Articles | Volume 18, issue 10
https://doi.org/10.5194/cp-18-2181-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-18-2181-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Integrating plant wax abundance and isotopes for paleo-vegetation and paleoclimate reconstructions: a multi-source mixing model using a Bayesian framework
Department of Geology and Geophysics, University of Utah, Salt Lake
City, UT 84112, United States
Gabriel J. Bowen
Department of Geology and Geophysics, University of Utah, Salt Lake
City, UT 84112, United States
Related authors
No articles found.
Di Wang, Camille Risi, Lide Tian, Di Yang, Gabriel Bowen, Siteng Fan, Yang Su, Hongxi Pang, and Laurent Li
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-151, https://doi.org/10.5194/amt-2024-151, 2024
Preprint under review for AMT
Short summary
Short summary
We developed and validated a theoretical model for water vapor diffusion through sampling bags. This model accurately reconstructs the initial isotopic composition of the vapor samples. When applied to upper troposphere samples, the corrected data aligned closely with IASI satellite observations, enhancing the accuracy of drone-based measurements.
Di Wang, Lide Tian, Camille Risi, Xuejie Wang, Jiangpeng Cui, Gabriel J. Bowen, Kei Yoshimura, Zhongwang Wei, and Laurent Z. X. Li
Atmos. Chem. Phys., 23, 3409–3433, https://doi.org/10.5194/acp-23-3409-2023, https://doi.org/10.5194/acp-23-3409-2023, 2023
Short summary
Short summary
To better understand the spatial and temporal distribution of vapor isotopes, we present two vehicle-based spatially continuous snapshots of the near-surface vapor isotopes in China during the pre-monsoon and monsoon periods. These observations are explained well by different moisture sources and processes along the air mass trajectories. Our results suggest that proxy records need to be interpreted in the context of regional systems and sources of moisture.
Gabriel J. Bowen, Brenden Fischer-Femal, Gert-Jan Reichart, Appy Sluijs, and Caroline H. Lear
Clim. Past, 16, 65–78, https://doi.org/10.5194/cp-16-65-2020, https://doi.org/10.5194/cp-16-65-2020, 2020
Short summary
Short summary
Past climate conditions are reconstructed using indirect and incomplete geological, biological, and geochemical proxy data. We propose that such reconstructions are best obtained by statistical inversion of hierarchical models that represent how multi–proxy observations and calibration data are produced by variation of environmental conditions in time and/or space. These methods extract new information from traditional proxies and provide robust, comprehensive estimates of uncertainty.
Annie L. Putman and Gabriel J. Bowen
Hydrol. Earth Syst. Sci., 23, 4389–4396, https://doi.org/10.5194/hess-23-4389-2019, https://doi.org/10.5194/hess-23-4389-2019, 2019
Short summary
Short summary
We describe an open-access, global database of stable water isotope ratios of various water types. The database facilitates data archiving, supports standardized metadata collection, and decreases the time investment for metanalyses. To promote data discovery and collaboration, the database exposes metadata and data owner contact information for private data but only permits download of public data. Two companion apps support digital data collection and processing and upload of analyzed data.
Yusuf Jameel, Simon Brewer, Richard P. Fiorella, Brett J. Tipple, Shazelle Terry, and Gabriel J. Bowen
Hydrol. Earth Syst. Sci., 22, 6109–6125, https://doi.org/10.5194/hess-22-6109-2018, https://doi.org/10.5194/hess-22-6109-2018, 2018
Short summary
Short summary
Public water supply systems (PWSSs) are important infrastructure susceptible to contamination and physical disruption. In general, PWSSs are analyzed using hydrodynamic models, which requires detailed supply infrastructure information. In this paper, we have shown that stable isotope mixing models can also provide useful information on PWSSs. The method developed here can be useful in studying decentralized PWSSs, validating hydrodynamic models and solving water right issues.
Richard P. Fiorella, Ryan Bares, John C. Lin, James R. Ehleringer, and Gabriel J. Bowen
Atmos. Chem. Phys., 18, 8529–8547, https://doi.org/10.5194/acp-18-8529-2018, https://doi.org/10.5194/acp-18-8529-2018, 2018
Short summary
Short summary
Fossil fuel combustion produces water; where fossil fuel combustion is concentrated in urban areas, this humidity source may represent ~ 10 % of total humidity. In turn, this water vapor addition may alter urban meteorology, though the contribution of combustion vapor is difficult to measure. Using stable water isotopes, we estimate that up to 16 % of urban humidity may arise from combustion when the atmosphere is stable during winter, and develop recommendations for application in other cities.
Thomas Westerhold, Ursula Röhl, Roy H. Wilkens, Philip D. Gingerich, William C. Clyde, Scott L. Wing, Gabriel J. Bowen, and Mary J. Kraus
Clim. Past, 14, 303–319, https://doi.org/10.5194/cp-14-303-2018, https://doi.org/10.5194/cp-14-303-2018, 2018
Short summary
Short summary
Here we present a high-resolution timescale synchronization of continental and marine deposits for one of the most pronounced global warming events, the Paleocene–Eocene Thermal Maximum, which occurred 56 million years ago. New high-resolution age models for the Bighorn Basin Coring Project (BBCP) drill cores help to improve age models for climate records from deep-sea drill cores and for the first time point to a concurrent major change in marine and terrestrial biota 54.25 million years ago.
Erik Oerter, Molly Malone, Annie Putman, Dina Drits-Esser, Louisa Stark, and Gabriel Bowen
Hydrol. Earth Syst. Sci., 21, 3799–3810, https://doi.org/10.5194/hess-21-3799-2017, https://doi.org/10.5194/hess-21-3799-2017, 2017
Short summary
Short summary
Fruits take up soil water as they grow, and thus the fruit water is related to the rain or irrigation the crop receives. We used a novel sampling system to measure the stable isotopes of H and O in the fruit water to determine its geographic origin by comparing it to maps of isotopes in rain. We used this approach to teach an audience of science students and teachers about water cycle concepts and how humans may modify the water cycle through agriculture and irrigation water diversions.
Hemmo A. Abels, Vittoria Lauretano, Anna E. van Yperen, Tarek Hopman, James C. Zachos, Lucas J. Lourens, Philip D. Gingerich, and Gabriel J. Bowen
Clim. Past, 12, 1151–1163, https://doi.org/10.5194/cp-12-1151-2016, https://doi.org/10.5194/cp-12-1151-2016, 2016
Short summary
Short summary
Ancient greenhouse warming episodes are studied in river floodplain sediments in the western interior of the USA. Paleohydrological changes of four smaller warming episodes are revealed to be the opposite of those of the largest, most-studied event. Carbon cycle tracers are used to ascertain whether the largest event was a similar event but proportional to the smaller ones or whether this event was distinct in size as well as in carbon sourcing, a question the current work cannot answer.
W. C. Clyde, P. D. Gingerich, S. L. Wing, U. Röhl, T. Westerhold, G. Bowen, K. Johnson, A. A. Baczynski, A. Diefendorf, F. McInerney, D. Schnurrenberger, A. Noren, K. Brady, and the BBCP Science Team
Sci. Dril., 16, 21–31, https://doi.org/10.5194/sd-16-21-2013, https://doi.org/10.5194/sd-16-21-2013, 2013
Related subject area
Subject: Proxy Use-Development-Validation | Archive: Terrestrial Archives | Timescale: Centennial-Decadal
A past and present perspective on the European summer vapor pressure deficit
Drought reconstruction since 1796 CE based on tree-ring widths in the upper Heilongjiang (Amur) River basin in Northeast Asia and its linkage to Pacific Ocean climate variability
Drought increase since the mid-20th century in the northern South American Altiplano revealed by a 389-year precipitation record
Climate change detection and attribution using observed and simulated tree-ring width
Do Southern Hemisphere tree rings record past volcanic events? A case study from New Zealand
Prospects for dendroanatomy in paleoclimatology – a case study on Picea engelmannii from the Canadian Rockies
Reconstructing past hydrology of eastern Canadian boreal catchments using clastic varved sediments and hydro-climatic modelling: 160 years of fluvial inflows
A 2600-year summer climate reconstruction in central Japan by integrating tree-ring stable oxygen and hydrogen isotopes
An overview on isotopic divergences – causes for instability of tree-ring isotopes and climate correlations
Proxy surrogate reconstructions for Europe and the estimation of their uncertainties
The 4.2 ka event in the central Mediterranean: new data from a Corchia speleothem (Apuan Alps, central Italy)
A 900-year New England temperature reconstruction from in situ seasonally produced branched glycerol dialkyl glycerol tetraethers (brGDGTs)
Leaf wax n-alkane distributions record ecological changes during the Younger Dryas at Trzechowskie paleolake (northern Poland) without temporal delay
Ground surface temperature reconstruction for the last 500 years obtained from permafrost temperatures observed in the SHARE STELVIO Borehole, Italian Alps
Decreasing Indian summer monsoon on the northern Indian sub-continent during the last 180 years: evidence from five tree-ring cellulose oxygen isotope chronologies
Recent climate variations in Chile: constraints from borehole temperature profiles
Spatio-temporal variability of Arctic summer temperatures over the past 2 millennia
Palaeoclimate significance of speleothems in crystalline rocks: a test case from the Late Glacial and early Holocene (Vinschgau, northern Italy)
Comparing proxy and model estimates of hydroclimate variability and change over the Common Era
Climate signals in a multispecies tree-ring network from central and southern Italy and reconstruction of the late summer temperatures since the early 1700s
Low-resolution Australasian palaeoclimate records of the last 2000 years
Climatic history of the northeastern United States during the past 3000 years
Experiments based on blue intensity for reconstructing North Pacific temperatures along the Gulf of Alaska
Spring temperature variability over Turkey since 1800 CE reconstructed from a broad network of tree-ring data
On the spatial and temporal variability of ENSO precipitation and drought teleconnection in mainland Southeast Asia
Interannual and (multi-)decadal variability in the sedimentary BIT index of Lake Challa, East Africa, over the past 2200 years: assessment of the precipitation proxy
A tree-ring perspective on temporal changes in the frequency and intensity of hydroclimatic extremes in the territory of the Czech Republic since 761 AD
Multi-century lake area changes in the Southern Altiplano: a tree-ring-based reconstruction
Optimal ranking regime analysis of TreeFlow dendrohydrological reconstructions
New insights into the reconstructed temperature in Portugal over the last 400 years
Expressions of climate perturbations in western Ugandan crater lake sediment records during the last 1000 years
Blue intensity and density from northern Fennoscandian tree rings, exploring the potential to improve summer temperature reconstructions with earlywood information
Reconstruction of the March–August PDSI since 1703 AD based on tree rings of Chinese pine (Pinus tabulaeformis Carr.) in the Lingkong Mountain, southeast Chinese loess Plateau
Forward modelling of tree-ring width and comparison with a global network of tree-ring chronologies
Reconstruction of northeast Asia spring temperature 1784–1990
COnstructing Proxy Records from Age models (COPRA)
A 560 yr summer temperature reconstruction for the Western Mediterranean basin based on stable carbon isotopes from Pinus nigra ssp. laricio (Corsica/France)
Isotopic and lithologic variations of one precisely-dated stalagmite across the Medieval/LIA period from Heilong Cave, central China
Modelling and climatic interpretation of the length fluctuations of Glaciar Frías (north Patagonian Andes, Argentina) 1639–2009 AD
A review of the South American monsoon history as recorded in stable isotopic proxies over the past two millennia
Identification of climatic state with limited proxy data
Multi-century tree-ring based reconstruction of the Neuquén River streamflow, northern Patagonia, Argentina
Extreme pointer years in tree-ring records of Central Spain as evidence of climatic events and the eruption of the Huaynaputina Volcano (Peru, 1600 AD)
Precipitation changes in the South American Altiplano since 1300 AD reconstructed by tree-rings
Fire history in western Patagonia from paired tree-ring fire-scar and charcoal records
Northern Hemisphere temperature patterns in the last 12 centuries
Viorica Nagavciuc, Simon L. L. Michel, Daniel F. Balting, Gerhard Helle, Mandy Freund, Gerhard H. Schleser, David N. Steger, Gerrit Lohmann, and Monica Ionita
Clim. Past, 20, 573–595, https://doi.org/10.5194/cp-20-573-2024, https://doi.org/10.5194/cp-20-573-2024, 2024
Short summary
Short summary
The main aim of this paper is to present the summer vapor pressure deficit (VPD) reconstruction dataset for the last 400 years over Europe based on δ18O records by using a random forest approach. We provide both a spatial and a temporal long-term perspective on the past summer VPD and new insights into the relationship between summer VPD and large-scale atmospheric circulation. This is the first gridded reconstruction of the European summer VPD over the past 400 years.
