Articles | Volume 19, issue 2
https://doi.org/10.5194/cp-19-457-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-19-457-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Drought increase since the mid-20th century in the northern South American Altiplano revealed by a 389-year precipitation record
Mariano S. Morales
CORRESPONDING AUTHOR
Laboratorio de Dendrocronología, Universidad Continental,
Huancayo, 12000, Peru
Instituto Argentino de Nivología, Glaciología y Ciencias
Ambientales, CONICET, Mendoza, 5500, Argentina
Doris B. Crispín-DelaCruz
Laboratorio de Dendrocronología, Universidad Continental,
Huancayo, 12000, Peru
Programa de Pós-Graduação em Ciências Florestais, Universidade Federal Rural de Pernambuco, Recife, 52171-900, Brazil
Claudio Álvarez
Laboratorio de Dendrocronología y Cambio Global, Instituto de
Conservación Biodiversidad y Territorio, Universidad Austral de Chile,
Valdivia, 5110566, Chile
Escuela de Graduados, Facultad de Ciencias Forestales y Recursos
Naturales, Universidad Austral de Chile, Valdivia, 5110566, Chile
Center for Climate and Resilience Research (CR), Santiago,
9160000, Chile
Duncan A. Christie
Laboratorio de Dendrocronología y Cambio Global, Instituto de
Conservación Biodiversidad y Territorio, Universidad Austral de Chile,
Valdivia, 5110566, Chile
Center for Climate and Resilience Research (CR), Santiago,
9160000, Chile
Cape Horn International Center (CHIC), Punta Arenas, 6200000, Chile
M. Eugenia Ferrero
Laboratorio de Dendrocronología, Universidad Continental,
Huancayo, 12000, Peru
Instituto Argentino de Nivología, Glaciología y Ciencias
Ambientales, CONICET, Mendoza, 5500, Argentina
Laia Andreu-Hayles
Lamont–Doherty Earth Observatory of Columbia University, New York,
NY 10964, United States
CREAF, Bellaterra (Cerdanyola del Vallés), 08193 Barcelona,
Spain
ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
Ricardo Villalba
Instituto Argentino de Nivología, Glaciología y Ciencias
Ambientales, CONICET, Mendoza, 5500, Argentina
Anthony Guerra
Facultad de Ciencias Forestales y del Medio Ambiente, Universidad
Nacional del Centro del Perú, Huancayo, 12006, Peru
Departamento de Biologia, Instituto de Ciências Naturais, Universidade Federal de Lavras, Lavras, 37203-202, Brazil
Ginette Ticse-Otarola
Laboratorio de Dendrocronología, Universidad Continental,
Huancayo, 12000, Peru
Programa de Investigación de Ecología y Biodiversidad, Asociación ANDINUS, Huancayo, 12002, Peru
Ernesto C. Rodríguez-Ramírez
Laboratorio de Dendrocronología, Universidad Continental,
Huancayo, 12000, Peru
Rosmery LLocclla-Martínez
Laboratorio de Dendrocronología, Universidad Continental,
Huancayo, 12000, Peru
Joali Sanchez-Ferrer
Laboratorio de Dendrocronología, Universidad Continental,
Huancayo, 12000, Peru
Edilson J. Requena-Rojas
Laboratorio de Dendrocronología, Universidad Continental,
Huancayo, 12000, Peru
Related authors
No articles found.
Rose Oelkers, Laia Andreu-Hayles, Rosanne D'Arrigo, Arturo Pacheco Solana, Milagros Rodriguez-Caton, M. Eugenia Ferrero, Ernesto Tejedor, Alfredo F. Fuentes, Carla Maldonado, and Daniel Ruiz-Carrascal
EGUsphere, https://doi.org/10.5194/egusphere-2025-2032, https://doi.org/10.5194/egusphere-2025-2032, 2025
Short summary
Short summary
Alpine treelines are situated at the extreme biogeographic limits of Earth's forests and are sensitive to global environmental change. We analyzed annual ring-widths from Polylpeis pepei trees from the Andes Mountains and found reduced growth since the 1990s. Smaller rings occurred if the prior-year wet season was hotter and drier. Our findings provide a long-term context of forest growth near the Andes-Amazon and suggest regional drought may be driving this decline at a tropical treeline.
