Articles | Volume 15, issue 4
https://doi.org/10.5194/cp-15-1223-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-15-1223-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Mid-Holocene climate change over China: model–data discrepancy
Yating Lin
Key Laboratory of Cenozoic Geology and Environment, Institute of Geology
and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL,
CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette 91191, France
University of Chinese Academy of Sciences, Beijing 100049, China
Gilles Ramstein
Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL,
CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette 91191, France
Haibin Wu
CORRESPONDING AUTHOR
Key Laboratory of Cenozoic Geology and Environment, Institute of Geology
and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
CAS Center for Excellence in Life and Paleoenvironment, Beijing 100044,
China
University of Chinese Academy of Sciences, Beijing 100049, China
Raj Rani
Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL,
CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette 91191, France
Pascale Braconnot
Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL,
CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette 91191, France
Masa Kageyama
Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL,
CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette 91191, France
Qin Li
Key Laboratory of Cenozoic Geology and Environment, Institute of Geology
and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
CAS Center for Excellence in Life and Paleoenvironment, Beijing 100044,
China
Yunli Luo
Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
Ran Zhang
Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing
100029, China
Zhengtang Guo
Key Laboratory of Cenozoic Geology and Environment, Institute of Geology
and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
CAS Center for Excellence in Life and Paleoenvironment, Beijing 100044,
China
University of Chinese Academy of Sciences, Beijing 100049, China
Related authors
No articles found.
Chunxia Zhang, Haibin Wu, Xiuli Zhao, Yunkai Deng, Yunxia Jia, Wenchao Zhang, Shihu Li, and Chenglong Deng
Clim. Past, 20, 2399–2413, https://doi.org/10.5194/cp-20-2399-2024, https://doi.org/10.5194/cp-20-2399-2024, 2024
Short summary
Short summary
Clarifying the paleoelevation changes of Diancang Shan (DCS) is important for comprehending both tectonics and the climatic effects in the transition zone between the high Tibetan Plateau and the lower relief of eastern and southern Asia. Our results show low elevations of DCS between ~ 7.6 and ~ 5.0 Ma, followed by significant uplift of 1000–2000 m between ~ 5.0 and ~ 3.5 Ma. They provide a novel method for reconstructing the paleoelevation of mountains like DCS in orogenic belts.
Colin G. Jones, Fanny Adloff, Ben B. B. Booth, Peter M. Cox, Veronika Eyring, Pierre Friedlingstein, Katja Frieler, Helene T. Hewitt, Hazel A. Jeffery, Sylvie Joussaume, Torben Koenigk, Bryan N. Lawrence, Eleanor O'Rourke, Malcolm J. Roberts, Benjamin M. Sanderson, Roland Séférian, Samuel Somot, Pier Luigi Vidale, Detlef van Vuuren, Mario Acosta, Mats Bentsen, Raffaele Bernardello, Richard Betts, Ed Blockley, Julien Boé, Tom Bracegirdle, Pascale Braconnot, Victor Brovkin, Carlo Buontempo, Francisco Doblas-Reyes, Markus Donat, Italo Epicoco, Pete Falloon, Sandro Fiore, Thomas Frölicher, Neven S. Fučkar, Matthew J. Gidden, Helge F. Goessling, Rune Grand Graversen, Silvio Gualdi, José M. Gutiérrez, Tatiana Ilyina, Daniela Jacob, Chris D. Jones, Martin Juckes, Elizabeth Kendon, Erik Kjellström, Reto Knutti, Jason Lowe, Matthew Mizielinski, Paola Nassisi, Michael Obersteiner, Pierre Regnier, Romain Roehrig, David Salas y Mélia, Carl-Friedrich Schleussner, Michael Schulz, Enrico Scoccimarro, Laurent Terray, Hannes Thiemann, Richard A. Wood, Shuting Yang, and Sönke Zaehle
Earth Syst. Dynam., 15, 1319–1351, https://doi.org/10.5194/esd-15-1319-2024, https://doi.org/10.5194/esd-15-1319-2024, 2024
Short summary
Short summary
We propose a number of priority areas for the international climate research community to address over the coming decade. Advances in these areas will both increase our understanding of past and future Earth system change, including the societal and environmental impacts of this change, and deliver significantly improved scientific support to international climate policy, such as future IPCC assessments and the UNFCCC Global Stocktake.
Mohamed Ayache, Jean-Claude Dutay, Anne Mouchet, Kazuyo Tachikawa, Camille Risi, and Gilles Ramstein
Geosci. Model Dev., 17, 6627–6655, https://doi.org/10.5194/gmd-17-6627-2024, https://doi.org/10.5194/gmd-17-6627-2024, 2024
Short summary
Short summary
Water isotopes (δ18O, δD) are one of the most widely used proxies in ocean climate research. Previous studies using water isotope observations and modelling have highlighted the importance of understanding spatial and temporal isotopic variability for a quantitative interpretation of these tracers. Here we present the first results of a high-resolution regional dynamical model (at 1/12° horizontal resolution) developed for the Mediterranean Sea, one of the hotspots of ongoing climate change.
Meng Zuo, Yong Sun, Yan Zhao, Gilles Ramstein, Lin Ding, and Tianjun Zhou
Clim. Past, 20, 1817–1836, https://doi.org/10.5194/cp-20-1817-2024, https://doi.org/10.5194/cp-20-1817-2024, 2024
Short summary
Short summary
Our research explores the intensification of the South Asian summer monsoon (SASM) during the Middle Miocene (17–12 Ma). Using an advanced model, we reveal that the uplift of the Iranian Plateau significantly influenced the SASM, especially in northwestern India. This finding surpasses the impact of factors like Himalayan uplift and global CO2 changes. We shed light on the complex dynamics shaping ancient monsoons, providing valuable insights into Earth's climatic history.
Haoyue Zuo, Yonggang Liu, Gaojun Li, Zhifang Xu, Liang Zhao, Zhengtang Guo, and Yongyun Hu
Geosci. Model Dev., 17, 3949–3974, https://doi.org/10.5194/gmd-17-3949-2024, https://doi.org/10.5194/gmd-17-3949-2024, 2024
Short summary
Short summary
Compared to the silicate weathering fluxes measured at large river basins, the current models tend to systematically overestimate the fluxes over the tropical region, which leads to an overestimation of the global total weathering flux. The most possible cause of such bias is found to be the overestimation of tropical surface erosion, which indicates that the tropical vegetation likely slows down physical erosion significantly. We propose a way of taking this effect into account in models.
Xin Ren, Daniel J. Lunt, Erica Hendy, Anna von der Heydt, Ayako Abe-Ouchi, Bette Otto-Bliesner, Charles J. R. Williams, Christian Stepanek, Chuncheng Guo, Deepak Chandan, Gerrit Lohmann, Julia C. Tindall, Linda E. Sohl, Mark A. Chandler, Masa Kageyama, Michiel L. J. Baatsen, Ning Tan, Qiong Zhang, Ran Feng, Stephen Hunter, Wing-Le Chan, W. Richard Peltier, Xiangyu Li, Youichi Kamae, Zhongshi Zhang, and Alan M. Haywood
Clim. Past, 19, 2053–2077, https://doi.org/10.5194/cp-19-2053-2023, https://doi.org/10.5194/cp-19-2053-2023, 2023
Short summary
Short summary
We investigate the Maritime Continent climate in the mid-Piacenzian warm period and find it is warmer and wetter and the sea surface salinity is lower compared with preindustrial period. Besides, the fresh and warm water transfer through the Maritime Continent was stronger. In order to avoid undue influence from closely related models in the multimodel results, we introduce a new metric, the multi-cluster mean, which could reveal spatial signals that are not captured by the multimodel mean.
Léa Terray, Emmanuelle Stoetzel, Eslem Ben Arous, Masa Kageyama, Raphaël Cornette, and Pascale Braconnot
Clim. Past, 19, 1245–1263, https://doi.org/10.5194/cp-19-1245-2023, https://doi.org/10.5194/cp-19-1245-2023, 2023
Short summary
Short summary
The reconstruction of paleoenvironments has long been a subject of great interest, particularly to study past biodiversity. Paleoenvironmental proxies often show inconsistencies, and age estimations can vary depending on the method used. We demonstrate the ability of paleoclimate simulations to address these discrepancies, illustrating the strong potential of our cross-disciplinary consistency approach to refine the context of archeological and paleontological sites.
