Articles | Volume 17, issue 2
https://doi.org/10.5194/cp-17-703-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-17-703-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Atmospheric carbon dioxide variations across the middle Miocene climate transition
MARUM – Zentrum für Marine Umweltwissenschaften, Universität Bremen, Leobener Straße 8, 28359 Bremen, Germany
Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und
Meeresforschung, Am Handelshafen 12, 27570 Bremerhaven, Germany
Jelle Bijma
Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und
Meeresforschung, Am Handelshafen 12, 27570 Bremerhaven, Germany
Torsten Bickert
MARUM – Zentrum für Marine Umweltwissenschaften, Universität Bremen, Leobener Straße 8, 28359 Bremen, Germany
Michael Schulz
MARUM – Zentrum für Marine Umweltwissenschaften, Universität Bremen, Leobener Straße 8, 28359 Bremen, Germany
Ann Holbourn
Institut für Geowissenschaften, Christian-Albrechts-Universität, 24118 Kiel, Germany
Michal Kučera
MARUM – Zentrum für Marine Umweltwissenschaften, Universität Bremen, Leobener Straße 8, 28359 Bremen, Germany
Related authors
Markus Raitzsch, Claire Rollion-Bard, Ingo Horn, Grit Steinhoefel, Albert Benthien, Klaus-Uwe Richter, Matthieu Buisson, Pascale Louvat, and Jelle Bijma
Biogeosciences, 17, 5365–5375, https://doi.org/10.5194/bg-17-5365-2020, https://doi.org/10.5194/bg-17-5365-2020, 2020
Short summary
Short summary
The isotopic composition of boron in carbonate shells of marine unicellular organisms is a popular tool to estimate seawater pH. Usually, many shells need to be dissolved and measured for boron isotopes, but the information on their spatial distribution is lost. Here, we investigate two techniques that allow for measuring boron isotopes within single shells and show that they yield robust mean values but provide additional information on the heterogeneity within and between single shells.
Jelle Bijma, Mathilde Hagens, Jens Hammes, Noah Planavsky, Philip A. E. Pogge von Strandmann, Tom Reershemius, Christopher T. Reinhard, Phil Renforth, Tim Jesper Suhrhoff, Sara Vicca, Arthur Vienne, and Dieter A. Wolf-Gladrow
EGUsphere, https://doi.org/10.5194/egusphere-2025-2740, https://doi.org/10.5194/egusphere-2025-2740, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Enhanced rock weathering is a nature based negative emission technology, that permanently stores CO2. It requires rock-flour to be added to arable land with the help of farmers. To be eligible for carbon credits calls for a simple but scientifically solid, so called, Monitoring, Reporting & Verification” (MRV). We demonstrate that the commonly used carbon-based accounting is ill-suited to close the balance in open systems such as arable land, and argue for cation-based accounting strategy.
Elwyn de la Vega, Markus Raitzsch, Gavin Foster, Jelle Bijma, Ulysses Silas Ninnemann, Michal Kucera, Tali Lea Babila, Jessica Crumpton Banks, Mohamed M. Ezat, and Audrey Morley
EGUsphere, https://doi.org/10.5194/egusphere-2025-2443, https://doi.org/10.5194/egusphere-2025-2443, 2025
Short summary
Short summary
The boron isotopic composition (δ11B) of foraminifera shells is an established proxy for the reconstruction of ocean pH. Applications to the Arctic oceans are however limited as robust calibrations in these regions are lacking. Here, we present a new calibration linking δ11B measured in two high-latitude foraminifera species to seawater pH. We show that the δ11B of the species analysed is well correlated with seawater pH and that this calibration can be applied to the paleorecord.
Lukas Jonkers, Tonke Strack, Montserrat Alonso-Garcia, Simon D'haenens, Robert Huber, Michal Kucera, Iván Hernández-Almeida, Chloe L. C. Jones, Brett Metcalfe, Rajeev Saraswat, Lóránd Silye, Sanjay K. Verma, Muhamad Naim Abd Malek, Gerald Auer, Cátia F. Barbosa, Maria A. Barcena, Karl-Heinz Baumann, Flavia Boscolo-Galazzo, Joeven Austine S. Calvelo, Lucilla Capotondi, Martina Caratelli, Jorge Cardich, Humberto Carvajal-Chitty, Markéta Chroustová, Helen K. Coxall, Renata M. de Mello, Anne de Vernal, Paula Diz, Kirsty M. Edgar, Helena L. Filipsson, Ángela Fraguas, Heather L. Furlong, Giacomo Galli, Natalia L. García Chapori, Robyn Granger, Jeroen Groeneveld, Adil Imam, Rebecca Jackson, David Lazarus, Julie Meilland, Marína Molčan Matejová, Raphael Morard, Caterina Morigi, Sven N. Nielsen, Diana Ochoa, Maria Rose Petrizzo, Andrés S. Rigual-Hernández, Marina C. Rillo, Matthew L. Staitis, Gamze Tanık, Raúl Tapia, Nishant Vats, Bridget S. Wade, and Anna E. Weinmann
J. Micropalaeontol., 44, 145–168, https://doi.org/10.5194/jm-44-145-2025, https://doi.org/10.5194/jm-44-145-2025, 2025
Short summary
Short summary
Our study provides guidelines improving the reuse of marine microfossil assemblage data, which are valuable for understanding past ecosystems and environmental change. Based on a survey of 113 researchers, we identified key data attributes required for effective reuse. Analysis of a selection of datasets available online reveals a gap between the attributes scientists consider essential and the data currently available, highlighting the need for clearer data documentation and sharing practices.
Pauline Cornuault, Luc Beaufort, Heiko Pälike, Torsten Bickert, Karl-Heinz Baumann, and Michal Kucera
EGUsphere, https://doi.org/10.5194/egusphere-2025-198, https://doi.org/10.5194/egusphere-2025-198, 2025
Short summary
Short summary
We present new high-resolution data of the relative contribution of the two main pelagic carbonate producers (coccoliths and foraminifera) to the total pelagic carbonate production from the tropical Atlantic in past warm periods since the Miocene. Our findings suggests that the two groups responded differently to orbital forcing and oceanic changes in tropical ocean, but their proportion changes did not drive the changes in overall pelagic carbonate deposition.
