Articles | Volume 18, issue 5
https://doi.org/10.5194/cp-18-1151-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-18-1151-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Prospects for dendroanatomy in paleoclimatology – a case study on Picea engelmannii from the Canadian Rockies
Kristina Seftigen
CORRESPONDING AUTHOR
Regional Climate Group, Department of Earth Sciences, University of Gothenburg, Gothenburg, Sweden
Dendrosciences, Swiss Federal Institute for Forest Snow and Landscape Research WSL, Birmensdorf, Switzerland
Marina V. Fonti
Dendrosciences, Swiss Federal Institute for Forest Snow and Landscape Research WSL, Birmensdorf, Switzerland
Institute of Ecology and Geography, Siberian Federal University, Krasnoyarsk, Russian Federation
Brian Luckman
Department of Geography, University of Western Ontario, London, ON, N6A 3K7, Canada
Miloš Rydval
Department of Forest Ecology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
Petter Stridbeck
Regional Climate Group, Department of Earth Sciences, University of Gothenburg, Gothenburg, Sweden
Georg von Arx
Dendrosciences, Swiss Federal Institute for Forest Snow and Landscape Research WSL, Birmensdorf, Switzerland
Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
Rob Wilson
University of St Andrews, Queen's Terrace, St Andrews, Fife, KY16 9TS, UK
Jesper Björklund
Dendrosciences, Swiss Federal Institute for Forest Snow and Landscape Research WSL, Birmensdorf, Switzerland
Related authors
Petter Stridbeck, Jesper Björklund, Fredrik Charpentier Ljungqvist, Jennie Sandström, Mauricio Fuentes, Paul J. Krusic, Zhi-Bo Li, and Kristina Seftigen
EGUsphere, https://doi.org/10.5194/egusphere-2025-3497, https://doi.org/10.5194/egusphere-2025-3497, 2025
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
Here we present the first tree-ring-based reconstruction of precipitation in sub-Arctic Sweden, extending back to medieval times. The reconstruction is derived from living and dead Scots pine growing in the rocky, drought-prone High Coast region (63°N). Unlike most high-latitude conifers that are typically limited by temperature, these trees thrive during cool, cloudy, and wet summers. This rare response enabled filling a significant gap in our understanding of historical climate variability.
Petter Stridbeck, Jesper Björklund, Fredrik Charpentier Ljungqvist, Jennie Sandström, Mauricio Fuentes, Paul J. Krusic, Zhi-Bo Li, and Kristina Seftigen
EGUsphere, https://doi.org/10.5194/egusphere-2025-3497, https://doi.org/10.5194/egusphere-2025-3497, 2025
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
Here we present the first tree-ring-based reconstruction of precipitation in sub-Arctic Sweden, extending back to medieval times. The reconstruction is derived from living and dead Scots pine growing in the rocky, drought-prone High Coast region (63°N). Unlike most high-latitude conifers that are typically limited by temperature, these trees thrive during cool, cloudy, and wet summers. This rare response enabled filling a significant gap in our understanding of historical climate variability.
Lauren R. Marshall, Anja Schmidt, Andrew P. Schurer, Nathan Luke Abraham, Lucie J. Lücke, Rob Wilson, Kevin J. Anchukaitis, Gabriele C. Hegerl, Ben Johnson, Bette L. Otto-Bliesner, Esther C. Brady, Myriam Khodri, and Kohei Yoshida
Clim. Past, 21, 161–184, https://doi.org/10.5194/cp-21-161-2025, https://doi.org/10.5194/cp-21-161-2025, 2025
Short summary
Short summary
Large volcanic eruptions have caused temperature deviations over the past 1000 years; however, climate model results and reconstructions of surface cooling using tree rings do not match. We explore this mismatch using the latest models and find a better match to tree-ring reconstructions for some eruptions. Our results show that the way in which eruptions are simulated in models matters for the comparison to tree-rings, particularly regarding the spatial spread of volcanic aerosol.
Yonghong Zheng, Huanfeng Shen, Rory Abernethy, and Rob Wilson
Biogeosciences, 20, 3481–3490, https://doi.org/10.5194/bg-20-3481-2023, https://doi.org/10.5194/bg-20-3481-2023, 2023
Short summary
Short summary
Investigations in central and western China show that tree ring inverted latewood intensity expresses a strong positive relationship with growing-season temperatures, indicating exciting potential for regions south of 30° N that are traditionally not targeted for temperature reconstructions. Earlywood BI also shows good potential to reconstruct hydroclimate parameters in some humid areas and will enhance ring-width-based hydroclimate reconstructions in the future.