Yang Xu, Heli Zhang, Feng Chen, Shijie Wang, Mao Hu, Martín Hadad, and Fidel Roig
Clim. Past, 19, 2079–2092, https://doi.org/10.5194/cp-19-2079-2023, https://doi.org/10.5194/cp-19-2079-2023, 2023
Short summary
Short summary
We reconstructed the monthly mean self-calibrating Palmer drought severity index for May–July in the upper Heilongjiang (Amur) Basin since 1796. Our analysis suggests that the dry/wet variability in this basin is related to several large-scale climate stresses and atmospheric circulation patterns (El Niño–Southern Oscillation). The cause of drought is primarily a reduction in advective water vapor transport, rather than precipitation circulation processes.
Mariano S. Morales, Doris B. Crispín-DelaCruz, Claudio Álvarez, Duncan A. Christie, M. Eugenia Ferrero, Laia Andreu-Hayles, Ricardo Villalba, Anthony Guerra, Ginette Ticse-Otarola, Ernesto C. Rodríguez-Ramírez, Rosmery LLocclla-Martínez, Joali Sanchez-Ferrer, and Edilson J. Requena-Rojas
Clim. Past, 19, 457–476, https://doi.org/10.5194/cp-19-457-2023, https://doi.org/10.5194/cp-19-457-2023, 2023
Short summary
Short summary
In this study, we develop the first tree-ring-based precipitation reconstruction for the northern South American Altiplano back to 1625 CE. We established that the occurrence rate of extreme dry events together with a shift in mean dry conditions for the late 20th–beginning of the 21st century is unprecedented in the past 389 years, consistent with other paleoclimatic records. Our reconstruction provides valuable information about El Niño–Southern Oscillation influences on local precipitation.
Jörg Franke, Michael N. Evans, Andrew Schurer, and Gabriele C. Hegerl
Clim. Past, 18, 2583–2597, https://doi.org/10.5194/cp-18-2583-2022, https://doi.org/10.5194/cp-18-2583-2022, 2022
Short summary
Short summary
Detection and attribution is a statistical method to evaluate if external factors or random variability have caused climatic changes. We use for the first time a comparison of simulated and observed tree-ring width that circumvents many limitations of previous studies relying on climate reconstructions. We attribute variability in temperature-limited trees to strong volcanic eruptions and for the first time detect a spatial pattern in the growth of moisture-sensitive trees after eruptions.
Philippa A. Higgins, Jonathan G. Palmer, Chris S. M. Turney, Martin S. Andersen, and Fiona Johnson
Clim. Past, 18, 1169–1188, https://doi.org/10.5194/cp-18-1169-2022, https://doi.org/10.5194/cp-18-1169-2022, 2022
Short summary
Short summary
We studied eight New Zealand tree species and identified differences in their responses to large volcanic eruptions. The response is dependent on the species and how well it can tolerate stress, but substantial within-species differences are also observed depending on site factors, including altitude and exposure. This has important implications for tree-ring temperature reconstructions because site selection and compositing methods can change the magnitude of observed volcanic cooling.
Kristina Seftigen, Marina V. Fonti, Brian Luckman, Miloš Rydval, Petter Stridbeck, Georg von Arx, Rob Wilson, and Jesper Björklund
Clim. Past, 18, 1151–1168, https://doi.org/10.5194/cp-18-1151-2022, https://doi.org/10.5194/cp-18-1151-2022, 2022
Short summary
Short summary
New proxies and improvements in existing methodologies are needed to advance paleoclimate research. This study explored dendroanatomy, the analysis of wood anatomical parameters in dated tree rings, of Engelmann spruce from the Columbia Icefield area, Canada, as a proxy of past temperatures. Our new parameters compare favorably with state of the art proxy parameters from X-ray and visible light techniques, particularly with respect to the temporal stability of the temperature signal.
Antoine Gagnon-Poiré, Pierre Brigode, Pierre Francus, David Fortin, Patrick Lajeunesse, Hugues Dorion, and Annie-Pier Trottier
Clim. Past, 17, 653–673, https://doi.org/10.5194/cp-17-653-2021, https://doi.org/10.5194/cp-17-653-2021, 2021
Short summary
Short summary
A very high quality 160-year-long annually laminated (varved) sediment sequence of fluvial origin was recently discovered in an especially deep lake in Labrador. Each varve represents 1 hydrological year. A significant relation between varves' physical parameters (i.e., thickness and grain size extracted from each annual lamination) and river discharge instrumental observations provided the opportunity to develop regional discharge reconstructions beyond the instrumental period.
Takeshi Nakatsuka, Masaki Sano, Zhen Li, Chenxi Xu, Akane Tsushima, Yuki Shigeoka, Kenjiro Sho, Keiko Ohnishi, Minoru Sakamoto, Hiromasa Ozaki, Noboru Higami, Nanae Nakao, Misao Yokoyama, and Takumi Mitsutani
Clim. Past, 16, 2153–2172, https://doi.org/10.5194/cp-16-2153-2020, https://doi.org/10.5194/cp-16-2153-2020, 2020
Short summary
Short summary
In general, it is not easy to reconstruct past climate variations over a wide band of frequencies using a single proxy. Here, we propose a new method to reconstruct past summer climate seamlessly from annual to millennial timescales by integrating tree-ring cellulose oxygen and hydrogen isotope ratios. The result can be utilized to investigate various scales of climatological phenomena in the past and climate–society relationships in long human history.
Martine M. Savard and Valérie Daux
Clim. Past, 16, 1223–1243, https://doi.org/10.5194/cp-16-1223-2020, https://doi.org/10.5194/cp-16-1223-2020, 2020
Short summary
Short summary
Climatic reconstructions based on tree-ring isotopic series convey key information on past conditions prevailing in forested regions. However, in some cases, the relations between isotopes and climate appear unstable over time, generating isotopic divergences. Former reviews have thoroughly discussed the divergence concept for tree-ring width but not for isotopes. Here we present a synopsis of the isotopic divergence problem and suggest collaborative work for improving climatic reconstructions.
Oliver Bothe and Eduardo Zorita
Clim. Past, 16, 341–369, https://doi.org/10.5194/cp-16-341-2020, https://doi.org/10.5194/cp-16-341-2020, 2020
Short summary
Short summary
One can use the similarity between sparse indirect observations of past climates and full fields of simulated climates to learn more about past climates. Here, we detail how one can compute uncertainty estimates for such reconstructions of past climates. This highlights the ambiguity of the reconstruction. We further show that such a reconstruction for European summer temperature agrees well with a more common approach.
Ilaria Isola, Giovanni Zanchetta, Russell N. Drysdale, Eleonora Regattieri, Monica Bini, Petra Bajo, John C. Hellstrom, Ilaria Baneschi, Piero Lionello, Jon Woodhead, and Alan Greig
Clim. Past, 15, 135–151, https://doi.org/10.5194/cp-15-135-2019, https://doi.org/10.5194/cp-15-135-2019, 2019
Short summary
Short summary
To understand the natural variability in the climate system, the hydrological aspect (dry and wet conditions) is particularly important for its impact on our societies. The reconstruction of past precipitation regimes can provide a useful tool for forecasting future climate changes. We use multi-proxy time series (oxygen and carbon isotopes, trace elements) from a speleothem to investigate circulation pattern variations and seasonality effects during the dry 4.2 ka event in central Italy.
Daniel R. Miller, M. Helen Habicht, Benjamin A. Keisling, Isla S. Castañeda, and Raymond S. Bradley
Clim. Past, 14, 1653–1667, https://doi.org/10.5194/cp-14-1653-2018, https://doi.org/10.5194/cp-14-1653-2018, 2018
Short summary
Short summary
We measured biomarker production over a year in a small inland lake in the northeastern USA. Understanding biomarkers in the modern environment helps us improve reconstructions of past climate from lake sediment records. We use these results to interpret a 900-year decadally resolved temperature record from this lake. Our record highlights multi-decadal oscillations in temperature superimposed on a long-term cooling trend, providing novel insight into climate dynamics of the region.
Bernhard Aichner, Florian Ott, Michał Słowiński, Agnieszka M. Noryśkiewicz, Achim Brauer, and Dirk Sachse
Clim. Past, 14, 1607–1624, https://doi.org/10.5194/cp-14-1607-2018, https://doi.org/10.5194/cp-14-1607-2018, 2018
Short summary
Short summary
Abundances of plant biomarkers are compared with pollen data in a 3000-year climate archive covering the Late Glacial to Holocene transition in northern Poland. Both parameters synchronously show the rapid onset (12680–12600 yr BP) and termination
(11580–11490 yr BP) of the Younger Dryas cold interval in the study area. This demonstrates the suitability of such proxies to record pronounced changes in vegetation cover without significant delay.
Mauro Guglielmin, Marco Donatelli, Matteo Semplice, and Stefano Serra Capizzano
Clim. Past, 14, 709–724, https://doi.org/10.5194/cp-14-709-2018, https://doi.org/10.5194/cp-14-709-2018, 2018
Short summary
Short summary
The reconstruction of ground surface temperature for the last 500 years, obtained at the deepest mountain permafrost borehole of the world (Stelvio Pass, 3000 m a.s.l., Italian Alps), is presented here. The main difference with respect to MAAT reconstructions obtained through other proxy data for all of Europe relates to post Little Ice Age (LIA) events. Indeed at this site a stronger cooling of ca 1 °C between 1940 and 1989 and even a more abrupt warming between 1990 and 2011 was detected.
Chenxi Xu, Masaki Sano, Ashok Priyadarshan Dimri, Rengaswamy Ramesh, Takeshi Nakatsuka, Feng Shi, and Zhengtang Guo
Clim. Past, 14, 653–664, https://doi.org/10.5194/cp-14-653-2018, https://doi.org/10.5194/cp-14-653-2018, 2018
Short summary
Short summary
We have constructed a regional tree ring cellulose oxygen isotope record using a total of five chronologies obtained from the Himalaya. Centennial changes in the regional tree ring record indicate a trend of weakened Indian summer monsoon (ISM) intensity since 1820. Decreasing ISM activity is also observed in various high-resolution ISM records from southwest China and Southeast Asia, and may be the result of reduced land–ocean thermal contrasts since 1820.
Carolyne Pickler, Edmundo Gurza Fausto, Hugo Beltrami, Jean-Claude Mareschal, Francisco Suárez, Arlette Chacon-Oecklers, Nicole Blin, Maria Teresa Cortés Calderón, Alvaro Montenegro, Rob Harris, and Andres Tassara
Clim. Past, 14, 559–575, https://doi.org/10.5194/cp-14-559-2018, https://doi.org/10.5194/cp-14-559-2018, 2018
Short summary
Short summary
We compiled 31 temperature–depth profiles to reconstruct the ground surface temperature of the last 500 years in northern Chile. They suggest that the region experienced a cooling from 1850 to 1980 followed by a warming of 1.9 K. The cooling could coincide with a cooling interval in 1960. The warming is greater than that of proxy reconstructions for nearby regions and model simulations. These differences could be due to differences in spatial and temporal resolution between data and models.
Johannes P. Werner, Dmitry V. Divine, Fredrik Charpentier Ljungqvist, Tine Nilsen, and Pierre Francus
Clim. Past, 14, 527–557, https://doi.org/10.5194/cp-14-527-2018, https://doi.org/10.5194/cp-14-527-2018, 2018
Short summary
Short summary
We present a new gridded Arctic summer temperature reconstruction back to the first millennium CE. Our method respects the age uncertainties of the data, which results in a more precise reconstruction.
The spatial average shows a millennium-scale cooling trend which is reversed in the mid-19th century. While temperatures in the 10th century were probably as warm as in the 20th century, the spatial coherence of the recent warm episodes seems unprecedented.
The spatial average shows a millennium-scale cooling trend which is reversed in the mid-19th century. While temperatures in the 10th century were probably as warm as in the 20th century, the spatial coherence of the recent warm episodes seems unprecedented.
Gabriella Koltai, Hai Cheng, and Christoph Spötl
Clim. Past, 14, 369–381, https://doi.org/10.5194/cp-14-369-2018, https://doi.org/10.5194/cp-14-369-2018, 2018
Short summary
Short summary
Here we present a multi-proxy study of flowstones in fractures of crystalline rocks with the aim of assessing the palaeoclimate significance of this new type of speleothem archive. Our results indicate a high degree of spatial heterogeneity, whereby changes in speleothem mineralogy and carbon isotope composition are likely governed by aquifer-internal processes. In contrast, the oxygen isotope composition reflects first-order climate variability.