Brian R. Crow, Lev Tarasov, Michael Schulz, and Matthias Prange
Clim. Past, 20, 281–296, https://doi.org/10.5194/cp-20-281-2024, https://doi.org/10.5194/cp-20-281-2024, 2024
Short summary
Short summary
An abnormally warm period around 400,000 years ago is thought to have resulted in a large melt event for the Greenland Ice Sheet. Using a sequence of climate model simulations connected to an ice model, we estimate a 50 % melt of Greenland compared to today. Importantly, we explore how the exact methodology of connecting the temperatures and precipitation from the climate model to the ice sheet model can influence these results and show that common methods could introduce errors.
Sabrina Hohmann, Michal Kucera, and Anne de Vernal
Clim. Past, 19, 2027–2051, https://doi.org/10.5194/cp-19-2027-2023, https://doi.org/10.5194/cp-19-2027-2023, 2023
Short summary
Short summary
Drivers for dinocyst assemblage compositions differ regionally and through time. Shifts in the assemblages can sometimes only be interpreted robustly by locally and sometimes globally calibrated transfer functions, questioning the reliability of environmental reconstructions. We suggest the necessity of a thorough evaluation of transfer function performance and significance for downcore applications to disclose the drivers for present and fossil dinocyst assemblages in a studied core location.
Michal Kučera and Geert-Jan A. Brummer
J. Micropalaeontol., 42, 33–34, https://doi.org/10.5194/jm-42-33-2023, https://doi.org/10.5194/jm-42-33-2023, 2023
Pauline Cornuault, Thomas Westerhold, Heiko Pälike, Torsten Bickert, Karl-Heinz Baumann, and Michal Kucera
Biogeosciences, 20, 597–618, https://doi.org/10.5194/bg-20-597-2023, https://doi.org/10.5194/bg-20-597-2023, 2023
Short summary
Short summary
We generated high-resolution records of carbonate accumulation rate from the Miocene to the Quaternary in the tropical Atlantic Ocean to characterize the variability in pelagic carbonate production during warm climates. It follows orbital cycles, responding to local changes in tropical conditions, as well as to long-term shifts in climate and ocean chemistry. These changes were sufficiently large to play a role in the carbon cycle and global climate evolution.
Franziska Tell, Lukas Jonkers, Julie Meilland, and Michal Kucera
Biogeosciences, 19, 4903–4927, https://doi.org/10.5194/bg-19-4903-2022, https://doi.org/10.5194/bg-19-4903-2022, 2022
Short summary
Short summary
This study analyses the production of calcite shells formed by one of the main Arctic pelagic calcifiers, the foraminifera N. pachyderma. Using vertically resolved profiles of shell concentration, size and weight, we show that calcification occurs throughout the upper 300 m with an average production flux below the calcification zone of 8 mg CaCO3 m−2 d−1 representing 23 % of the total pelagic biogenic carbonate production. The production flux is attenuated in the twilight zone by dissolution.
Takasumi Kurahashi-Nakamura, André Paul, Ute Merkel, and Michael Schulz
Clim. Past, 18, 1997–2019, https://doi.org/10.5194/cp-18-1997-2022, https://doi.org/10.5194/cp-18-1997-2022, 2022
Short summary
Short summary
With a comprehensive Earth-system model including the global carbon cycle, we simulated the climate state during the last glacial maximum. We demonstrated that the CO2 concentration in the atmosphere both in the modern (pre-industrial) age (~280 ppm) and in the glacial age (~190 ppm) can be reproduced by the model with a common configuration by giving reasonable model forcing and total ocean inventories of carbon and other biogeochemical matter for the respective ages.
Stefan Mulitza, Torsten Bickert, Helen C. Bostock, Cristiano M. Chiessi, Barbara Donner, Aline Govin, Naomi Harada, Enqing Huang, Heather Johnstone, Henning Kuhnert, Michael Langner, Frank Lamy, Lester Lembke-Jene, Lorraine Lisiecki, Jean Lynch-Stieglitz, Lars Max, Mahyar Mohtadi, Gesine Mollenhauer, Juan Muglia, Dirk Nürnberg, André Paul, Carsten Rühlemann, Janne Repschläger, Rajeev Saraswat, Andreas Schmittner, Elisabeth L. Sikes, Robert F. Spielhagen, and Ralf Tiedemann
Earth Syst. Sci. Data, 14, 2553–2611, https://doi.org/10.5194/essd-14-2553-2022, https://doi.org/10.5194/essd-14-2553-2022, 2022
Short summary
Short summary
Stable isotope ratios of foraminiferal shells from deep-sea sediments preserve key information on the variability of ocean circulation and ice volume. We present the first global atlas of harmonized raw downcore oxygen and carbon isotope ratios of various planktonic and benthic foraminiferal species. The atlas is a foundation for the analyses of the history of Earth system components, for finding future coring sites, and for teaching marine stratigraphy and paleoceanography.
Brian R. Crow, Matthias Prange, and Michael Schulz
Clim. Past, 18, 775–792, https://doi.org/10.5194/cp-18-775-2022, https://doi.org/10.5194/cp-18-775-2022, 2022
Short summary
Short summary
To better understand the climate conditions which lead to extensive melting of the Greenland ice sheet, we used climate models to reconstruct the climate conditions of the warmest period of the last 800 000 years, which was centered around 410 000 years ago. Surprisingly, we found that atmospheric circulation changes may have acted to reduce the melt of the ice sheet rather than enhance it, despite the extensive warmth of the time.
Geert-Jan A. Brummer and Michal Kučera
J. Micropalaeontol., 41, 29–74, https://doi.org/10.5194/jm-41-29-2022, https://doi.org/10.5194/jm-41-29-2022, 2022
Short summary
Short summary
To aid researchers working with living planktonic foraminifera, we provide a comprehensive review of names that we consider appropriate for extant species. We discuss the reasons for the decisions we made and provide a list of species and genus-level names as well as other names that have been used in the past but are considered inappropriate for living taxa, stating the reasons.
Lukas Jonkers, Geert-Jan A. Brummer, Julie Meilland, Jeroen Groeneveld, and Michal Kucera
Clim. Past, 18, 89–101, https://doi.org/10.5194/cp-18-89-2022, https://doi.org/10.5194/cp-18-89-2022, 2022
Short summary
Short summary
The variability in the geochemistry among individual foraminifera is used to reconstruct seasonal to interannual climate variability. This method requires that each foraminifera shell accurately records environmental conditions, which we test here using a sediment trap time series. Even in the absence of environmental variability, planktonic foraminifera display variability in their stable isotope ratios that needs to be considered in the interpretation of individual foraminifera data.