René Garreaud, Juan Pablo Boisier, Camila Álvarez-Garreton, Duncan Christie, Tomás Carrasco-Escaff, Iván Vergara, Roberto O. Chávez, Paulina Aldunce, Pablo Camus, Manuel Suazo-Álvarez, Mariano Masiokas, Gabriel Castro, Ariel Muñoz, Mauricio Zambrano-Bigiarini, Rodrigo Fuster, and Lintsiee Godoy
EGUsphere, https://doi.org/10.5194/egusphere-2025-517, https://doi.org/10.5194/egusphere-2025-517, 2025
Short summary
Short summary
This study focuses on hyperdroughts (HDs) in central Chile, defined as years with a regional rainfall deficit exceeding 75 %. Only five HDs occurred in the last century (1924, 1968, 1998, 2019, 2021), but they caused disproportionate environmental and social impacts. In some systems, the effects were larger than expected from those considering moderate droughts and dependent on the antecedent conditions. HDs have analogs from the remote past, and they are expected to increase in the near future.
Ignacio Hermoso de Mendoza, Etienne Boucher, Fabio Gennaretti, Aliénor Lavergne, Robert Field, and Laia Andreu-Hayles
Geosci. Model Dev., 15, 1931–1952, https://doi.org/10.5194/gmd-15-1931-2022, https://doi.org/10.5194/gmd-15-1931-2022, 2022
Short summary
Short summary
We modify the numerical model of forest growth MAIDENiso by explicitly simulating snow. This allows us to use the model in boreal environments, where snow is dominant. We tested the performance of the model before and after adding snow, using it at two Canadian sites to simulate tree-ring isotopes and comparing with local observations. We found that modelling snow improves significantly the simulation of the hydrological cycle, the plausibility of the model and the simulated isotopes.
Cited articles
Adler, R. F., Sapiano, M., Huffman, G. J., Wang, J.-J., Gu, G., Bolvin, D.,
Chiu, L., Schneider, U., Becker, A., Nelkin, E., Xie, P., Ferraro, R., and
Shin, D.-B.: The Global Precipitation Climatology Project (GPCP) Monthly
Analysis (New Version 2.3) and a Review of 2017 Global Precipitation,
Atmosphere, 9, 138, https://doi.org/10.3390/atmos9040138, 2018.
Apaéstegui, J., Cruz, F. C., Vuille, M., Fohlmeistere, J., Espinoza, J.
C., Sifeddine, A., Strikis, N., Guyot, J. L, Ventura, R., Cheng, H., and
Edwards, R. L.: Precipitation changes over the eastern Bolivian Andes
inferred from speleothem (δ18O) records for the last 1400 years,
Earth. Planet. Sc. Lett., 494, 124–134, 2018.
Argollo, M., Solíz, C., and Villalba, R.: Potencialidad
dendrocronológica de Polylepis tarapacana en los Andes centrales de
Bolivia, Ecol. Bol., 39, 5–24, 2004.
Bennett, M., New, M., Marino, J., and Sillero-Zubiri, C.: Climate complexity
in the Central Andes: A study case on empirically based local variations in
the Dry Puna, J. Arid Environ., 128, 40–49, 2016.
Binford, M. W., Kolata, A. L., Brenner, M., Janusek, J. W., Seddon, M. T.,
Abbott, M. B., and Jason, H.: Climate variation and the rise and fall of an
Andean civilization, Quaternary Res., 47, 235–248, 1997.
Bird, W. B., Abbott, M. B., Vuille M., Rodbell, D. T., Stansella, N. D., and
Rosenmeier, M. F.: A 2,300-year-long annually resolved record of the South
American summer monsoon from the Peruvian Andes, P. Natl. Acad. Sci. USA,
108, 8583–8588, https://doi.org/10.1073/pnas.1003719108, 2011.