PAGES Hydro2k Consortium
Clim. Past, 13, 1851–1900, https://doi.org/10.5194/cp-13-1851-2017, https://doi.org/10.5194/cp-13-1851-2017, 2017
Short summary
Short summary
Water availability is fundamental to societies and ecosystems, but our understanding of variations in hydroclimate (including extreme events, flooding, and decadal periods of drought) is limited due to a paucity of modern instrumental observations. We review how proxy records of past climate and climate model simulations can be used in tandem to understand hydroclimate variability over the last 2000 years and how these tools can also inform risk assessments of future hydroclimatic extremes.
Giovanni Leonelli, Anna Coppola, Maria Cristina Salvatore, Carlo Baroni, Giovanna Battipaglia, Tiziana Gentilesca, Francesco Ripullone, Marco Borghetti, Emanuele Conte, Roberto Tognetti, Marco Marchetti, Fabio Lombardi, Michele Brunetti, Maurizio Maugeri, Manuela Pelfini, Paolo Cherubini, Antonello Provenzale, and Valter Maggi
Clim. Past, 13, 1451–1471, https://doi.org/10.5194/cp-13-1451-2017, https://doi.org/10.5194/cp-13-1451-2017, 2017
Short summary
Short summary
We analyze a tree-ring network from several sites distributed along the Italian Peninsula with the aims of detecting common climate drivers of tree growth and of reconstructing the past climate. We detect the main climatic drivers modulating tree-ring width (RW) and tree-ring maximum latewood density (MXD) and we reconstruct late summer temperatures since the early 1700s using a MXD chronology: this reconstruction is representative of a wide area around the Italian Peninsula.
Bronwyn C. Dixon, Jonathan J. Tyler, Andrew M. Lorrey, Ian D. Goodwin, Joëlle Gergis, and Russell N. Drysdale
Clim. Past, 13, 1403–1433, https://doi.org/10.5194/cp-13-1403-2017, https://doi.org/10.5194/cp-13-1403-2017, 2017
Short summary
Short summary
Existing sedimentary palaeoclimate records in Australasia were assessed for suitability for examining the last 2 millennia. A small number of high-quality records were identified, and new Bayesian age models were constructed for each record. Findings suggest that Australasian record chronologies and confidence in proxy–climate relationships are the main factors limiting appropriate data for examining Common Era climate variability. Recommendations for improving data accessibility are provided.
Jennifer R. Marlon, Neil Pederson, Connor Nolan, Simon Goring, Bryan Shuman, Ann Robertson, Robert Booth, Patrick J. Bartlein, Melissa A. Berke, Michael Clifford, Edward Cook, Ann Dieffenbacher-Krall, Michael C. Dietze, Amy Hessl, J. Bradford Hubeny, Stephen T. Jackson, Jeremiah Marsicek, Jason McLachlan, Cary J. Mock, David J. P. Moore, Jonathan Nichols, Dorothy Peteet, Kevin Schaefer, Valerie Trouet, Charles Umbanhowar, John W. Williams, and Zicheng Yu
Clim. Past, 13, 1355–1379, https://doi.org/10.5194/cp-13-1355-2017, https://doi.org/10.5194/cp-13-1355-2017, 2017
Short summary
Short summary
To improve our understanding of paleoclimate in the northeastern (NE) US, we compiled data from pollen, tree rings, lake levels, testate amoeba from bogs, and other proxies from the last 3000 years. The paleoclimate synthesis supports long-term cooling until the 1800s and reveals an abrupt transition from wet to dry conditions around 550–750 CE. Evidence suggests the region is now becoming warmer and wetter, but more calibrated data are needed, especially to capture multidecadal variability.
Rob Wilson, Rosanne D'Arrigo, Laia Andreu-Hayles, Rose Oelkers, Greg Wiles, Kevin Anchukaitis, and Nicole Davi
Clim. Past, 13, 1007–1022, https://doi.org/10.5194/cp-13-1007-2017, https://doi.org/10.5194/cp-13-1007-2017, 2017
Short summary
Short summary
Blue intensity shows great potential for reconstructing past summer temperatures from conifer trees growing at high latitude or the treeline. However, conifer species that express a strong colour difference between the heartwood and sapwood can impart a long-term trend bias in the resultant reconstructions. Herein, we highlight this issue using eight mountain hemlock sites across the Gulf of Alaska and explore how a non-biased reconstruction of past temperature could be derived using such data.
Nesibe Köse, H. Tuncay Güner, Grant L. Harley, and Joel Guiot
Clim. Past, 13, 1–15, https://doi.org/10.5194/cp-13-1-2017, https://doi.org/10.5194/cp-13-1-2017, 2017
Timo A. Räsänen, Ville Lindgren, Joseph H. A. Guillaume, Brendan M. Buckley, and Matti Kummu
Clim. Past, 12, 1889–1905, https://doi.org/10.5194/cp-12-1889-2016, https://doi.org/10.5194/cp-12-1889-2016, 2016
Short summary
Short summary
El Niño-Southern Oscillation (ENSO) is linked to severe droughts and floods in mainland Southeast Asia. This research provides a more accurate and uniform picture of the spatio-temporal effects of ENSO on precipitation (1980–2013) and improves our understanding of long-term (1650–2004) ENSO teleconnection and its variability over the study area. The results reveal not only recognisable spatio-temporal patterns but also a high degree of variability and non-stationarity in the effects of ENSO.
Laura K. Buckles, Dirk Verschuren, Johan W. H. Weijers, Christine Cocquyt, Maarten Blaauw, and Jaap S. Sinninghe Damsté
Clim. Past, 12, 1243–1262, https://doi.org/10.5194/cp-12-1243-2016, https://doi.org/10.5194/cp-12-1243-2016, 2016
Short summary
Short summary
This paper discusses the underlying mechanisms of a method that uses specific membrane lipids present in the sediments of an African tropical lake to determine past changes in rainfall. With this method, past dry periods in the last 25 000 years can be assessed.
P. Dobrovolný, M. Rybníček, T. Kolář, R. Brázdil, M. Trnka, and U. Büntgen
Clim. Past, 11, 1453–1466, https://doi.org/10.5194/cp-11-1453-2015, https://doi.org/10.5194/cp-11-1453-2015, 2015
Short summary
Short summary
A new data set of 3194 oak (Quercus spp.) ring width samples collected across the Czech Republic and covering the past 1250 years was analysed. The temporal distribution of negative and positive TRW extremes occurring is regular with no indication of clustering. Negative TRW extremes coincided with above-average March-May and June-August temperature means and below-average precipitation totals. Positive extremes coincided with higher summer precipitation, while temperatures were mostly normal.
M. S. Morales, J. Carilla, H. R. Grau, and R. Villalba
Clim. Past, 11, 1139–1152, https://doi.org/10.5194/cp-11-1139-2015, https://doi.org/10.5194/cp-11-1139-2015, 2015
Short summary
Short summary
A 601-year lake area reconstruction in NW Argentina and SW Bolivia, characterized the occurrence of annual to multi-decadal lake area fluctuations and its main oscillation modes of variability. Our reconstruction points out that the late 20th century decrease in lake area was exceptional over the period 1407–2007. A persistent negative trend in lake area is clear in the reconstruction and consistent with glacier retreat and other climate proxies from the Altiplano and the tropical Andes.
S. A. Mauget
Clim. Past, 11, 1107–1125, https://doi.org/10.5194/cp-11-1107-2015, https://doi.org/10.5194/cp-11-1107-2015, 2015
Short summary
Short summary
A new approach to time series analysis - the ORR method - was used to evaluate reconstructed western US streamflow records during 1500-2007. This method shows an interesting pattern of alternating drought and wet periods during the late 16th and 17th centuries, a period with relatively few drought or wet periods during the 18th century, and the and the reappearance of alternating dry and wet periods during the 19th and early 20th centuries.
J. A. Santos, M. F. Carneiro, A. Correia, M. J. Alcoforado, E. Zorita, and J. J. Gómez-Navarro
Clim. Past, 11, 825–834, https://doi.org/10.5194/cp-11-825-2015, https://doi.org/10.5194/cp-11-825-2015, 2015
K. Mills, D. B. Ryves, N. J. Anderson, C. L. Bryant, and J. J. Tyler
Clim. Past, 10, 1581–1601, https://doi.org/10.5194/cp-10-1581-2014, https://doi.org/10.5194/cp-10-1581-2014, 2014
J. A. Björklund, B. E. Gunnarson, K. Seftigen, J. Esper, and H. W. Linderholm
Clim. Past, 10, 877–885, https://doi.org/10.5194/cp-10-877-2014, https://doi.org/10.5194/cp-10-877-2014, 2014
Q. Cai, Y. Liu, Y. Lei, G. Bao, and B. Sun
Clim. Past, 10, 509–521, https://doi.org/10.5194/cp-10-509-2014, https://doi.org/10.5194/cp-10-509-2014, 2014
P. Breitenmoser, S. Brönnimann, and D. Frank
Clim. Past, 10, 437–449, https://doi.org/10.5194/cp-10-437-2014, https://doi.org/10.5194/cp-10-437-2014, 2014
M. Ohyama, H. Yonenobu, J.-N. Choi, W.-K. Park, M. Hanzawa, and M. Suzuki
Clim. Past, 9, 261–266, https://doi.org/10.5194/cp-9-261-2013, https://doi.org/10.5194/cp-9-261-2013, 2013
S. F. M. Breitenbach, K. Rehfeld, B. Goswami, J. U. L. Baldini, H. E. Ridley, D. J. Kennett, K. M. Prufer, V. V. Aquino, Y. Asmerom, V. J. Polyak, H. Cheng, J. Kurths, and N. Marwan
Clim. Past, 8, 1765–1779, https://doi.org/10.5194/cp-8-1765-2012, https://doi.org/10.5194/cp-8-1765-2012, 2012
S. Szymczak, M. M. Joachimski, A. Bräuning, T. Hetzer, and J. Kuhlemann
Clim. Past, 8, 1737–1749, https://doi.org/10.5194/cp-8-1737-2012, https://doi.org/10.5194/cp-8-1737-2012, 2012
Y. F. Cui, Y. J. Wang, H. Cheng, K. Zhao, and X. G. Kong
Clim. Past, 8, 1541–1550, https://doi.org/10.5194/cp-8-1541-2012, https://doi.org/10.5194/cp-8-1541-2012, 2012
P. W. Leclercq, P. Pitte, R. H. Giesen, M. H. Masiokas, and J. Oerlemans
Clim. Past, 8, 1385–1402, https://doi.org/10.5194/cp-8-1385-2012, https://doi.org/10.5194/cp-8-1385-2012, 2012
M. Vuille, S. J. Burns, B. L. Taylor, F. W. Cruz, B. W. Bird, M. B. Abbott, L. C. Kanner, H. Cheng, and V. F. Novello
Clim. Past, 8, 1309–1321, https://doi.org/10.5194/cp-8-1309-2012, https://doi.org/10.5194/cp-8-1309-2012, 2012
J. D. Annan and J. C. Hargreaves
Clim. Past, 8, 1141–1151, https://doi.org/10.5194/cp-8-1141-2012, https://doi.org/10.5194/cp-8-1141-2012, 2012
I. A. Mundo, M. H. Masiokas, R. Villalba, M. S. Morales, R. Neukom, C. Le Quesne, R. B. Urrutia, and A. Lara
Clim. Past, 8, 815–829, https://doi.org/10.5194/cp-8-815-2012, https://doi.org/10.5194/cp-8-815-2012, 2012
M. Génova
Clim. Past, 8, 751–764, https://doi.org/10.5194/cp-8-751-2012, https://doi.org/10.5194/cp-8-751-2012, 2012
M. S. Morales, D. A. Christie, R. Villalba, J. Argollo, J. Pacajes, J. S. Silva, C. A. Alvarez, J. C. Llancabure, and C. C. Soliz Gamboa
Clim. Past, 8, 653–666, https://doi.org/10.5194/cp-8-653-2012, https://doi.org/10.5194/cp-8-653-2012, 2012
A. Holz, S. Haberle, T. T. Veblen, R. De Pol-Holz, and J. Southon
Clim. Past, 8, 451–466, https://doi.org/10.5194/cp-8-451-2012, https://doi.org/10.5194/cp-8-451-2012, 2012
F. C. Ljungqvist, P. J. Krusic, G. Brattström, and H. S. Sundqvist
Clim. Past, 8, 227–249, https://doi.org/10.5194/cp-8-227-2012, https://doi.org/10.5194/cp-8-227-2012, 2012
Cited articles
Aichner, B., Herzschuh, U., and Wilkes, H.: Influence of aquatic macrophytes on the stable carbon isotopic signatures of sedimentary organic matter in lakes on the Tibetan Plateau, Org. Geochem., 41, 706–718, https://doi.org/10.1016/j.orggeochem.2010.02.002, 2010.
