Articles | Volume 18, issue 2
https://doi.org/10.5194/cp-18-363-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-18-363-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Long-term trends in diatom diversity and palaeoproductivity: a 16 000-year multidecadal record from Lake Baikal, southern Siberia
Department of Geography, Environmental Change Research Centre, UCL, London, WC1E 6BT,
UK
Vivian A. Felde
Department of Biological Sciences, and Bjerknes Centre of Climate Research,
University of Bergen, P.O. Box 7803, Bergen 5020, Norway
David W. Morley
Department of Geography, Environmental Change Research Centre, UCL, London, WC1E 6BT,
UK
Natalia Piotrowska
Division of Geochronology and Environmental Isotopes, Institute of Physics – CSE, Silesian University
of Technology, Konarskiego 22B, 44-100 Gliwice, Poland
Patrick Rioual
Key Laboratory of Cenozoic Geology and Environment, Institute of Geology
& Geophysics, Chinese Academy of Sciences, P.O. Box 9825, Beijing 100029,
China
Alistair W. R. Seddon
Department of Biological Sciences, and Bjerknes Centre of Climate Research,
University of Bergen, P.O. Box 7803, Bergen 5020, Norway
George E. A. Swann
School of Geography, University of Nottingham, University Park, Nottingham,
NG7 2RD, UK
Related authors
Samuel R. S. Newall, Anson W. Mackay, Natalia Piotrowska, and Maarten Blaauw
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-109, https://doi.org/10.5194/essd-2025-109, 2025
Preprint under review for ESSD
Short summary
Short summary
Lake sediment cores are records of ancient climate change. Radiocarbon dates help us understand these records. Radiocarbon data from Lake Baikal can be difficult to access or understand. We present a database of all published radiocarbon data from Lake Baikal sediment cores to facilitate re-use of this data quickly and efficiently. We then evaluate a key correction required to use radiocarbon data. We show that uncertainty in estimating this correction is much larger than previously thought.
Philip Meister, Anne Alexandre, Hannah Bailey, Philip Barker, Boris K. Biskaborn, Ellie Broadman, Rosine Cartier, Bernhard Chapligin, Martine Couapel, Jonathan R. Dean, Bernhard Diekmann, Poppy Harding, Andrew C. G. Henderson, Armand Hernandez, Ulrike Herzschuh, Svetlana S. Kostrova, Jack Lacey, Melanie J. Leng, Andreas Lücke, Anson W. Mackay, Eniko Katalin Magyari, Biljana Narancic, Cécile Porchier, Gunhild Rosqvist, Aldo Shemesh, Corinne Sonzogni, George E. A. Swann, Florence Sylvestre, and Hanno Meyer
Clim. Past, 20, 363–392, https://doi.org/10.5194/cp-20-363-2024, https://doi.org/10.5194/cp-20-363-2024, 2024
Short summary
Short summary
This paper presents the first comprehensive compilation of diatom oxygen isotope records in lake sediments (δ18OBSi), supported by lake basin parameters. We infer the spatial and temporal coverage of δ18OBSi records and discuss common hemispheric trends on centennial and millennial timescales. Key results are common patterns for hydrologically open lakes in Northern Hemisphere extratropical regions during the Holocene corresponding to known climatic epochs, i.e. the Holocene Thermal Maximum.
Samuel R. S. Newall, Anson W. Mackay, Natalia Piotrowska, and Maarten Blaauw
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-109, https://doi.org/10.5194/essd-2025-109, 2025
Preprint under review for ESSD
Short summary
Short summary
Lake sediment cores are records of ancient climate change. Radiocarbon dates help us understand these records. Radiocarbon data from Lake Baikal can be difficult to access or understand. We present a database of all published radiocarbon data from Lake Baikal sediment cores to facilitate re-use of this data quickly and efficiently. We then evaluate a key correction required to use radiocarbon data. We show that uncertainty in estimating this correction is much larger than previously thought.
Qiang Zhang, George E. A. Swann, Vanessa Pashley, and Matthew S. A. Horstwood
Biogeosciences, 22, 3533–3546, https://doi.org/10.5194/bg-22-3533-2025, https://doi.org/10.5194/bg-22-3533-2025, 2025
Short summary
Short summary
We present the first coupled record of radiolarian silicon isotopes (δ30Sirad) from paired water column and surface sediment samples, along with the fractionation factor for δ30Sirad in the South China Sea. No significant discrepancies in δ30Sirad values were observed between plankton and sediment samples, implying minimal dissolution impact on δ30Sirad during sinking. This indicates faithful preservation of the δ30Sirad signature and its potential for studying past marine silicon cycle changes.
Jack T. R. Wilkin, Sev Kender, Rowan Dejardin, Claire S. Allen, Victoria L. Peck, George E. A. Swann, Erin L. McClymont, James D. Scourse, Kate Littler, and Melanie J. Leng
J. Micropalaeontol., 43, 165–186, https://doi.org/10.5194/jm-43-165-2024, https://doi.org/10.5194/jm-43-165-2024, 2024
Short summary
Short summary
The sub-Antarctic island of South Georgia has a dynamic glacial history and is sensitive to climate change. Using benthic foraminifera and various geochemical proxies, we reconstruct inner–middle shelf productivity and infer glacial evolution since the late deglacial, identifying new mid–late-Holocene glacial readvances. Fursenkoina fusiformis acts as a good proxy for productivity.