Bradley, R. S., Vuille, M., Hardy, D., and Thompson, L. G.: Low latitudeice cores record Pacific sea surface temperatures, Geophys. Res. Lett., 30, 1174, https://doi.org/10.1029/2002GL016546, 2003.
Bradley, R. S., Vuille, M., Diaz, H. F., and Vergara, W.: Threats towater supplies in the tropical Andes, Science, 312, 1755–1756, https://doi.org/10.1126/science.1128087, 2006.
Briffa, K. R.: Interpreting high-resolution proxy climate data. The example of dendroclimatology, in: Analysis of climate variability, applications of statistical techniques, edited by: von Storch, H. and Navarra, A., Springer Verlag, Berlin, 77–94, ISBN 978-3-662-03167-4, 1995.
Buytaert, W. and De Bièvre, B.: Water for cities: The impact of climate
change and demographic growth in the tropical Andes, Water Resour. Res. 48,
1–13, 2012.
Christie, D. A., Lara, A., Barichivich, J., Villalba, R., Morales, M. S.,
and Cuq, E.: El Niño-Southern Oscillation signal in the world's
high-elevation tree-ring chronologies from the Altiplano, Central Andes,
Palaeogeogr. Palaeocl. Palaeoecol., 281, 309–319, 2009.
Cook, E. R., Krusic, P. J., Peters, K., and Melvin, T.: Program Signal Free
(v45), RCS Signal Free tree–ring standardization program. Tree–Ring
Laboratory of Lamont–Doherty Earth Observatory,
https://www.ldeo.columbia.edu/tree-ring-laboratory/resources/software (last access: 15 March 2022), 2017.
Cooley, W. W. and Lohnes, P. R.: Multivariate data analysis, John Wiley &
Son, New York, https://doi.org/10.1002/bimj.19730150413, 1971.
Cowling, A., Hall, P., and Phillips, M. J.: Bootstrap confidence regions for
the intensity of a Poisson point process. J. Am. Stat. Assoc. 91,
1516–1524, 1996.
Crispín-DelaCruz, D., Morales, M. S, Andreu-Hayles, L., Christie, D. A.,
Guerra, A., and Requena-Rojas, E. J.: High ENSO sensitivity in tree rings from a
northern population of Polylepis tarapacana in the Peruvian Andes,
Dendrochronologia, 71, 1–11, https://doi.org/10.1016/j.dendro.2021.125902, 2021.
Díaz, L. B. and Vera, C. S.: South American precipitation changes
simulated by PMIP3/ CMIP5 models during the Little Ice Age and the recent
global warming period, Int. J. Climatol., 38, 2638–2650,
https://doi.org/10.1002/joc.5449, 2018.
Draper, N. R. and Smith, H. (Eds.): Applied Regression Analysis, John Wiley
& Son, New York, ISBN 9781118625682, 1981.
Falvey, M. and Garreaud, R.: Moisture variability over the South American Altiplano during the SALLJEX observing season, J. Geophys. Res., 110, D22105, https://doi.org/10.1029/2005JD006152, 2005.
Francou, B., Vuille, M., Wagnon, P., Mendoza, J., and Sicart, J. E.:
Tropical climate change recorded by glacier in the central Andes during the
last decades of the twentieth century: Chacaltaya, Bolivia,
16∘ S, J. Geophys. Res., 108, 4154,
https://doi.org/10.1029/2002JD002959, 2003.
Fritts, H. C. (Ed.): Tree rings and climate, Academic Presss, London, ISBN 9780323145282, 1976.
Garcia, M., Raes, D., and Jacobsen, S. E.: Reference evapotranspiration and
crop coefficient of quinoa (Chenopodium quinoa Willd) in the Bolivian
Altiplano, Agr. Water Manage., 60, 119–134, 2003.
Garcia, M., Raes, D., Jacobsen, S. E., and Michel, T.: Agroclimatic
constraints for rainfed agriculture in the Bolivian Altiplano, J. Arid.
Environ., 71, 109–121, 2007.
García-Plazaola, J. I, Rojas, R., Christie, D. A., and Coopman, R. E.:
Photosynthetic responses of trees in high-elevation forests: comparing
evergreen species along an elevation gradient in the Central Andes, AoB
Plants 7, 1–13, 2015.