Julia E. Weiffenbach, Michiel L. J. Baatsen, Henk A. Dijkstra, Anna S. von der Heydt, Ayako Abe-Ouchi, Esther C. Brady, Wing-Le Chan, Deepak Chandan, Mark A. Chandler, Camille Contoux, Ran Feng, Chuncheng Guo, Zixuan Han, Alan M. Haywood, Qiang Li, Xiangyu Li, Gerrit Lohmann, Daniel J. Lunt, Kerim H. Nisancioglu, Bette L. Otto-Bliesner, W. Richard Peltier, Gilles Ramstein, Linda E. Sohl, Christian Stepanek, Ning Tan, Julia C. Tindall, Charles J. R. Williams, Qiong Zhang, and Zhongshi Zhang
Clim. Past, 19, 61–85, https://doi.org/10.5194/cp-19-61-2023, https://doi.org/10.5194/cp-19-61-2023, 2023
Short summary
Short summary
We study the behavior of the Atlantic Meridional Overturning Circulation (AMOC) in the mid-Pliocene. The mid-Pliocene was about 3 million years ago and had a similar CO2 concentration to today. We show that the stronger AMOC during this period relates to changes in geography and that this has a significant influence on ocean temperatures and heat transported northwards by the Atlantic Ocean. Understanding the behavior of the mid-Pliocene AMOC can help us to learn more about our future climate.
Meng Zuo, Yong Sun, Yan Zhao, Gilles Ramstein, Lin Ding, and Tianjun Zhou
Clim. Past Discuss., https://doi.org/10.5194/cp-2022-76, https://doi.org/10.5194/cp-2022-76, 2022
Manuscript not accepted for further review
Short summary
Short summary
Based on the coupled model simulations with realistic early to middle Miocene paleogeography, we reveal that the enhanced South Asian summer monsoon in Middle Miocene is mainly caused by the uplift of Iranian Plateau (IP), rather than the Himalayas. The elevated IP insulates the warm and moist airs in the south of the IP and produces a low-level cyclonic circulation, which leads to the convergence of the warm and moist air in the northwestern India and enhancing the monsoonal precipitation.
Alizée Chemison, Dimitri Defrance, Gilles Ramstein, and Cyril Caminade
Earth Syst. Dynam., 13, 1259–1287, https://doi.org/10.5194/esd-13-1259-2022, https://doi.org/10.5194/esd-13-1259-2022, 2022
Short summary
Short summary
We study the impact of a rapid melting of the ice sheets on monsoon systems during the 21st century. The impact of a partial Antarctica melting is moderate. Conversely, Greenland melting slows down the oceanic Atlantic circulation and changes winds, temperature and pressure patterns, resulting in a southward shift of the tropical rain belt over Africa and America. The seasonality, duration and intensity of rainfall events are affected, with potential severe impacts on vulnerable populations.
Zhiping Tian, Dabang Jiang, Ran Zhang, and Baohuang Su
Geosci. Model Dev., 15, 4469–4487, https://doi.org/10.5194/gmd-15-4469-2022, https://doi.org/10.5194/gmd-15-4469-2022, 2022
Short summary
Short summary
We present an experimental design for a new set of transient experiments for the Holocene from 11.5 ka to the preindustrial period (1850) with a relatively high-resolution Earth system model. Model boundary conditions include time-varying full and single forcing of orbital parameters, greenhouse gases, and ice sheets. The simulations will help to study the mean climate trend and abrupt climate changes through the Holocene in response to both full and single external forcings.
Xiaoxu Shi, Martin Werner, Carolin Krug, Chris M. Brierley, Anni Zhao, Endurance Igbinosa, Pascale Braconnot, Esther Brady, Jian Cao, Roberta D'Agostino, Johann Jungclaus, Xingxing Liu, Bette Otto-Bliesner, Dmitry Sidorenko, Robert Tomas, Evgeny M. Volodin, Hu Yang, Qiong Zhang, Weipeng Zheng, and Gerrit Lohmann
Clim. Past, 18, 1047–1070, https://doi.org/10.5194/cp-18-1047-2022, https://doi.org/10.5194/cp-18-1047-2022, 2022
Short summary
Short summary
Since the orbital parameters of the past are different from today, applying the modern calendar to the past climate can lead to an artificial bias in seasonal cycles. With the use of multiple model outputs, we found that such a bias is non-ignorable and should be corrected to ensure an accurate comparison between modeled results and observational records, as well as between simulated past and modern climates, especially for the Last Interglacial.
Marie Sicard, Masa Kageyama, Sylvie Charbit, Pascale Braconnot, and Jean-Baptiste Madeleine
Clim. Past, 18, 607–629, https://doi.org/10.5194/cp-18-607-2022, https://doi.org/10.5194/cp-18-607-2022, 2022
Short summary
Short summary
The Last Interglacial (129–116 ka) is characterised by an increased summer insolation over the Arctic region, which leads to a strong temperature rise. The aim of this study is to identify and quantify the main processes and feedback causing this Arctic warming. Using the IPSL-CM6A-LR model, we investigate changes in the energy budget relative to the pre-industrial period. We highlight the crucial role of Arctic sea ice cover, ocean and clouds on the Last Interglacial Arctic warming.
Léa Terray, Masa Kageyama, Emmanuelle Stoetzel, Eslem Ben Arous, Raphaël Cornette, and Pascale Braconnot
Clim. Past Discuss., https://doi.org/10.5194/cp-2021-185, https://doi.org/10.5194/cp-2021-185, 2022
Manuscript not accepted for further review
Short summary
Short summary
To reconstruct the paleoenvironmental and chronological context of archaeo/paleontological sites is a key step to understand the evolutionary history of past organisms. Paleoenvironmental proxies often show inconsistencies and age estimations can vary depending on the method used. We show the potential of paleoclimate simulations to address those discrepancies, illustrating the strong potential of our cross-disciplinary approach to refine the context of archaeo/paleontological sites.
Zixuan Han, Qiong Zhang, Qiang Li, Ran Feng, Alan M. Haywood, Julia C. Tindall, Stephen J. Hunter, Bette L. Otto-Bliesner, Esther C. Brady, Nan Rosenbloom, Zhongshi Zhang, Xiangyu Li, Chuncheng Guo, Kerim H. Nisancioglu, Christian Stepanek, Gerrit Lohmann, Linda E. Sohl, Mark A. Chandler, Ning Tan, Gilles Ramstein, Michiel L. J. Baatsen, Anna S. von der Heydt, Deepak Chandan, W. Richard Peltier, Charles J. R. Williams, Daniel J. Lunt, Jianbo Cheng, Qin Wen, and Natalie J. Burls
Clim. Past, 17, 2537–2558, https://doi.org/10.5194/cp-17-2537-2021, https://doi.org/10.5194/cp-17-2537-2021, 2021
Short summary
Short summary
Understanding the potential processes responsible for large-scale hydrological cycle changes in a warmer climate is of great importance. Our study implies that an imbalance in interhemispheric atmospheric energy during the mid-Pliocene could have led to changes in the dynamic effect, offsetting the thermodynamic effect and, hence, altering mid-Pliocene hydroclimate cycling. Moreover, a robust westward shift in the Pacific Walker circulation can moisten the northern Indian Ocean.
Arthur M. Oldeman, Michiel L. J. Baatsen, Anna S. von der Heydt, Henk A. Dijkstra, Julia C. Tindall, Ayako Abe-Ouchi, Alice R. Booth, Esther C. Brady, Wing-Le Chan, Deepak Chandan, Mark A. Chandler, Camille Contoux, Ran Feng, Chuncheng Guo, Alan M. Haywood, Stephen J. Hunter, Youichi Kamae, Qiang Li, Xiangyu Li, Gerrit Lohmann, Daniel J. Lunt, Kerim H. Nisancioglu, Bette L. Otto-Bliesner, W. Richard Peltier, Gabriel M. Pontes, Gilles Ramstein, Linda E. Sohl, Christian Stepanek, Ning Tan, Qiong Zhang, Zhongshi Zhang, Ilana Wainer, and Charles J. R. Williams
Clim. Past, 17, 2427–2450, https://doi.org/10.5194/cp-17-2427-2021, https://doi.org/10.5194/cp-17-2427-2021, 2021
Short summary
Short summary
In this work, we have studied the behaviour of El Niño events in the mid-Pliocene, a period of around 3 million years ago, using a collection of 17 climate models. It is an interesting period to study, as it saw similar atmospheric carbon dioxide levels to the present day. We find that the El Niño events were less strong in the mid-Pliocene simulations, when compared to pre-industrial climate. Our results could help to interpret El Niño behaviour in future climate projections.