Aleman, J. C., Fayolle, A., Favier, C., Staver, A. C., Dexter, K. G., Ryan,
C. M., Azihou, A. F., Bauman, D., te Beest, M., Chidumayo, E. N., Comiskey,
J. A., Cromsigt, J. P. G. M., Dessard, H., Doucet, J.-L., Finckh, M.,
Gillet, J.-F., Gourlet-Fleury, S., Hempson, G. P., Holdo, R. M., Kirunda,
B., Kouame, F. N., Mahy, G., Gonçalves, F. M. P., McNicol, I., Quintano,
P. N., Plumptre, A. J., Pritchard, R. C., Revermann, R., Schmitt, C. B.,
Swemmer, A. M., Talila, H., Woollen, E., and Swaine, M. D.: Floristic
evidence for alternative biome states in tropical Africa, P. Natl. Acad. Sci.
USA, 117, 28183–28190, https://doi.org/10.1073/pnas.2011515117, 2020.
Ali, H. A. M., Mayes, R. W., Hector, B. L., and Orskov, E. R.: Assessment of
n-alkanes, long-chain fatty alcohols and long-chain fatty acids as diet
composition markers: The concentrations of these compounds in rangeland
species from Sudan, Anim. Feed Sci. Tech., 121, 257–271, https://doi.org/10.1016/j.anifeedsci.2005.02.026, 2005.
Allen, E. D. and Spence, D. H. N.: The differential ability of aquatic
plants to utilize the inorganic carbon supply in fresh waters, New Phytol.,
87, 269–283, https://doi.org/10.1111/j.1469-8137.1981.tb03198.x, 1981.
Andrae, J. W., McInerney, F. A., Polissar, P. J., Sniderman, J. M. K.,
Howard, S., Hall, P. A., and Phelps, S. R.: Initial expansion of C4
vegetation in Australia during the late Pliocene, Geophys. Res. Lett., 45,
4831–4840, https://doi.org/10.1029/2018GL077833, 2018.
Andrae, J. W., McInerney, F. A., Tibby, J., Henderson, A. C. G., Hall, P.
A., Marshall, J. C., McGregor, G. B., Barr, C., and Greenway, M.: Variation
in leaf wax n-alkane characteristics with climate in the broad-leaved
paperbark (Melaleuca quinquenervia), Org. Geochem., 130, 33–42, https://doi.org/10.1016/j.orggeochem.2019.02.004, 2019.
Ankit, Y., Mishra, P. K., Kumar, P., Jha, D. K., Kumar, V. V., Ambili, V.,
and Anoop, A.: Molecular distribution and carbon isotope of n-alkanes from
Ashtamudi Estuary, South India: Assessment of organic matter sources and
paleoclimatic implications, Mar. Chem., 196, 62–70, https://doi.org/10.1016/j.marchem.2017.08.002, 2017.
Badewien, T., Vogts, A., and Rullkötter, J.: n-Alkane distribution and
carbon stable isotope composition in leaf waxes of C3 and C4
plants from Angola, Org. Geochem., 89–90, 71–79, https://doi.org/10.1016/j.orggeochem.2015.09.002, 2015.
Berke, M. A., Johnson, T. C., Werne, J. P., Grice, K., Schouten, S., and
Sinninghe Damsté, J. S.: Molecular records of climate variability and
vegetation response since the Late Pleistocene in the Lake Victoria basin,
East Africa, Quaternary Sci. Rev., 55, 59–74, https://doi.org/10.1016/j.quascirev.2012.08.014, 2012.
Bi, X., Sheng, G., Liu, X., Li, C., and Fu, J.: Molecular and carbon and
hydrogen isotopic composition of n-alkanes in plant leaf waxes, Org. Geochem., 36, 1405–1417, https://doi.org/10.1016/j.orggeochem.2005.06.001, 2005.
Bird, M. I., Summons, R. E., Gagan, M. K., Roksandic, Z., Dowling, L., Head,
J., Keith Fifield, L., Cresswell, R. G., and Johnson, D. P.: Terrestrial
vegetation change inferred from n-alkane δ13C analysis in the marine environment, Geochim. Cosmochim. Ac., 59, 2853–2857, https://doi.org/10.1016/0016-7037(95)00160-2, 1995.
Bobe, R. and Behrensmeyer, A. K.: The expansion of grassland ecosystems in
Africa in relation to mammalian evolution and the origin of the genus
Homo, Palaeogeogr. Palaeocl., 207, 399–420, https://doi.org/10.1016/j.palaeo.2003.09.033, 2004.
Bowen, G. J.: The Online Isotopes in Precipitation Calculator (version 3.1)
[data set], http://www.waterisotopes.org, last access: 20 May 2022.
Bowen, G. J. and Revenaugh, J.: Interpolating the isotopic composition of
modern meteoric precipitation, Water Resour. Res., 39, 1299, https://doi.org/10.1029/2003WR002086, 2003.
Bowen, G. J., Fischer-Femal, B., Reichart, G.-J., Sluijs, A., and Lear, C. H.: Joint inversion of proxy system models to reconstruct paleoenvironmental time series from heterogeneous data, Clim. Past, 16, 65–78, https://doi.org/10.5194/cp-16-65-2020, 2020.
Bray, E. E. and Evans, E. D.: Distribution of n-paraffins as a clue to
recognition of source beds, Geochim. Cosmochim. Ac., 22, 2–15, https://doi.org/10.1016/0016-7037(61)90069-2, 1961.
Brittingham, A., Hren, M. T., and Hartman, G.: Microbial alteration of the
hydrogen and carbon isotopic composition of n-alkanes in sediments, Org. Geochem., 107, 1–8, https://doi.org/10.1016/j.orggeochem.2017.01.010, 2017.
Buggle, B., Wiesenberg, G. L. B., and Glaser, B.: Is there a possibility to
correct fossil n-alkane data for postsedimentary alteration effects?,
Appl. Geochem., 25, 947–957, https://doi.org/10.1016/j.apgeochem.2010.04.003, 2010.
Burnham, R. J.: Relationships between standing vegetation and leaf litter in
a paratropical forest: Implications for paleobotany, Rev. Palaeobot. Palynol., 58, 5–32, https://doi.org/10.1016/0034-6667(89)90054-7, 1989.
Bush, R. T. and McInerney, F. A.: Leaf wax n-alkane distributions in and
across modern plants: Implications for paleoecology and chemotaxonomy,
Geochim. Cosmochim. Ac., 117, 161–179, https://doi.org/10.1016/j.gca.2013.04.016, 2013.
Bush, R. T. and McInerney, F. A.: Influence of temperature and C4
abundance on n-alkane chain length distributions across the central USA, Org. Geochem., 79, 65–73, https://doi.org/10.1016/j.orggeochem.2014.12.003, 2015.
Caley, T., Extier, T., Collins, J. A., Schefuß, E., Dupont, L.,
Malaizé, B., Rossignol, L., Souron, A., McClymont, E. L.,
Jimenez-Espejo, F. J., García-Comas, C., Eynaud, F., Martinez, P.,
Roche, D. M., Jorry, S. J., Charlier, K., Wary, M., Gourves, P.-Y., Billy,
I., and Giraudeau, J.: A two-million-year-long hydroclimatic context for
hominin evolution in southeastern Africa, Nature, 560, 76–79, https://doi.org/10.1038/s41586-018-0309-6, 2018.
Carr, A. S., Boom, A., Grimes, H. L., Chase, B. M., Meadows, M. E., and
Harris, A.: Leaf wax n-alkane distributions in arid zone South African flora: Environmental controls, chemotaxonomy and palaeoecological implications, Org. Geochem., 67, 72–84, https://doi.org/10.1016/j.orggeochem.2013.12.004, 2014.
Castañeda, I. S., Mulitza, S., Schefuß, E., Lopes dos Santos, R. A.,
Sinninghe Damsté, J. S., and Schouten, S.: Wet phases in the
Sahara/Sahel region and human migration patterns in North Africa, P. Natl. Acad. Sci. USA, 106, 20159–20163, https://doi.org/10.1073/pnas.0905771106, 2009.
Castañeda, I. S., Schouten, S., Pätzold, J., Lucassen, F., Kasemann,
S., Kuhlmann, H., and Schefuß, E.: Hydroclimate variability in the Nile
River Basin during the past 28 000 years, Earth Planet. Sc. Lett., 438, 47–56, https://doi.org/10.1016/j.epsl.2015.12.014, 2016.
Cerling, T. E.: Development of grasslands and savannas in East Africa during
the Neogene, Palaeogeogr. Palaeocl., 97, 241–247, 1992.
Cernusak, L. A., Ubierna, N., Winter, K., Holtum, J. A. M., Marshall, J. D.,
and Farquhar, G. D.: Environmental and physiological determinants of carbon
isotope discrimination in terrestrial plants, New Phytol., 200, 950–965,
https://doi.org/10.1111/nph.12423, 2013.
Cernusak, L. A., Barbour, M. M., Arndt, S. K., Cheesman, A. W., English, N.
B., Feild, T. S., Helliker, B. R., Holloway-Phillips, M. M., Holtum, J. A.
M., Kahmen, A., McInerney, F. A., Munksgaard, N. C., Simonin, K. A., Song,
X., Stuart-Williams, H., West, J. B., and Farquhar, G. D.: Stable isotopes
in leaf water of terrestrial plants, Plant Cell Environ., 39, 1087–1102, https://doi.org/10.1111/pce.12703, 2016.
Cheesbrough, T. M. and Kolattukudy, P. E.: Alkane biosynthesis by
decarbonylation of aldehydes catalyzed by a particulate preparation from
Pisum sativum, P. Natl. Acad. Sci. USA, 81, 6613–6617, https://doi.org/10.1073/pnas.81.21.6613, 1984.
Chikaraishi, Y., Naraoka, H., and Poulson, S. R.: Carbon and hydrogen
isotopic fractionation during lipid biosynthesis in a higher plant
(Cryptomeria japonica), Phytochemistry, 65, 323–330, https://doi.org/10.1016/j.phytochem.2003.12.003, 2004.
Collins, J. A., Schefuß, E., Mulitza, S., Prange, M., Werner, M.,
Tharammal, T., Paul, A., and Wefer, G.: Estimating the hydrogen isotopic
composition of past precipitation using leaf-waxes from western Africa,
Quaternary Sci. Rev., 65, 88–101, https://doi.org/10.1016/j.quascirev.2013.01.007, 2013.
Collins, J. A., Schefuß, E., Govin, A., Mulitza, S., and Tiedemann, R.:
Insolation and glacial–interglacial control on southwestern African
hydroclimate over the past 140 000 years, Earth Planet. Sc. Lett., 398, 1–10, https://doi.org/10.1016/j.epsl.2014.04.034, 2014.
Collister, J. W., Rieley, G., Stern, B., Eglinton, G., and Fry, B.:
Compound-specific δ13C analyses of leaf lipids from plants with
differing carbon dioxide metabolisms, Org. Geochem., 21, 619–627, https://doi.org/10.1016/0146-6380(94)90008-6, 1994.
Cormier, M.-A., Werner, R. A., Sauer, P. E., Gröcke, D. R., Leuenberger,
M. C., Wieloch, T., Schleucher, J., and Kahmen, A.: 2H-fractionations
during the biosynthesis of carbohydrates and lipids imprint a metabolic
signal on the δ2H values of plant organic compounds, New Phytol.,
218, 479–491, https://doi.org/10.1111/nph.15016, 2018.
Costa, K., Russell, J., Konecky, B., and Lamb, H.: Isotopic reconstruction
of the African Humid Period and Congo Air Boundary migration at Lake Tana,
Ethiopia, Quaternary Sci. Rev., 83, 58–67, https://doi.org/10.1016/j.quascirev.2013.10.031, 2014.