Rob Wilson, Kathy Allen, Patrick Baker, Gretel Boswijk, Brendan Buckley, Edward Cook, Rosanne D'Arrigo, Dan Druckenbrod, Anthony Fowler, Margaux Grandjean, Paul Krusic, and Jonathan Palmer
Biogeosciences, 18, 6393–6421, https://doi.org/10.5194/bg-18-6393-2021, https://doi.org/10.5194/bg-18-6393-2021, 2021
Short summary
Short summary
We explore blue intensity (BI) – a low-cost method for measuring ring density – to enhance palaeoclimatology in Australasia. Calibration experiments, using several conifer species from Tasmania and New Zealand, model 50–80 % of the summer temperature variance. The implications of these results have profound consequences for high-resolution paleoclimatology in Australasia, as the speed and cheapness of BI generation could lead to a step change in our understanding of past climate in the region.
Claudia Timmreck, Matthew Toohey, Davide Zanchettin, Stefan Brönnimann, Elin Lundstad, and Rob Wilson
Clim. Past, 17, 1455–1482, https://doi.org/10.5194/cp-17-1455-2021, https://doi.org/10.5194/cp-17-1455-2021, 2021
Short summary
Short summary
The 1809 eruption is one of the most recent unidentified volcanic eruptions with a global climate impact. We demonstrate that climate model simulations of the 1809 eruption show generally good agreement with many large-scale temperature reconstructions and early instrumental records for a range of radiative forcing estimates. In terms of explaining the spatially heterogeneous and temporally delayed Northern Hemisphere cooling suggested by tree-ring networks, the investigation remains open.
Cited articles
Anchukaitis, K. J., Wilson, R., Briffa, K. R., Büntgen, U.,
Cook, E. R., D'Arrigo, R., Davi, N., Esper, J., Frank, D., Gunnarson, B. E.,
Hegerl, G., Helama, S., Klesse, S., Krusic, P. J., Linderholm, H. W.,
Myglan, V., Osborn, T. J., Zhang, P., Rydval, M., Schneider, L., Schurer,
A., Wiles, G., and Zorita, E.: Last millennium Northern Hemisphere summer
temperatures from tree rings: Part II, spatially resolved reconstructions,
Quaternary Sci. Rev., 163, 1–22, https://doi.org/10.1016/j.quascirev.2017.02.020, 2017.
Björklund, J., von Arx, G., Nievergelt, D., Wilson, R., Van den Bulcke,
J., Günther, B., Loader, N. J., Rydval, M., Fonti, P., Scharnweber, T.,
Andreu-Hayles, L., Büntgen, U., D'Arrigo, R., Davi, N., De Mil, T.,
Esper, J., Gärtner, H., Geary, J., Gunnarson, B. E., Hartl, C., Hevia,
A., Song, H., Janecka, K., Kaczka, R. J., Kirdyanov, A. V., Kochbeck, M.,
Liu, Y., Meko, M., Mundo, I., Nicolussi, K., Oelkers, R., Pichler, T.,
Sánchez-Salguero, R., Schneider, L., Schweingruber, F., Timonen, M.,
Trouet, V., Van Acker, J., Verstege, A., Villalba, R., Wilmking, M., and
Frank, D.: Scientific merits and analytical challenges of tree-ring
densitometry, Rev. Geophys., 57, 1224–1264, https://doi.org/10.1029/2019RG000642,
2019.
Björklund, J., Seftigen, K., Fonti, P., Nievergelt, D., and von Arx, G.:
Dendroclimatic potential of dendroanatomy in temperature-sensitive Pinus sylvestris, Dendrochronologia, 60, 125673, https://doi.org/10.1016/j.dendro.2020.125673, 2020.
Björklund, J., Fonti, M. V., Fonti, P., Van den Bulcke, J., and von Arx,
G.: Cell wall dimensions reign supreme: cell wall composition is irrelevant
for the temperature signal of latewood density/blue intensity in Scots pine,
Dendrochronologia, 65, 125785, https://doi.org/10.1016/j.dendro.2020.125785, 2021.