Philip Meister, Anne Alexandre, Hannah Bailey, Philip Barker, Boris K. Biskaborn, Ellie Broadman, Rosine Cartier, Bernhard Chapligin, Martine Couapel, Jonathan R. Dean, Bernhard Diekmann, Poppy Harding, Andrew C. G. Henderson, Armand Hernandez, Ulrike Herzschuh, Svetlana S. Kostrova, Jack Lacey, Melanie J. Leng, Andreas Lücke, Anson W. Mackay, Eniko Katalin Magyari, Biljana Narancic, Cécile Porchier, Gunhild Rosqvist, Aldo Shemesh, Corinne Sonzogni, George E. A. Swann, Florence Sylvestre, and Hanno Meyer
Clim. Past, 20, 363–392, https://doi.org/10.5194/cp-20-363-2024, https://doi.org/10.5194/cp-20-363-2024, 2024
Short summary
Short summary
This paper presents the first comprehensive compilation of diatom oxygen isotope records in lake sediments (δ18OBSi), supported by lake basin parameters. We infer the spatial and temporal coverage of δ18OBSi records and discuss common hemispheric trends on centennial and millennial timescales. Key results are common patterns for hydrologically open lakes in Northern Hemisphere extratropical regions during the Holocene corresponding to known climatic epochs, i.e. the Holocene Thermal Maximum.
Niccolò Maffezzoli, Eliza Cook, Willem G. M. van der Bilt, Eivind N. Støren, Daniela Festi, Florian Muthreich, Alistair W. R. Seddon, François Burgay, Giovanni Baccolo, Amalie R. F. Mygind, Troels Petersen, Andrea Spolaor, Sebastiano Vascon, Marcello Pelillo, Patrizia Ferretti, Rafael S. dos Reis, Jefferson C. Simões, Yuval Ronen, Barbara Delmonte, Marco Viccaro, Jørgen Peder Steffensen, Dorthe Dahl-Jensen, Kerim H. Nisancioglu, and Carlo Barbante
The Cryosphere, 17, 539–565, https://doi.org/10.5194/tc-17-539-2023, https://doi.org/10.5194/tc-17-539-2023, 2023
Short summary
Short summary
Multiple lines of research in ice core science are limited by manually intensive and time-consuming optical microscopy investigations for the detection of insoluble particles, from pollen grains to volcanic shards. To help overcome these limitations and support researchers, we present a novel methodology for the identification and autonomous classification of ice core insoluble particles based on flow image microscopy and neural networks.
Mark A. Stevenson, Suzanne McGowan, Emma J. Pearson, George E. A. Swann, Melanie J. Leng, Vivienne J. Jones, Joseph J. Bailey, Xianyu Huang, and Erika Whiteford
Biogeosciences, 18, 2465–2485, https://doi.org/10.5194/bg-18-2465-2021, https://doi.org/10.5194/bg-18-2465-2021, 2021
Short summary
Short summary
We link detailed stable isotope and biomarker analyses from the catchments of three Arctic upland lakes on Disko Island (West Greenland) to a recent dated sediment core to understand how carbon cycling has changed over the past ~500 years. We find that the carbon deposited in sediments in these upland lakes is predominately sourced from in-lake production due to the catchment's limited terrestrial vegetation and elevation and that recent increases in algal production link with climate change.
Carmen-Andreea Bădăluţă, Aurel Perșoiu, Monica Ionita, and Natalia Piotrowska
Clim. Past, 16, 2445–2458, https://doi.org/10.5194/cp-16-2445-2020, https://doi.org/10.5194/cp-16-2445-2020, 2020
Short summary
Short summary
We present a reconstruction of summer temperature for the last millennium in east-central Europe that shows little summer temperature differences between the Medieval Warm Period and the Little Ice Age on centennial scales as well as the fact that well-expressed minima and maxima occurred synchronously with periods of low and high solar activity, respectively. Furthermore, summer temperatures fluctuated with a periodicity similar to that of the Atlantic Multidecadal Oscillation.
Cited articles
Anisimov, O. A., Velichko, A. A., Demchenko, P. F., Eliseev, A.V., Mokhov,
I. I., and Nechaev, V.P.: Effect of climate change on permafrost in the past,
present, and future, Izvestiya Atmospheric and Ocean Physics, 38, 25–39,
2002.
Aoki, I.: Diversity–productivity–stability relationship in freshwater
ecosystems: Whole-systemic view of all trophic levels, Ecol. Res., 18,
397–404, 2003.
Battarbee, R. W., Jones, V. J., Flower, R. J., Cameron, N.J ., Bennion, H.,
Carvalho, L., and Juggins, S.: Diatoms, in: Tracking environmental change using
lake sediments Vol. 3: Terrestrial, Algal, and Siliceous Indicators, edited by: Smol, J. P., Birks, H. J., and Last, W. M.,
Springer, Dordrecht, 155–202, ISBN 978-90-481-6048-8, 2001.
Belykh, O. I., Ekaterina, G., Sorokovikova, T., Saphonova, I. A., and Tikhonova,
V: Autotrophic picoplankton of Lake Baikal: Composition, abundance and
structure, Hydrobiologia, 568, 9–17, 2006.
Berger, A. and Loutre, M. F.: Insolation values for the climate of the past
10 million years, Quaternary Sci. Rev., 10, 297–317, 1991.
Bezrukova, E. V., Tarasov, P. E., Solovieva, N., Krivonogov, S. K., and
Riedel, F.: Last glacial–interglacial vegetation and environmental dynamics
in southern Siberia: Chronology, forcing and feedbacks, Palaeogeogr.
Palaeocl., 296, 185–198, 2010.
Birks H. J. B., Felde V. A., Bjune A. E., Grytnes J.-A., Seppä H., and Giesecke, T.: Does pollen-assemblages richness reflect floristic richness? A review of recent developments and future challenges, Rev. Palaeobot. Palynol., 228, 1–25, https://doi.org/10.1016/j.revpalbo.2015.12.011, 2016.
