Articles | Volume 17, issue 2
https://doi.org/10.5194/cp-17-703-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-17-703-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Atmospheric carbon dioxide variations across the middle Miocene climate transition
MARUM – Zentrum für Marine Umweltwissenschaften, Universität Bremen, Leobener Straße 8, 28359 Bremen, Germany
Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und
Meeresforschung, Am Handelshafen 12, 27570 Bremerhaven, Germany
Jelle Bijma
Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und
Meeresforschung, Am Handelshafen 12, 27570 Bremerhaven, Germany
Torsten Bickert
MARUM – Zentrum für Marine Umweltwissenschaften, Universität Bremen, Leobener Straße 8, 28359 Bremen, Germany
Michael Schulz
MARUM – Zentrum für Marine Umweltwissenschaften, Universität Bremen, Leobener Straße 8, 28359 Bremen, Germany
Ann Holbourn
Institut für Geowissenschaften, Christian-Albrechts-Universität, 24118 Kiel, Germany
Michal Kučera
MARUM – Zentrum für Marine Umweltwissenschaften, Universität Bremen, Leobener Straße 8, 28359 Bremen, Germany
Viewed
Total article views: 4,747 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 20 Jul 2020)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
3,567 | 1,087 | 93 | 4,747 | 391 | 83 | 111 |
- HTML: 3,567
- PDF: 1,087
- XML: 93
- Total: 4,747
- Supplement: 391
- BibTeX: 83
- EndNote: 111
Total article views: 3,936 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 26 Mar 2021)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
3,084 | 786 | 66 | 3,936 | 243 | 62 | 82 |
- HTML: 3,084
- PDF: 786
- XML: 66
- Total: 3,936
- Supplement: 243
- BibTeX: 62
- EndNote: 82
Total article views: 811 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 20 Jul 2020)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
483 | 301 | 27 | 811 | 148 | 21 | 29 |
- HTML: 483
- PDF: 301
- XML: 27
- Total: 811
- Supplement: 148
- BibTeX: 21
- EndNote: 29
Viewed (geographical distribution)
Total article views: 4,747 (including HTML, PDF, and XML)
Thereof 4,566 with geography defined
and 181 with unknown origin.
Total article views: 3,936 (including HTML, PDF, and XML)
Thereof 3,763 with geography defined
and 173 with unknown origin.
Total article views: 811 (including HTML, PDF, and XML)
Thereof 803 with geography defined
and 8 with unknown origin.
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Cited
13 citations as recorded by crossref.
- A dynamic ocean driven by changes in CO2 and Antarctic ice-sheet in the middle Miocene A. Frigola et al. 10.1016/j.palaeo.2021.110591
- East Asian summer monsoon evolution recorded by the middle Miocene pelagic reddish clay, South China Sea P. Ma et al. 10.1016/j.gloplacha.2023.104072
- Atmospheric CO<sub>2</sub> estimates for the Miocene to Pleistocene based on foraminiferal <i>δ</i><sup>11</sup>B at Ocean Drilling Program Sites 806 and 807 in the Western Equatorial Pacific M. Guillermic et al. 10.5194/cp-18-183-2022
- Nature and origin of variations in pelagic carbonate production in the tropical ocean since the mid-Miocene (ODP Site 927) P. Cornuault et al. 10.5194/bg-20-597-2023
- Ocean Acidification Signals Through Deep Time: A Review of Proxies S. Patra & J. Punekar 10.1016/j.eve.2024.100056
- Atmospheric CO2 Estimates for the Late Oligocene and Early Miocene Using Multi‐Species Cross‐Calibrations of Boron Isotopes L. Anderson et al. 10.1029/2022PA004569
- Cenozoic Carbon Dioxide: The 66 Ma Solution P. Frank 10.3390/geosciences14090238
- Comparison of indoor air quality and thermal comfort standards and variations in exceedance for school buildings F. Babich et al. 10.1016/j.jobe.2023.106405
- Toward a Cenozoic history of atmospheric CO 2 B. Hönisch et al. 10.1126/science.adi5177
- The PhanSST global database of Phanerozoic sea surface temperature proxy data E. Judd et al. 10.1038/s41597-022-01826-0
- Boron Coprecipitation with Calcite: Distinguishing Calcite-Hosted B by NMR Spectroscopy B. Phillips et al. 10.1021/acsearthspacechem.3c00198
- A ∼12 Myr Miocene Record of East Asian Monsoon Variability From the South China Sea A. Holbourn et al. 10.1029/2021PA004267
- Technical note: Single-shell <i>δ</i><sup>11</sup>B analysis of <i>Cibicidoides wuellerstorfi</i> using femtosecond laser ablation MC-ICPMS and secondary ion mass spectrometry M. Raitzsch et al. 10.5194/bg-17-5365-2020
12 citations as recorded by crossref.
- A dynamic ocean driven by changes in CO2 and Antarctic ice-sheet in the middle Miocene A. Frigola et al. 10.1016/j.palaeo.2021.110591
- East Asian summer monsoon evolution recorded by the middle Miocene pelagic reddish clay, South China Sea P. Ma et al. 10.1016/j.gloplacha.2023.104072
- Atmospheric CO<sub>2</sub> estimates for the Miocene to Pleistocene based on foraminiferal <i>δ</i><sup>11</sup>B at Ocean Drilling Program Sites 806 and 807 in the Western Equatorial Pacific M. Guillermic et al. 10.5194/cp-18-183-2022
- Nature and origin of variations in pelagic carbonate production in the tropical ocean since the mid-Miocene (ODP Site 927) P. Cornuault et al. 10.5194/bg-20-597-2023
- Ocean Acidification Signals Through Deep Time: A Review of Proxies S. Patra & J. Punekar 10.1016/j.eve.2024.100056
- Atmospheric CO2 Estimates for the Late Oligocene and Early Miocene Using Multi‐Species Cross‐Calibrations of Boron Isotopes L. Anderson et al. 10.1029/2022PA004569
- Cenozoic Carbon Dioxide: The 66 Ma Solution P. Frank 10.3390/geosciences14090238
- Comparison of indoor air quality and thermal comfort standards and variations in exceedance for school buildings F. Babich et al. 10.1016/j.jobe.2023.106405
- Toward a Cenozoic history of atmospheric CO 2 B. Hönisch et al. 10.1126/science.adi5177
- The PhanSST global database of Phanerozoic sea surface temperature proxy data E. Judd et al. 10.1038/s41597-022-01826-0
- Boron Coprecipitation with Calcite: Distinguishing Calcite-Hosted B by NMR Spectroscopy B. Phillips et al. 10.1021/acsearthspacechem.3c00198
- A ∼12 Myr Miocene Record of East Asian Monsoon Variability From the South China Sea A. Holbourn et al. 10.1029/2021PA004267
Latest update: 14 Jan 2025
Short summary
At approximately 14 Ma, the East Antarctic Ice Sheet expanded to almost its current extent, but the role of CO2 in this major climate transition is not entirely known. We show that atmospheric CO2 might have varied on 400 kyr cycles linked to the eccentricity of the Earth’s orbit. The resulting change in weathering and ocean carbon cycle affected atmospheric CO2 in a way that CO2 rose after Antarctica glaciated, helping to stabilize the climate system on its way to the “ice-house” world.
At approximately 14 Ma, the East Antarctic Ice Sheet expanded to almost its current extent, but...