Lukas Jonkers, Oliver Bothe, and Michal Kucera
Clim. Past, 17, 2577–2581, https://doi.org/10.5194/cp-17-2577-2021, https://doi.org/10.5194/cp-17-2577-2021, 2021
Julie Meilland, Michael Siccha, Maike Kaffenberger, Jelle Bijma, and Michal Kucera
Biogeosciences, 18, 5789–5809, https://doi.org/10.5194/bg-18-5789-2021, https://doi.org/10.5194/bg-18-5789-2021, 2021
Short summary
Short summary
Planktonic foraminifera population dynamics has long been assumed to be controlled by synchronous reproduction and ontogenetic vertical migration (OVM). Due to contradictory observations, this concept became controversial. We here test it in the Atlantic ocean for four species of foraminifera representing the main clades. Our observations support the existence of synchronised reproduction and OVM but show that more than half of the population does not follow the canonical trajectory.
Jutta E. Wollenburg, Jelle Bijma, Charlotte Cremer, Ulf Bickmeyer, and Zora Mila Colomba Zittier
Biogeosciences, 18, 3903–3915, https://doi.org/10.5194/bg-18-3903-2021, https://doi.org/10.5194/bg-18-3903-2021, 2021
Short summary
Short summary
Cultured at in situ high-pressure conditions Cibicides and Cibicidoides taxa develop lasting ectoplasmic structures that cannot be retracted or resorbed. An ectoplasmic envelope surrounds their test and may protect the shell, e.g. versus carbonate aggressive bottom water conditions. Ectoplasmic roots likely anchor the specimens in areas of strong bottom water currents, trees enable them to elevate themselves above ground, and twigs stabilize and guide the retractable pseudopodial network.
Charlotte L. Spencer-Jones, Erin L. McClymont, Nicole J. Bale, Ellen C. Hopmans, Stefan Schouten, Juliane Müller, E. Povl Abrahamsen, Claire Allen, Torsten Bickert, Claus-Dieter Hillenbrand, Elaine Mawbey, Victoria Peck, Aleksandra Svalova, and James A. Smith
Biogeosciences, 18, 3485–3504, https://doi.org/10.5194/bg-18-3485-2021, https://doi.org/10.5194/bg-18-3485-2021, 2021
Short summary
Short summary
Long-term ocean temperature records are needed to fully understand the impact of West Antarctic Ice Sheet collapse. Glycerol dialkyl glycerol tetraethers (GDGTs) are powerful tools for reconstructing ocean temperature but can be difficult to apply to the Southern Ocean. Our results show active GDGT synthesis in relatively warm depths of the ocean. This research improves the application of GDGT palaeoceanographic proxies in the Southern Ocean.
Delphine Dissard, Gert Jan Reichart, Christophe Menkes, Morgan Mangeas, Stephan Frickenhaus, and Jelle Bijma
Biogeosciences, 18, 423–439, https://doi.org/10.5194/bg-18-423-2021, https://doi.org/10.5194/bg-18-423-2021, 2021
Short summary
Short summary
Results from a data set acquired from living foraminifera T. sacculifer collected from surface waters are presented, allowing us to establish a new Mg/Ca–Sr/Ca–temperature equation improving temperature reconstructions. When combining equations, δ18Ow can be reconstructed with a precision of ± 0.5 ‰, while successive reconstructions involving Mg/Ca and δ18Oc preclude salinity reconstruction with a precision better than ± 1.69. A new direct linear fit to reconstruct salinity could be established.
Kaveh Purkiani, André Paul, Annemiek Vink, Maren Walter, Michael Schulz, and Matthias Haeckel
Biogeosciences, 17, 6527–6544, https://doi.org/10.5194/bg-17-6527-2020, https://doi.org/10.5194/bg-17-6527-2020, 2020
Short summary
Short summary
There has been a steady increase in interest in mining of deep-sea minerals in the eastern Pacific Ocean recently. The ocean state in this region is known to be highly influenced by rotating bodies of water (eddies), some of which can travel long distances in the ocean and impact the deeper layers of the ocean. Better insight into the variability of eddy activity in this region is of great help to mitigate the impact of the benthic ecosystem from future potential deep-sea mining activity.
Markus Raitzsch, Claire Rollion-Bard, Ingo Horn, Grit Steinhoefel, Albert Benthien, Klaus-Uwe Richter, Matthieu Buisson, Pascale Louvat, and Jelle Bijma
Biogeosciences, 17, 5365–5375, https://doi.org/10.5194/bg-17-5365-2020, https://doi.org/10.5194/bg-17-5365-2020, 2020
Short summary
Short summary
The isotopic composition of boron in carbonate shells of marine unicellular organisms is a popular tool to estimate seawater pH. Usually, many shells need to be dissolved and measured for boron isotopes, but the information on their spatial distribution is lost. Here, we investigate two techniques that allow for measuring boron isotopes within single shells and show that they yield robust mean values but provide additional information on the heterogeneity within and between single shells.
Catarina Cavaleiro, Antje H. L. Voelker, Heather Stoll, Karl-Heinz Baumann, and Michal Kucera
Clim. Past, 16, 2017–2037, https://doi.org/10.5194/cp-16-2017-2020, https://doi.org/10.5194/cp-16-2017-2020, 2020
Douglas Lessa, Raphaël Morard, Lukas Jonkers, Igor M. Venancio, Runa Reuter, Adrian Baumeister, Ana Luiza Albuquerque, and Michal Kucera
Biogeosciences, 17, 4313–4342, https://doi.org/10.5194/bg-17-4313-2020, https://doi.org/10.5194/bg-17-4313-2020, 2020
Short summary
Short summary
We observed that living planktonic foraminifera had distinct vertically distributed communities across the Subtropical South Atlantic. In addition, a hierarchic alternation of environmental parameters was measured to control the distribution of planktonic foraminifer's species depending on the water depth. This implies that not only temperature but also productivity and subsurface processes are signed in fossil assemblages, which could be used to perform paleoceanographic reconstructions.
Cited articles
Abels, H. A., Hilgen, F. J., Krijgsman, W., Kruk, R. W., Raffi, I., Turco,
E., and Zachariasse, W. J.: Long-period orbital control on middle Miocene
global cooling: Integrated stratigraphy and astronomical tuning of the Blue
Clay Formation on Malta, Paleoceanography, 20, PA4012,
https://doi.org/10.1029/2004PA001129, 2005.