Garreaud, R. D.: Multiscale analysis of the summertime precipitation over the central Andes, Mon. Weather Rev. 127, 901–921, https://doi.org/10.1175/1520-0493(1999)127<0901:MAOTSP>2.0.CO;2, 1999.
Garreaud, R. and Aceituno, P.: Interannual rainfall variability overthe South American Altiplano, J. Climate, 14, 2779–2789, https://doi.org/10.1175/1520-0442(2001)014<2779:IRVOTS>2.0.CO;2, 2001.
Garreaud, R., Vuille, M., and Clement, C.: The climate of the Altiplano: Observed current conditions and mechanisms of past changes, Palaeogeogr. Palaeocl. Palaeoecol., 194, 5–22, https://doi.org/10.1016/S0031-0182(03)00269-4, 2003.
Garreaud, R. D., Vuille, M., Compagnucci, R., and Marengo, J.: Present day
South American climate, Paleoclim. Palaeogeogr. Palaeocl., 281, 180–195,
2009.
Gordon, G.: Verification of dendroclimatic reconstructions, in: Climate from
Tree Rings, edited by: Hughes, M. K., Kelly, P. M., Pilcher, J. R., and
LaMarche Jr., V. C., Cambridge University Press, 58–61, 1982.
Holmes R. L.: Computer-assisted quality control in tree-ring dating and
measurement, Tree-Ring Bulletin, 43, 69–78, 1983.
Huerta, A. and Lavado-Casimiro, W.: Trends and variability of precipitation
extremes in the Peruvian Altiplano for the period 1971–2013, Int. J.
Climatol., 41, 513–528, https://doi.org/10.1002/joc.6635, 2021.
Hunziker, S., Brönnimann, S., Calle, J., Moreno, I., Andrade, M., Ticona, L., Huerta, A., and Lavado-Casimiro, W.: Effects of undetected data quality issues on climatological analyses, Clim. Past, 14, 1–20, https://doi.org/10.5194/cp-14-1-2018, 2018.
Imfeld, N., Sedlmeier, K., Gubler, S., Correa Marrou, K., Davila, C. P.,
Huerta, A., Lavado-Casimiro, W., Rohrer, M., Scherrer, S. C., and Schwierz,
C.: A combined view on precipitation and temperature climatology and trends
in the southern Andes of Peru, Int. J. Climatol. 41, 679–698,
https://doi.org/10.1002/joc.6645, 2021.
IPCC: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan,
C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M.,
Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield,
T., Yelekçi, O., Yu, R., and Zhou B. (Eds.): Climate Change 2021: The
Physical Science Basis. Contribution of Working Group I to the Sixth
Assessment Report of the Intergovernmental Panel on Climate Change,
Cambridge University Press, ISBN 978-92-9169-158-6, 2021.
Jenkins, G. M. and Watts, D. G.: Spectral analysis and its applications,
Holden-Day, San Francisco, ISBN 10 0816244642, 1968.
Jomelli, V., Favier, V., Rabatel, A., Brunstein, D., Hoffmann, G., and
Francou, B.: Fluctuations of glaciers in the tropical Andes over the last
millennium and palaeoclimatic implications: A review, Palaeogeogr.
Palaeocl., 281, 269–282, 2009.
Jones, P. D. and Hulme, M.: Calculating regional climatic time series for
temperature and precipitation: methods and illustrations, Int. J. Climatol.,
16, 361–377, https://doi.org/10.1002/(SICI)1097-0088(199604)16:4<361::AID-JOC53>3.0.CO;2-F, 1996.
Jones, P. D., Briffa, K. R., Barnett, T. P., and Tett, S. F. B.: High-resolution palaeoclimatic records for the last millennium: interpretation, integration and comparison with General Circulation Model control-run temperaturas, The Holocene, 4,
455–471, https://doi.org/10.1191/095968398667194956, 1998.