Cranwell, P. A., Eglinton, G., and Robinson, N.: Lipids of aquatic organisms
as potential contributors to lacustrine sediments – II, Org. Geochem., 11,
513–527, https://doi.org/10.1016/0146-6380(87)90007-6, 1987.
Curtis, S. M.: mcmcplots: Create Plots from MCMC Output (0.4.3), CRAN [code], https://CRAN.R-project.org/package=mcmcplots (last access: 30 November 2021), 2018.
Dansgaard, W.: Stable isotopes in precipitation, Tellus, 16, 436–468, 1964.
Dee, S., Emile-Geay, J., Evans, M. N., Allam, A., Steig, E. J., and
Thompson, D. M.: PRYSM: An open-source framework for PRoxY System Modeling,
with applications to oxygen-isotope systems, J. Adv. Model.
Earth Syst., 7, 1220–1247, https://doi.org/10.1002/2015MS000447, 2015.
Dee, S. G., Russell, J. M., Morrill, C., Chen, Z., and Neary, A.: PRYSM
v2.0: A Proxy System Model for Lacustrine Archives, Paleoceanography and
Paleoclimatology, 33, 1250–1269, https://doi.org/10.1029/2018PA003413, 2018.
Diefendorf, A. F. and Freimuth, E. J.: Extracting the most from terrestrial
plant-derived n-alkyl lipids and their carbon isotopes from the sedimentary
record: A review, Org. Geochem., 103, 1–21, https://doi.org/10.1016/j.orggeochem.2016.10.016, 2017.
Diefendorf, A. F., Mueller, K. E., Wing, S. L., Koch, P. L., and Freeman, K.
H.: Global patterns in leaf 13C discrimination and implications for
studies of past and future climate, P. Natl. Acad. Sci. USA, 107, 5738–5743, https://doi.org/10.1073/pnas.0910513107, 2010.
Diefendorf, A. F., Freeman, K. H., Wing, S. L., and Graham, H. V.:
Production of n-alkyl lipids in living plants and implications for the
geologic past, Geochim. Cosmochim. Ac., 75, 7472–7485, https://doi.org/10.1016/j.gca.2011.09.028, 2011.
Diefendorf, A. F., Leslie, A. B., and Wing, S. L.: Leaf wax composition and
carbon isotopes vary among major conifer groups, Geochim. Cosmochim. Ac., 170, 145–156, https://doi.org/10.1016/j.gca.2015.08.018, 2015.
Dion-Kirschner, H., McFarlin, J. M., Masterson, A. L., Axford, Y., and
Osburn, M. R.: Modern constraints on the sources and climate signals
recorded by sedimentary plant waxes in west Greenland, Geochim. Cosmochim. Ac., 286, 336–354, https://doi.org/10.1016/j.gca.2020.07.027, 2020.
Douglas, P. M. J., Pagani, M., Brenner, M., Hodell, D. A., and Curtis, J.
H.: Aridity and vegetation composition are important determinants of
leaf-wax δD values in southeastern Mexico and Central America, Geochim. Cosmochim. Ac., 97, 24–45, https://doi.org/10.1016/j.gca.2012.09.005, 2012.
Douglas, P. M. J., Pagani, M., Eglinton, T. I., Brenner, M., Hodell, D. A.,
Curtis, J. H., Ma, K. F., and Breckenridge, A.: Pre-aged plant waxes in
tropical lake sediments and their influence on the chronology of molecular
paleoclimate proxy records, Geochim. Cosmochim. Ac., 141, 346–364, https://doi.org/10.1016/j.gca.2014.06.030, 2014.
Duan, Y. and Xu, L.: Distributions of n-alkanes and their hydrogen isotopic
composition in plants from Lake Qinghai (China) and the surrounding area,
Appl. Geochem., 27, 806–814, https://doi.org/10.1016/j.apgeochem.2011.12.008, 2012.
Dupont, L. M. and Kuhlmann, H.: Glacial-interglacial vegetation change in
the Zambezi catchment, Quaternary Sci. Rev., 155, 127–135, https://doi.org/10.1016/j.quascirev.2016.11.019, 2017.
Dupont, L. M., Caley, T., Kim, J.-H., Castañeda, I., Malaizé, B., and Giraudeau, J.: Glacial-interglacial vegetation dynamics in South Eastern Africa coupled to sea surface temperature variations in the Western Indian Ocean, Clim. Past, 7, 1209–1224, https://doi.org/10.5194/cp-7-1209-2011, 2011.
Eglinton, G. and Hamilton, R. J.: Leaf epicuticular waxes, Science, 156,
1322–1335, https://doi.org/10.1126/science.156.3780.1322, 1967.
Ellis, B. and Johnson, K. R.: Comparison of leaf samples from mapped
tropical and temperate forests: Implications for interpretations of the
diversity of fossil assemblages, Palaios, 28, 163–177, https://doi.org/10.2110/palo.2012.p12-073r, 2013.
Evans, M. N., Tolwinski-Ward, S. E., Thompson, D. M., and Anchukaitis, K.
J.: Applications of proxy system modeling in high resolution
paleoclimatology, Quaternary Sci. Rev., 76, 16–28, https://doi.org/10.1016/j.quascirev.2013.05.024, 2013.
Feakins, S. J.: Pollen-corrected leaf wax reconstructions of northeast
African hydrological changes during the late Miocene, Palaeogeogr. Palaeocl.,
374, 62–71, https://doi.org/10.1016/j.palaeo.2013.01.004, 2013.
Feakins, S. J. and Sessions, A. L.: Controls on the ratios of plant leaf waxes in an arid ecosystem, Geochim. Cosmochim. Ac., 74, 2128–2141, https://doi.org/10.1016/j.gca.2010.01.016, 2010.
Feakins, S. J., Peters, T., Wu, M. S., Shenkin, A., Salinas, N., Girardin,
C. A. J., Bentley, L. P., Blonder, B., Enquist, B. J., Martin, R. E., Asner,
G. P., and Malhi, Y.: Production of leaf wax n-alkanes across a tropical
forest elevation transect, Org. Geochem., 100, 89–100, https://doi.org/10.1016/j.orggeochem.2016.07.004, 2016.
Feakins, S. J., Wu, M. S., Ponton, C., Galy, V., and West, A. J.: Dual
isotope evidence for sedimentary integration of plant wax biomarkers across
an Andes-Amazon elevation transect, Geochim. Cosmochim. Ac., 242, 64–81,
https://doi.org/10.1016/j.gca.2018.09.007, 2018.
Ficken, K. J., Street-Perrott, F. A., Perrott, R. A., Swain, D. L., Olago,
D. O., and Eglinton, G.: Glacial/interglacial variations in carbon cycling
revealed by molecular and isotope stratigraphy of Lake Nkunga, Mt. Kenya,
East Africa, Org. Geochem., 29, 1701–1719, https://doi.org/10.1016/S0146-6380(98)00109-0, 1998.
Ficken, K. J., Li, B., Swain, D. L., and Eglinton, G.: An n-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes, Org. Geochem., 31, 745–749, https://doi.org/10.1016/S0146-6380(00)00081-4, 2000.
Freeman, K. H. and Colarusso, L. A.: Molecular and isotopic records of
C4 grassland expansion in the late miocene, Geochim. Cosmochim. Ac., 65,
1439–1454, https://doi.org/10.1016/S0016-7037(00)00573-1, 2001.
Freeman, K. H. and Pancost, R. D.: 12.15 – Biomarkers for Terrestrial Plants
and Climate, in: Treatise on Geochemistry, 2nd edn., edited by: Holland, H. D. and Turekian, K. K., Elsevier, Oxford, 395–416, https://doi.org/10.1016/B978-0-08-095975-7.01028-7, 2014.
Freimuth, E. J., Diefendorf, A. F., Lowell, T. V., and Wiles, G. C.:
Sedimentary n-alkanes and n-alkanoic acids in a temperate bog are biased
toward woody plants, Org. Geochem., 128, 94–107, https://doi.org/10.1016/j.orggeochem.2019.01.006, 2019.
Freimuth, E. J., Diefendorf, A. F., Lowell, T. V., Schartman, A. K., Landis,
J. D., Stewart, A. K., and Bates, B. R.: Centennial-scale age offsets of
plant wax n-alkanes in Adirondack lake sediments, Geochim. Cosmochim. Ac., 300, 119–136, https://doi.org/10.1016/j.gca.2021.02.022, 2021.
French, K. L., Hein, C. J., Haghipour, N., Wacker, L., Kudrass, H. R.,
Eglinton, T. I., and Galy, V.: Millennial soil retention of terrestrial
organic matter deposited in the Bengal Fan, Sci. Rep.-UK, 8, 11997, https://doi.org/10.1038/s41598-018-30091-8, 2018.
Gamarra, B., Sachse, D., and Kahmen, A.: Effects of leaf water evaporative
2H-enrichment and biosynthetic fractionation on leaf wax n-alkane δ2H values in C3 and C4 grasses, Plant Cell Environ., 39, 2390–2403, https://doi.org/10.1111/pce.12789, 2016.
Gao, L., Hou, J., Toney, J., MacDonald, D., and Huang, Y.: Mathematical
modeling of the aquatic macrophyte inputs of mid-chain n-alkyl lipids to lake sediments: Implications for interpreting compound specific hydrogen isotopic records, Geochim. Cosmochim. Ac., 75, 3781–3791, https://doi.org/10.1016/j.gca.2011.04.008, 2011.
Garcin, Y., Schwab, V. F., Gleixner, G., Kahmen, A., Todou, G.,
Séné, O., Onana, J.-M., Achoundong, G., and Sachse, D.: Hydrogen
isotope ratios of lacustrine sedimentary n-alkanes as proxies of tropical
African hydrology: Insights from a calibration transect across Cameroon,
Geochim. Cosmochim. Ac., 79, 106–126, https://doi.org/10.1016/j.gca.2011.11.039, 2012.
Garcin, Y., Schefuß, E., Schwab, V. F., Garreta, V., Gleixner, G.,
Vincens, A., Todou, G., Séné, O., Onana, J.-M., Achoundong, G., and
Sachse, D.: Reconstructing C3 and C4 vegetation cover using
n-alkane carbon isotope ratios in recent lake sediments from Cameroon,
Western Central Africa, Geochim. Cosmochim. Ac., 142, 482–500, https://doi.org/10.1016/j.gca.2014.07.004, 2014.
Garreta, V., Miller, P. A., Guiot, J., Hély, C., Brewer, S., Sykes, M.
T., and Litt, T.: A method for climate and vegetation reconstruction through
the inversion of a dynamic vegetation model, Clim. Dynam., 35, 371–389, https://doi.org/10.1007/s00382-009-0629-1, 2010.
Gelman, A. and Rubin, D. B.: Inference from iterative simulation using
multiple sequences, Stat. Sci., 7, 457–472, 1992.
Gelpi, E., Schneider, H., Mann, J., and Oró, J.: Hydrocarbons of
geochemical significance in microscopic algae, Phytochemistry, 9, 603–612,
https://doi.org/10.1016/S0031-9422(00)85700-3, 1970.
Geman, S. and Geman, D.: Stochastic relaxation, Gibbs distributions, and the
Bayesian restoration of images, IEEE T. Pattern Anal., 6, 721–741, https://doi.org/10.1109/TPAMI.1984.4767596, 1984.
Graven, H., Allison, C. E., Etheridge, D. M., Hammer, S., Keeling, R. F., Levin, I., Meijer, H. A. J., Rubino, M., Tans, P. P., Trudinger, C. M., Vaughn, B. H., and White, J. W. C.: Compiled records of carbon isotopes in atmospheric CO2 for historical simulations in CMIP6, Geosci. Model Dev., 10, 4405–4417, https://doi.org/10.5194/gmd-10-4405-2017, 2017.
Greenway, P. J. and Vesey-Fitzgerald, D. F.: The Vegetation of Lake Manyara
National Park, J. Ecol., 57, 127–149, https://doi.org/10.2307/2258212, 1969.
Greenwood, D. R.: The taphonomy of plant macrofossils, in: The Processes of
Fossilization, edited by: Donovan, S., Belhaven Press, 141–169, ISBN 1852931345, 1991.
Griepentrog, M., De Wispelaere, L., Bauters, M., Bodé, S., Hemp, A.,
Verschuren, D., and Boeckx, P.: Influence of plant growth form, habitat and
season on leaf-wax n-alkane hydrogen-isotopic signatures in equatorial East
Africa, Geochim. Cosmochim. Ac., 263, 122–139, https://doi.org/10.1016/j.gca.2019.08.004, 2019.