Ellen Berntell, Qiong Zhang, Qiang Li, Alan M. Haywood, Julia C. Tindall, Stephen J. Hunter, Zhongshi Zhang, Xiangyu Li, Chuncheng Guo, Kerim H. Nisancioglu, Christian Stepanek, Gerrit Lohmann, Linda E. Sohl, Mark A. Chandler, Ning Tan, Camille Contoux, Gilles Ramstein, Michiel L. J. Baatsen, Anna S. von der Heydt, Deepak Chandan, William Richard Peltier, Ayako Abe-Ouchi, Wing-Le Chan, Youichi Kamae, Charles J. R. Williams, Daniel J. Lunt, Ran Feng, Bette L. Otto-Bliesner, and Esther C. Brady
Clim. Past, 17, 1777–1794, https://doi.org/10.5194/cp-17-1777-2021, https://doi.org/10.5194/cp-17-1777-2021, 2021
Short summary
Short summary
The mid-Pliocene Warm Period (~ 3.2 Ma) is often considered an analogue for near-future climate projections, and model results from the PlioMIP2 ensemble show an increase of rainfall over West Africa and the Sahara region compared to pre-industrial conditions. Though previous studies of future projections show a west–east drying–wetting contrast over the Sahel, these results indicate a uniform rainfall increase over the Sahel in warm climates characterized by increased greenhouse gas forcing.
Olivier Marti, Sébastien Nguyen, Pascale Braconnot, Sophie Valcke, Florian Lemarié, and Eric Blayo
Geosci. Model Dev., 14, 2959–2975, https://doi.org/10.5194/gmd-14-2959-2021, https://doi.org/10.5194/gmd-14-2959-2021, 2021
Short summary
Short summary
State-of-the-art Earth system models, like the ones used in CMIP6, suffer from temporal inconsistencies at the ocean–atmosphere interface. In this study, a mathematically consistent iterative Schwarz method is used as a reference. Its tremendous computational cost makes it unusable for production runs, but it allows us to evaluate the error made when using legacy coupling schemes. The impact on the climate at longer timescales of days to decades is not evaluated.
Pascale Braconnot, Samuel Albani, Yves Balkanski, Anne Cozic, Masa Kageyama, Adriana Sima, Olivier Marti, and Jean-Yves Peterschmitt
Clim. Past, 17, 1091–1117, https://doi.org/10.5194/cp-17-1091-2021, https://doi.org/10.5194/cp-17-1091-2021, 2021
Short summary
Short summary
We investigate how mid-Holocene dust reduction affects the Earth’s energetics from a suite of climate simulations. Our analyses confirm the peculiar role of the dust radiative effect over bright surfaces such as African deserts. We highlight a strong dependence on the dust pattern. The relative dust forcing between West Africa and the Middle East impacts the relative response of Indian and African monsoons and between the western tropical Atlantic and the Atlantic meridional circulation.
Masa Kageyama, Sandy P. Harrison, Marie-L. Kapsch, Marcus Lofverstrom, Juan M. Lora, Uwe Mikolajewicz, Sam Sherriff-Tadano, Tristan Vadsaria, Ayako Abe-Ouchi, Nathaelle Bouttes, Deepak Chandan, Lauren J. Gregoire, Ruza F. Ivanovic, Kenji Izumi, Allegra N. LeGrande, Fanny Lhardy, Gerrit Lohmann, Polina A. Morozova, Rumi Ohgaito, André Paul, W. Richard Peltier, Christopher J. Poulsen, Aurélien Quiquet, Didier M. Roche, Xiaoxu Shi, Jessica E. Tierney, Paul J. Valdes, Evgeny Volodin, and Jiang Zhu
Clim. Past, 17, 1065–1089, https://doi.org/10.5194/cp-17-1065-2021, https://doi.org/10.5194/cp-17-1065-2021, 2021
Short summary
Short summary
The Last Glacial Maximum (LGM; ~21 000 years ago) is a major focus for evaluating how well climate models simulate climate changes as large as those expected in the future. Here, we compare the latest climate model (CMIP6-PMIP4) to the previous one (CMIP5-PMIP3) and to reconstructions. Large-scale climate features (e.g. land–sea contrast, polar amplification) are well captured by all models, while regional changes (e.g. winter extratropical cooling, precipitations) are still poorly represented.
Zhongshi Zhang, Xiangyu Li, Chuncheng Guo, Odd Helge Otterå, Kerim H. Nisancioglu, Ning Tan, Camille Contoux, Gilles Ramstein, Ran Feng, Bette L. Otto-Bliesner, Esther Brady, Deepak Chandan, W. Richard Peltier, Michiel L. J. Baatsen, Anna S. von der Heydt, Julia E. Weiffenbach, Christian Stepanek, Gerrit Lohmann, Qiong Zhang, Qiang Li, Mark A. Chandler, Linda E. Sohl, Alan M. Haywood, Stephen J. Hunter, Julia C. Tindall, Charles Williams, Daniel J. Lunt, Wing-Le Chan, and Ayako Abe-Ouchi
Clim. Past, 17, 529–543, https://doi.org/10.5194/cp-17-529-2021, https://doi.org/10.5194/cp-17-529-2021, 2021
Short summary
Short summary
The Atlantic Meridional Overturning Circulation (AMOC) is an important topic in the Pliocene Model Intercomparison Project. Previous studies have suggested a much stronger AMOC during the Pliocene than today. However, our current multi-model intercomparison shows large model spreads and model–data discrepancies, which can not support the previous hypothesis. Our study shows good consistency with future projections of the AMOC.
Masa Kageyama, Louise C. Sime, Marie Sicard, Maria-Vittoria Guarino, Anne de Vernal, Ruediger Stein, David Schroeder, Irene Malmierca-Vallet, Ayako Abe-Ouchi, Cecilia Bitz, Pascale Braconnot, Esther C. Brady, Jian Cao, Matthew A. Chamberlain, Danny Feltham, Chuncheng Guo, Allegra N. LeGrande, Gerrit Lohmann, Katrin J. Meissner, Laurie Menviel, Polina Morozova, Kerim H. Nisancioglu, Bette L. Otto-Bliesner, Ryouta O'ishi, Silvana Ramos Buarque, David Salas y Melia, Sam Sherriff-Tadano, Julienne Stroeve, Xiaoxu Shi, Bo Sun, Robert A. Tomas, Evgeny Volodin, Nicholas K. H. Yeung, Qiong Zhang, Zhongshi Zhang, Weipeng Zheng, and Tilo Ziehn
Clim. Past, 17, 37–62, https://doi.org/10.5194/cp-17-37-2021, https://doi.org/10.5194/cp-17-37-2021, 2021
Short summary
Short summary
The Last interglacial (ca. 127 000 years ago) is a period with increased summer insolation at high northern latitudes, resulting in a strong reduction in Arctic sea ice. The latest PMIP4-CMIP6 models all simulate this decrease, consistent with reconstructions. However, neither the models nor the reconstructions agree on the possibility of a seasonally ice-free Arctic. Work to clarify the reasons for this model divergence and the conflicting interpretations of the records will thus be needed.