Kistler, R., Kalnay, E., Collins, W., Saha, S., White, G., Woollen, J.,
Chelliah, M., Ebisuzaki, W., Kanamitsu, M., Kousky, V., Van Der Dool, H.,
Jenne, R., and Fiorino, M.: The NCEP-NCAR 50 year Reanalysis: Monthly Means
CD-ROM and documentation, B. Am. Meteorol. Soc., 82, 247–267, 2001.
Lavado-Casimiro, W. S., Labat, D., Ronchail, J., Espinoza, J. C., and Guyot,
J. L.: Trends in rainfall and temperature in the Peruvian Amazon-Andes basin
over the last 40years (1965–2007), Hydrol. Process., 27, 2944–2957,
https://doi.org/10.1002/hyp.9418, 2013.
Lenters, J. D. and Cook, K. H.: On the origin of the Bolivian Highand related circulation features of the South American climate, J. Atmos. Sci., 54, 656–677, https://doi.org/10.1175/1520-0493(1999)127<0409:SPVOSA>2.0.CO;2, 1997.
Li, J., Xie, S. P., Cook, E. R., Morales, M. S., Christie, D. A., Johnson, N. C., Chen, F., D’Arrigo, R., Fowler, A. M., Gou, X., and Fang, K.: El Niño modulations over thepast seven centuries, Nat. Clim. Chang. 3, 822–826, https://doi.org/10.1038/nclimate1936, 2013.
Lima L., Christie D. A., Calogero Santoro M., and Latorre C.: Coupled socio
environmental changes triggered indigenous Aymara depopulation of the
semiarid Andes of Tarapacá-Chile during the late 19th–20th centuries,
PLoS ONE, 11, e0160580, https://doi.org/10.1371/journal.pone.0160580, 2016.
Marengo, J. A., Liebmann, B., Grimm, A. M., Misra, V., Dias, P. L. S.,
Cavalcanti, I. F. A., Carvalho, L. M. V., Berbery, E. H., Ambrizzi, T.,
Vera, C. S., Saulo, A. C., Nogues-Paegle, J., Zipser, E., Seth, A., and
Alves, L. M.: Recent developments on the South American monsoon system, Int.
J. Climatol., 32, 1–21, 2012.
Meko, D. M.: Dendroclimatic reconstruction with time varying subsets of tree
indices, J. Climate, 10, 687–696, 1997.
Melvin, T. and Briffa K.: A “signal-free” approach to dendroclimatic
standardization, Dendrochronologia, 26, 71–86, 2008.
Melvin, T. M.: Historical growth rates and changing climatic sensitivity of
boreal conifers, Ph.D. thesis, University of East Anglia, Norwich, United
Kingdom, https://crudata.uea.ac.uk/cru/pubs/thesis/2004-melvin/melvin-2004-thesis.pdf (last access: 8 February 2023), 2004.
Michaelsen, J.: Cross-validation in statistical climate forecast models, J.
Clim. Appl. Meteorol., 26, 1589–1600, 1987.
Minvielle, M. and Garreaud, R.: Projecting rainfall changes over the South
American Altiplano, J. Climate, 24, 4577–4583, 2011.
Mitchell Jr., J. M., Dzerdseevskii, B., Flohn, H., Hofmeyr, W. L., Lamb, H.
H., Rao, N., and Wallen, C. C.: Climatic change,World Meteorological
Organization, Geneva, https://library.wmo.int/doc_num.php?explnum_id=865 (last access: 8 February 2023), 1966.
Morales, M. S., Villalba, R., Grau, R., and Paolini, L.: Rainfall-controlled
tree growth in high-elevation subtropical treelines, Ecology, 85,
3080–3089, https://doi.org/10.1890/04-0139, 2004.
Morales, M. S., Christie, D. A., Villalba, R., Argollo, J., Pacajes, J., Silva, J. S., Alvarez, C. A., Llancabure, J. C., and Soliz Gamboa, C. C.: Precipitation changes in the South American Altiplano since 1300 AD reconstructed by tree-rings, Clim. Past, 8, 653–666, https://doi.org/10.5194/cp-8-653-2012, 2012.