Blake, S. A. P., Palmer, J. G., Björklund, J., Harper, J. B., and
Turney, C. S. M.: Palaeoclimate potential of New Zealand Manoao colensoi (silver pine) tree rings using Blue-Intensity (BI), Dendrochronologia, 60, 125664, https://doi.org/10.1016/j.dendro.2020.125664, 2020.
Bouche, P. S., Larter, M., Domec, J.-C., Burlett, R., Gasson, P., Jansen,
S., and Delzon, S.: A broad survey of hydraulic and mechanical safety in the
xylem of conifers, J. Exp. Bot., 65, 4419–4431, https://doi.org/10.1093/jxb/eru218, 2014.
Briffa, K. R. and Melvin, T. M.: A Closer Look at Regional Curve
Standardization of Tree-Ring Records: Justification of the Need, a Warning
of Some Pitfalls, and Suggested Improvements in Its Application, in:
Dendroclimatology: Progress and Prospects, edited by: Hughes, M. K.,
Swetnam, T. W., and Diaz, H. F., Springer Netherlands, Dordrecht, 113–145, https://doi.org/10.1007/978-1-4020-5725-0_5, 2011.
Briffa, K. R., Jones, P. D., Bartholin, T. S., Eckstein, D., Schweingruber,
F. H., Karlén, W., Zetterberg, P., and Eronen, M.: Fennoscandian summers
from AD 500: temperature changes on short and long timescales, Clim. Dynam., 7, 111–119, https://doi.org/10.1007/bf00211153, 1992.
Briffa, K. R., Osborn, T. J., Schweingruber, F. H., Jones, P. D., Shiyatov,
S. G., and Vaganov, E. A.: Tree-ring width and density data around the
Northern Hemisphere: Part 1, local and regional climate signals, The
Holocene, 12, 737–757, https://doi.org/10.1191/0959683602hl587rp, 2002.
Cook, E. R. and Peters, K.: The smoothing spline: a new approach to
standardizing forest interior tree-ring width series for dendroclimatic
studies, Tree-Ring Bulletin, 41, 45–53, 1981.
Cuny, H. E., Rathgeber, C. B. K., Frank, D., Fonti, P., and Fournier, M.:
Kinetics of tracheid development explain conifer tree-ring structure, New
Phytol., 203, 1231–1241, https://doi.org/10.1111/nph.12871, 2014.
Cuny, H. E., Fonti, P., Rathgeber, C. B. K., von Arx, G., Peters, R. L., and
Frank, D. C.: Couplings in cell differentiation kinetics mitigate air
temperature influence on conifer wood anatomy, Plant Cell Environ., 42, 1222–1232, https://doi.org/10.1111/pce.13464, 2019.
D'Arrigo, R., Wilson, R., and Jacoby, G.: On the long-term context for late
twentieth century warming, J. Geophys. Res., 111, D03103, https://doi.org/10.1029/2005JD006352, 2006.
Denne, M. P.: Definition of Latewood According to Mork (1928), Iawa J., 10,
59–62, https://doi.org/10.1163/22941932-90001112, 1989.
Edwards, J., Anchukaitis, K. J., Gunnarson, B. E., Pearson, C., Seftigen,
K., von Arx, G., and Linderholm, H. W.: The Origin of Tree-Ring
Reconstructed Summer Cooling in Northern Europe During the 18th Century
Eruption of Laki, Paleoceanography and Paleoclimatology, 37, e2021PA004386,
https://doi.org/10.1029/2021PA004386, 2022.
Eschbach, W., Nogler, P., Schär, E., and Schweingruber, F.: Technical
advances in the radiodensitometrical determination of wood density,
Dendrochronologia, 13, 155–168, 1995.
Esper, J. and Büntgen, U.: The future of paleoclimate, Clim. Res., 83, 57–59, 2021.
Esper, J., Cook, E. R., and Schweingruber, F. H.: Low-frequency signals in
long tree-ring chronologies for reconstructing past temperature variability,
Science, 295, 2250–2253, 2002.
Esper, J., Schneider, L., Smerdon, J. E., Schöne, B. R., and
Büntgen, U.: Signals and memory in tree-ring width and density data,
Dendrochronologia, 35, 62–70,
https://doi.org/10.1016/j.dendro.2015.07.001, 2015.