Bette L. Otto-Bliesner, Esther C. Brady, Anni Zhao, Chris M. Brierley, Yarrow Axford, Emilie Capron, Aline Govin, Jeremy S. Hoffman, Elizabeth Isaacs, Masa Kageyama, Paolo Scussolini, Polychronis C. Tzedakis, Charles J. R. Williams, Eric Wolff, Ayako Abe-Ouchi, Pascale Braconnot, Silvana Ramos Buarque, Jian Cao, Anne de Vernal, Maria Vittoria Guarino, Chuncheng Guo, Allegra N. LeGrande, Gerrit Lohmann, Katrin J. Meissner, Laurie Menviel, Polina A. Morozova, Kerim H. Nisancioglu, Ryouta O'ishi, David Salas y Mélia, Xiaoxu Shi, Marie Sicard, Louise Sime, Christian Stepanek, Robert Tomas, Evgeny Volodin, Nicholas K. H. Yeung, Qiong Zhang, Zhongshi Zhang, and Weipeng Zheng
Clim. Past, 17, 63–94, https://doi.org/10.5194/cp-17-63-2021, https://doi.org/10.5194/cp-17-63-2021, 2021
Short summary
Short summary
The CMIP6–PMIP4 Tier 1 lig127k experiment was designed to address the climate responses to strong orbital forcing. We present a multi-model ensemble of 17 climate models, most of which have also completed the CMIP6 DECK experiments and are thus important for assessing future projections. The lig127ksimulations show strong summer warming over the NH continents. More than half of the models simulate a retreat of the Arctic minimum summer ice edge similar to the average for 2000–2018.
Wesley de Nooijer, Qiong Zhang, Qiang Li, Qiang Zhang, Xiangyu Li, Zhongshi Zhang, Chuncheng Guo, Kerim H. Nisancioglu, Alan M. Haywood, Julia C. Tindall, Stephen J. Hunter, Harry J. Dowsett, Christian Stepanek, Gerrit Lohmann, Bette L. Otto-Bliesner, Ran Feng, Linda E. Sohl, Mark A. Chandler, Ning Tan, Camille Contoux, Gilles Ramstein, Michiel L. J. Baatsen, Anna S. von der Heydt, Deepak Chandan, W. Richard Peltier, Ayako Abe-Ouchi, Wing-Le Chan, Youichi Kamae, and Chris M. Brierley
Clim. Past, 16, 2325–2341, https://doi.org/10.5194/cp-16-2325-2020, https://doi.org/10.5194/cp-16-2325-2020, 2020
Short summary
Short summary
The simulations for the past climate can inform us about the performance of climate models in different climate scenarios. Here, we analyse Arctic warming in an ensemble of 16 simulations of the mid-Pliocene Warm Period (mPWP), when the CO2 level was comparable to today. The results highlight the importance of slow feedbacks in the model simulations and imply that we must be careful when using simulations of the mPWP as an analogue for future climate change.
Alan M. Haywood, Julia C. Tindall, Harry J. Dowsett, Aisling M. Dolan, Kevin M. Foley, Stephen J. Hunter, Daniel J. Hill, Wing-Le Chan, Ayako Abe-Ouchi, Christian Stepanek, Gerrit Lohmann, Deepak Chandan, W. Richard Peltier, Ning Tan, Camille Contoux, Gilles Ramstein, Xiangyu Li, Zhongshi Zhang, Chuncheng Guo, Kerim H. Nisancioglu, Qiong Zhang, Qiang Li, Youichi Kamae, Mark A. Chandler, Linda E. Sohl, Bette L. Otto-Bliesner, Ran Feng, Esther C. Brady, Anna S. von der Heydt, Michiel L. J. Baatsen, and Daniel J. Lunt
Clim. Past, 16, 2095–2123, https://doi.org/10.5194/cp-16-2095-2020, https://doi.org/10.5194/cp-16-2095-2020, 2020
Short summary
Short summary
The large-scale features of middle Pliocene climate from the 16 models of PlioMIP Phase 2 are presented. The PlioMIP2 ensemble average was ~ 3.2 °C warmer and experienced ~ 7 % more precipitation than the pre-industrial era, although there are large regional variations. PlioMIP2 broadly agrees with a new proxy dataset of Pliocene sea surface temperatures. Combining PlioMIP2 and proxy data suggests that a doubling of atmospheric CO2 would increase globally averaged temperature by 2.6–4.8 °C.
Xinquan Zhou, Stéphanie Duchamp-Alphonse, Masa Kageyama, Franck Bassinot, Luc Beaufort, and Christophe Colin
Clim. Past, 16, 1969–1986, https://doi.org/10.5194/cp-16-1969-2020, https://doi.org/10.5194/cp-16-1969-2020, 2020
Short summary
Short summary
We provide a high-resolution primary productivity (PP) record of the northeastern Bay of Bengal over the last 26 000 years. Combined with climate model outputs, we show that PP over the glacial period is controlled by river input nutrients under low sea level conditions and after the Last Glacial Maximum is controlled by upper seawater salinity stratification related to monsoon precipitation. During the deglaciation the Atlantic meridional overturning circulation is the main forcing factor.
Chris M. Brierley, Anni Zhao, Sandy P. Harrison, Pascale Braconnot, Charles J. R. Williams, David J. R. Thornalley, Xiaoxu Shi, Jean-Yves Peterschmitt, Rumi Ohgaito, Darrell S. Kaufman, Masa Kageyama, Julia C. Hargreaves, Michael P. Erb, Julien Emile-Geay, Roberta D'Agostino, Deepak Chandan, Matthieu Carré, Partrick J. Bartlein, Weipeng Zheng, Zhongshi Zhang, Qiong Zhang, Hu Yang, Evgeny M. Volodin, Robert A. Tomas, Cody Routson, W. Richard Peltier, Bette Otto-Bliesner, Polina A. Morozova, Nicholas P. McKay, Gerrit Lohmann, Allegra N. Legrande, Chuncheng Guo, Jian Cao, Esther Brady, James D. Annan, and Ayako Abe-Ouchi
Clim. Past, 16, 1847–1872, https://doi.org/10.5194/cp-16-1847-2020, https://doi.org/10.5194/cp-16-1847-2020, 2020
Short summary
Short summary
This paper provides an initial exploration and comparison to climate reconstructions of the new climate model simulations of the mid-Holocene (6000 years ago). These use state-of-the-art models developed for CMIP6 and apply the same experimental set-up. The models capture several key aspects of the climate, but some persistent issues remain.
Josephine R. Brown, Chris M. Brierley, Soon-Il An, Maria-Vittoria Guarino, Samantha Stevenson, Charles J. R. Williams, Qiong Zhang, Anni Zhao, Ayako Abe-Ouchi, Pascale Braconnot, Esther C. Brady, Deepak Chandan, Roberta D'Agostino, Chuncheng Guo, Allegra N. LeGrande, Gerrit Lohmann, Polina A. Morozova, Rumi Ohgaito, Ryouta O'ishi, Bette L. Otto-Bliesner, W. Richard Peltier, Xiaoxu Shi, Louise Sime, Evgeny M. Volodin, Zhongshi Zhang, and Weipeng Zheng
Clim. Past, 16, 1777–1805, https://doi.org/10.5194/cp-16-1777-2020, https://doi.org/10.5194/cp-16-1777-2020, 2020
Short summary
Short summary
El Niño–Southern Oscillation (ENSO) is the largest source of year-to-year variability in the current climate, but the response of ENSO to past or future changes in climate is uncertain. This study compares the strength and spatial pattern of ENSO in a set of climate model simulations in order to explore how ENSO changes in different climates, including past cold glacial climates and past climates with different seasonal cycles, as well as gradual and abrupt future warming cases.
Tingting Li, Yanyu Lu, Lingfei Yu, Wenjuan Sun, Qing Zhang, Wen Zhang, Guocheng Wang, Zhangcai Qin, Lijun Yu, Hailing Li, and Ran Zhang
Geosci. Model Dev., 13, 3769–3788, https://doi.org/10.5194/gmd-13-3769-2020, https://doi.org/10.5194/gmd-13-3769-2020, 2020
Short summary
Short summary
Reliable models are required to estimate global wetland CH4 emissions, which are the largest and most uncertain source of atmospheric CH4. This paper evaluated CH4MODwetland and TEM models against CH4 measurements from different continents and wetland types. Based on best-model performance, we estimated 117–125 Tg yr−1 of global CH4 emissions from wetlands for the period 2000–2010. Efforts should be made to reduce estimate uncertainties for different wetland types and regions.