Morales, M. S., Carilla, J., Grau, H. R., and Villalba, R.: Multi-century lake area changes in the Southern Altiplano: a tree-ring-based reconstruction, Clim. Past, 11, 1139–1152, https://doi.org/10.5194/cp-11-1139-2015, 2015.
Morales, M. S., Christie, D. A., Neukom R, Rojas F, and Villalba R.:
Variabilidad hidroclimática en el Sur del Altiplano: Pasado, presente y
futuro, in: Serie Conservación de la Naturaleza 24: La Puna Argentina:
Naturaleza y Sociedad, edited by: Grau, H. R., Babot, M. J., Izquierdo A. E.,
and Grau, A., Fundación Miguel Lillo, Tucumán, Argentina, 75–91, ISBN 978-950-668-032-9, 2018.
Morales, M. S., Cook, E. R., Barichivich, J., Christie, D. A., Villalba, R.,
LeQuesne, C., Srur, A. M., Eugenia Ferrero, M., González-Reyes, Á.,
Couvreux, F., Matskovsky, V., Aravena, J. C., Lara, A., Mundo, I. A., Rojas,
F., Prieto, M. R., Smerdon, J. E., Bianchi, L. O., Masiokas, M. H.,
Urrutia-Jalabert, R., Rodriguez-Catón, M., Muñoz, A. A.,
Rojas-Badilla, M., Alvarez, C., Lopez, L., Luckman, B. H., Lister, D.,
Harris, I., Jones, P. D., Park Williams, A., Velazquez, G., Aliste, D.,
Aguilera-Betti, I., Marcotti, E., Flores, F., Muñoz, T., Cuq, E., and
Boninsegna, J. A.: Six hundred years of South American tree rings reveal an
increase in severe hydroclimatic events since mid-20th century, P. Natl.
Acad. Sci. USA, 117, 16816–16823,
https://doi.org/10.1073/pnas.2002411117, 2020.
Morales, M. S., De La Cruz, D. B. C., Álvarez, C., Duncan, A. C., Ferrero, E., Andreu-Hayles, L., Villalba , R., Guerra, A., Ticse-Otarola, G., Rodríguez-Ramírez, E., LLocclla Martínez, R., Sanchez-Ferrer, J., and Requena-Rojas, E. J.: Drought increased since the mid-20th century in the northern South American Altiplano revealed by a 389-year precipitation record, Zenodo [data set], https://doi.org/10.5281/zenodo.6467673, 2023.
Mudelsee, M.: Climate Time Series Analysis: Classical Statistical and
Bootstrap Methods, Atmospheric and Oceanographic Sciences Library, Springer,
Vol. 51, ISBN 978-3-319-04450-7, 2014.
Mudelsee, M., Borngen, M., Tetzlaff, G., and Grunewald, U.: No upward trends
in the occurrence of extreme floods in central Europe, Nature, 425,
166–169, 2003.
Mujica, M. I., Latorre, C., Maldonado, A., González-Silvestre, L.,
Pinto, R., de Pol-Holz, R., and Santoro, C. M.: Late Quaternary climate
change, relict populations and present-day refugia in the northern Atacama
Desert: A case study from Quebrada La Higuera (18∘ S), J.
Biogeogr., 42, 76–88, 2015.
Neukom R., Rohrer M., Calanca P., Salzmann N., Huggel C., Acuña D.,
Christie D. A., and Morales, M. S.: Facing unprecedented drying of the
Central Andes? Precipitation variability over the period AD 1000–2100,
Environ. Res. Lett., 10, 084017, https://doi.org/10.1088/1748-9326/10/8/084017, 2015.
Nielsen, A. E.: Asentamientos, conflicto y cambio social en el Altiplano de Lípez (Potosí, Bolivia), Revista Española de Antropología Americana, 32, 179–205, e-ISSN 1988-2718, 2002.
Núñez, L., Grosjean, M., and Cartagena, I.: Human occupations and
climate change in the Puna de Atacama, Chile, Science, 298, 821–824, 2002.
Ramírez, E., Francou, B., Ribstein, P., Descloıtres, M., Guérin,
R., Mendoza, J., Gallaire, R., Pouyaud, B., and Jordan, E.: Small glaciers
disappearing in the tropical Andes, A case study in Bolivia: Glacier
Chacaltaya (16∘ S), J. Glaciol., 47, 187–194, 2001.