Esper, J., St. George, S., Anchukaitis, K., D'Arrigo, R., Ljungqvist, F. C.,
Luterbacher, J., Schneider, L., Stoffel, M., Wilson, R., and Büntgen,
U.: Large-scale, millennial-length temperature reconstructions from
tree-rings, Dendrochronologia, 50, 81–90, https://doi.org/10.1016/j.dendro.2018.06.001, 2018.
Fonti, P., von Arx, G., Garcia-Gonzalez, I., Eilmann, B., Sass-Klaassen, U.,
Gartner, H., and Eckstein, D.: Studying global change through investigation
of the plastic responses of xylem anatomy in tree rings, New Phytol., 185,
42–53, https://doi.org/10.1111/j.1469-8137.2009.03030.x, 2010.
Fonti, P., Bryukhanova, M. V., Myglan, V. S., Kirdyanov, A. V., Naumova, O.
V., and Vaganov, E. A.: Temperature-induced responses of xylem structure of
Larix sibirica (Pinaceae) from the Russian Altay, Am. J. Bot., 100, 1332–1343, https://doi.org/10.3732/ajb.1200484, 2013.
Frank, D., Esper, J., Zorita, E., and Wilson, R.: A noodle, hockey stick,
and spaghetti plate: a perspective on high-resolution paleoclimatology,
WIREs Clim. Change, 1, 507–516, https://doi.org/10.1002/wcc.53, 2010.
Franke, J., Frank, D., Raible, C. C., Esper, J., and Bronnimann, S.: Spectral biases in tree-ring climate proxies, Nat. Clim. Change, 3, 360–364, 2013.
Goosse, H.: Reconstructed and simulated temperature asymmetry between
continents in both hemispheres over the last centuries, Clim. Dynam., 48, 1483–1501, https://doi.org/10.1007/s00382-016-3154-z, 2017.
Harley, G. L., Heeter, K. J., Maxwell, J. T., Rayback, S. A., Maxwell, R.
S., Reinemann, T. E. P., and H. Taylor, A.: Towards broad-scale temperature
reconstructions for Eastern North America using blue light intensity from
tree rings, Int. J. Climatol., 41, E3142–E3159, https://doi.org/10.1002/joc.6910, 2021.
Harris, I., Osborn, T. J., Jones, P., and Lister, D.: Version 4 of the CRU
TS monthly high-resolution gridded multivariate climate dataset, Scientific
Data, 7, 109, https://doi.org/10.1038/s41597-020-0453-3, 2020.
Heeter, K. J., Harley, G. L., Maxwell, J. T., Wilson, R. J., Abatzoglou, J.
T., Rayback, S. A., Rochner, M. L., and Kitchens, K. A.: Summer temperature
variability since 1730 CE across the low-to-mid latitudes of western North
America from a tree ring blue intensity network, Quaternary Sci. Rev., 267, 107064, https://doi.org/10.1016/j.quascirev.2021.107064, 2021.
Jevšenak, J. and Levanič, T.: dendroTools: R package for studying linear and nonlinear responses between tree-rings and daily environmental data, Dendrochronologia, 48, 32–39, https://doi.org/10.1016/j.dendro.2018.01.005, 2018.
Konter, O., Büntgen, U., Carrer, M., Timonen, M., and Esper, J.: Climate
signal age effects in boreal tree-rings: Lessons to be learned for
paleoclimatic reconstructions, Quaternary Sci. Rev., 142, 164–172,
https://doi.org/10.1016/j.quascirev.2016.04.020, 2016.
Ljungqvist, F. C., Thejll, P., Björklund, J., Gunnarson, B. E.,
Piermattei, A., Rydval, M., Seftigen, K., Støve, B., and Büntgen, U.:
Assessing non-linearity in European temperature-sensitive tree-ring data,
Dendrochronologia, 59, 125652, https://doi.org/10.1016/j.dendro.2019.125652, 2020.
Lücke, L. J., Hegerl, G. C., Schurer, A. P., and Wilson, R.: Effects of
Memory Biases on Variability of Temperature Reconstructions, J. Climate, 32, 8713–8731, https://doi.org/10.1175/jcli-d-19-0184.1, 2019.
Luckman, B. H.: Developing a proxy climate record for the last 300 years in the Canadian rockies – some problems and opportunities, Clim. Change, 36, 455–476, https://doi.org/10.1023/A:1005376713554, 1997.
Luckman, B. H.: The Little Ice Age in the Canadian Rockies, Geomorphology,
32, 357–384, https://doi.org/10.1016/S0169-555X(99)00104-X, 2000.