Blaauw, M. and Christen, J. A.: Flexible paleoclimate age-depth models
using an autoregressive gamma process, Bayesian Anal., 6, 457–474, 2011.
Bond, G., Kromer, B., Beer, J., Muscheler, R., Evans, M., Showers, W.,
Hoffmann, S., Lotti-Bond, R., Hajdas, I., and Bonani, G.: Persistent solar
influence on North Atlantic climate during the Holocene, Science, 294,
2130–2136, 2001.
Bondarenko, N. A., Belykh, O. I., Golobokova, L. P., Artemyeva, O. V.,
Logacheva, N. F., Tikhonova, I. V., Lipko, I. A., Kostornova, T. Y.,
Parfenova, V. V., Khodzher, T. V., Ahn, T. S., and Zo, Y. G.: Stratified
distribution of nutrients and extremophile biota within freshwater ice
covering the surface of Lake Baikal, J. Microbiol., 50, 8–16, 2012.
Borcard, D., Gillet, F., and Legendre, P.: Numerical ecology with R,
2nd edn., Use R! series, Springer International Publishing AG, Xv + 435 pp., ISBN 978-3-319-71404-2, 2018.
Bradbury, J. P., Bezrukova, Y. V., Chernyaeva, G. P., Colman, S. M.,
Khursevich, G., King, J. W., and Likoshway, Y. V.: A synthesis of post-glacial
diatom records from Lake Baikal, J. Paleolimnol., 10, 213–252, 1994.
Broecker, W. S., Denton, G. H., Edwards, R. L., Cheng, H., Alley, R. B., and
Putnam, A. E.: Putting the Younger Dryas cold event into context, Quaternary Sci. Rev., 29, 1078–1081, 2010.
Burson, A., Stomp, M., Greenwell, E., Grosse, J., and Huisman, J.:
Competition for nutrients and light: testing advances in resource
competition with a natural phytoplankton community, Ecology, 99, 1108–1118,
2018.
Bush, A. B. G.: and orbitally driven climate variability
over central Asia through the Holocene, Quatern. Int., 136, 15–23, 2005.
Callander, E. and Granina, L.: Biogeochemical silica mass balance in Lake
Baikal, Russia, in: Proceedings 8th International Symposium of
Water–Rock Interaction, 1st edn., edited by: Kharaka, Y. K., Chudaev, O. V., Thordsen, J. J., Armannsson, H., Breit, G. N., Evans, W. C., and Keith, T. E. C., Balkema,
Rotterdam, 341–344, https://doi.org/10.1201/9780203734049, 1995.
Cardinale, B. J., Hillebrand, H., Harpole, W. S., Gross, K., and Ptacnik,
R.: Separating the influence of resource “availability” from resource
“imbalance” on productivity–diversity relationships, Ecol. Lett., 12,
475–487, 2009.
Cardinale, B. J., Duffy, J. E., Gonzalez, A., Hooper, D. U., Perrings, C.,
Venail, P., Narwani, A., Mace, G. M., Tilman, D., Wardle, D. A., and Kinzig,
A. P.: Biodiversity loss and its impact on humanity, Nature, 486, 59–67,
2012.
Chao, A., Gotelli, N. J., Hsieh, T. C., Sander, E. L., Ma, K. H., Colwell,
R. K., and Ellison, A. M.: Rarefaction and extrapolation with Hill numbers:
a framework for sampling and estimation in species diversity studies, Ecol.
Monogr., 84, 45–67, 2014.
Charlet, F., Fagel, N., De Batist, M., Hauregard, F., Minnebo, B.,
Meischner, D., and SONIC Team: Sedimentary dynamics on isolated highs in
Lake Baikal: evidence from detailed high-resolution geophysical data and
sediment cores, Global Planet. Change, 46, 125–144, 2005.
Chase, J., and Leibold, M.: Spatial scale dictates the
productivity–biodiversity relationship, Nature, 416, 427–430, 2002.
Chivian, E.: Biodiversity: its importance to human health. Interim Executive
Summary, Centre for Health and the Global Environment, Harvard
Medical School, Harvard, 2003.
Deevey, E.: Coaxing history to conduct experiments, Bioscience, 19, 40–43,
1969.
Demske, D., Heumann, G., Granoszewski, W., Nita, M., Mamakowa, K., Tarasov,
P. E., and Oberhänsli, H.: Late glacial and Holocene vegetation and
regional climate variability evidenced in high-resolution pollen records
from Lake Baikal, Global Planet. Change, 46, 255–279, 2005.
Denton, G. H., Anderson, R. F., Toggweiler, J. R., Edwards, R. L., Schaefer,
J. M., and Putman, A. E.: The Last Glacial Termination, Science, 328,
1652–1656, 2010.
Dixit, Y., Hodell, D. A., and Petrie, C. A.: Abrupt weakening of the summer
monsoon in northwest India ∼4100 yr ago, Geology, 42,
339–342, 2014.
Dodson, S. I., Arnott, S. E., and Cottingham, K. L.: The relationship in lake
communities between primary productivity and species richness, Ecology, 81,
2662–2679, 2000.
Dykoski, C. A., Edwards, R. L., Cheng, H., Yuan, D., Cai, Y., Zhang, M.,
Lin, Y., Qing, J., An, Z., and Revenaugh, J.: A high-resolution,
absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave,
China, Earth Planet. Sc. Lett., 233, 71–86, 2005.
Edlund, M. B.: Persistent low diatom plankton diversity within the otherwise
highly diverse Lake Baikal ecosystem, Nova Hedwigia, 1310, 339–356, 2006.