Ramos-Calzado, P., Gómez-Camacho, J., Pérez-Bernal, F., and Pitta-Lopez, M. F.: A novel approach to precipitation series completion in climatological
datasets: application to Andalusia, Int. J. Climatol, 2029, 2011–2029,
https://doi.org/10.1002/joc.1657, 2008.
Rodríguez-Catón, M., Andreu-Hayles, L., Morales, M. S., Daux, V.,
Christie, D. A., Coopman, R. E., Alvarez, C., Rao, M. P., Aliste, D.,
Flores, F., and Villalba, R.: Different climate sensitivity for radial
growth, but uniform for tree-ring stable isotopes along an aridity gradient
in Polylepis tarapacana, the world's highest elevation tree-species, Tree
Physiol, 41, 1353–1371, https://doi.org/10.1093/treephys/tpab021, 2021.
Schittek, K., Kock, S. T., Lücke, A., Hense, J., Ohlendorf, C., Kulemeyer, J. J., Lupo, L. C., and Schäbitz, F.: A high-altitude peatland record of environmental changes in the NW Argentine Andes (24∘ S) over the last 2100 years, Clim. Past, 12, 1165–1180, https://doi.org/10.5194/cp-12-1165-2016, 2016.
Schulman, E.: Dendroclimatic changes in semiarid America, Tucson, University
of Arizona Press, https://www.cabdirect.org/cabdirect/abstract/19560601984 (last access: 8 February 2023), 1956.
Segura, H., Espinoza, J. C., Junquas, C., Lebel, T., Vuille, M., and
Garreaud, R.: Recent changes in the precipitation-driving processes over the
southern tropical Andes/western Amazon, Clim. Dynam., 54, 2613–2631,
https://doi.org/10.1007/s00382-020-05132-6, 2020.
Seth, A., Thibeault, J., Garcia, M., and Valdivia, C.: Making sense of
Twenty-First-Century climate change in the Altiplano: observed trends and
CMIP3 projections, Ann. Assoc. Am. Geogr., 100, 835e847, https://doi.org/10.1080/00045608.2010.500193, 2010.
Singh, D., Seager, R., Cook, B. I., Cane, M., Mingfang, T., Cook, E., and
Davis, M.: Climate and the Global Famine of 1876–78, J. Climate, 31,
9445–9467, 2018.
Solíz, C., Villalba, R., Argollo, J., Morales, M. S., Christie, D. A.,
Moya, J., and Pacajes, J.: Spatio-temporal variations in Polylepis
tarapacana radial growth across the Bolivian Altiplano during the 20th
century, Palaeogeogr. Palaeocl. Palaeoecol, 281, 296–330, 2009.
Štěpánek, P.: AnClim – software for time series analysis, Dept.
of Geography, Fac. of Natural Sciences, Munich,
http://www.climahom.eu/AnClim.html (last access: 10 March 2022), 2008.
Steiger, N. J., Smerdon, J. E., Cook, E. R., and Cook, B. I.: A
reconstruction of global hydroclimate and dynamical variables over the
Common Era, Sci. Data, 5, 180086, https://doi.org/10.1038/sdata.2018.86, 2018.
Stokes, M. A. and Smiley, T. L.: An introduction to tree-ring dating,
University of Chicago Press, Chicago, ISBN 0-8165-1680-4, 1968.
Tandeter, E.: Crisis in Upper Peru, 1800–1805, HAHR-Hisp. Am. Hist. R., 71,
35–71, 1991.
Thompson, L. G., Mosley-Thompson, E., Brecher, H., Davis, M.,León, B., Les, D., Lin, P. N., Mashiotta, T., and Mountain, K.: Abrupt tropical climate change: Past and present, P. Natl. Acad. Sci. USA, 103, 10536–10543, https://doi.org/10.1073/pnas.0603900103, 2006.
Torrence, C. and Webster, P.: Interdecadal changes in the ENSO Monsoon system, J. Climate, 12, 2679–2690, https://doi.org/10.1175/1520-0442(1999)012<2679:ICITEM>2.0.CO;2, 1999.