Pierre Sepulchre, Arnaud Caubel, Jean-Baptiste Ladant, Laurent Bopp, Olivier Boucher, Pascale Braconnot, Patrick Brockmann, Anne Cozic, Yannick Donnadieu, Jean-Louis Dufresne, Victor Estella-Perez, Christian Ethé, Frédéric Fluteau, Marie-Alice Foujols, Guillaume Gastineau, Josefine Ghattas, Didier Hauglustaine, Frédéric Hourdin, Masa Kageyama, Myriam Khodri, Olivier Marti, Yann Meurdesoif, Juliette Mignot, Anta-Clarisse Sarr, Jérôme Servonnat, Didier Swingedouw, Sophie Szopa, and Delphine Tardif
Geosci. Model Dev., 13, 3011–3053, https://doi.org/10.5194/gmd-13-3011-2020, https://doi.org/10.5194/gmd-13-3011-2020, 2020
Short summary
Short summary
Our paper describes IPSL-CM5A2, an Earth system model that can be integrated for long (several thousands of years) climate simulations. We describe the technical aspects, assess the model computing performance and evaluate the strengths and weaknesses of the model, by comparing pre-industrial and historical runs to the previous-generation model simulations and to observations. We also present a Cretaceous simulation as a case study to show how the model simulates deep-time paleoclimates.
Eric Pohl, Christophe Grenier, Mathieu Vrac, and Masa Kageyama
Hydrol. Earth Syst. Sci., 24, 2817–2839, https://doi.org/10.5194/hess-24-2817-2020, https://doi.org/10.5194/hess-24-2817-2020, 2020
Short summary
Short summary
Existing approaches to quantify the emergence of climate change require several user choices that make these approaches less objective. We present an approach that uses a minimum number of choices and showcase its application in the extremely sensitive, permafrost-dominated region of eastern Siberia. Designed as a Python toolbox, it allows for incorporating climate model, reanalysis, and in situ data to make use of numerous existing data sources and reduce uncertainties in obtained estimates.
Tristan Vadsaria, Laurent Li, Gilles Ramstein, and Jean-Claude Dutay
Geosci. Model Dev., 13, 2337–2354, https://doi.org/10.5194/gmd-13-2337-2020, https://doi.org/10.5194/gmd-13-2337-2020, 2020
Short summary
Short summary
This article aims to reproduce the Early Holocene climate over the Mediterranean basin, characterized with a large reorganization of the Mediterranean thermohaline circulation. In order to reduce the demand of strong computation resources, a comprehensive global-to-regional model architecture is developed and validated against paleo data. Beyond the case study shown here, this platform may be applied to a large number of paleoclimate contexts.
Zhongshi Zhang, Qing Yan, Ran Zhang, Florence Colleoni, Gilles Ramstein, Gaowen Dai, Martin Jakobsson, Matt O'Regan, Stefan Liess, Denis-Didier Rousseau, Naiqing Wu, Elizabeth J. Farmer, Camille Contoux, Chuncheng Guo, Ning Tan, and Zhengtang Guo
Clim. Past Discuss., https://doi.org/10.5194/cp-2020-38, https://doi.org/10.5194/cp-2020-38, 2020
Manuscript not accepted for further review
Short summary
Short summary
Whether an ice sheet once grew over Northeast Siberia-Beringia has been debated for decades. By comparing climate modelling with paleoclimate and glacial records from around the North Pacific, this study shows that the Laurentide-Eurasia-only ice sheet configuration fails in explaining these records, while a scenario involving the ice sheet over Northeast Siberia-Beringia succeeds. It highlights the complexity in glacial climates and urges new investigations across Northeast Siberia-Beringia.
Sandy P. Harrison, Marie-José Gaillard, Benjamin D. Stocker, Marc Vander Linden, Kees Klein Goldewijk, Oliver Boles, Pascale Braconnot, Andria Dawson, Etienne Fluet-Chouinard, Jed O. Kaplan, Thomas Kastner, Francesco S. R. Pausata, Erick Robinson, Nicki J. Whitehouse, Marco Madella, and Kathleen D. Morrison
Geosci. Model Dev., 13, 805–824, https://doi.org/10.5194/gmd-13-805-2020, https://doi.org/10.5194/gmd-13-805-2020, 2020
Short summary
Short summary
The Past Global Changes LandCover6k initiative will use archaeological records to refine scenarios of land use and land cover change through the Holocene to reduce the uncertainties about the impacts of human-induced changes before widespread industrialization. We describe how archaeological data are used to map land use change and how the maps can be evaluated using independent palaeoenvironmental data. We propose simulations to test land use and land cover change impacts on past climates.
Xiangyu Li, Chuncheng Guo, Zhongshi Zhang, Odd Helge Otterå, and Ran Zhang
Clim. Past, 16, 183–197, https://doi.org/10.5194/cp-16-183-2020, https://doi.org/10.5194/cp-16-183-2020, 2020
Short summary
Short summary
Here we report the PlioMIP2 simulations by two versions of the Norwegian Earth System Model (NorESM) with updated boundary conditions derived from Pliocene Research, Interpretation and Synoptic Mapping version 4. The two NorESM versions both produce warmer and wetter Pliocene climate with deeper and stronger Atlantic meridional overturning circulation. Compared to PlioMIP1, PlioMIP2 simulates lower Pliocene warming with NorESM-L, likely due to the closure of seaways at northern high latitudes.
Ning Tan, Camille Contoux, Gilles Ramstein, Yong Sun, Christophe Dumas, Pierre Sepulchre, and Zhengtang Guo
Clim. Past, 16, 1–16, https://doi.org/10.5194/cp-16-1-2020, https://doi.org/10.5194/cp-16-1-2020, 2020
Short summary
Short summary
To understand the warm climate during the late Pliocene (~3.205 Ma), modeling experiments with the new boundary conditions are launched and analyzed based on the Institut Pierre Simon Laplace (IPSL) atmosphere–ocean coupled general circulation model (AOGCM). Our results show that the warming in mid- to high latitudes enhanced due to the modifications of the land–sea mask and land–ice configuration. The pCO2 uncertainties within the records can produce asymmetrical warming patterns.
Laurie Menviel, Emilie Capron, Aline Govin, Andrea Dutton, Lev Tarasov, Ayako Abe-Ouchi, Russell N. Drysdale, Philip L. Gibbard, Lauren Gregoire, Feng He, Ruza F. Ivanovic, Masa Kageyama, Kenji Kawamura, Amaelle Landais, Bette L. Otto-Bliesner, Ikumi Oyabu, Polychronis C. Tzedakis, Eric Wolff, and Xu Zhang
Geosci. Model Dev., 12, 3649–3685, https://doi.org/10.5194/gmd-12-3649-2019, https://doi.org/10.5194/gmd-12-3649-2019, 2019
Short summary
Short summary
As part of the Past Global Changes (PAGES) working group on Quaternary Interglacials, we propose a protocol to perform transient simulations of the penultimate deglaciation for the Paleoclimate Modelling Intercomparison Project (PMIP4). This design includes time-varying changes in orbital forcing, greenhouse gas concentrations, continental ice sheets as well as freshwater input from the disintegration of continental ice sheets. Key paleo-records for model-data comparison are also included.
Sébastien Le clec'h, Aurélien Quiquet, Sylvie Charbit, Christophe Dumas, Masa Kageyama, and Catherine Ritz
Geosci. Model Dev., 12, 2481–2499, https://doi.org/10.5194/gmd-12-2481-2019, https://doi.org/10.5194/gmd-12-2481-2019, 2019
Short summary
Short summary
To provide reliable projections of the ice-sheet contribution to future sea-level rise, ice sheet models must be able to simulate the observed ice sheet present-day state. Using a low computational iterative minimisation procedure, based on the adjustment of the basal drag coefficient, we rapidly minimise the errors between the simulated and the observed Greenland ice thickness and ice velocity, and we succeed in stabilising the simulated Greenland ice sheet state under present-day conditions.
Pascale Braconnot, Dan Zhu, Olivier Marti, and Jérôme Servonnat
Clim. Past, 15, 997–1024, https://doi.org/10.5194/cp-15-997-2019, https://doi.org/10.5194/cp-15-997-2019, 2019
Short summary
Short summary
This study discusses a simulation of the last 6000 years realized with a climate model in which the vegetation and carbon cycle are fully interactive. The long-term southward shift in Northern Hemisphere tree line and Afro-Asian monsoon rain are reproduced. The results show substantial change in tree composition with time over Eurasia and the role of trace gases in the recent past. They highlight the limitations due to model setup and multiple preindustrial vegetation states.
