Articles | Volume 17, issue 6
https://doi.org/10.5194/cp-17-2393-2021
https://doi.org/10.5194/cp-17-2393-2021
Research article
 | 
25 Nov 2021
Research article |  | 25 Nov 2021

Maastrichtian–Rupelian paleoclimates in the southwest Pacific – a critical re-evaluation of biomarker paleothermometry and dinoflagellate cyst paleoecology at Ocean Drilling Program Site 1172

Peter K. Bijl, Joost Frieling, Margot J. Cramwinckel, Christine Boschman, Appy Sluijs, and Francien Peterse

Related authors

Polar amplification of orbital-scale climate variability in the early Eocene greenhouse world
Chris D. Fokkema, Tobias Agterhuis, Danielle Gerritsma, Myrthe de Goeij, Xiaoqing Liu, Pauline de Regt, Addison Rice, Laurens Vennema, Claudia Agnini, Peter K. Bijl, Joost Frieling, Matthew Huber, Francien Peterse, and Appy Sluijs
Clim. Past, 20, 1303–1325, https://doi.org/10.5194/cp-20-1303-2024,https://doi.org/10.5194/cp-20-1303-2024, 2024
Short summary
Southern Ocean control on atmospheric CO2 changes across late-Pliocene Marine Isotope Stage M2
Suning Hou, Leonie Toebrock, Mart van der Linden, Fleur Rothstegge, Martin Ziegler, Lucas J. Lourens, and Peter K. Bijl
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-33,https://doi.org/10.5194/cp-2024-33, 2024
Preprint under review for CP
Short summary
DINOSTRAT version 2.1-GTS2020
Peter K. Bijl
Earth Syst. Sci. Data, 16, 1447–1452, https://doi.org/10.5194/essd-16-1447-2024,https://doi.org/10.5194/essd-16-1447-2024, 2024
Short summary
Resilient Antarctic monsoonal climate prevented ice growth during the Eocene
Michiel Baatsen, Peter Bijl, Anna von der Heydt, Appy Sluijs, and Henk Dijkstra
Clim. Past, 20, 77–90, https://doi.org/10.5194/cp-20-77-2024,https://doi.org/10.5194/cp-20-77-2024, 2024
Short summary
Palsys.org: an open-access taxonomic and stratigraphic database of organic-walled dinoflagellate cysts
Peter K. Bijl and Henk Brinkhuis
J. Micropalaeontol., 42, 309–314, https://doi.org/10.5194/jm-42-309-2023,https://doi.org/10.5194/jm-42-309-2023, 2023
Short summary

Related subject area

Subject: Proxy Use-Development-Validation | Archive: Marine Archives | Timescale: Cenozoic
Paleocene–Eocene age glendonites from the Mid-Norwegian Margin – indicators of cold snaps in the hothouse?
Madeleine L. Vickers, Morgan T. Jones, Jack Longman, David Evans, Clemens V. Ullmann, Ella Wulfsberg Stokke, Martin Vickers, Joost Frieling, Dustin T. Harper, Vincent J. Clementi, and IODP Expedition 396 Scientists
Clim. Past, 20, 1–23, https://doi.org/10.5194/cp-20-1-2024,https://doi.org/10.5194/cp-20-1-2024, 2024
Short summary
Can we reliably reconstruct the mid-Pliocene Warm Period with sparse data and uncertain models?
James Douglas Annan, Julia Catherine Hargreaves, Thorsten Mauritsen, Erin McClymont, and Sze Ling Ho
EGUsphere, https://doi.org/10.5194/egusphere-2023-1941,https://doi.org/10.5194/egusphere-2023-1941, 2023
Short summary
Assessing environmental change associated with early Eocene hyperthermals in the Atlantic Coastal Plain, USA
William Rush, Jean Self-Trail, Yang Zhang, Appy Sluijs, Henk Brinkhuis, James Zachos, James G. Ogg, and Marci Robinson
Clim. Past, 19, 1677–1698, https://doi.org/10.5194/cp-19-1677-2023,https://doi.org/10.5194/cp-19-1677-2023, 2023
Short summary
Technical note: A new online tool for δ18O–temperature conversions
Daniel E. Gaskell and Pincelli M. Hull
Clim. Past, 19, 1265–1274, https://doi.org/10.5194/cp-19-1265-2023,https://doi.org/10.5194/cp-19-1265-2023, 2023
Short summary
A 15-million-year surface- and subsurface-integrated TEX86 temperature record from the eastern equatorial Atlantic
Carolien M. H. van der Weijst, Koen J. van der Laan, Francien Peterse, Gert-Jan Reichart, Francesca Sangiorgi, Stefan Schouten, Tjerk J. T. Veenstra, and Appy Sluijs
Clim. Past, 18, 1947–1962, https://doi.org/10.5194/cp-18-1947-2022,https://doi.org/10.5194/cp-18-1947-2022, 2022
Short summary

Cited articles

Anagnostou, E., John, E. H., Edgar, K. M., Foster, G. L., Ridgwell, A., Inglis, G. N., Pancost, R. D., Lunt, D. J., and Pearson, P. N.: Changing atmospheric CO2 concentration was the primary driver of early Cenozoic climate, Nature, 533, 380–384, https://doi.org/10.1038/nature17423, 2016. 
Anagnostou, E., John, E. H., Babila, T. L., Sexton, P. F., Ridgwell, A., Lunt, D. J., Pearson, P. N., Chalk, T. B., Pancost, R. D., Foster, G. L.: Proxy evidence for state-dependence of climate sensitivity in the Eocene greenhouse, Nat. Commun., 11, 4436, https://doi.org/10.1038/s41467-020-17887-x, 2020. 
Barke, J., Abels, H. A., Sangiorgi, F., Greenwood, D. R., Sweet, A. R., Donders, T., Reichart, G. J., Lotter, A. F., and Brinkhuis, H.: Orbitally forced Azolla blooms and middle Eocene Arctic hydrology: Clues from palynology, Geology, 39, 427–430, https://doi.org/10.1130/G31640.1, 2011. 
Baxter, A. J., Hopmans, E. C., Russell, J. M., and Sinninghe Damsté, J. S.: Bacterial GMGTs in east african lake sediments: Their potential as palaeotemperature indicators, Geochim. Cosmochim. Acta, 259, 155–169, https://doi.org/10.1016/j.gca.2019.05.039, 2019. 
Bijl, P.: bijlpeter83/DINOSTRAT: Release DINOSTRAT V1 for peer review process (1.0), Zenodo [data set], https://doi.org/10.5281/zenodo.4471204, 2021. 
Download
Short summary
Here, we use the latest insights for GDGT and dinocyst-based paleotemperature and paleoenvironmental reconstructions in late Cretaceous–early Oligocene sediments from ODP Site 1172 (East Tasman Plateau, Australia). We reconstruct strong river runoff during the Paleocene–early Eocene, a progressive decline thereafter with increased wet/dry seasonality in the northward-drifting hinterland. Our critical review leaves the anomalous warmth of the Eocene SW Pacific Ocean unexplained.