Luckman, B. H. and Wilson, R. J. S.: Summer temperatures in the Canadian
Rockies during the last millennium: a revised record, Clim. Dynam., 24,
131–144, https://doi.org/10.1007/s00382-004-0511-0, 2005.
Luckman, B. H., Briffa, K. R., Jones, P. D., and Schweingruber, F. H.:
Tree-ring based reconstruction of summer temperatures at the Columbia
Icefield, Alberta, Canada, AD 1073–1983, The Holocene, 7, 375–389,
https://doi.org/10.1177/095968369700700401, 1997.
Luterbacher, J., Werner, J. P., Smerdon, J. E., Fernández-Donado, L.,
González-Rouco, F. J., Barriopedro, D., Ljungqvist, F. C., Büntgen,
U., Zorita, E., Wagner, S., Esper, J., McCarroll, D., Toreti, A., Frank, D.,
Jungclaus, J. H., Barriendos, M., Bertolin, C., Bothe, O., Brázdil, R.,
Camuffo, D., Dobrovolný, P., Gagen, M., García-Bustamante, E., Ge,
Q., Gómez-Navarro, J. J., Guiot, J., Hao, Z., Hegerl, G. C., Holmgren,
K., Klimenko, V. V., Martín-Chivelet, J., Pfister, C., Roberts, N.,
Schindler, A., Schurer, A., Solomina, O., Gunten, L. v., Wahl, E., Wanner,
H., Wetter, O., Xoplaki, E., Yuan, N., Zanchettin, D., Zhang, H., and
Zerefos, C.: European summer temperatures since Roman times, Environ.
Res. Lett., 11, 024001, https://doi.org/10.1088/1748-9326/11/2/024001, 2016.
Mann, M. E., Bradley, R. S., and Hughes, M. K.: Northern hemisphere
temperatures during the past millennium: Inferences, uncertainties, and
limitations, Geophys. Res. Lett., 26, 759–762, https://doi.org/10.1029/1999GL900070, 1999.
McCarroll, D., Pettigrew, E., Luckman, A., Guibal, F., and Edouard, J. L.:
Blue Reflectance Provides a Surrogate for Latewood Density of High-latitude
Pine Tree Rings, Arct. Antarct. Alp. Res., 34, 450–453,
https://doi.org/10.1080/15230430.2002.12003516, 2002.
Pacheco, A., Camarero, J. J., and Carrer, M.: Shifts of irrigation in Aleppo
pine under semi-arid conditions reveal uncoupled growth and carbon storage
and legacy effects on wood anatomy, Agr. Forest Meteorol., 253–254, 225–232, https://doi.org/10.1016/j.agrformet.2018.02.018, 2018.
PAGES 2k Consortium: Continental-scale temperature variability during the
past two millennia, Nat. Geosci., 6, 339–346, https://doi.org/10.1038/ngeo1797, 2013.
PAGES 2k Consortium: A global multiproxy database for temperature
reconstructions of the Common Era, Scientific Data, 4, 170088,
https://doi.org/10.1038/sdata.2017.88, 2017.
PAGES 2k-PMIP3 group: Continental-scale temperature variability in PMIP3 simulations and PAGES 2k regional temperature reconstructions over the past millennium, Clim. Past, 11, 1673–1699, https://doi.org/10.5194/cp-11-1673-2015, 2015.
Phipps, S. J., McGregor, H. V., Gergis, J., Gallant, A. J. E., Neukom, R.,
Stevenson, S., Ackerley, D., Brown, J. R., Fischer, M. J., and van Ommen, T.
D.: Paleoclimate Data–Model Comparison and the Role of Climate Forcings
over the Past 1500 Years, J. Climate, 26, 6915–6936,
https://doi.org/10.1175/jcli-d-12-00108.1, 2013.
Piermattei, A., Crivellaro, A., Krusic, P. J., Esper, J., Vítek, P.,
Oppenheimer, C., Felhofer, M., Gierlinger, N., Reinig, F., Urban, O.,
Verstege, A., Lobo, H., and Büntgen, U.: A millennium-long 'Blue Ring'
chronology from the Spanish Pyrenees reveals severe ephemeral summer cooling
after volcanic eruptions, Environ. Res. Lett., 15, 124016,
https://doi.org/10.1088/1748-9326/abc120, 2020.