Felde, V.: Vivian-Felde/Diatom_diversity_Vydrino_Lake_Baikal: Public release (v.1.0.0), Zenodo [code], https://doi.org/10.5281/zenodo.6124051, 2022.
Fietz, S., Sturm, M., and Nicklisch, A.: Flux of lipophilic photosynthetic
pigments to the surface sediments of Lake Baikal, Global Planet. Change, 46,
29–44, 2005.
Fisher, T. G., Smith, D. G., and Andrews, J. T.: Preboreal oscillation
caused by a glacial Lake Agassiz flood, Quaternary Sci. Rev., 21, 873–878, 2002.
Galazii, G. I.: State of the ecosystem of Lake Baikal and its catchment
area: problems of conservation and rational use of resources, in:
Conservation and Management of Lakes, edited by: Salánki, J. and Herodek, S., Symp. Biol. Hung., 38, 349–359, 1989.
Ganopolski, A., Kubatzki, C., Claussen, M., Brovkin, V., and Petoukhov, V.:
The influence of vegetation-atmosphere-ocean interaction on climate during
the mid-Holocene, Science, 280, 1916–1919, 1998.
Gotelli, N. J. and Ellison, A.: A Primer of Ecological Statistics, Sinauer Associates, Inc. Pub.,
Sunderland, Massachusetts, 510 pp., ISBN 0878932690, 2013.
Granin, N. G., Jewson, D. H., Gnatovsky, R. Yu., Levin, L. A., Zhdanov, A.
A., Gorbunova, L. A., Tsekhanovsky, V. V., Doroschenko, L. M., and Mogilev,
N. Yu: Turbulent mixing under ice and the growth of diatoms in Lake Baikal,
Verh. Internat. Verein. Limnol., 27, 2812–2814, 2000.
Gross, K. and Cardinale, B. J.: Does species richness drive community
production or vice versa? Reconciling historical and contemporary paradigms
in competitive communities, Am. Nat., 170, 207–220, 2007.
Hagen, J. G., Vanschoenwinkel, B., and Gamfeldt, L.: We should not
necessarily expect positive relationships between biodiversity and ecosystem
functioning in observational field data, Ecol. Lett., 24, 2537–2548,
https://doi.org/10.1111/ele.13874, 2021.
Helama, S., Jones, P. D., and Briffa, K. R.: Dark Ages Cold Period: a
literature review and directions for future research, Holocene, 27,
1600–1606, 2017.
Hill, M. O.: Diversity and evenness: A unifying notation and its
consequences, Ecology, 54, 427–432, 1973.
Hillebrand, H., Dürselen, C. D., Kirschtel, D., Pollingher, U., and
Zohary, T.: Biovolume calculations for pelagic and benthic microalgae, J.
Phycol., 35, 403–424, 1999.
Horiuchi, K., Matsuzaki, H., Osipov, E., Khlystov, O., and Fujii, S.:
Cosmogenic 10Be and 26Al dating of erratic boulders in the
southern coastal area of Lake Baikal, Siberia, Nucl. Instrum. Meth. B, 223, 633–638, 2004.
Huisman, J., Sharples, J., Stroom, J. M., Visser, P. M., Kardinaal, W. E.
A., Verspagen, J. M., and Sommeijer, B.: Changes in turbulent mixing shift
competition for light between phytoplankton species, Ecology, 85, 2960–2970,
2004.
Interlandi, S. J. and Kilham, S. S.: Limiting resources and the regulation
of diversity in phytoplankton communities, Ecology, 82, 1270–1282, 2001.
Isbell, F., Craven, D., Connolly, J., Loreau, M., Schmid, B., Beierkuhnlein,
C., Bezemer, T. M., Bonin, C., Bruelheide, H., De Luca, E., Ebeling, A.,
Griffin, J. N., Guo, Q., Hautier, Y., Hector, A., Jentsch, A., Kreyling, J.,
Lanta, V., Manning, P., Meyer, S. T., Mori, A. S., Naeem, S., Niklaus, P.
A., Polley, W., Reich, P. B., Roscher, C., Seabloom, E. W., Smith, M. D.,
Thakur, M. P., Tilman, D., Tracy, B. F., van der Putten, W. H., can Ruijven,
J., Weigelt, A., Weisser, W. W., Wilsey, B., and Eisenhauer, N.:
Biodiversity increases the resistance of ecosystem productivity to climate
extremes, Nature, 526, 574–577, 2015.
Izmest'eva, L. R., Moore, M. V., and Hampton, S.E.: Seasonal dynamics of
common phytoplankton in Lake Baikal, in: Proceedings of Samara RAS (Russian
Academy of Sciences) Scientific Centre, 8, 191–196, 2006 (in Russian).
Izmest'eva L. R, Moore, M. V., Hampton, S. E., Ferwerda, C. J., Gray, D. K.,
Woo, K. H., Pislegina, H. V., Krashchuk, L. S., Shimaraeva, S. V., and
Silow, E. A.: Lake-wide physical and biological trends associated with
warming in Lake Baikal, J. Great Lakes Res., 42, 6–17, 2016.
Jewson, D. H. and Granin, N. G.: Cyclical size change and population
dynamics of a planktonic diatom, Aulacoseira baicalensis, in Lake Baikal, Eur. J. Phycol., 50,
1–19, https://doi.org/10.1080/09670262.2014.979450, 2015.
Jewson, D. H., Granin, N. G., Zhdanov, A. A., Gorbunova, L. A., Bondarenko,
N. A., and Gnatovsky, R. Yu.: Resting stages and ecology of the planktonic
diatom Aulacoseira skvortzowii in Lake Baikal, Limnol. Oceanogr., 53, 1125–1136, 2008.