Grimalt, J. O., Torras, E., and Albaigés, J.: Bacterial reworking of
sedimentary lipids during sample storage, Org. Geochem., 13, 741–746,
https://doi.org/10.1016/0146-6380(88)90096-4, 1988.
Han, J. and Calvin, M.: Hydrocarbon distribution of algae and bacteria, and
microbiological activity in sediments, P. Natl. Acad. Sci. USA, 64, 436–443, https://doi.org/10.1073/pnas.64.2.436, 1969.
Han, J., McCarthy, E. D., Hoeven, W. V., Calvin, M., and Bradley, W. H.:
Organic geochemical studies, ii. A preliminary report on the distribution of
aliphatic hydrocarbons in algae, in bacteria, and in a recent lake sediment,
P. Natl. Acad. Sci. USA, 59, 29–33, https://doi.org/10.1073/pnas.59.1.29, 1968.
Hauke, V. and Schreiber, L.: Ontogenetic and seasonal development of wax
composition and cuticular transpiration of ivy (Hedera helix L.) sun and shade leaves, Planta, 207, 67–75, https://doi.org/10.1007/s004250050456, 1998.
Hayes, J. M.: Factors controlling 13C contents of sedimentary organic
compounds: Principles and evidence, Mar. Geol., 113, 111–125, https://doi.org/10.1016/0025-3227(93)90153-M, 1993.
Herrmann, N., Boom, A., Carr, A. S., Chase, B. M., Granger, R., Hahn, A.,
Zabel, M., and Schefuß, E.: Sources, transport and deposition of
terrestrial organic material: A case study from southwestern Africa,
Quaternary Sci. Rev., 149, 215–229, https://doi.org/10.1016/j.quascirev.2016.07.028, 2016.
Hockun, K., Mollenhauer, G., Ho, S. L., Hefter, J., Ohlendorf, C.,
Zolitschka, B., Mayr, C., Lücke, A., and Schefuß, E.: Using
distributions and stable isotopes of n-alkanes to disentangle organic matter contributions to sediments of Laguna Potrok Aike, Argentina, Org. Geochem., 102, 110–119, https://doi.org/10.1016/j.orggeochem.2016.10.001,
2016.
Hou, J., D'Andrea, W. J., and Huang, Y.: Can sedimentary leaf waxes record
ratios of continental precipitation? Field, model, and experimental
assessments, Geochim. Cosmochim. Ac., 72, 3503–3517, https://doi.org/10.1016/j.gca.2008.04.030, 2008.
Howard-Williams, C. and Walker, B. H.: The vegetation of a tropical African
lake: Classification and ordination of the vegetation of Lake Chilwa
(Malawi), J. Ecol., 62, 831–854, https://doi.org/10.2307/2258958, 1974.
Huang, Y., Dupont, L., Sarnthein, M., Hayes, J. M., and Eglinton, G.:
Mapping of C4 plant input from North West Africa into North East Atlantic sediments, Geochim. Cosmochim. Ac., 64, 3505–3513, https://doi.org/10.1016/S0016-7037(00)00445-2, 2000.
Huang, Y., Shuman, B., Wang, Y., and Webb, T.: Hydrogen isotope ratios of
individual lipids in lake sediments as novel tracers of climatic and
environmental change: a surface sediment test, J Paleolimnol, 31, 363–375, https://doi.org/10.1023/B:JOPL.0000021855.80535.13, 2004.
Hughen, K. A., Eglinton, T. I., Xu, L., and Makou, M.: Abrupt tropical
vegetation response to rapid climate changes, Science, 304, 1955–1959,
https://doi.org/10.1126/science.1092995, 2004.
IAEA/WMO: Global Network of Isotopes in Precipitation, IAEA [data set], https://nucleus.iaea.org/wiser (last access: 31 March 2017), 2015.
IAEA/WMO: Global Network of Isotopes in Precipitation, IAEA [data set], https://nucleus.iaea.org/wiser, last access: 31 May 2022.
Janis, C. M., Damuth, J., and Theodor, J. M.: The origins and evolution of
the North American grassland biome: the story from the hoofed mammals,
Palaeogeogr. Palaeocl., 177, 183–198, https://doi.org/10.1016/S0031-0182(01)00359-5, 2002.
Jansen, B., van Loon, E. E., Hooghiemstra, H., and Verstraten, J. M.:
Improved reconstruction of palaeo-environments through unravelling of
preserved vegetation biomarker patterns, Palaeogeogr. Palaeocl., 285, 119–130,
https://doi.org/10.1016/j.palaeo.2009.10.029, 2010.
Jetter, R. and Schäffer, S.: Chemical composition of the
Prunus laurocerasus leaf surface. Dynamic changes of the epicuticular wax film during leaf development, Plant Physiol., 126, 1725–1737, https://doi.org/10.1104/pp.126.4.1725, 2001.
Just, J., Schefuß, E., Kuhlmann, H., Stuut, J.-B. W., and Pätzold,
J.: Climate induced sub-basin source-area shifts of Zambezi River sediments
over the past 17 ka, Palaeogeogr. Palaeocl., 410, 190–199, https://doi.org/10.1016/j.palaeo.2014.05.045, 2014.
Kahmen, A., Schefuß, E., and Sachse, D.: Leaf water deuterium enrichment
shapes leaf wax n-alkane δD values of angiosperm plants I: Experimental
evidence and mechanistic insights, Geochim. Cosmochim. Ac., 111, 39–49,
https://doi.org/10.1016/j.gca.2012.09.003, 2013a.
Kahmen, A., Hoffmann, B., Schefuß, E., Arndt, S. K., Cernusak, L. A.,
West, J. B., and Sachse, D.: Leaf water deuterium enrichment shapes leaf wax
n-alkane δD values of angiosperm plants II: Observational evidence and
global implications, Geochim. Cosmochim. Ac., 111, 50–63, https://doi.org/10.1016/j.gca.2012.09.004, 2013b.
Kasper, S., van der Meer, M. T. J., Castañeda, I. S., Tjallingii, R.,
Brummer, G.-J. A., Sinninghe Damsté, J. S., and Schouten, S.: Testing
the alkenone ratio as a paleo indicator of sea surface salinity in a
coastal ocean margin (Mozambique Channel), Org. Geochem., 78, 62–68,
https://doi.org/10.1016/j.orggeochem.2014.10.011, 2015.
Kaya, F., Bibi, F., Þliobaitë, I., Eronen, J. T., Hui, T., and
Fortelius, M.: The rise and fall of the Old World savannah fauna and the
origins of the African savannah biome, Nat. Ecol. Evol., 2, 241–246, https://doi.org/10.1038/s41559-017-0414-1, 2018.
Keeley, J. E. and Sandquist, D. R.: Carbon: freshwater plants, Plant Cell Environ., 15, 1021–1035, https://doi.org/10.1111/j.1365-3040.1992.tb01653.x, 1992.
Khon, V. C., Wang, Y. V., Krebs-Kanzow, U., Kaplan, J. O., Schneider, R. R.,
and Schneider, B.: Climate and CO2 effects on the vegetation of southern
tropical Africa over the last 37 000 years, Earth Planet. Sc. Lett., 403,
407–417, https://doi.org/10.1016/j.epsl.2014.06.043, 2014.
Koch, K., Hartmann, K. D., Schreiber, L., Barthlott, W., and Neinhuis, C.:
Influences of air humidity during the cultivation of plants on wax chemical
composition, morphology and leaf surface wettability, Environ. Exp. Bot., 56,
1–9, https://doi.org/10.1016/j.envexpbot.2004.09.013, 2006.
Kolattukudy, P. E., Croteau, R., and Buckner, J.: Biochemistry of plant
waxes, Chemistry and biochemistry of natural waxes, Elsevier, ISBN 978-0444414700, 1976.
Konecky, B., Russell, J., Huang, Y., Vuille, M., Cohen, L., and
Street-Perrott, F. A.: Impact of monsoons, temperature, and CO2 on the
rainfall and ecosystems of Mt. Kenya during the Common Era, Palaeogeogr. Palaeocl., 396, 17–25, https://doi.org/10.1016/j.palaeo.2013.12.037, 2014.
Konecky, B., Dee, S. G., and Noone, D. C.: WaxPSM: A forward model of leaf
wax hydrogen isotope ratios to bridge proxy and model estimates of past
climate, J. Geophys. Res.-Biogeo., 124, 2107–2125,
https://doi.org/10.1029/2018JG004708, 2019.
Konecky, B. L., Russell, J. M., Johnson, T. C., Brown, E. T., Berke, M. A.,
Werne, J. P., and Huang, Y.: Atmospheric circulation patterns during late
Pleistocene climate changes at Lake Malawi, Africa, Earth Planet. Sc. Lett.,
312, 318–326, https://doi.org/10.1016/j.epsl.2011.10.020, 2011.
Kristen, I., Wilkes, H., Vieth, A., Zink, K. G., Plessen, B., Thorpe, J.,
Partridge, T. C., and Oberhänsli, H.: Biomarker and stable carbon
isotope analyses of sedimentary organic matter from Lake Tswaing: evidence
for deglacial wetness and early Holocene drought from South Africa, J.
Paleolimnol., 44, 143–160, https://doi.org/10.1007/s10933-009-9393-9, 2010.
Krull, E., Sachse, D., Mügler, I., Thiele, A., and Gleixner, G.:
Compound-specific δ13C and δ2H analyses of plant and soil
organic matter: A preliminary assessment of the effects of vegetation change
on ecosystem hydrology, Soil Biol. Biochem., 38, 3211–3221,
https://doi.org/10.1016/j.soilbio.2006.04.008, 2006.
Kuechler, R. R., Schefuß, E., Beckmann, B., Dupont, L., and Wefer, G.:
NW African hydrology and vegetation during the Last Glacial cycle reflected
in plant-wax-specific hydrogen and carbon isotopes, Quaternary Sci. Rev., 82,
56–67, https://doi.org/10.1016/j.quascirev.2013.10.013, 2013.
Kunst, L. and Samuels, A. L.: Biosynthesis and secretion of plant cuticular
wax, Prog. Lipid Res., 42, 51–80, https://doi.org/10.1016/S0163-7827(02)00045-0, 2003.
Ladygina, N., Dedyukhina, E. G., and Vainshtein, M. B.: A review on
microbial synthesis of hydrocarbons, Process. Biochem., 41, 1001–1014,
https://doi.org/10.1016/j.procbio.2005.12.007, 2006.
Lambeck, K., Rouby, H., Purcell, A., Sun, Y., and Sambridge, M.: Sea level
and global ice volumes from the Last Glacial Maximum to the Holocene, P. Natl. Acad. Sci. USA, 111, 15296–15303, https://doi.org/10.1073/pnas.1411762111, 2014.
Latorre, C., Quade, J., and McIntosh, W. C.: The expansion of C4
grasses and global change in the late Miocene: stable isotope evidence from
the Americas, Earth Planet. Sc. Lett., 146, 83–96, 1997.
Lattaud, J., Dorhout, D., Schulz, H., Castañeda, I. S., Schefuß, E., Sinninghe Damsté, J. S., and Schouten, S.: The C32 alkane-1,15-diol as a proxy of late Quaternary riverine input in coastal margins, Clim. Past, 13, 1049–1061, https://doi.org/10.5194/cp-13-1049-2017, 2017.
Li, B., Nychka, D. W., and Ammann, C. M.: The value of multiproxy
reconstruction of past climate, J. Am. Stat. Assoc., 105, 883–895, https://doi.org/10.1198/jasa.2010.ap09379, 2010.
Liu, C., Li, Z., Berhe, A. A., and Hu, B. X.: Chapter Six – The isotopes and
biomarker approaches for identifying eroded organic matter sources in
sediments: A review, in: Adv Agron, edited by: Sparks, D. L., Academic
Press, 257–303, https://doi.org/10.1016/bs.agron.2020.02.005, 2020.
Liu, H. and Liu, W.: n-Alkane distributions and concentrations in algae,
submerged plants and terrestrial plants from the Qinghai-Tibetan Plateau,
Org. Geochem., 99, 10–22, https://doi.org/10.1016/j.orggeochem.2016.06.003, 2016.
Liu, J. and An, Z.: A hierarchical framework for disentangling different
controls on leaf wax δD n-alkane values in terrestrial higher plants, Quaternary Sci. Rev., 201, 409–417, https://doi.org/10.1016/j.quascirev.2018.10.026, 2018.