Pittermann, J., Limm, E., Rico, C., and Christman, M. A.:
Structure–function constraints of tracheid-based xylem: a comparison of
conifers and ferns, New Phytol., 192, 449–461,
https://doi.org/10.1111/j.1469-8137.2011.03817.x, 2011.
Prendin, A. L., Petit, G., Carrer, M., Fonti, P., Björklund, J., and von
Arx, G.: New research perspectives from a novel approach to quantify
tracheid wall thickness, Tree Physiol., 37, 976–983, 2017.
Rathgeber, C. B., Cuny, H. E., and Fonti, P.: Biological Basis of Tree-Ring
Formation: A Crash Course, Front. Plant Sci., 7, 734, https://doi.org/10.3389/fpls.2016.00734, 2016.
Rohde, R. A. and Hausfather, Z.: The Berkeley Earth Land/Ocean Temperature Record, Earth Syst. Sci. Data, 12, 3469–3479, https://doi.org/10.5194/essd-12-3469-2020, 2020.
Rydval, M., Larsson, L.-Å., McGlynn, L., Gunnarson, B. E., Loader, N.
J., Young, G. H. F., and Wilson, R.: Blue intensity for dendroclimatology:
Should we have the blues? Experiments from Scotland, Dendrochronologia, 32,
191–204, https://doi.org/10.1016/j.dendro.2014.04.003, 2014.
Rydval, M., Druckenbrod, D., Anchukaitis, K. J., and Wilson, R.: Detection
and removal of disturbance trends in tree-ring series for dendroclimatology,
Can. J. Forest Res., 46, 387–401, https://doi.org/10.1139/cjfr-2015-0366, 2015.
Rydval, M., Druckenbrod, D. L., Svoboda, M., Trotsiuk, V., Janda, P.,
Mikoláš, M., Čada, V., Bače, R., Teodosiu, M., and Wilson,
R.: Influence of sampling and disturbance history on climatic sensitivity of
temperature-limited conifers, The Holocene, 28, 1574–1587,
https://doi.org/10.1177/0959683618782605, 2018.
Schneider, L., Smerdon, J. E., Büntgen, U., Wilson, R. J. S., Myglan, V.
S., Kirdyanov, A. V., and Esper, J.: Revising midlatitude summer
temperatures back to A.D. 600 based on a wood density network, Geophys.
Res. Lett., 42, 4556–4562, https://doi.org/10.1002/2015GL063956, 2015.
Schweingruber, F., Fritts, H., Bräker, O., Drew, L., and Schär, E.:
The X-ray technique as applied to dendroclimatology, Tree-Ring Bulletin, 38, 61–91, 1978.
Seftigen, K., Goosse, H., Klein, F., and Chen, D.: Hydroclimate variability in Scandinavia over the last millennium – insights from a climate model–proxy data comparison, Clim. Past, 13, 1831–1850, https://doi.org/10.5194/cp-13-1831-2017, 2017.
St. George, S. and Luckman, B. H.: Extracting a paleotemperature record
from Picea engelmannii tree-line sites in the central Canadian Rockies, Can. J. Forest Res., 31, 457–470, https://doi.org/10.1139/x00-188, 2001.
Stoffel, M., Khodri, M., Corona, C., Guillet, S., Poulain, V., Bekki, S.,
Guiot, J., Luckman, B. H., Oppenheimer, C., Lebas, N., Beniston, M., and
Masson-Delmotte, V.: Estimates of volcanic-induced cooling in the Northern
Hemisphere over the past 1,500 years, Nat. Geosci., 8, 784–788, https://doi.org/10.1038/ngeo2526, 2015.
Vincent, L. A. and Gullett, D.: Canadian historical and homogeneous
temperature datasets for climate change analyses, Int. J. Climatol., 19, 1375–1388, 1999.
von Arx, G. and Carrer, M.: ROXAS – a new tool to build centuries-long
tracheid-lumen chronologies in conifers, Dendrochronologia, 32, 290–293,
https://doi.org/10.1016/j.dendro.2013.12.001, 2014.
von Arx, G., Crivellaro, A., Prendin, A. L., Cufar, K., and Carrer, M.:
Quantitative wood anatomy – practical guidelines, Front. Plant Sci., 7, 781, https://doi.org/10.3389/fpls.2016.00781, 2016.
von Storch, H., Zorita, E., Jones, J. M., Dimitriev, Y., González-Rouco,
F., and Tett, S. F. B.: Reconstructing Past Climate from Noisy Data,
Science, 306, 679–682, https://doi.org/10.1126/science.1096109, 2004.