Jewson, D. H., Granin, N. G., Zhdarnov, A. A., Gorbunova, L. A., and
Gnatovsky, R. Y.: Vertical mixing, size change and resting stage formation of
the planktonic diatom Aulacoseira baicalensis, Eur. J. Phycol., 45, 354–364, 2010.
Jost, L.: The relation between evenness and diversity, Diversity, 2,
207–232, 2010.
Jovanovska, E., Cvetkoska, A., Hauffe, T., Levkov, Z., Wagner, B., Sulpizio, R., Francke, A., Albrecht, C., and Wilke, T.: Differential resilience of ancient sister lakes Ohrid and Prespa to environmental disturbances during the Late Pleistocene, Biogeosciences, 13, 1149–1161, https://doi.org/10.5194/bg-13-1149-2016, 2016.
Juggins, S.: C2 version 1.7.7: Software for ecological and palaeoecological
data, University of Newcastle, Newcastle, available at: https://www.staff.ncl.ac.uk/stephen.juggins/software/C2Home.htm (last access: 1 November 2021), 2014.
Kéfi, S., Domínguez-Garcia, V., Donohue, I., Fontaine, C.,
Thébault, E., and Dakos, V.: Advancing out knowledge of ecological
stability, Ecol. Lett., 22, 1349–1356, 2019.
Khursevich, G. K., Karabanov, E. B., Prokopenko, A. A., Williams, D. F.,
Kuzmin, M. I., Fedenya, S. A., and Gvozdkov, A. A.: Insolation regime in Siberia
as a major factor controlling diatom production in Lake Baikal during the
past 800,000 years, Quatern. Int., 80–81, 47–58, 2001.
Khursevich, G. K., Prokopenko, A. A., Fedenya, S. A., Tkachenko, L. I., and
Williams, D. F.: Diatom biostratigraphy of Lake Baikal during the past 1.25
Ma: new results from BDP-96-2 and BDP-99 drill cores, Quatern. Int., 136,
95–104, 2005.
Kilham, R., Kilham, S. S., and Hecky, R. E.: Hypothesized resource
relationships among African planktonic diatoms, Limnol. Oceanogr., 31,
1169–1181, 1986.
Korhonen, J. J., Wang, J., and Soininen, J.: Productivity–diversity
relationships in lake plankton communities, PloS One, 6, e22041, https://doi.org/10.1371/journal.pone.0022041, 2011.
Kozhov, M.: Lake Baikal and its life, W. Junk, The Hague, 344 pp., ISBN 978-90-6193-064-8, 1963.
Kozhova, O. M. and Izmest'eva, L. R.: Lake Baikal: evolution and diversity,
Backhuys Publishers, Leiden, ISBN 90-5782-001-3, 1998.
Kravtsova, L. S., Izhboldina, L. A., Khanaev, I. V., Pomazkina, G. V.,
Rodionova, E. V., Domysheva, V. M., Sakirko, M. V., Tomberg, I. V.,
Kostornova, T. Y., Kravchenko, O. S., and Kupchinsky, A. B.: Nearshore
benthic blooms of filamentous green algae in Lake Baikal, J. Great Lakes
Res., 40, 441–448, 2014.
Legendre, P. and Gallagher, E. D.: Ecologically meaningful transformations for
ordination of species data, Oecologia, 129, 271–280, 2001.
Loreau, M., Naeem, S., Inchausti, P., Bengtsson, J., Grime, J. P., Hector,
A., Hooper, D. U., Huston, M. A., Raffaelli, D., Schmid, B., and Tilman, D.:
Biodiversity and ecosystem functioning: current knowledge and future
challenges, Science, 294, 804–808, 2001.
Luethje, M. and Snyder, J.: Climate-related morphological changes in
Pantocsekiella (Mediophyceae) spanning 0–1.2 Ma in the Lake El'gygytgyn, northeastern
Russia including Pantocsekiella elgygytgynensis sp. nov., Phytotaxa, 478, 67–91, 2021.
Mackay, A. W.: The paleoclimatology of Lake Baikal: a diatom synthesis and
prospectus, Earth Sci. Rev., 82, 181–215, 2007.
Mackay, A. W., Flower, R. J., Kuzmina, A. E., Granina, L. Z., Rose, N. L.,
Appleby, P. G., Boyle, J. F., and Battarbee, R. W.: Diatom succession trends
in recent sediments from Lake Baikal and their relation to atmospheric
pollution and to climate change, Philos. T. R. Soc. B, 353,
1011–1055, 1998.
Mackay, A. W., Swann, G. E. A., Brewer, T. S., Leng, M. J., Morley, D. W.,
Piotrowska, N., Rioual, P., and White, D.: A reassessment of late glacial –
Holocene diatom oxygen isotope record from Lake Baikal using a geochemical
mass-balance approach, J. Quaternary Sci., 26, 627–634, 2011.
Mackay, A. W., Seddon, A. W. R., Leng, M. J., Heumann, G., Morley, D. W.,
Piotrowska, N., Rioual, P., Roberts, S., and Swann, G. E. A.: Holocene carbon
dynamics at the forest-steppe ecotone of southern Siberia, Global Change
Biol., 23, 1942–1960, 2017.
Mackay, A. W., Felde, V. A. F., Morley, J. J., Piotrowska, N., Rioual, P. R., Seddon, A. W. R. S., and Swann, G. E. A.: NOAA/WDS Paleoclimatology – Diatom diversity and palaeoproductivity data from Lake Baikal, Southern Siberia over the past 16 000 years, NOAA National Centers for Environmental Information [data set], https://doi.org/10.25921/q6v1-5q02, 2022.