Allen, K. A., Hönisch, B., Eggins, S. M., and Rosenthal, Y.:
Environmental controls on B/Ca in calcite tests of the tropical planktic
foraminifer species Globigerinoides ruber and Globigerinoides sacculifer, Earth Planet. Sci. Lett., 35/352,
270–280, https://doi.org/10.1016/j.epsl.2012.07.004, 2012.
Auer, G., Piller, W. E., Reuter, M., and Harzhauser, M.: Correlating carbon
and oxygen isotope events in early to middle Miocene shallow marine
carbonates in the Mediterranean region using orbitally tuned
chemostratigraphy and lithostratigraphy, Paleoceanography, 30, 332–352,
https://doi.org/10.1002/2014PA002716, 2015.
Aziz, H. A., Sanz-Rubio, E., Calvo, J. P., Hilgen, F. J., and Krijgsman, W.:
Palaeoenvironmental reconstruction of a middle Miocene alluvial fan to
cyclic shallow lacustrine depositional system in the Calatayud Basin (NE
Spain), Sedimentology, 50, 211–236,
https://doi.org/10.1046/j.1365-3091.2003.00544.x, 2003.
Badger, M. P. S., Lear, C. H., Pancost, R. D., Foster, G. L., Bailey, T. R.,
Leng, M. J., and Abels, H. A.: CO2 drawdown following the middle Miocene
expansion of the Antarctic Ice Sheet, Paleoceanography, 28, 42–53,
https://doi.org/10.1002/palo.20015, 2013.
Badger, M. P. S., Chalk, T. B., Foster, G. L., Bown, P. R., Gibbs, S. J., Sexton, P. F., Schmidt, D. N., Pälike, H., Mackensen, A., and Pancost, R. D.: Insensitivity of alkenone carbon isotopes to atmospheric CO2 at low to moderate CO2 levels, Clim. Past, 15, 539–554, https://doi.org/10.5194/cp-15-539-2019, 2019.
Barker, S., Greaves, M., and Elderfield, H.: A study of cleaning procedures
used for foraminiferal Mg/Ca paleothermometry, Geochem. Geophy. Geosy.,
4, 8407, https://doi.org/10.1029/2003GC000559, 2003.
Betzler, C., Eberli, G. P., Lüdmann, T., Reolid, J., Kroon, D., Reijmer,
J. J. G., Swart, P. K., Wright, J., Young, J. R., Alvarez-Zarikian, C.,
Alonso-García, M., Bialik, O. M., Blättler, C. L., Guo, J. A.,
Haffen, S., Horozal, S., Inoue, M., Jovane, L., Lanci, L., Laya, J. C., Hui
Mee, A. L., Nakakuni, M., Nath, B. N., Niino, K., Petruny, L. M., Pratiwi,
S. D., Slagle, A. L., Sloss, C. R., Su, X., and Yao, Z.: Refinement of
Miocene sea level and monsoon events from the sedimentary archive of the
Maldives (Indian Ocean), Prog. Earth Planet. Sci., 5, 5,
https://doi.org/10.1186/s40645-018-0165-x, 2018.
Boudreau, B. P. and Luo, Y.: Retrodiction of secular variations in deep-sea
CaCO3 burial during the Cenozoic, Earth Planet. Sci. Lett., 474, 1–12,
https://doi.org/10.1016/j.epsl.2017.06.005, 2017.
Boudreau, B. P., Middelburg, J. J., Sluijs, A., and van der Ploeg, R.:
Secular variations in the carbonate chemistry of the oceans over the
Cenozoic, Earth Planet. Sci. Lett., 512, 194–206,
https://doi.org/10.1016/j.epsl.2019.02.004, 2019.
Brennan, S. T., Lowenstein, T. K., and Cendón, D. I.: The major-ion
composition of Cenozoic seawater: The past 36 million years from fluid
inclusions in marine halite, Am. J. Sci., 313, 713–775,
https://doi.org/10.2475/08.2013.01, 2013.
Caves, J. K., Jost, A. B., Lau, K. V., and Maher, K.: Cenozoic carbon cycle
imbalances and a variable weathering feedback, Earth Planet. Sci. Lett.,
450, 152–163, https://doi.org/10.1016/j.epsl.2016.06.035, 2016.
Clift, P. D. and Plumb, R. A.: The Asian Monsoon: Causes, History and
Effects, Cambridge University Press, Cambridge, UK, 2008.
Coxall, H. K., Wilson, P. A., Pälike, H., Lear, C. H., and Backman, J.:
Rapid stepwise onset of Antarctic glaciation and deeper calcite compensation
in the Pacific Ocean, Nature, 433, 53–57, https://doi.org/10.1038/nature03135,
2005.
Diekmann, B., Falker, M., and Kuhn, G.: Environmental history of the
south-eastern South Atlantic since the Middle Miocene: evidence from the
sedimentological records of ODP Sites 1088 and 1092, Sedimentology, 50,
511–529, https://doi.org/10.1046/j.1365-3091.2003.00562.x, 2003.
Dyez, K. A., Hönisch, B., and Schmidt, G. A.: Early Pleistocene
Obliquity-Scale pCO2 Variability at 1.5 Million Years Ago, Paleocean.
Paleoclimat., 33, 1270–1291, https://doi.org/10.1029/2018PA003349,
2018.
Evans, D. and Müller, W.: Deep time foraminifera Mg/Ca paleothermometry:
Nonlinear correction for secular change in seawater Mg/Ca, Paleoceanography,
27, PA4205, https://doi.org/10.1029/2012PA002315, 2012.
Flower, B. P. and Kennett, J. P.: Middle Miocene ocean-climate transition:
High-resolution oxygen and carbon isotopic records from Deep Sea Drilling
Project Site 588A, southwest Pacific, Paleoceanography, 8, 811–843,
https://doi.org/10.1029/93PA02196, 1993.
Flower, B. P. and Kennett, J. P.: The middle Miocene climatic transition:
East Antarctic ice sheet development, deep ocean circulation and global
carbon cycling, Paleogeogr. Paleoclimatol., 108, 537–555,
https://doi.org/10.1016/0031-0182(94)90251-8, 1994.
Foster, G. L., Lear, C. H., and Rae, J. W. B.: The evolution of pCO2, ice
volume and climate during the middle Miocene, Earth Planet. Sci. Lett.,
344, 243–254, https://doi.org/10.1016/j.epsl.2012.06.007, 2012.