Sébastien Le clec'h, Sylvie Charbit, Aurélien Quiquet, Xavier Fettweis, Christophe Dumas, Masa Kageyama, Coraline Wyard, and Catherine Ritz
The Cryosphere, 13, 373–395, https://doi.org/10.5194/tc-13-373-2019, https://doi.org/10.5194/tc-13-373-2019, 2019
Short summary
Short summary
Quantifying the future contribution of the Greenland ice sheet (GrIS) to sea-level rise in response to atmospheric changes is important but remains challenging. For the first time a full representation of the feedbacks between a GrIS model and a regional atmospheric model was implemented. The authors highlight the fundamental need for representing the GrIS topography change feedbacks with respect to the atmospheric component face to the strong impact on the projected sea-level rise.
Laurie Menviel, Emilie Capron, Aline Govin, Andrea Dutton, Lev Tarasov, Ayako Abe-Ouchi, Russell Drysdale, Philip Gibbard, Lauren Gregoire, Feng He, Ruza Ivanovic, Masa Kageyama, Kenji Kawamura, Amaelle Landais, Bette L. Otto-Bliesner, Ikumi Oyabu, Polychronis Tzedakis, Eric Wolff, and Xu Zhang
Clim. Past Discuss., https://doi.org/10.5194/cp-2018-106, https://doi.org/10.5194/cp-2018-106, 2018
Preprint withdrawn
Short summary
Short summary
The penultimate deglaciation (~ 138–128 ka), which represents the transition into the Last Interglacial period, provides a framework to investigate the climate and environmental response to large changes in boundary conditions. Here, as part of the PAGES-PMIP working group on Quaternary Interglacials, we propose a protocol to perform transient simulations of the penultimate deglaciation as well as a selection of paleo records for upcoming model-data comparisons.
Zhongshi Zhang, Qing Yan, Elizabeth J. Farmer, Camille Li, Gilles Ramstein, Terence Hughes, Martin Jakobsson, Matt O'Regan, Ran Zhang, Ning Tan, Camille Contoux, Christophe Dumas, and Chuncheng Guo
Clim. Past Discuss., https://doi.org/10.5194/cp-2018-79, https://doi.org/10.5194/cp-2018-79, 2018
Revised manuscript not accepted
Short summary
Short summary
Our study challenges the widely accepted idea that the Laurentide-Eurasian ice sheets gradually extended across North America and Northwest Eurasia, and suggests the growth of the NH ice sheets is much more complicated. We find climate feedbacks regulate the distribution of the NH ice sheets, producing swings between two distinct ice sheet configurations: the Laurentide-Eurasian and a circum-Arctic configuration, where large ice sheets existed over Northeast Siberia and the Canadian Rockies.
Guillaume Latombe, Ariane Burke, Mathieu Vrac, Guillaume Levavasseur, Christophe Dumas, Masa Kageyama, and Gilles Ramstein
Geosci. Model Dev., 11, 2563–2579, https://doi.org/10.5194/gmd-11-2563-2018, https://doi.org/10.5194/gmd-11-2563-2018, 2018
Short summary
Short summary
It is still unclear how climate conditions, and especially climate variability, influenced the spatial distribution of past human populations. Global climate models (GCMs) cannot simulate climate at sufficiently fine scale for this purpose. We propose a statistical method to obtain fine-scale climate projections for 15 000 years ago from coarse-scale GCM outputs. Our method agrees with local reconstructions from fossil and pollen data, and generates sensible climate variability maps over Europe.
Baohuang Su, Dabang Jiang, Ran Zhang, Pierre Sepulchre, and Gilles Ramstein
Clim. Past, 14, 751–762, https://doi.org/10.5194/cp-14-751-2018, https://doi.org/10.5194/cp-14-751-2018, 2018
Short summary
Short summary
The present numerical experiments undertaken by a coupled atmosphere–ocean model indicate that the uplift of the Tibetan Plateau alone could have been a potential driver for the reorganization of Pacific and Atlantic meridional overturning circulations between the late Eocene and early Oligocene. In other words, the Tibetan Plateau could play an important role in maintaining the current large-scale overturning circulation in the Atlantic and Pacific.
Chenxi Xu, Masaki Sano, Ashok Priyadarshan Dimri, Rengaswamy Ramesh, Takeshi Nakatsuka, Feng Shi, and Zhengtang Guo
Clim. Past, 14, 653–664, https://doi.org/10.5194/cp-14-653-2018, https://doi.org/10.5194/cp-14-653-2018, 2018
Short summary
Short summary
We have constructed a regional tree ring cellulose oxygen isotope record using a total of five chronologies obtained from the Himalaya. Centennial changes in the regional tree ring record indicate a trend of weakened Indian summer monsoon (ISM) intensity since 1820. Decreasing ISM activity is also observed in various high-resolution ISM records from southwest China and Southeast Asia, and may be the result of reduced land–ocean thermal contrasts since 1820.
Masa Kageyama, Pascale Braconnot, Sandy P. Harrison, Alan M. Haywood, Johann H. Jungclaus, Bette L. Otto-Bliesner, Jean-Yves Peterschmitt, Ayako Abe-Ouchi, Samuel Albani, Patrick J. Bartlein, Chris Brierley, Michel Crucifix, Aisling Dolan, Laura Fernandez-Donado, Hubertus Fischer, Peter O. Hopcroft, Ruza F. Ivanovic, Fabrice Lambert, Daniel J. Lunt, Natalie M. Mahowald, W. Richard Peltier, Steven J. Phipps, Didier M. Roche, Gavin A. Schmidt, Lev Tarasov, Paul J. Valdes, Qiong Zhang, and Tianjun Zhou
Geosci. Model Dev., 11, 1033–1057, https://doi.org/10.5194/gmd-11-1033-2018, https://doi.org/10.5194/gmd-11-1033-2018, 2018
Short summary
Short summary
The Paleoclimate Modelling Intercomparison Project (PMIP) takes advantage of the existence of past climate states radically different from the recent past to test climate models used for climate projections and to better understand these climates. This paper describes the PMIP contribution to CMIP6 (Coupled Model Intercomparison Project, 6th phase) and possible analyses based on PMIP results, as well as on other CMIP6 projects.
Feng Shi, Sen Zhao, Zhengtang Guo, Hugues Goosse, and Qiuzhen Yin
Clim. Past, 13, 1919–1938, https://doi.org/10.5194/cp-13-1919-2017, https://doi.org/10.5194/cp-13-1919-2017, 2017
Short summary
Short summary
We reconstructed the multi-proxy precipitation field for China over the past 500 years, which includes three leading modes (a monopole, a dipole, and a triple) of precipitation variability. The dipole mode may be controlled by the El Niño–Southern Oscillation variability. Such reconstruction is an essential source of information to document the climate variability over decadal to centennial timescales and can be used to assess the ability of climate models to simulate past climate change.
Johann H. Jungclaus, Edouard Bard, Mélanie Baroni, Pascale Braconnot, Jian Cao, Louise P. Chini, Tania Egorova, Michael Evans, J. Fidel González-Rouco, Hugues Goosse, George C. Hurtt, Fortunat Joos, Jed O. Kaplan, Myriam Khodri, Kees Klein Goldewijk, Natalie Krivova, Allegra N. LeGrande, Stephan J. Lorenz, Jürg Luterbacher, Wenmin Man, Amanda C. Maycock, Malte Meinshausen, Anders Moberg, Raimund Muscheler, Christoph Nehrbass-Ahles, Bette I. Otto-Bliesner, Steven J. Phipps, Julia Pongratz, Eugene Rozanov, Gavin A. Schmidt, Hauke Schmidt, Werner Schmutz, Andrew Schurer, Alexander I. Shapiro, Michael Sigl, Jason E. Smerdon, Sami K. Solanki, Claudia Timmreck, Matthew Toohey, Ilya G. Usoskin, Sebastian Wagner, Chi-Ju Wu, Kok Leng Yeo, Davide Zanchettin, Qiong Zhang, and Eduardo Zorita
Geosci. Model Dev., 10, 4005–4033, https://doi.org/10.5194/gmd-10-4005-2017, https://doi.org/10.5194/gmd-10-4005-2017, 2017
Short summary
Short summary
Climate model simulations covering the last millennium provide context for the evolution of the modern climate and for the expected changes during the coming centuries. They can help identify plausible mechanisms underlying palaeoclimatic reconstructions. Here, we describe the forcing boundary conditions and the experimental protocol for simulations covering the pre-industrial millennium. We describe the PMIP4 past1000 simulations as contributions to CMIP6 and additional sensitivity experiments.