Marcott, S. A., Shakun, J. D., Clark, P. U., and Mix, A. C.: A reconstruction
of regional and global temperature for the past 11,300 years, Science, 339,
1198–1201, 2013.
Mayewski, P. A., Meeker, L. D., Twickler, M. S., Whitlow, S., Yang, Q., and
Prentice, M.: Major features and forcing of high latitude Northern
Hemisphere atmospheric circulation using a 110,000 year long glaciochemical
series, J. Geophys. Res., 102, 26345–26366, 1997.
Mayewski, P. A., Rohling, E. E., Stager, J. C., Karlén, W., Maasch, K.
A., Meeker, L. D., Meyerson, E. A., Gasse, F., van Kreveld, S., Holmgren,
K., Lee-Thorp, J., Rosqvist, G., Rack, F., Staubwasser, M., Schneider, R.
R., and Steig, E. J.: Holocene climate variability, Quaternary Res., 62, 243–255,
2004.
McCann, K. S.: The diversity-stability debate, Nature, 405, 228–233, 2000.
McGrady-Steed, J., Harris, P. M., and Morin, P. J.: Biodiversity regulates
ecosystem predictability, Nature, 390, 162–165, 1997.
McManus, J. F., Francois, R., Gherardi, J.-M., Keigwin, L. D., and
Brown-Leger, S.: Collapse and rapid resumption of Atlantic meridional
circulation linked to deglacial climate changes, Nature, 428, 834–837, 2004.
Murton, J. B., Bateman, M. D., Dallimore, S. R., Teller, J. T., and Yang,
Z.: Identification of Younger Dryas outburst flood path from Lake Agassiz to
the Arctic Ocean, Nature, 464, 740–743, 2010.
National Research Council: The geological record of ecological dynamics:
understanding the biotic effects of future environmental change, The
National Academies Press, Washington DC, USA, https://doi.org/10.17226/11209, 2005.
Nesje, A., Jansen, E., Birks, H. J .B., Bjune, A. E., Bakke, J., Andersson,
C., Dahl, S. O., Kristensen, D. K., Lauritzen, S., Lie, O., and
Risebrobakken, B.: Holocene climate variability in the northern North
Atlantic region: a review of terrestrial and marine evidence, Geophys. Monogr. Ser., 158, 289–322, https://doi.org/10.1029/158GM19, 2005.
O'Donnell, D. R., Wilburn, P., Silow, E. A., Yampolsky, L. Y., and Litchman, E:
Nitrogen and phosphorus colimitation of phytoplankton in Lake Baikal:
insights from a spatial survey and nutrient enrichment experiments, Limnol.
Oceanogr., 62, 1383–1392, 2017.
Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P. R., O'Hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H. H., Szoecs, E., and Wagner, H.: vegan: Community Ecology Package, R package version 2.5-7, available at: https://CRAN.R-project.org/package=vegan (last access: 15 August 2021), 2020.
O'Reilly, C. M., Sharma, S., Gray, D. K., Hampton, S. E., Read, J.
S., Rowley, R. J., Schneider, P., Lenters, J. D., McIntyre, P.
B., Kraemer, B. M., Weyhenmeyer, G. A., Straile, D., Dong, B., Adrian, R., Allan, M.G., Anneville, O., Arvola, L., Austin, J., Bailey, J. L. , Baron, J. S., Brookes, J. D., de Eyto, E., Dokulil, M. T., Hamilton, D. P., Havens, K., Hetherington, A. L., Higgins, S. N., Hook, S., Izmest'eva, L. R., Joehnk, K. D., Kangur, K., Kasprzak, P., Kumagai, M., Kuusisto, E., Leshkevich, G., Livingstone, D. M., MacIntyre, S., May, L., Melack, J. M., Mueller-Navarra, D. C., Naumenko, M., Noges, P., Noges, T., North, R. P., Plisnier, P.-D., Rigosi, A., Rimmer, A., Rogora, M., Rudstam, L. G., Rusak, J. A., Salmaso, N., Samal, N. R., Schindler, D. E., Schladow, S. G., Schmid, M., Schmidt, S. R., Silow, E., Soylu, M. E., Teubner, K., Verburg, P., Voutilainen, A., Watkinson, A., Williamson, C. E., and Zhang, G.: Rapid and highly variable warming of lake
surface waters around the globe, Geophys. Res. Lett., 42,
10773–10781, 2015.
Orlóci, L.: An agglomerative method for classification of plant
communities, J. Ecol., 55, 193–205, 1967.
Osipov, E. Y. and Khlystov, O. M.: Glaciers and meltwater flux to Lake
Baikal during the Last Glacial Maximum, Palaeogeogr. Palaeocl., 294, 4–15, 2010.
Panizzo, V. N., Swann, G. E. A., Mackay, A. W., Vologina, E., Alleman, L.,
Andre, L., Pashley, V. H., and Horstwood, M. S. A: Constraining modern day
silicon cycling in Lake Baikal, Global. Biogeochem. Cy., 31, 556–574, 2017.
Piotrowska, N., Bluszcz, A., Demske, D., Granoszewski, W., and Heumann, G.:
Extraction and AMS radiocarbon dating of pollen from Lake Baikal sediments,
Radiocarbon, 46, 181–187, 2004.
Popovskaya, G. I.: Ecological monitoring of phytoplankton in Lake Baikal,
Aquat. Ecosyst.
Health, 3, 215–225, 2000.
Popovskaya, G. I., Usol'tseva, M. V., Domysheva, V. M., Sakirko, M. V., Blinov,
V. V., and Khodzher, T. V.: The spring phytoplankton in the pelagic zone of Lake
Baikal during 2007–2011, Geogr. Nat. Resour., 36, 253–262, 2015.