François, R., Altabet, M. A., Yu, E.-F., Sigman, D. M., Bacon, M. P.,
Frank, M., Bohrmann, G., Bareille, G., and Labeyrie, L. D.: Contribution of
Southern Ocean surface-water stratification to low atmospheric CO2
concentrations during the last glacial period, Nature, 389, 929–935,
https://doi.org/10.1038/40073, 1997.
Gaillardet, J., Lemarchand, D., Göpel, C., and Manhès, G.: Evaporation and Sublimation of Boric Acid: Application for Boron Purification from Organic Rich Solutions, Geostand. Newsl., 25, 67–75, https://doi.org/10.1111/j.1751-908X.2001.tb00788.x, 2001.
Goyet, C., Healy, R., Ryan, J., and Kozyr, A.: Global Distribution of Total
Inorganic Carbon and Total Alkalinity below the Deepest Winter Mixed Layer
Depths, ORNL/CDIAC-127, NDP-076, Carbon Dioxide Information Analysis
Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge,
USA, available at:
https://digital.library.unt.edu/ark:/67531/metadc724552/m1/7/ (last access: 18 May 2017), 2000.
Gray, W. R. and Evans, D.: Nonthermal Influences on Mg/Ca in Planktonic
Foraminifera: A Review of Culture Studies and Application to the Last
Glacial Maximum, Paleocean. Paleoclimat., 34, 306–315,
https://doi.org/10.1029/2018PA003517, 2019.
Greenop, R., Foster, G. L., Wilson, P. A., and Lear, C. H.: Middle Miocene
climate instability associated with high-amplitude CO2 variability,
Paleoceanography, 29, 2014PA002653, https://doi.org/10.1002/2014PA002653, 2014.
Greenop, R., Hain, M. P., Sosdian, S. M., Oliver, K. I. C., Goodwin, P., Chalk, T. B., Lear, C. H., Wilson, P. A., and Foster, G. L.: A record of Neogene seawater δ11B reconstructed from paired δ11B analyses on benthic and planktic foraminifera, Clim. Past, 13, 149–170, https://doi.org/10.5194/cp-13-149-2017, 2017.
Greenop, R., Sosdian, S. M., Henehan, M. J., Wilson, P. A., Lear, C. H., and
Foster, G. L.: Orbital Forcing, Ice Volume, and CO2 Across the
Oligocene-Miocene Transition, Paleocean. Paleoclimat., 34, 316–328,
https://doi.org/10.1029/2018PA003420, 2019.
Hain, M. P., Sigman, D. M., Higgins, J. A., and Haug, G. H.: The effects of
secular calcium and magnesium concentration changes on the thermodynamics of
seawater acid/base chemistry: Implications for Eocene and Cretaceous ocean
carbon chemistry and buffering, Global Biogeochem. Cy., 29, 517–533,
https://doi.org/10.1002/2014GB004986, 2015.
Hain, M. P., Sigman, D. M., Higgins, J. A., and Haug, G. H.: Response to
Comment by Zeebe and Tyrrell on “The Effects of Secular Calcium and
Magnesium Concentration Changes on the Thermodynamics of Seawater Acid/Base
Chemistry: Implications for the Eocene and Cretaceous Ocean Carbon Chemistry
and Buffering”, Global Biogeochem. Cy., 32, 898–901,
https://doi.org/10.1002/2018GB005931, 2018.
Henehan, M. J., Foster, G. L., Bostock, H. C., Greenop, R., Marshall, B. J.,
and Wilson, P. A.: A new boron isotope-pH calibration for Orbulina universa, with
implications for understanding and accounting for “vital effects”, Earth
Planet. Sci. Lett., 454, 282–292, https://doi.org/10.1016/j.epsl.2016.09.024, 2016.
Heureux, A. M. C. and Rickaby, R. E. M.: Refining our estimate of
atmospheric CO2 across the Eocene-Oligocene climatic transition, Earth
Planet. Sci. Lett., 409, 329–338, https://doi.org/10.1016/j.epsl.2014.10.036, 2015.
Hodell, D. A. and Woodruff, F.: Variations in the strontium isotopic ratio
of seawater during the Miocene: Stratigraphic and geochemical implications,
Paleoceanography, 9, 405–426, https://doi.org/10.1029/94PA00292,
1994.
Holbourn, A., Kuhnt, W., Simo, J. A., and Li, Q.: Middle Miocene
isotope stratigraphy and paleoceanographic evolution of the northwest and
southwest Australian margins (Wombat Plateau and Great Australian Bight),
Paleogeogr. Paleoclimatol., 208, 1–22,
https://doi.org/10.1016/j.palaeo.2004.02.003, 2004.
Holbourn, A., Kuhnt, W., Schulz, M., and Erlenkeuser, H.: Impacts of orbital
forcing and atmospheric carbon dioxide on Miocene ice-sheet expansion,
Nature, 438, 483–487, https://doi.org/10.1038/nature04123, 2005.
Holbourn, A., Kuhnt, W., Schulz, M., Flores, J.-A., and Andersen, N.:
Orbitally-paced climate evolution during the middle Miocene “Monterey”
carbon-isotope excursion, Earth Planet. Sci. Lett., 261, 534–550,
https://doi.org/10.1016/j.epsl.2007.07.026, 2007.
Holbourn, A., Kuhnt, W., Frank, M., and Haley, B. A.: Changes in Pacific
Ocean circulation following the Miocene onset of permanent Antarctic ice
cover, Earth Planet. Sci. Lett., 365, 38–50,
https://doi.org/10.1016/j.epsl.2013.01.020, 2013.
Holbourn, A., Kuhnt, W., Lyle, M., Schneider, L., Romero, O., and Andersen,
N.: Middle Miocene climate cooling linked to intensification of eastern
equatorial Pacific upwelling, Geology, 42, 19–22, https://doi.org/10.1130/G34890.1,
2014.
Horita, J., Zimmermann, H., and Holland, H. D.: Chemical evolution of
seawater during the Phanerozoic: Implications from the record of marine
evaporites, Geochim. Cosmochim. Ac., 66, 3733–3756,
https://doi.org/10.1016/S0016-7037(01)00884-5, 2002.