Urrutia, R. and Vuille, M.: Climate change projections for the tropical
Andes using a regional climate model: Temperature and precipitation
simulations for the end of the 21st century, J. Geophys. Res., 114, D02108,
https://doi.org/10.1029/2008JD011021, 2009.
Vautard, R.: Patterns in Time: SSA and MSSA, in: Analysis of climate
variability. Applications of statistical techniques, edited by: von Storch,
H. and Navarra, A., Springer, Berlin, 259–287, ISBN 978-3-662-03167-4, 1995.
Vautard, R. and Ghil, M.: Singular spectrum analysis in nonlinear dynamics,
with applications to paleoclimatic time series, Physica D, 35, 395–424,
1989.
Vera, C., Higgins, W., Amador, J., Ambrizzi, T., Garreaud, R., Gochis, D.,
Gutzler, D., Lettenmaier, D., Marengo, J., Mechoso, C. R., Nogues-Paegle,
J., Silva Dias, P. L., and Zhang, C.: Toward a unified view of the American
Monsoon Systems, J. Climate, 19, 4977–5000, 2006.
Vuille, M.: Atmospheric circulation over the Bolivian Altiplano during dry and wet periods and extreme phases of the Southern Oscillation, Int. J. Climatol., 19, 1579–1600, https://doi.org/10.1002/(SICI)1097-0088(19991130)19:14<1579::AID-JOC441>3.0.CO;2-N, 1999.
Vuille, M. and Keimig, F.: Interannual variability of summertimeconvective cloudiness and precipitation in the central Andes derivedfrom ISCCP-B3 data, J. Climate, 17, 3334–3348, https://doi.org/10.1175/1520-0442(2004)017<3334:IVOSCC>2.0.CO;2, 2004.
Vuille, M., Bradley R. S., and Keimig F.: Interannual climate variabilityin the central Andes and its relation to tropical Pacific and Atlantic forcing, J. Geophys. Res., 105, 12, 447–460, 2000.
Vuille, M., Bradley, R. S., Werner, M., and Keimig, F.: 20th century climate
change in the tropical Andes: Observations and model results, Clim. Change,
59, 75–99, 2003.
Vuille, M., Francou, B., Wagnon, P., Juen, I., Kaser, G., Mark, B., and
Bradley, R.: Climate change and tropical Andean glaciers: Past, present and
future, Earth-Sci Rev., 89, 79–96, 2008.
Vuille, M., Burns, S. J., Taylor, B. L., Cruz, F. W., Bird, B. W., Abbott, M. B., Kanner, L. C., Cheng, H., and Novello, V. F.: A review of the South American monsoon history as recorded in stable isotopic proxies over the past two millennia, Clim. Past, 8, 1309–1321, https://doi.org/10.5194/cp-8-1309-2012, 2012.
Vuille, M., Franquist, E., Garreaud, R., Lavado-Casimiro, W. S., and
Cáceres, B.: Impact of the global warming hiatus on Andean temperature,
J. Geophys. Res.-Atmos., 120, 3745–3757, https://doi.org/10.1002/2015JD023126, 2015.
Weisberg, S.: Applied Linear Regression, John Wiley & Son, New York, https://doi.org/10.1002/bimj.4710300746, 1985.
Wigley, T. M. L., Briffa, K. R., and Jones, P. D.: On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology, J. Clim. Appl. Meterol., 23, 201–213, https://doi.org/10.1175/1520-0450(1984)023<0201:OTAVOC>2.0.CO;2, 1984.
Short summary
In this study, we develop the first tree-ring-based precipitation reconstruction for the northern South American Altiplano back to 1625 CE. We established that the occurrence rate of extreme dry events together with a shift in mean dry conditions for the late 20th–beginning of the 21st century is unprecedented in the past 389 years, consistent with other paleoclimatic records. Our reconstruction provides valuable information about El Niño–Southern Oscillation influences on local precipitation.
In this study, we develop the first tree-ring-based precipitation reconstruction for the...