Ptacnik, R., Solimini, A. G., Andersen, T., Tamminen, T., Brettum, P.,
Lepistö, L., Willén, E., and Rekolainen, S.: Diversity predicts
stability and resource use efficiency in natural phytoplankton communities,
P. Natl. Acad. Sci. USA, 105, 5134–5138, 2008.
Rasmussen, D. O., Andersen, K. K., Svensson, A. M., Steffensen, J. P.,
Vinther, B. M., Clausen, H. B., Siggaard-Andersen, M.-L., Johnsen, S. J.,
Larsen, L. B., Dahl-Jensen, D., Bigler, M., Rothlisberger, R., Fischer, H.,
Goto-Azuma, K., Hansson, M. E., and Ruth, U.: A new Greenland ice core
chronology for the last glacial termination, J. Geophys. Res, 111, D06102, https://doi.org/10.1029/2005JD006079,
2006.
R Core Team: R: A Language and Environment for Statistical Computing, R
Foundation for Statistical Computing, Vienna, Austria, 2021.
Reimer, P. J., Austin, W. E. N., Bard, E., Bayliss, A., Blackwell, P. G.,
Bronk Ramsey, C., Butzin, M., Cheng, H., Edwards, R. L., Friedrich, M.,
Grootes, P. M., Guilderson, T. P., Hajdas, I., Heaton, T. J., Hogg, A.G.,
Hughen, K. A., Kromer, B., Manning, S. W., Muscheler, R., Palmer, J. G.,
Pearson, C., van der Plicht, J., Reimer, R. W., Richards, D. A., Scott, E.
M., Southon, J. R., Turney, C. S. M., Wacker, L., Adolphi, F., Büntgen,
U., Capano, M., Fahrni, S. M., Fogtmann-Schulz, A., Friedrich, R.,
Köhler, P., Kudsk, S., Miyake, F., Olsen, J., Reinig, F., Sakamoto, M.,
Sookdeo, A., and Talamo, S.: The IntCal20 Northern Hemisphere radiocarbon age
calibration curve (0–55 cal kBP), Radiocarbon, 62, 725–757, 2020.
Renssen, H., Goosse, H., and Muscheler, R.: Coupled climate model simulation of Holocene cooling events: oceanic feedback amplifies solar forcing, Clim. Past, 2, 79–90, https://doi.org/10.5194/cp-2-79-2006, 2006.
Reshetova, S. A., Bezrukova, E. V., Panizzo, V., Henderson, A., Ptitsyn, A.
B., Daryin, A. V., and Kalugin, I. A.: Vegetation of Central Transbaikalia
in the Late Glacial Period and Holocene, Geography and Natural Resources,
34, 172–178, 2013.
Roberts, S., Swann, G. E. A., McGowan, S., Panizzo, V., Vologina, E., Sturm,
M., and Mackay, A. W.: Diatom evidence of 20th Century ecosystem change in Lake
Baikal, Siberia, PLoS One, 13, e0208765, https://doi.org/10.1371/journal.pone.0208765, 2018.
Rusak, J. A., Leavitt, P. R., McGowan, S., Chen, G., Olson, O., Wunsam, S.,
and Cumming, B. F.: Millennial-scale relationships of diatom species richness
and production in two prairie lakes, Limnol. Oceanogr., 49, 1290–1299, 2004.
Ryves, D. B., Jewson, D. H., Sturm, M., Battarbee, R. W., Flower, R. J.,
Mackay, A. W., and Granin, N. G.: Quantitative and qualitative relationships
between planktonic diatom communities and diatom assemblages in sedimenting
material and surface sediments in Lake Baikal, Siberia, Limnol. Oceanogr.,
48, 1183–1192, 2003.
Satoh, Y., Katano, T., Satoh, T., Mitamura, O., Anbutsu, K., Nakano, S., Ueno, H.,
Kihira, M., Drucker, V., Tanaka, Y., Mimura, T., Watanabe, Y., and Sugiyama, M.:
Nutrient limitation of the primary production of phytoplankton in Lake
Baikal, Limnology, 7, 225–229, 2006.
Seddon, A. W., Mackay, A. W., Baker, A. G., Birks, H. J. B., Breman, E.,
Buck, C. E., Ellis, E. C., Froyd, C. A., Gill, J. L., Gillson, L., and
Johnson, E. A.: Looking forward through the past: identification of 50
priority research questions in palaeoecology, J. Ecol., 102, 256–267, 2014.
Shimaraev, M. N. and Domysheva, V. M.: Trends in hydrological and
hydrochemical processes in Lake Baikal under conditions of modern climate
change, in: Climatic Change and Global Warming of Inland Waters, edited by:
Colman, C. R., Kumagai, M., and Robarts, R. D., John Wiley & Sons Ltd,
Chichester, UK, 43–66, 2013.
Shimaraev, M. N. and Mizandrontsev, I. B.: Changes in the Lake Baikal
ecosystem during the Late Pleistocene and Holocene, Hydrobiologia, 568, 259–263,
2006.
Smith, V. H.: Microbial diversity-productivity relationships in aquatic
ecosystems, FEMS Microbiol. Ecol., 62, 181–186, 2007.
Soma, Y., Tani, Y., Soma, M., Mitake, H., Kurihara, R., Hashomoto, S.,
Watanabe, T., and Nakamura, T.: Sedimentary steryl chlorin esters (SCEs) and
other photosynthetic pigments as indicators of palaeolimnological change
over the last 28,000 years from the Buguldeika Saddle of Lake Baikal, J.
Paleolimnol., 37, 163–175, 2007.