Ji, S., Nie, J., Lechler, A., Huntington, K. W., Heitmann, E. O., and
Breecker, D. O.: A symmetrical CO2 peak and asymmetrical climate change
during the middle Miocene, Earth Planet. Sci. Lett., 499, 134–144,
https://doi.org/10.1016/j.epsl.2018.07.011, 2018.
Jonkers, L. and Kučera, M.: Global analysis of seasonality in the shell flux of extant planktonic Foraminifera, Biogeosciences, 12, 2207–2226, https://doi.org/10.5194/bg-12-2207-2015, 2015.
Knorr, G. and Lohmann, G.: Climate warming during Antarctic ice sheet
expansion at the Middle Miocene transition, Nat. Geosci., 7, 376–381,
https://doi.org/10.1038/ngeo2119, 2014.
Kölling, M., Bouimetarhan, I., Bowles, M. W., Felis, T., Goldhammer, T.,
Hinrichs, K.-U., Schulz, M., and Zabel, M.: Consistent CO2 release by
pyrite oxidation on continental shelves prior to glacial terminations,
Nat. Geosci., 12, 929–934, https://doi.org/10.1038/s41561-019-0465-9, 2019.
Kroon, D., Williams, T., Pirmez, C., Spezzaferri, S., Sato, T., and Wright,
J. D.: Coupled early Pliocene-middle Miocene bio-cyclostratigraphy of Site 1006 reveals orbitally induced cyclicity patterns of Great Bahama Bank
carbonate production, Proceedings of the Ocean Drilling Program, 166, 155–166, https://doi.org/10.2973/odp.proc.sr.166.127.2000, 2000.
Kuhnert, H., Bickert, T., and Paulsen, H.: Southern Ocean frontal system
changes precede Antarctic ice sheet growth during the middle Miocene, Earth
Planet. Sci. Lett., 284, 630–638, https://doi.org/10.1016/j.epsl.2009.05.030,
2009.
Kürschner, W. M., Kvaček, Z., and Dilcher, D. L.: The impact of
Miocene atmospheric carbon dioxide fluctuations on climate and the evolution
of terrestrial ecosystems, P. Natl. Acad. Sci., 105, 449–453,
https://doi.org/10.1073/pnas.0708588105, 2008.
Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A. C. M., and
Levrard, B.: A long-term numerical solution for the insolation quantities of
the Earth, Astron. Astrophys., 428, 25, https://doi.org/10.1051/0004-6361:20041335,
2004.
Lavigne, H., Epitalon, J.-M., and Gattuso, J.-P.: seacarb: seawater carbonate
chemistry with R., available at:
http://CRAN.R-project.org/package=seacarb (last access: 30 October 2020), 2011.
Lear, C. H., Rosenthal, Y., Coxall, H. K., and Wilson, P. A.: Late Eocene to
early Miocene ice sheet dynamics and the global carbon cycle,
Paleoceanography, 19, PA4015, https://doi.org/10.1029/2004PA001039, 2004.
Lear, C. H., Mawbey, E. M., and Rosenthal, Y.: Cenozoic benthic foraminiferal
Mg/Ca and Li/Ca records: Toward unlocking temperatures and saturation
states, Paleoceanography, 25, PA4215, https://doi.org/10.1029/2009PA001880, 2010.
Lemarchand, D., Gaillardet, J., Lewin, É., and Allègre, C. J.: The
influence of rivers on marine boron isotopes and implications for
reconstructing past ocean pH, Nature, 408, 951–954, https://doi.org/10.1038/35050058,
2000.
Leutert, T. J., Auderset, A., Martínez-García, A., Modestou, S.,
and Meckler, A. N.: Coupled Southern Ocean cooling and Antarctic ice sheet
expansion during the middle Miocene, Nat. Geosci., 13, 634–639,
https://doi.org/10.1038/s41561-020-0623-0, 2020.
Lowenstein, T. K., Hardie, L. A., Timofeeff, M. N., and Demicco, R. V.:
Secular variation in seawater chemistry and the origin of calcium chloride
basinal brines, Geology, 31, 857–860, https://doi.org/10.1130/G19728R.1, 2003.
Ma, W., Tian, J., Li, Q., and Wang, P.: Simulation of long eccentricity
(400-kyr) cycle in ocean carbon reservoir during Miocene Climate Optimum:
Weathering and nutrient response to orbital change, Geophys. Res. Lett.,
38, L10701, https://doi.org/10.1029/2011GL047680, 2011.
Ma, X., Tian, J., Ma, W., Li, K., and Yu, J.: Changes of deep Pacific
overturning circulation and carbonate chemistry during middle Miocene East
Antarctic ice sheet expansion, Earth Planet. Sci. Lett., 484, 253–263,
https://doi.org/10.1016/j.epsl.2017.12.002, 2018.
Martínez-Botí, M. A., Marino, G., Foster, G. L., Ziveri, P.,
Henehan, M. J., Rae, J. W. B., Mortyn, P. G., and Vance, D.: Boron isotope
evidence for oceanic carbon dioxide leakage during the last deglaciation,
Nature, 518, 219–222, https://doi.org/10.1038/nature14155, 2015.
Mashiotta, T. A., Lea, D. W., and Spero, H. J.: Glacial-interglacial changes
in Subantarctic sea surface temperature and δ18O-water using
foraminiferal Mg, Earth Planet. Sci Lett., 170, 417–432,
https://doi.org/10.1016/S0012-821X(99)00116-8, 1999.
McKay, D. I. A., Tyrrell, T., and Wilson, P. A.: Global carbon cycle
perturbation across the Eocene-Oligocene climate transition,
Paleoceanography, 31, 311–329, https://doi.org/10.1002/2015PA002818, 2016.
Misra, S., Owen, R., Kerr, J., Greaves, M., and Elderfield, H.: Determination
of δ11B by HR-ICP-MS from mass limited samples: Application to
natural carbonates and water samples, Geochim. Cosmochim. Ac., 140,
531–552, https://doi.org/10.1016/j.gca.2014.05.047, 2014.
Mortyn, P. G. and Charles, C. D.: Planktonic foraminiferal depth habitat and
δ18O calibrations: Plankton tow results from the Atlantic
sector of the Southern Ocean, Paleoceanography, 18, 1037,
https://doi.org/10.1029/2001PA000637, 2003.
Myers, S. R.: Astrochron: An R Package for Astrochronology, available at: https://cran.r-project.org/package=astrochron (last access: 8 January 2019), 2014.