Bette L. Otto-Bliesner, Pascale Braconnot, Sandy P. Harrison, Daniel J. Lunt, Ayako Abe-Ouchi, Samuel Albani, Patrick J. Bartlein, Emilie Capron, Anders E. Carlson, Andrea Dutton, Hubertus Fischer, Heiko Goelzer, Aline Govin, Alan Haywood, Fortunat Joos, Allegra N. LeGrande, William H. Lipscomb, Gerrit Lohmann, Natalie Mahowald, Christoph Nehrbass-Ahles, Francesco S. R. Pausata, Jean-Yves Peterschmitt, Steven J. Phipps, Hans Renssen, and Qiong Zhang
Geosci. Model Dev., 10, 3979–4003, https://doi.org/10.5194/gmd-10-3979-2017, https://doi.org/10.5194/gmd-10-3979-2017, 2017
Short summary
Short summary
The PMIP4 and CMIP6 mid-Holocene and Last Interglacial simulations provide an opportunity to examine the impact of two different changes in insolation forcing on climate at times when other forcings were relatively similar to present. This will allow exploration of the role of feedbacks relevant to future projections. Evaluating these simulations using paleoenvironmental data will provide direct out-of-sample tests of the reliability of state-of-the-art models to simulate climate changes.
Masa Kageyama, Samuel Albani, Pascale Braconnot, Sandy P. Harrison, Peter O. Hopcroft, Ruza F. Ivanovic, Fabrice Lambert, Olivier Marti, W. Richard Peltier, Jean-Yves Peterschmitt, Didier M. Roche, Lev Tarasov, Xu Zhang, Esther C. Brady, Alan M. Haywood, Allegra N. LeGrande, Daniel J. Lunt, Natalie M. Mahowald, Uwe Mikolajewicz, Kerim H. Nisancioglu, Bette L. Otto-Bliesner, Hans Renssen, Robert A. Tomas, Qiong Zhang, Ayako Abe-Ouchi, Patrick J. Bartlein, Jian Cao, Qiang Li, Gerrit Lohmann, Rumi Ohgaito, Xiaoxu Shi, Evgeny Volodin, Kohei Yoshida, Xiao Zhang, and Weipeng Zheng
Geosci. Model Dev., 10, 4035–4055, https://doi.org/10.5194/gmd-10-4035-2017, https://doi.org/10.5194/gmd-10-4035-2017, 2017
Short summary
Short summary
The Last Glacial Maximum (LGM, 21000 years ago) is an interval when global ice volume was at a maximum, eustatic sea level close to a minimum, greenhouse gas concentrations were lower, atmospheric aerosol loadings were higher than today, and vegetation and land-surface characteristics were different from today. This paper describes the implementation of the LGM numerical experiment for the PMIP4-CMIP6 modelling intercomparison projects and the associated sensitivity experiments.
Priscilla Le Mézo, Luc Beaufort, Laurent Bopp, Pascale Braconnot, and Masa Kageyama
Clim. Past, 13, 759–778, https://doi.org/10.5194/cp-13-759-2017, https://doi.org/10.5194/cp-13-759-2017, 2017
Short summary
Short summary
This paper focuses on the relationship between Arabian Sea biological productivity and the Indian summer monsoon in climates of the last 72 kyr. A general circulation model coupled to a biogeochemistry model simulates the changes in productivity and monsoon intensity and pattern. The paradigm stating that a stronger summer monsoon enhances productivity is not always verified in our simulations. This work highlights the importance of considering the monsoon pattern in addition to its intensity.
Bette L. Otto-Bliesner, Pascale Braconnot, Sandy P. Harrison, Daniel J. Lunt, Ayako Abe-Ouchi, Samuel Albani, Patrick J. Bartlein, Emilie Capron, Anders E. Carlson, Andrea Dutton, Hubertus Fischer, Heiko Goelzer, Aline Govin, Alan Haywood, Fortunat Joos, Allegra N. Legrande, William H. Lipscomb, Gerrit Lohmann, Natalie Mahowald, Christoph Nehrbass-Ahles, Jean-Yves Peterschmidt, Francesco S.-R. Pausata, Steven Phipps, and Hans Renssen
Clim. Past Discuss., https://doi.org/10.5194/cp-2016-106, https://doi.org/10.5194/cp-2016-106, 2016
Preprint retracted
Ruza F. Ivanovic, Lauren J. Gregoire, Masa Kageyama, Didier M. Roche, Paul J. Valdes, Andrea Burke, Rosemarie Drummond, W. Richard Peltier, and Lev Tarasov
Geosci. Model Dev., 9, 2563–2587, https://doi.org/10.5194/gmd-9-2563-2016, https://doi.org/10.5194/gmd-9-2563-2016, 2016
Short summary
Short summary
This manuscript presents the experiment design for the PMIP4 Last Deglaciation Core experiment: a transient simulation of the last deglaciation, 21–9 ka. Specified model boundary conditions include time-varying orbital parameters, greenhouse gases, ice sheets, ice meltwater fluxes and other geographical changes (provided for 26–0 ka). The context of the experiment and the choices for the boundary conditions are explained, along with the future direction of the working group.
C. Reutenauer, A. Landais, T. Blunier, C. Bréant, M. Kageyama, M.-N. Woillez, C. Risi, V. Mariotti, and P. Braconnot
Clim. Past, 11, 1527–1551, https://doi.org/10.5194/cp-11-1527-2015, https://doi.org/10.5194/cp-11-1527-2015, 2015
Short summary
Short summary
Isotopes of atmospheric O2 undergo millennial-scale variations during the last glacial period, and systematically increase during Heinrich stadials.
Such variations are mostly due to vegetation and water cycle processes.
Our modeling approach reproduces the main observed features of Heinrich stadials in terms of climate, vegetation and rainfall.
It highlights the strong role of hydrology on O2 isotopes, which can be seen as a global integrator of precipitation changes over vegetated areas.
A. Abe-Ouchi, F. Saito, M. Kageyama, P. Braconnot, S. P. Harrison, K. Lambeck, B. L. Otto-Bliesner, W. R. Peltier, L. Tarasov, J.-Y. Peterschmitt, and K. Takahashi
Geosci. Model Dev., 8, 3621–3637, https://doi.org/10.5194/gmd-8-3621-2015, https://doi.org/10.5194/gmd-8-3621-2015, 2015
Short summary
Short summary
We describe the creation of boundary conditions related to the presence of ice sheets, including ice-sheet extent and height, ice-shelf extent, and the distribution and altitude of ice-free land, at the Last Glacial Maximum (LGM), for use in LGM experiments conducted as part of the Coupled Modelling Intercomparison Project (CMIP5) and Palaeoclimate Modelling Intercomparison Project (PMIP3). The difference in the ice sheet boundary conditions as well as the climate response to them are discussed.
P. Beghin, S. Charbit, C. Dumas, M. Kageyama, and C. Ritz
Clim. Past, 11, 1467–1490, https://doi.org/10.5194/cp-11-1467-2015, https://doi.org/10.5194/cp-11-1467-2015, 2015
Short summary
Short summary
The present study investigates the potential impact of the North American ice sheet on the surface mass balance of the Eurasian ice sheet through changes in the past glacial atmospheric circulation. Using an atmospheric circulation model and an ice-sheet model, we show that the albedo of the American ice sheet favors the growth of the Eurasian ice sheet, whereas the topography of the American ice sheet leads to more ablation over North Eurasia, and therefore to a smaller Eurasian ice sheet.