Sommer, U., Adrian, R., Domis, L. D. S., Elser, J. J., Gaedke, U., Ibelings,
B., Jeppesen, E., Lürling, M., Molinero, J. C., Mooij, W. M., van Donk, E., and Winder, M.: Beyond the plankton ecology group (PEG) model: mechanisms driving
plankton succession, Annu. Rev. Ecol. Evol. Syst., 43, 429–448, 2012.
Stuiver, M., Grootes, P. M., and Braziunas, T. F.: The GISP2 δ18O climatic record of the past 16,500 years and the role of the sun,
ocean, and volcanoes, Quaternary Res., 44, 341–354, 1995.
Swann, G. E. A, Panizzo, V. N., Piccolroaz, S., Pashley, V., Horstwood, M.
S. A., Roberts, S., Vologina, E., Piotrowska, N., Sturm, M., Zhdanoc, A.,
Granin, N., Normal, C., McGowan, S., and Mackay, A. W: Changing nutrient cycling
in Lake Baikal: the world's oldest lake, P. Natl. Acad. Sci. USA, 117,
27211–27217, 2020.
Tani, Y., Kurihara, K., Nara, F., Itoh, N., Soma, M., Soma, Y., Tanaka, A.,
Yoneda, M., Hirota, M., and Shibata, Y.: Temporal changes in the
phytoplankton community of the southern basin of Lake Baikal over the last
24,000 years recorded by photosynthetic pigments in a sediment core, Org.
Geochem., 33, 1621–1634, 2002.
Tarasov, L. and Peltier W. R.: Arctic freshwater forcing of the Younger
Dryas cold reversal, Nature, 435, 662–665, 2005.
Tarasov, P. E., Bezrukova, E. V., and Krivonogov, S. K.: Late Glacial and Holocene changes in vegetation cover and climate in southern Siberia derived from a 15 kyr long pollen record from Lake Kotokel, Clim. Past, 5, 285–295, https://doi.org/10.5194/cp-5-285-2009, 2009.
Thiagarajan, N., Subhas, A. V., Southon, J. R., Eiler, J. M., and Adkins, J.
F.: Abrupt pre-Bølling–Allerød warming and circulation changes in the
deep ocean, Nature, 511, 75–78, 2014.
Tilman, D., Knops, J., Wedin, D., Reich, P., Ritchie, M., and Siemann, E.:
The influence of functional diversity and composition on ecosystem
processes, Science, 277, 1300–1302, 1997.
Tilman, D., Reich, P. B., and Isbell, F.: Biodiversity impacts ecosystem
productivity as much as resources, disturbance, or herbivory, P. Natl. Acad.
Sci. USA, 109, 10394–10397, 2012.
Timoshkin, O. A., Samsonov, D. P., Yamamuro, M., Moore, M. V., Belykh, O. I.,
Malnik, V. V., Sakirko, M. V., Shirokaya, A. A., Bondarenko, N. A.,
Domysheva, V. M., Fedorova, G. A., Kochetkov, A. I., Kuzmin, A. V., Lukhnev,
A. G., Medvezhonkova, O. V., Nepokrytykh, A. V., Pasynkova, E. M.,
Poberezhnaya, A. E., Potapskaya, N. V., Rozhkova, N. A., Sheveleva, N. G.,
Tikhonova, I. V., Timoshkina, E. M., Tomberg, I. V., Volkova, E. A.,
Zaitseva, E. P., Zvereva, Y. M., Kupchinsky, A. B., and Bukshuk, N. A.:
Rapid ecological change in the coastal zone of Lake Baikal (East Siberia):
Is the site of the world's greatest freshwater biodiversity in danger?, J.
Great Lakes Res., 42, 487–497, 2016.
Walker, M., Head, M. J., Berkelhammer, M., Björck, S., Cheng, H.,
Cwynar, L., Fisher, D., Gkinis, V., Long, A., Lowe, J., and Newnham, R.:
Formal ratification of the subdivision of the Holocene Series/Epoch
(Quaternary System/Period): two new Global Boundary Stratotype Sections and
Points (GSSPs) and three new stages/subseries, Episodes, 41, 213–223, 2018.
Wanner, H., Mercolli, L., Grosjean, M., and Ritz, S. P.: Holocene climate
variability and change: a database review, J. Geol. Soc. Lond., 172,
254–263, 2014.
Williams, D. F., Kuzmin, M. I., Prokopenko, A. A., Karabanov, E. B.,
Khursevich, G. K., and Bezrukova, E.V.: The Lake Baikal drilling project in
the context of a global lake drilling initiative, Quatern. Int., 80, 3–18,
2001.
Williams, J. W., Blois, J. L., and Shuman, B. N.: Extrinsic and intrinsic
forcing of abrupt ecological change: case studies from the late
Quaternary, J. Ecol., 99, 664–677, 2011.
Winfree, R., Fox, J. W., Williams, N. M., Reilly, J. R., and Cariveau, D. P.:
Abundance of common species, not species richness, drives delivery of a
real-world ecosystem service, Ecol. Lett., 18, 626–635, 2015.
Wood, S. N.: Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models, J. R. Stat. Soc. B, 73, 3–36, 2011.
Yachi, S. and Loreau, M.: Biodiversity and ecosystem productivity in a
fluctuating environment: the insurance hypothesis, P. Natl. Acad.
Sci. USA, 96, 1463–1468, 1999.
Short summary
We investigated the diversity of algae called diatoms in Lake Baikal, the oldest and deepest lake in the world, because algae sit at the base of aquatic foodwebs and provide energy (in the form of primary production) for other organisms to use. Diatom diversity and primary production have been influenced by both long-term and abrupt climate change over the past 16 000 years. The shape of these responses appears to be time-period specific.
We investigated the diversity of algae called diatoms in Lake Baikal, the oldest and deepest...