Articles | Volume 17, issue 2
https://doi.org/10.5194/cp-17-703-2021
https://doi.org/10.5194/cp-17-703-2021
Research article
 | 
26 Mar 2021
Research article |  | 26 Mar 2021

Atmospheric carbon dioxide variations across the middle Miocene climate transition

Markus Raitzsch, Jelle Bijma, Torsten Bickert, Michael Schulz, Ann Holbourn, and Michal Kučera

Related authors

Reviews and syntheses: Carbon vs. cation based MRV of Enhanced Rock Weathering and the issue of soil organic carbon
Jelle Bijma, Mathilde Hagens, Jens S. Hammes, Noah Planavsky, Philip A. E. Pogge von Strandmann, Tom Reershemius, Christopher T. Reinhard, Phil Renforth, Tim J. Suhrhoff, Sara Vicca, Arthur Vienne, and Dieter Wolf-Gladrow
Biogeosciences, 23, 53–75, https://doi.org/10.5194/bg-23-53-2026,https://doi.org/10.5194/bg-23-53-2026, 2026
Short summary
Identification of diagenetic overprint and recrystallization of foraminiferal shell calcite by Electron Backscattered Diffraction (EBSD)
Anna Sancho Vaquer, Erika Griesshaber, Julie Meilland, Xiaofei Yin, Michael Siccha, Michal Kucera, and Wolfgang W. Schmahl
EGUsphere, https://doi.org/10.5194/egusphere-2025-6224,https://doi.org/10.5194/egusphere-2025-6224, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Orbital-scale variability in the contribution of foraminifera and coccolithophores to pelagic carbonate production
Pauline Cornuault, Luc Beaufort, Heiko Pälike, Torsten Bickert, Karl-Heinz Baumann, and Michal Kucera
Biogeosciences, 22, 7973–7984, https://doi.org/10.5194/bg-22-7973-2025,https://doi.org/10.5194/bg-22-7973-2025, 2025
Short summary
A δ11B-pH calibration for the high-latitude foraminifera species Neogloboquadrina pachyderma and Neogloboquadrina incompta
Elwyn de la Vega, Markus Raitzsch, Gavin L. Foster, Jelle Bijma, Ulysses S. Ninnemann, Michal Kucera, Tali Lea Babila, Jessica Crumpton Banks, Mohamed M. Ezat, and Audrey Morley
Biogeosciences, 22, 6765–6785, https://doi.org/10.5194/bg-22-6765-2025,https://doi.org/10.5194/bg-22-6765-2025, 2025
Short summary
The PALMOD 130k marine palaeoclimate data synthesis version 2
Lukas Jonkers, Martina Hollstein, Michael Siccha, and Michal Kucera
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-599,https://doi.org/10.5194/essd-2025-599, 2025
Preprint under review for ESSD
Short summary

Cited articles

Abels, H. A., Hilgen, F. J., Krijgsman, W., Kruk, R. W., Raffi, I., Turco, E., and Zachariasse, W. J.: Long-period orbital control on middle Miocene global cooling: Integrated stratigraphy and astronomical tuning of the Blue Clay Formation on Malta, Paleoceanography, 20, PA4012, https://doi.org/10.1029/2004PA001129, 2005. 
Allen, K. A., Hönisch, B., Eggins, S. M., and Rosenthal, Y.: Environmental controls on B/Ca in calcite tests of the tropical planktic foraminifer species Globigerinoides ruber and Globigerinoides sacculifer, Earth Planet. Sci. Lett., 35/352, 270–280, https://doi.org/10.1016/j.epsl.2012.07.004, 2012. 
Auer, G., Piller, W. E., Reuter, M., and Harzhauser, M.: Correlating carbon and oxygen isotope events in early to middle Miocene shallow marine carbonates in the Mediterranean region using orbitally tuned chemostratigraphy and lithostratigraphy, Paleoceanography, 30, 332–352, https://doi.org/10.1002/2014PA002716, 2015. 
Aziz, H. A., Sanz-Rubio, E., Calvo, J. P., Hilgen, F. J., and Krijgsman, W.: Palaeoenvironmental reconstruction of a middle Miocene alluvial fan to cyclic shallow lacustrine depositional system in the Calatayud Basin (NE Spain), Sedimentology, 50, 211–236, https://doi.org/10.1046/j.1365-3091.2003.00544.x, 2003. 
Badger, M. P. S., Lear, C. H., Pancost, R. D., Foster, G. L., Bailey, T. R., Leng, M. J., and Abels, H. A.: CO2 drawdown following the middle Miocene expansion of the Antarctic Ice Sheet, Paleoceanography, 28, 42–53, https://doi.org/10.1002/palo.20015, 2013. 
Download
Short summary
At approximately 14 Ma, the East Antarctic Ice Sheet expanded to almost its current extent, but the role of CO2 in this major climate transition is not entirely known. We show that atmospheric CO2 might have varied on 400 kyr cycles linked to the eccentricity of the Earth’s orbit. The resulting change in weathering and ocean carbon cycle affected atmospheric CO2 in a way that CO2 rose after Antarctica glaciated, helping to stabilize the climate system on its way to the “ice-house” world.
Share