Ohneiser, C. and Wilson, G. S.: Eccentricity-Paced Southern Hemisphere
Glacial-Interglacial Cyclicity Preceding the Middle Miocene Climatic
Transition, Paleocean. Paleoclimat., 33, https://doi.org/10.1029/2017PA003278, 2018.
Pagani, M., Freeman, K. H., and Arthur, M. A.: Late Miocene Atmospheric
CO2 Concentrations and the Expansion of C4 Grasses, Science, 285,
876–879, https://doi.org/10.1126/science.285.5429.876, 1999.
Paillard, D. and Donnadieu, Y.: A 100 Myr history of the carbon cycle based
on the 400 kyr cycle in marine δ13C benthic records,
Paleoceanography, 29, 1249–1255,
https://doi.org/10.1002/2014PA002693, 2014.
Paulsen, H.: Miocene changes in the vertical structure of the Southeast
Atlantic near-surface water column: Influence on the paleoproductivity, PhD
thesis, Universität Bremen, FB Geowissenschaften, Bremen, Germany, available at: https://media.suub.uni-bremen.de/handle/elib/2188 (last access: 24 November 2020), 2005.
Pearson, P. N. and Palmer, M. R.: Atmospheric carbon dioxide concentrations
over the past 60 million years, Nature, 406, 695–699, https://doi.org/10.1038/35021000,
2000.
Pearson, P. N., Foster, G. L., and Wade, B. S.: Atmospheric carbon dioxide
through the Eocene-Oligocene climate transition, Nature, 461,
1110–1113, https://doi.org/10.1038/nature08447, 2009.
Rae, J. W. B., Foster, G. L., Schmidt, D. N., and Elliott, T.: Boron isotopes
and B/Ca in benthic foraminifera: Proxies for the deep ocean carbonate
system, Earth Planet. Sci. Lett., 302, 403–413,
https://doi.org/10.1016/j.epsl.2010.12.034, 2011.
Raitzsch, M. and Hönisch, B.: Cenozoic boron isotope variations in
benthic foraminifers, Geology, 41, 591–594,
https://doi.org/10.1130/G34031.1, 2013.
Raitzsch, M., Kuhnert, H., Groeneveld, J., and Bickert, T.: Benthic
foraminifer Mg/Ca anomalies in South Atlantic core top sediments and their
implications for paleothermometry, Geochem. Geophy. Geosy., 9, Q05010,
https://doi.org/10.1029/2007GC001788, 2008.
Raitzsch, M., Bijma, J., Benthien, A., Richter, K.-U., Steinhoefel, G., and
Kučera, M.: Boron isotope-based seasonal paleo-pH reconstruction for the
Southeast Atlantic – A multispecies approach using habitat preference of
planktonic foraminifera, Earth Planet. Sci. Lett., 487, 138–150,
https://doi.org/10.1016/j.epsl.2018.02.002, 2018.
Raitzsch, M., Rollion-Bard, C., Horn, I., Steinhoefel, G., Benthien, A., Richter, K.-U., Buisson, M., Louvat, P., and Bijma, J.: Technical note: Single-shell δ11B analysis of Cibicidoides wuellerstorfi using femtosecond laser ablation MC-ICPMS and secondary ion mass spectrometry, Biogeosciences, 17, 5365–5375, https://doi.org/10.5194/bg-17-5365-2020, 2020.
Reolid, J., Betzler, C., and Lüdmann, T.: The record of Oligocene –
Middle Miocene paleoenvironmental changes in a carbonate platform (IODP Exp.
359, Maldives, Indian Ocean), Mar. Geol., 412, 199–216,
https://doi.org/10.1016/j.margeo.2019.03.011, 2019.
Reuning, L., Reijmer, J. J. G., and Betzler, C.: Sedimentation cycles and
their diagenesis on the slope of a Miocene carbonate ramp (Bahamas, ODP Leg
166), Mar. Geol., 185, 121–142, https://doi.org/10.1016/S0025-3227(01)00293-6, 2002.
Ridgwell, A.: A Mid Mesozoic Revolution in the regulation of ocean
chemistry, Mar. Geol., 217, 339–357, https://doi.org/10.1016/j.margeo.2004.10.036,
2005.
Shackleton, N. J.: Attainment of isotopic equilibrium between ocean water
and the benthonic foraminifera genus Uvigerina: isotopic changes in the ocean during
the last glacial, Cent. Nat. Rech. Sci. Colloq. Int., 219, 203–209, 1974.
Shevenell, A. E. and Kennett, J. P.: Paleoceanographic Change During the
Middle Miocene Climate Revolution: An Antarctic Stable Isotope Perspective,
in: The Cenozoic Southern Ocean: Tectonics, Sedimentation, and Climate Change
Between Australia and Antarctica, American Geophysical Union, Washington, DC, USA,
235–251, 2004.
Shevenell, A. E., Kennett, J. P., and Lea, D. W.: Middle Miocene Southern
Ocean Cooling and Antarctic Cryosphere Expansion, Science, 305, 1766–1770,
https://doi.org/10.1126/science.1100061, 2004.
Shevenell, A. E., Kennett, J. P., and Lea, D. W.: Middle Miocene ice sheet
dynamics, deep-sea temperatures, and carbon cycling: A Southern Ocean
perspective, Geochem. Geophy. Geosy., 9, Q02006,
https://doi.org/10.1029/2007GC001736, 2008.
Sosdian, S. M. and Lear, C. H.: Initiation of the Western Pacific Warm Pool
at the Middle Miocene Climate Transition?, Paleocean. Paleoclimat., 35,
e2020PA003920, https://doi.org/10.1029/2020PA003920, 2020.
Sosdian, S. M., Greenop, R., Hain, M. P., Foster, G. L., Pearson, P. N., and
Lear, C. H.: Constraining the evolution of Neogene ocean carbonate chemistry
using the boron isotope pH proxy, Earth Planet. Sci. Lett., 498, 362–376,
https://doi.org/10.1016/j.epsl.2018.06.017, 2018.
Sosdian, S. M., Babila, T. L., Greenop, R., Foster, G. L., and Lear, C. H.:
Ocean Carbon Storage across the middle Miocene: a new interpretation for the
Monterey Event, Nat. Commun., 11, 1–11, https://doi.org/10.1038/s41467-019-13792-0,
2020.
Stoll, H. M., Guitian, J., Hernandez-Almeida, I., Mejia, L. M., Phelps, S.,
Polissar, P., Rosenthal, Y., Zhang, H., and Ziveri, P.: Upregulation of
phytoplankton carbon concentrating mechanisms during low CO2 glacial
periods and implications for the phytoplankton pCO2 proxy, Quat. Sci.