Liu, J. and An, Z.: Leaf wax n-alkane carbon isotope values vary among major terrestrial plant groups: Different responses to precipitation amount and temperature, and implications for paleoenvironmental reconstruction,
Earth-Sci. Rev., 202, 103081, https://doi.org/10.1016/j.earscirev.2020.103081, 2020.
Liu, W. and Yang, H.: Multiple controls for the variability of hydrogen
isotopic compositions in higher plant n-alkanes from modern ecosystems, Glob. Change Biol., 14, 2166–2177, https://doi.org/10.1111/j.1365-2486.2008.01608.x, 2008.
Liu, W., Yang, H., and Li, L.: Hydrogen isotopic compositions of n-alkanes
from terrestrial plants correlate with their ecological life forms,
Oecologia, 150, 330–338, https://doi.org/10.1007/s00442-006-0494-0, 2006.
Liu, W., Yang, H., Wang, H., An, Z., Wang, Z., and Leng, Q.: Carbon isotope
composition of long chain leaf wax n-alkanes in lake sediments: A dual
indicator of paleoenvironment in the Qinghai-Tibet Plateau, Org. Geochem.,
83–84, 190–201, https://doi.org/10.1016/j.orggeochem.2015.03.017, 2015.
Liu, X., Feakins, S. J., Dong, X., Xue, Q., Marek, T., Leskovar, D. I.,
Neely, C. B., and Ibrahim, A. M. H.: Experimental study of leaf wax
n-alkane response in winter wheat cultivars to drought conditions, Org. Geochem., 113, 210–223, https://doi.org/10.1016/j.orggeochem.2017.07.020, 2017.
Lunn, D., Jackson, C., Best, N., Thomas, A., and Spiegelhalter, D.: The BUGS
Book: A Practical Introduction to Bayesian Analysis, CRC Press/Chapman and
Hall, Boca Raton, FL, ISBN 978-1584888499, 2012.
Macková, J., Vašková, M., Macek, P., Hronková, M.,
Schreiber, L., and Šantrùèek, J.: Plant response to drought
stress simulated by ABA application: Changes in chemical composition of
cuticular waxes, Environ. Exp. Bot., 86, 70–75, https://doi.org/10.1016/j.envexpbot.2010.06.005, 2013.
Magill, C. R., Ashley, G. M., and Freeman, K. H.: Water, plants, and early
human habitats in eastern Africa, P. Natl. Acad. Sci. USA, 110, 1175–1180,
https://doi.org/10.1073/pnas.1209405109, 2013.
Magill, C. R., Eglinton, G., and Eglinton, T. I.: Isotopic variance among
plant lipid homologues correlates with biodiversity patterns of their source
communities, Plos One, 14, e0212211, https://doi.org/10.1371/journal.pone.0212211, 2019.
Makowski, D., Ben-Shachar, M. S., and Lüdecke, D.: bayestestR:
Describing effects and their uncertainty, existence and significance within
the Bayesian framework, J. Open Source Softw., 4, 1541, https://doi.org/10.21105/joss.01541, 2019.
McFarlin, J. M., Axford, Y., Masterson, A. L., and Osburn, M. R.:
Calibration of modern sedimentary δ2H plant wax-water relationships
in Greenland lakes, Quaternary Sci. Rev., 225, 105978, https://doi.org/10.1016/j.quascirev.2019.105978, 2019.
McInerney, F. A., Helliker, B. R., and Freeman, K. H.: Hydrogen isotope
ratios of leaf wax n-alkanes in grasses are insensitive to transpiration,
Geochim. Cosmochim. Ac., 75, 541–554, https://doi.org/10.1016/j.gca.2010.10.022, 2011.
Mead, R., Xu, Y., Chong, J., and Jaffé, R.: Sediment and soil organic
matter source assessment as revealed by the molecular distribution and
carbon isotopic composition of n-alkanes, Org. Geochem., 36, 363–370,
https://doi.org/10.1016/j.orggeochem.2004.10.003, 2005.
Millard, S. P.: EnvStats: an R package for environmental statistics, 2013.
Neale, M. C., Hunter, M. D., Pritikin, J. N., Zahery, M., Brick, T. R.,
Kirkpatrick, R. M., Estabrook, R., Bates, T. C., Maes, H. H., and Boker, S.
M.: OpenMx 2.0: Extended structural equation and statistical modeling,
Psychometrika, 81, 535–549, https://doi.org/10.1007/s11336-014-9435-8, 2016.
Nelson, D. B., Ladd, S. N., Schubert, C. J., and Kahmen, A.: Rapid
atmospheric transport and large-scale deposition of recently synthesized
plant waxes, Geochim. Cosmochim. Ac., 222, 599–617, https://doi.org/10.1016/j.gca.2017.11.018, 2018.
Nelson, D. M., Henderson, A. K., Huang, Y., and Hu, F. S.: Influence of
terrestrial vegetation on leaf wax δD of Holocene lake sediments, Org. Geochem., 56, 106–110, https://doi.org/10.1016/j.orggeochem.2012.12.010, 2013.
Newberry, S. L., Kahmen, A., Dennis, P., and Grant, A.: n-Alkane
biosynthetic hydrogen isotope fractionation is not constant throughout the
growing season in the riparian tree Salix viminalis, Geochim. Cosmochim. Ac.,
165, 75–85, https://doi.org/10.1016/j.gca.2015.05.001, 2015.
Niedermeyer, E. M., Schefuß, E., Sessions, A. L., Mulitza, S.,
Mollenhauer, G., Schulz, M., and Wefer, G.: Orbital- and millennial-scale
changes in the hydrologic cycle and vegetation in the western African Sahel:
insights from individual plant wax δD and δ13C, Quaternary Sci. Rev., 29, 2996–3005, https://doi.org/10.1016/j.quascirev.2010.06.039, 2010.
Niedermeyer, E. M., Forrest, M., Beckmann, B., Sessions, A. L., Mulch, A.,
and Schefuß, E.: The stable hydrogen isotopic composition of sedimentary
plant waxes as quantitative proxy for rainfall in the West African Sahel,
Geochim. Cosmochim. Ac., 184, 55–70, https://doi.org/10.1016/j.gca.2016.03.034, 2016.
Norström, E., Norén, G., Smittenberg, R. H., Massuanganhe, E. A.,
and Ekblom, A.: Leaf wax δD inferring variable medieval hydroclimate and
early initiation of Little Ice Age (LIA) dryness in southern Mozambique,
Global Planet. Change, 170, 221–233, https://doi.org/10.1016/j.gloplacha.2018.09.004, 2018.
Nusbaumer, J., Wong, T. E., Bardeen, C., and Noone, D.: Evaluating
hydrological processes in the Community Atmosphere Model Version 5 (CAM5)
using stable isotope ratios of water, J. Adv. Model. Earth Syst., 9, 949–977, https://doi.org/10.1002/2016MS000839, 2017.
Park, M.-O.: New pathway for long-chain n-alkane synthesis via 1-alcohol in
Vibrio furnissii M1, J. Bacteriol., 187, 1426–1429, https://doi.org/10.1128/JB.187.4.1426-1429.2005, 2005.
Peaple, M. D., Tierney, J. E., McGee, D., Lowenstein, T. K., Bhattacharya,
T., and Feakins, S. J.: Identifying plant wax inputs in lake sediments using
machine learning, Org. Geochem., 156, 104222, https://doi.org/10.1016/j.orggeochem.2021.104222, 2021.
Plummer, M.: rjags: Bayesian graphical models using MCMC, R package, https://cran.r-project.org/web/packages/rjags/index.html, last access: 31 May 2021.
Polissar, P. J. and D'Andrea, W. J.: Uncertainty in paleohydrologic
reconstructions from molecular δD values, Geochim. Cosmochim. Ac., 129,
146–156, https://doi.org/10.1016/j.gca.2013.12.021, 2014.
Polissar, P. J. and Freeman, K. H.: Effects of aridity and vegetation on
plant-wax δD in modern lake sediments, Geochim. Cosmochim. Ac., 74,
5785–5797, https://doi.org/10.1016/j.gca.2010.06.018, 2010.
Polissar, P. J., Rose, C., Uno, K. T., Phelps, S. R., and deMenocal, P.:
Synchronous rise of African C4 ecosystems 10 million years ago in the
absence of aridification, Nat. Geosci., 12, 657–660, https://doi.org/10.1038/s41561-019-0399-2, 2019.
Prins, H. B. A. and Elzenga, J. T. M.: Bicarbonate utilization: Function and
mechanism, Aquat. Bot., 34, 59–83, https://doi.org/10.1016/0304-3770(89)90050-8, 1989.
Quade, J. and Cerling, T. E.: Expansion of C4 grasses in the Late
Miocene of Northern Pakistan: evidence from stable isotopes in paleosols,
Palaeogeogr. Palaeocl., 115, 91–116, 1995.
R Core Team: R: A language and environment for statistical computing, R
Foundation for Statistical Computing, The R Foundation [code], https://www.R-project.org/, last access: 31 March 2021.
Rommerskirchen, F., Eglinton, G., Dupont, L., Güntner, U., Wenzel, C.,
and Rullkötter, J.: A north to south transect of Holocene southeast
Atlantic continental margin sediments: Relationship between aerosol
transport and compound-specific δ13C land plant biomarker and pollen records, Geochem. Geophy. Geosy., 4, 1101, https://doi.org/10.1029/2003GC000541, 2003.
Rommerskirchen, F., Plader, A., Eglinton, G., Chikaraishi, Y., and
Rullkötter, J.: Chemotaxonomic significance of distribution and stable
carbon isotopic composition of long-chain alkanes and alkan-1-ols in C4
grass waxes, Org. Geochem., 37, 1303–1332, https://doi.org/10.1016/j.orggeochem.2005.12.013, 2006.
Rozanski, K., Araguás-Araguás, L., and Gonfiantini, R.: Isotopic
Patterns in Modern Global Precipitation, in: Climate Change in Continental
Isotopic Records, Geophysical Monograph-American Geophysical Union, vol. 78,
edited by: Swart, P. K., Lohmann, K. C., McKenzie, J., and Savin, S., American Geophysical Union, 1–36, https://doi.org/10.1029/GM078p0001, 1993.
Sachse, D., Radke, J., and Gleixner, G.: Hydrogen isotope ratios of recent
lacustrine sedimentary n-alkanes record modern climate variability, Geochim. Cosmochim. Ac., 68, 4877–4889, https://doi.org/10.1016/j.gca.2004.06.004, 2004.
Sachse, D., Radke, J., and Gleixner, G.: δD values of individual
n-alkanes from terrestrial plants along a climatic gradient – Implications
for the sedimentary biomarker record, Org. Geochem., 37, 469–483, https://doi.org/10.1016/j.orggeochem.2005.12.003, 2006.
Sachse, D., Billault, I., Bowen, G. J., Chikaraishi, Y., Dawson, T. E.,
Feakins, S. J., Freeman, K. H., Magill, C. R., McInerney, F. A., van der
Meer, M. T. J., Polissar, P., Robins, R. J., Sachs, J. P., Schmidt, H.-L.,
Sessions, A. L., White, J. W. C., West, J. B., and Kahmen, A.: Molecular
paleohydrology: Interpreting the hydrogen-isotopic composition of lipid
biomarkers from photosynthesizing organisms, Annu. Rev. Earth Pl. Sc., 40,
221–249, https://doi.org/10.1146/annurev-earth-042711-105535, 2012.
Sankaran, M., Hanan, N. P., Scholes, R. J., Ratnam, J., Augustine, D. J.,
Cade, B. S., Gignoux, J., Higgins, S. I., Le Roux, X., Ludwig, F., Ardo, J.,
Banyikwa, F., Bronn, A., Bucini, G., Caylor, K. K., Coughenour, M. B.,
Diouf, A., Ekaya, W., Feral, C. J., February, E. C., Frost, P. G. H.,
Hiernaux, P., Hrabar, H., Metzger, K. L., Prins, H. H. T., Ringrose, S.,
Sea, W., Tews, J., Worden, J., and Zambatis, N.: Determinants of woody cover
in African savannas, Nature, 438, 846–849, https://doi.org/10.1038/nature04070, 2005.
Schefuß, E., Schouten, S., Jansen, J. H. F., and Sinninghe Damsté,
J. S.: African vegetation controlled by tropical sea surface temperatures in
the mid-Pleistocene period, Nature, 422, 418–421, https://doi.org/10.1038/nature01500, 2003.
