/cp-16-663-2020, 2020.
Rössler, O. K. and Brönnimann, S.:
The effect of the Tambora eruption on Swiss flood generation 1816/1817, Sci. Total Environ., 627, 1218–1227, https://doi.org/10.1016/j.scitotenv.2018.01.254, 2018.
Ruosteenoja, K.:
Factors affecting the occurrence and lifetime of 500 mb height analogues: a study based on a large amount of data, Mon. Weather Rev., 116, 368–376, https://doi.org/10.1175/1520-0493(1988)116<0368:FATOAL>2.0.CO;2, 1988.
Schlegel, R. W. and Smit, A. J.:
heatwaveR: A central algorithm for the detection of heatwaves and cold-spells, Journal of Open Source Software, 3, 821, https://doi.org/10.21105/joss.00821, 2018.
Schulzweida, U.: CDO User Guide, Version 1.9.8, Zenodo, https://doi.org/10.5281/zenodo.3539275, 2019.
Schwander, M., Brönnimann, S., Delaygue, G., Rohrer, M., Auchmann, R., and Brugnara, Y.:
Reconstruction of Central European daily weather types back to 1763, Int. J. Climatol., 37, 30–44, https://doi.org/10.1002/joc.4974, 2017.
Sillmann, J., Croci-Maspoli, M., Kallache, M., and Katz, R. W.:
Extreme cold winter temperatures in Europe under the influence of North Atlantic atmospheric blocking, J. Climate, 24, 5899–5913, https://doi.org/10.1175/2011JCLI4075.1, 2011.
Slivinski, L. C., Compo, G. P., Whitaker, J. S., Sardeshmukh, P. D., Giese, B. S., McColl, C., Allan, R., Yin, X., Vose, R., Titchner, H., Kennedy, J., Spencer, L. J., Ashcroft, L., Brönnimann, S., Brunet, M., Camuffo, D., Cornes, R., Cram, T. A., Crouthamel, R., Domínguez-Castro, F., Freeman, J. E., Gergis, J., Hawkins, E., Jones, P. D., Jourdain, S., Kaplan, A., Kubota, H., Le Blancq, F., Lee, T., Lorrey, A., Luterbacher, J., Maugeri, M., Mock, C. J., Moore, G. K., Przybylak, R., Pudmenzky, C., Reason, C., Slonosky, V. C., Smith, C., Tinz, B., Trewin, B., Valente, M. A., Wang, X. L., Wilkinson, C., Wood, K., and Wyszyński, P.:
Towards a more reliable historical reanalysis: Improvements for version 3 of the Twentieth Century Reanalysis system, Q. J. Roy. Meteor. Soc., 145, 2876–2908, https://doi.org/10.1002/qj.3598, 2019.
Societas Meteorologica Palatina:
Ephemerides Societatis Meteorologicae Palatinae: Observationes anni 1789, edited by: Hemmer, J. J., Societas Meteorologica Palatina, Mannheim, 1791.
Strnadt, A.: Beyträge zu der Geschichte des Winters im Christmonate 1788, in: Sammlung Physikalischer Aufsätze, besonders die böhmische Naturgeschichte betreffend, edited by: Maner, J., Waltherische Hof-Buchhandlung, Dresden, 39–88, 1793.
Takaya, K. and Nakamura, H.:
Mechanisms of Intraseasonal Amplification of the Cold Siberian High, J. Atmos. Sci., 62, 4423–4440, https://doi.org/10.1175/JAS3629.1, 2005.
Twardosz, R. and Kossowska-Cezak, U.:
Exceptionally cold and mild winters in Europe (1951–2020), Theor. Appl. Climatol., 125, 399–411, https://doi.org/10.1007/s00704-015-1524-9, 2016.
Twardosz, R., Kossowska-Cezak, U., and Pełech, S.:
Extremely Cold Winter Months in Europe (1951–2010), Acta Geophys., 64, 2609–2629, https://doi.org/10.1515/acgeo-2016-0083, 2016.
Valler, V., Franke, J., Brugnara, B., and Brönnimann, S.:
An updated global atmospheric paleo-reanalysis covering the last 400 years, Geosci. Data J., 9, 89–107, https://doi.org/10.1002/gdj3.121, 2021.
Van Den Dool, H.:
Searching for analogues, how long must we wait?, Tellus, 46, 314–324, https://doi.org/10.3402/tellusa.v46i3.15481, 1994.
Venema, V. K. C., Mestre, O., Aguilar, E., Auer, I., Guijarro, J. A., Domonkos, P., Vertacnik, G., Szentimrey, T., Stepanek, P., Zahradnicek, P., Viarre, J., Müller-Westermeier, G., Lakatos, M., Williams, C. N., Menne, M. J., Lindau, R., Rasol, D., Rustemeier, E., Kolokythas, K., Marinova, T., Andresen, L., Acquaotta, F., Fratianni, S., Cheval, S., Klancar, M., Brunetti, M., Gruber, C., Prohom Duran, M., Likso, T., Esteban, P., and Brandsma, T.:
Benchmarking homogenization algorithms for monthly data, Clim. Past, 8, 89–115, https://doi.org/10.5194/cp-8-89-2012, 2012.
Vinther, B. M., Andersen, K. K., Jones, P. D., Briffa, K. R., and Cappelen, J.:
Extending Greenland temperature records into the late eighteenth century, J. Geophys. Res, 111, D11105, https://doi.org/10.1029/2005JD006810, 2006.
Wartenburger, R., Brönnimann, S., and Stickler, A.:
Observation errors in early historical upper-air observations, J. Geophys. Res., 118, 12012–12028, https://doi.org/10.1002/2013JD020156, 2013.
Wilks, D. S.:
Statistical methods in the atmospheric sciences, 4th edn., Vol. 91 of International geophysics series, Elsevier, Amsterdam, ISBN: 9780123850225, 2019.
World Meteorological Organization (WMO):
Guide to Meteorological Instruments and Methods of Observation, 8, 7 edn., World Meteorological Organization, Geneva, 2008.
Zorita, E., Hughes, J. P., Lettemaier, D. P., and von Storch, H.:
Stochastic Characterization of Regional Circulation Patterns for Climate Model Diagnosis and Estimation of Local Precipitation, J. Climate, 8, 1023–1042, https://doi.org/10.1175/1520-0442(1995)008<1023:SCORCP>2.0.CO;2, 1995.
Zorita, E. and von Storch, H.:
The Analog Method as a Simple Statistical Downscaling Technique: Comparison with More Complicated Methods, J. Climate, 12, 2474–2489, https://doi.org/10.1175/1520-0442(1999)012<2474:TAMAAS>2.0.CO;2, 1999.
Short summary
We present daily temperature and sea level pressure fields for Europe for the severe winter 1788/1789 based on historical meteorological measurements and an analogue reconstruction approach. The resulting reconstruction skilfully reproduces temperature and pressure variations over central and western Europe. We find intense blocking systems over northern Europe and several abrupt, strong cold air outbreaks, demonstrating that quantitative weather reconstruction of past extremes is possible.
We present daily temperature and sea level pressure fields for Europe for the severe winter...