Rev., 208, 1–20, https://doi.org/10.1016/j.quascirev.2019.01.012, 2019.
Super, J. R., Thomas, E., Pagani, M., Huber, M., O'Brien, C., and Hull, P.
M.: North Atlantic temperature and pCO2 coupling in the early-middle
Miocene, Geology, 46, 519–522, https://doi.org/10.1130/G40228.1, 2018.
Takahashi, T., Olafsson, J., Goddard, J. G., Chipman, D. W., and Sutherland,
S. C.: Seasonal variation of CO2 and nutrients in the high-latitude
surface oceans: A comparative study, Global Biogeochem. Cy., 7, 843–878,
https://doi.org/10.1029/93GB02263, 1993.
Takahashi, T., Sutherland, S. C., Wanninkhof, R., Sweeney, C., Feely, R. A.,
Chipman, D. W., Hales, B., Friederich, G., Chavez, F., Sabine, C., Watson,
A., Bakker, D. C. E., Schuster, U., Metzl, N., Yoshikawa-Inoue, H., Ishii,
M., Midorikawa, T., Nojiri, Y., Körtzinger, A., Steinhoff, T., Hoppema,
M., Olafsson, J., Arnarson, T. S., Tilbrook, B., Johannessen, T., Olsen, A.,
Bellerby, R., Wong, C. S., Delille, B., Bates, N. R., and de Baar, H. J. W.:
Climatological mean and decadal change in surface ocean pCO2, and net
sea-air CO2 flux over the global oceans, Deep-Sea Res., 56,
554–577, https://doi.org/10.1016/j.dsr2.2008.12.009, 2009.
Tian, J., Shevenell, A., Wang, P., Zhao, Q., Li, Q., and Cheng, X.:
Reorganization of Pacific Deep Waters linked to middle Miocene Antarctic
cryosphere expansion: A perspective from the South China Sea, Paleogeogr.
Paleoclimatol., 284, 375–382,
https://doi.org/10.1016/j.palaeo.2009.10.019, 2009.
Timofeeff, M. N., Lowenstein, T. K., da Silva, M. A. M., and Harris, N. B.:
Secular variation in the major-ion chemistry of seawater: Evidence from
fluid inclusions in Cretaceous halites, Geochim. Cosmochim. Ac., 70,
1977–1994, https://doi.org/10.1016/j.gca.2006.01.020, 2006.
Toggweiler, J. R.: Origin of the 100 000-year timescale in Antarctic
temperatures and atmospheric CO2, Paleoceanography, 23, PA2211,
https://doi.org/10.1029/2006PA001405, 2008.
Tyrrell, T. and Zeebe, R. E.: History of carbonate ion concentration over
the last 100 million years, Geochim. Cosmochim. Ac., 68, 3521–3530,
https://doi.org/10.1016/j.gca.2004.02.018, 2004.
van der Ploeg, R., Boudreau, B. P., Middelburg, J. J., and Sluijs, A.:
Cenozoic carbonate burial along continental margins, Geology, 47,
1025–1028, https://doi.org/10.1130/G46418.1, 2019.
Vincent, E. and Berger, W. H.: Carbon dioxide and polar cooling in the
Miocene: the Monterey hypothesis, in: The Carbon Cycle and Atmospheric
CO2: Natural Variations Archean to Present, edited by: Sundquist, E. T. and Broecker, W. S., American
Geophysical Union, Washington, USA,
455–468,
https://doi.org/10.1029/GM032p0455, 1985.
Wan, S., Kürschner, W. M., Clift, P. D., Li, A., and Li, T.: Extreme
weathering/erosion during the Miocene Climatic Optimum: Evidence from
sediment record in the South China Sea, Geophys. Res. Lett., 36, L19706,
https://doi.org/10.1029/2009GL040279, 2009.
Wang, B.-S., You, C.-F., Huang, K.-F., Wu, S.-F., Aggarwal, S. K., Chung,
C.-H., and Lin, P.-Y.: Direct separation of boron from Na- and Ca-rich
matrices by sublimation for stable isotope measurement by MC-ICP-MS,
Talanta, 82, 1378–1384, https://doi.org/10.1016/j.talanta.2010.07.010, 2010.
Wang, P.: Global monsoon in a geological perspective, Chin. Sci. Bull.,
54, 1113–1136, https://doi.org/10.1007/s11434-009-0169-4, 2009.
Williams, T., Kroon, D., and Spezzaferri, S.: Middle and Upper Miocene
cyclostratigraphy of downhole logs and short- to long-term astronomical
cycles in carbonate production of the Great Bahama Bank, Mar. Geol., 185,
75–93, https://doi.org/10.1016/S0025-3227(01)00291-2, 2002.
Woodruff, F. and Savin, S.: Mid-Miocene isotope stratigraphy in the deep
sea: high resolution correlations, paleoclimatic cycles, and sediment
preservation, Paleoceanography, 6, 755–806,
https://doi.org/10.1029/91PA02561, 1991.
Wright, J. D., Miller, K. G., and Fairbanks, R. G.: Early and Middle Miocene
stable isotopes: Implications for Deepwater circulation and climate,
Paleoceanography, 7, 357–389, https://doi.org/10.1029/92PA00760, 1992.
Zeebe, R. E. and Tyrrell, T.: History of carbonate ion concentration over
the last 100 million years II: Revised calculations and new data, Geochim.
Cosmochim. Ac., 257, 373–392, https://doi.org/10.1016/j.gca.2019.02.041, 2019.
Zeebe, R. E. and Wolf-Gladrow, D. A.: CO2 in Seawater: Equilibrium,
Kinetics, Isotopes, Elsevier Oceanography Series, Amsterdam, the Netherlands, 2001.
Short summary
At approximately 14 Ma, the East Antarctic Ice Sheet expanded to almost its current extent, but the role of CO2 in this major climate transition is not entirely known. We show that atmospheric CO2 might have varied on 400 kyr cycles linked to the eccentricity of the Earth’s orbit. The resulting change in weathering and ocean carbon cycle affected atmospheric CO2 in a way that CO2 rose after Antarctica glaciated, helping to stabilize the climate system on its way to the “ice-house” world.
At approximately 14 Ma, the East Antarctic Ice Sheet expanded to almost its current extent, but...