Schefuß, E., Versteegh, G. J. M., Jansen, J. H. F., and Sinninghe
Damsté, J. S.: Lipid biomarkers as major source and preservation
indicators in SE Atlantic surface sediments, Deep-Sea Res. Pt. I, 51, 1199–1228, https://doi.org/10.1016/j.dsr.2004.05.002, 2004.
Schefuß, E., Kuhlmann, H., Mollenhauer, G., Prange, M., and Pätzold,
J.: Forcing of wet phases in southeast Africa over the past 17 000 years,
Nature, 480, 509–512, https://doi.org/10.1038/nature10685, 2011.
Schmitt, J., Schneider, R., Elsig, J., Leuenberger, D., Lourantou, A.,
Chappellaz, J., Köhler, P., Joos, F., Stocker, T. F., Leuenberger, M.,
and Fischer, H.: Carbon isotope constraints on the deglacial CO2 rise
from ice cores, Science, 336, 711–714, https://doi.org/10.1126/science.1217161, 2012.
Schwab, V. F., Garcin, Y., Sachse, D., Todou, G., Séné, O., Onana,
J.-M., Achoundong, G., and Gleixner, G.: Effect of aridity on δ13C
and δD values of C3 plant- and C4 graminoid-derived leaf wax
lipids from soils along an environmental gradient in Cameroon (Western
Central Africa), Org. Geochem., 78, 99–109, https://doi.org/10.1016/j.orggeochem.2014.09.007, 2015.
Schwark, L., Zink, K., and Lechterbeck, J.: Reconstruction of postglacial to
early Holocene vegetation history in terrestrial Central Europe via
cuticular lipid biomarkers and pollen records from lake sediments, Geology,
30, 463–466, https://doi.org/10.1130/0091-7613(2002)030<0463:Ropteh>2.0.Co;2, 2002.
Seki, O., Nakatsuka, T., Shibata, H., and Kawamura, K.: A compound-specific
n-alkane δ13C and δD approach for assessing source and delivery
processes of terrestrial organic matter within a forested watershed in
northern Japan, Geochim. Cosmochim. Ac., 74, 599–613, https://doi.org/10.1016/j.gca.2009.10.025, 2010.
Sessions, A. L.: Factors controlling the deuterium contents of sedimentary
hydrocarbons, Org. Geochem., 96, 43–64, https://doi.org/10.1016/j.orggeochem.2016.02.012, 2016.
Shanahan, T. M., McKay, N. P., Hughen, K. A., Overpeck, J. T.,
Otto-Bliesner, B., Heil, C. W., King, J., Scholz, C. A., and Peck, J.: The
time-transgressive termination of the African Humid Period, Nat. Geosci., 8,
140–144, https://doi.org/10.1038/ngeo2329, 2015.
Smith, F. A. and Freeman, K. H.: Influence of physiology and climate on
δD of leaf wax n-alkanes from C3 and C4 grasses, Geochim. Cosmochim. Ac., 70, 1172–1187, https://doi.org/10.1016/j.gca.2005.11.006, 2006.
Sprenger, M., Leistert, H., Gimbel, K., and Weiler, M.: Illuminating
hydrological processes at the soil-vegetation-atmosphere interface with
water stable isotopes, Rev. Geophys., 54, 674–704, https://doi.org/10.1002/2015RG000515, 2016.
Strömberg, C. A. E.: Evolution of grasses and grassland ecosystems, Annu.
Rev. Earth Pl. Sc., 39, 517–544, https://doi.org/10.1146/annurev-earth-040809-152402, 2011.
Suh, Y. J. and Diefendorf, A. F.: Seasonal and canopy height variation in
n-alkanes and their carbon isotopes in a temperate forest, Org. Geochem., 116, 23–34, https://doi.org/10.1016/j.orggeochem.2017.10.015, 2018.
Suh, Y. J., Diefendorf, A. F., Bowen, G. J., Cotton, J. M., and Ju, S.-J.:
Plant wax integration and transport from the Mississippi River Basin to the
Gulf of Mexico inferred from GIS-enabled isoscapes and mixing models,
Geochim. Cosmochim. Ac., 257, 131–149, https://doi.org/10.1016/j.gca.2019.04.022, 2019.
Tierney, J. E., Russell, J. M., Huang, Y., Damsté, J. S. S., Hopmans, E.
C., and Cohen, A. S.: Northern hemisphere controls on tropical southeast
African climate during the past 60 000 years, Science, 322, 252–255,
https://doi.org/10.1126/science.1160485, 2008.
Tingley, M. P., Craigmile, P. F., Haran, M., Li, B., Mannshardt, E., and
Rajaratnam, B.: Piecing together the past: statistical insights into
paleoclimatic reconstructions, Quaternary Sci. Rev., 35, 1–22, https://doi.org/10.1016/j.quascirev.2012.01.012, 2012.
Tipple, B. J. and Pagani, M.: A 35Myr North American leaf-wax
compound-specific carbon and hydrogen isotope record: Implications for
C4 grasslands and hydrologic cycle dynamics, Earth Planet. Sc. Lett., 299, 250–262, https://doi.org/10.1016/j.epsl.2010.09.006, 2010.
Tipple, B. J., Berke, M. A., Doman, C. E., Khachaturyan, S., and Ehleringer,
J. R.: Leaf-wax n-alkanes record the plant–water environment at leaf flush, P. Natl. Acad. Sci. USA, 110, 2659–2664, https://doi.org/10.1073/pnas.1213875110, 2013.
Tipple, B. J., Berke, M. A., Hambach, B., Roden, J. S., and Ehleringer, J.
R.: Predicting leaf wax n-alkane 2H 1H ratios: controlled water source and humidity experiments with hydroponically grown trees confirm predictions of Craig–Gordon model, Plant Cell Environ., 38, 1035–1047, https://doi.org/10.1111/pce.12457, 2015.
Uno, K. T., Polissar, P. J., Jackson, K. E., and deMenocal, P. B.: Neogene
biomarker record of vegetation change in eastern Africa, P. Natl. Acad. Sci.
USA, 113, 6355–6363, https://doi.org/10.1073/pnas.1521267113, 2016.
van der Lubbe, H. J. L., Frank, M., Tjallingii, R., and Schneider, R. R.:
Neodymium isotope constraints on provenance, dispersal, and climate-driven
supply of Zambezi sediments along the Mozambique Margin during the past
∼ 45 000 years, Geochem. Geophy. Geosy., 17, 181–198, https://doi.org/10.1002/2015GC006080, 2016.
van der Lubbe, J. J. L., Tjallingii, R., Prins, M. A., Brummer, G.-J. A.,
Jung, S. J. A., Kroon, D., and Schneider, R. R.: Sedimentation patterns off
the Zambezi River over the last 20 000 years, Mar. Geol., 355, 189–201,
https://doi.org/10.1016/j.margeo.2014.05.012, 2014.
Vesey-Fitzgerald, D. F.: Central African Grasslands, J. Ecol., 51, 243–274, https://doi.org/10.2307/2257683, 1963.
Vogts, A., Moossen, H., Rommerskirchen, F., and Rullkötter, J.:
Distribution patterns and stable carbon isotopic composition of alkanes and
alkan-1-ols from plant waxes of African rain forest and savanna C3
species, Org. Geochem., 40, 1037–1054, https://doi.org/10.1016/j.orggeochem.2009.07.011, 2009.
Vogts, A., Schefuß, E., Badewien, T., and Rullkötter, J.: n-Alkane
parameters from a deep sea sediment transect off southwest Africa reflect
continental vegetation and climate conditions, Org. Geochem., 47, 109–119,
https://doi.org/10.1016/j.orggeochem.2012.03.011, 2012.
Wang, J., Xu, Y., Zhou, L., Shi, M., Axia, E., Jia, Y., Chen, Z., Li, J.,
and Wang, G.: Disentangling temperature effects on leaf wax n-alkane traits
and carbon isotopic composition from phylogeny and precipitation, Org. Geochem., 126, 13–22, https://doi.org/10.1016/j.orggeochem.2018.10.008, 2018.
Wang, R. Z.: C4 plants in the vegetation of Tibet, China: Their natural
occurrence and altitude distribution pattern, Photosynthetica, 41, 21–26, https://doi.org/10.1023/A:1025844009120, 2003.
Wang, Y. V., Larsen, T., Leduc, G., Andersen, N., Blanz, T., and Schneider,
R. R.: What does leaf wax δD from a mixed C3 C4 vegetation region tell us?, Geochim. Cosmochim. Ac., 111, 128–139, https://doi.org/10.1016/j.gca.2012.10.016, 2013a.
Wang, Y. V., Leduc, G., Regenberg, M., Andersen, N., Larsen, T., Blanz, T.,
and Schneider, R. R.: Northern and southern hemisphere controls on seasonal
sea surface temperatures in the Indian Ocean during the last deglaciation,
Paleoceanography, 28, 619–632, https://doi.org/10.1002/palo.20053, 2013b.
Wang, Z. and Liu, W.: Carbon chain length distribution in n-alkyl lipids: A
process for evaluating source inputs to Lake Qinghai, Org. Geochem., 50,
36–43, https://doi.org/10.1016/j.orggeochem.2012.06.015, 2012.
Wang, Z., Liu, H., and Cao, Y.: Choosing a suitable εw−p by
distinguishing the dominant plant sources in sediment records using a new
Pta index and estimating the paleo-δDp spatial distribution in China,
Org. Geochem., 121, 161–168, https://doi.org/10.1016/j.orggeochem.2018.01.002, 2018.
West, J. B., Sobek, A., and Ehleringer, J. R.: A Simplified GIS Approach to
Modeling Global Leaf Water Isoscapes, PLOS ONE, 3, e2447, https://doi.org/10.1371/journal.pone.0002447, 2008.
White, F.: The vegetation of Africa, UNESCO, Paris, France, 356 pp., ISBN 978-9231019555, 1983.
Wiesenberg, G. L. B., Schwarzbauer, J., Schmidt, M. W. I., and Schwark, L.:
Source and turnover of organic matter in agricultural soils derived from
n-alkane/n-carboxylic acid compositions and C-isotope signatures, Org. Geochem., 35, 1371–1393, https://doi.org/10.1016/j.orggeochem.2004.03.009, 2004.
Wu, M. S., Feakins, S. J., Martin, R. E., Shenkin, A., Bentley, L. P.,
Blonder, B., Salinas, N., Asner, G. P., and Malhi, Y.: Altitude effect on
leaf wax carbon isotopic composition in humid tropical forests, Geochim. Cosmochim. Ac., 206, 1–17, https://doi.org/10.1016/j.gca.2017.02.022, 2017.
Yamamoto, S., Kawamura, K., Seki, O., Kariya, T., and Lee, M.: Influence of
aerosol source regions and transport pathway on δD of terrestrial
biomarkers in atmospheric aerosols from the East China Sea, Geochim. Cosmochim. Ac., 106, 164–176, https://doi.org/10.1016/j.gca.2012.12.030, 2013.
Yang, D.: SPATIAL-Lab/LipidMM: Bok choy (v. 1.0.5), Zenodo [code], https://doi.org/10.5281/zenodo.7025765, 2022.
Yu, G., Tang, L., Yang, X., Ke, X., and Harrison, S. P.: Modern pollen
samples from alpine vegetation on the Tibetan Plateau, Global Ecol. Biogeogr., 10, 503–519, https://doi.org/10.1046/j.1466-822X.2001.00258.x,
2001.
Zech, M., Krause, T., Meszner, S., and Faust, D.: Incorrect when
uncorrected: Reconstructing vegetation history using n-alkane biomarkers in
loess-paleosol sequences – A case study from the Saxonian loess region,
Germany, Quatern. Int., 296, 108–116, https://doi.org/10.1016/j.quaint.2012.01.023, 2013.
Zhou, B., Bird, M., Zheng, H., Zhang, E., Wurster, C. M., Xie, L., and
Taylor, D.: New sedimentary evidence reveals a unique history of C4
biomass in continental East Asia since the early Miocene, Sci. Rep.-UK, 7,
170, https://doi.org/10.1038/s41598-017-00285-7, 2017.
Short summary
Plant wax lipid ratios and their isotopes are used in vegetation and paleoclimate reconstructions. While studies often use either type of data, both can inform the mixing pattern of source plants. We developed a statistic model that evaluates ratios and isotopes together. Through case studies, we showed that the approach allows more detailed interpretations of vegetation and paleoclimate than traditional methods. This evolving framework can include more geochemical tracers in the future.
Plant wax lipid ratios and their isotopes are used in vegetation and paleoclimate...