Wang, F., Arseneault, D., Boucher, É., Galipaud Gloaguen, G., Deharte,
A., Yu, S., and Trou-kechout, N.: Temperature sensitivity of blue intensity,
maximum latewood density, and ring width data of living black spruce trees
in the eastern Canadian taiga, Dendrochronologia, 64, 125771,
https://doi.org/10.1016/j.dendro.2020.125771, 2020.
Wigley, T. M. L., Briffa, K. R., and Jones, P. D.: On the Average Value of
Correlated Time Series, with Applications in Dendroclimatology and
Hydrometeorology, J. Appl. Meteorol. Clim., 23, 201–213,
https://doi.org/10.1175/1520-0450(1984)023<0201:OTAVOC>2.0.CO;2, 1984.
Wilkinson, S., Ogée, J., Domec, J.-C., Rayment, M., and Wingate, L.:
Biophysical modelling of intra-ring variations in tracheid features and wood
density of Pinus pinaster trees exposed to seasonal droughts, Tree Physiol., 35, 305–318, https://doi.org/10.1093/treephys/tpv010, 2015.
Wilson, R., Rao, R., Rydval, M., Wood, C., Larsson, L.-Å., and Luckman,
B. H.: Blue Intensity for dendroclimatology: The BC blues: A case study from
British Columbia, Canada, The Holocene, 24, 1428–1438,
https://doi.org/10.1177/0959683614544051, 2014.
Wilson, R., Anchukaitis, K., Briffa, K. R., Büntgen, U., Cook, E.,
D'Arrigo, R., Davi, N., Esper, J., Frank, D., Gunnarson, B., Hegerl, G.,
Helama, S., Klesse, S., Krusic, P. J., Linderholm, H. W., Myglan, V.,
Osborn, T. J., Rydval, M., Schneider, L., Schurer, A., Wiles, G., Zhang, P.,
and Zorita, E.: Last millennium northern hemisphere summer temperatures from
tree rings: Part I: The long term context, Quaternary Sci. Rev., 134,
1–18, https://doi.org/10.1016/j.quascirev.2015.12.005, 2016.
Wilson, R., Anchukaitis, K., Andreu-Hayles, L., Cook, E., D'Arrigo, R.,
Davi, N., Haberbauer, L., Krusic, P., Luckman, B., Morimoto, D., Oelkers,
R., Wiles, G., and Wood, C.: Improved dendroclimatic calibration using blue
intensity in the southern Yukon, The Holocene, 29, 1817–1830,
https://doi.org/10.1177/0959683619862037, 2019.
Wilson, R., Allen, K., Baker, P., Boswijk, G., Buckley, B., Cook, E., D'Arrigo, R., Druckenbrod, D., Fowler, A., Grandjean, M., Krusic, P., and Palmer, J.: Evaluating the dendroclimatological potential of blue intensity on multiple conifer species from Tasmania and New Zealand, Biogeosciences, 18, 6393–6421, https://doi.org/10.5194/bg-18-6393-2021, 2021.
Wilson, R. J. S. and Luckman, B. H.: Dendroclimatic reconstruction of
maximum summer temperatures from upper treeline sites in Interior British
Columbia, Canada, The Holocene, 13, 851–861, https://doi.org/10.1191/0959683603hl663rp, 2003.
Zhang, X., Vincent, L. A., Hogg, W., and Niitsoo, A.: Temperature and
precipitation trends in Canada during the 20th century, Atmos. Ocean, 38, 395–429, 2000.
Ziaco, E.: A phenology-based approach to the analysis of conifers
intra-annual xylem anatomy in water-limited environments, Dendrochronologia,
59, 125662, https://doi.org/10.1016/j.dendro.2019.125662, 2020.
Short summary
New proxies and improvements in existing methodologies are needed to advance paleoclimate research. This study explored dendroanatomy, the analysis of wood anatomical parameters in dated tree rings, of Engelmann spruce from the Columbia Icefield area, Canada, as a proxy of past temperatures. Our new parameters compare favorably with state of the art proxy parameters from X-ray and visible light techniques, particularly with respect to the temporal stability of the temperature signal.
New proxies and improvements in existing methodologies are needed to advance paleoclimate...