D. Zhu, S. S. Peng, P. Ciais, N. Viovy, A. Druel, M. Kageyama, G. Krinner, P. Peylin, C. Ottlé, S. L. Piao, B. Poulter, D. Schepaschenko, and A. Shvidenko
Geosci. Model Dev., 8, 2263–2283, https://doi.org/10.5194/gmd-8-2263-2015, https://doi.org/10.5194/gmd-8-2263-2015, 2015
Short summary
Short summary
This study presents a new parameterization of the vegetation dynamics module in the process-based ecosystem model ORCHIDEE for mid- to high-latitude regions, showing significant improvements in the modeled distribution of tree functional types north of 40°N. A new set of metrics is proposed to quantify the performance of ORCHIDEE, which integrates uncertainties in the observational data sets.
A. Cauquoin, A. Landais, G. M. Raisbeck, J. Jouzel, L. Bazin, M. Kageyama, J.-Y. Peterschmitt, M. Werner, E. Bard, and ASTER Team
Clim. Past, 11, 355–367, https://doi.org/10.5194/cp-11-355-2015, https://doi.org/10.5194/cp-11-355-2015, 2015
Short summary
Short summary
We present a new 10Be record at EDC between 269 and 355ka. Our 10Be-based accumulation rate is in good agreement with the one associated with the EDC3 timescale except for the warm MIS 9.3 optimum. This suggests that temperature reconstruction from water isotopes may be underestimated by 2.4K for the difference between the MIS 9.3 and present day. The CMIP5-PMIP3 models do not quantitatively reproduce changes in precipitation vs. temperature increase during glacial–interglacial transitions.
A. M. Dolan, S. J. Hunter, D. J. Hill, A. M. Haywood, S. J. Koenig, B. L. Otto-Bliesner, A. Abe-Ouchi, F. Bragg, W.-L. Chan, M. A. Chandler, C. Contoux, A. Jost, Y. Kamae, G. Lohmann, D. J. Lunt, G. Ramstein, N. A. Rosenbloom, L. Sohl, C. Stepanek, H. Ueda, Q. Yan, and Z. Zhang
Clim. Past, 11, 403–424, https://doi.org/10.5194/cp-11-403-2015, https://doi.org/10.5194/cp-11-403-2015, 2015
Short summary
Short summary
Climate and ice sheet models are often used to predict the nature of ice sheets in Earth history. It is important to understand whether such predictions are consistent among different models, especially in warm periods of relevance to the future. We use input from 15 different climate models to run one ice sheet model and compare the predictions over Greenland. We find that there are large differences between the predicted ice sheets for the warm Pliocene (c. 3 million years ago).
P. X. Wang, B. Wang, H. Cheng, J. Fasullo, Z. T. Guo, T. Kiefer, and Z. Y. Liu
Clim. Past, 10, 2007–2052, https://doi.org/10.5194/cp-10-2007-2014, https://doi.org/10.5194/cp-10-2007-2014, 2014
Short summary
Short summary
All regional monsoons belong to a cohesive global monsoon circulation system, albeit thateach regional subsystem has its own indigenous features. A comprehensive review of global monsoon variability reveals that regional monsoons can vary coherently across a range of timescales, from interannual up to orbital and tectonic. Study of monsoon variability from both global and regional perspectives is imperative and advantageous for integrated understanding of the modern and paleo-monsoon dynamics.
Q. Z. Yin, U. K. Singh, A. Berger, Z. T. Guo, and M. Crucifix
Clim. Past, 10, 1645–1657, https://doi.org/10.5194/cp-10-1645-2014, https://doi.org/10.5194/cp-10-1645-2014, 2014
M.-N. Woillez, G. Levavasseur, A.-L. Daniau, M. Kageyama, D. H. Urrego, M.-F. Sánchez-Goñi, and V. Hanquiez
Clim. Past, 10, 1165–1182, https://doi.org/10.5194/cp-10-1165-2014, https://doi.org/10.5194/cp-10-1165-2014, 2014
H. Wu, C. Peng, T. R. Moore, D. Hua, C. Li, Q. Zhu, M. Peichl, M. A. Arain, and Z. Guo
Geosci. Model Dev., 7, 867–881, https://doi.org/10.5194/gmd-7-867-2014, https://doi.org/10.5194/gmd-7-867-2014, 2014
P. Beghin, S. Charbit, C. Dumas, M. Kageyama, D. M. Roche, and C. Ritz
Clim. Past, 10, 345–358, https://doi.org/10.5194/cp-10-345-2014, https://doi.org/10.5194/cp-10-345-2014, 2014
G. A. Schmidt, J. D. Annan, P. J. Bartlein, B. I. Cook, E. Guilyardi, J. C. Hargreaves, S. P. Harrison, M. Kageyama, A. N. LeGrande, B. Konecky, S. Lovejoy, M. E. Mann, V. Masson-Delmotte, C. Risi, D. Thompson, A. Timmermann, L.-B. Tremblay, and P. Yiou
Clim. Past, 10, 221–250, https://doi.org/10.5194/cp-10-221-2014, https://doi.org/10.5194/cp-10-221-2014, 2014
D. J. Hill, A. M. Haywood, D. J. Lunt, S. J. Hunter, F. J. Bragg, C. Contoux, C. Stepanek, L. Sohl, N. A. Rosenbloom, W.-L. Chan, Y. Kamae, Z. Zhang, A. Abe-Ouchi, M. A. Chandler, A. Jost, G. Lohmann, B. L. Otto-Bliesner, G. Ramstein, and H. Ueda
Clim. Past, 10, 79–90, https://doi.org/10.5194/cp-10-79-2014, https://doi.org/10.5194/cp-10-79-2014, 2014
N. Hamon, P. Sepulchre, V. Lefebvre, and G. Ramstein
Clim. Past, 9, 2687–2702, https://doi.org/10.5194/cp-9-2687-2013, https://doi.org/10.5194/cp-9-2687-2013, 2013
C. Marzin, N. Kallel, M. Kageyama, J.-C. Duplessy, and P. Braconnot
Clim. Past, 9, 2135–2151, https://doi.org/10.5194/cp-9-2135-2013, https://doi.org/10.5194/cp-9-2135-2013, 2013
R. Zhang, Q. Yan, Z. S. Zhang, D. Jiang, B. L. Otto-Bliesner, A. M. Haywood, D. J. Hill, A. M. Dolan, C. Stepanek, G. Lohmann, C. Contoux, F. Bragg, W.-L. Chan, M. A. Chandler, A. Jost, Y. Kamae, A. Abe-Ouchi, G. Ramstein, N. A. Rosenbloom, L. Sohl, and H. Ueda
Clim. Past, 9, 2085–2099, https://doi.org/10.5194/cp-9-2085-2013, https://doi.org/10.5194/cp-9-2085-2013, 2013
Y. Sun, G. Ramstein, C. Contoux, and T. Zhou
Clim. Past, 9, 1613–1627, https://doi.org/10.5194/cp-9-1613-2013, https://doi.org/10.5194/cp-9-1613-2013, 2013
Z.-S. Zhang, K. H. Nisancioglu, M. A. Chandler, A. M. Haywood, B. L. Otto-Bliesner, G. Ramstein, C. Stepanek, A. Abe-Ouchi, W.-L. Chan, F. J. Bragg, C. Contoux, A. M. Dolan, D. J. Hill, A. Jost, Y. Kamae, G. Lohmann, D. J. Lunt, N. A. Rosenbloom, L. E. Sohl, and H. Ueda
Clim. Past, 9, 1495–1504, https://doi.org/10.5194/cp-9-1495-2013, https://doi.org/10.5194/cp-9-1495-2013, 2013
C. Contoux, A. Jost, G. Ramstein, P. Sepulchre, G. Krinner, and M. Schuster
Clim. Past, 9, 1417–1430, https://doi.org/10.5194/cp-9-1417-2013, https://doi.org/10.5194/cp-9-1417-2013, 2013
A. Sima, M. Kageyama, D.-D. Rousseau, G. Ramstein, Y. Balkanski, P. Antoine, and C. Hatté
Clim. Past, 9, 1385–1402, https://doi.org/10.5194/cp-9-1385-2013, https://doi.org/10.5194/cp-9-1385-2013, 2013
H. Wu, C. Peng, M. Lucotte, N. Soumis, Y. Gélinas, É. Duchemin, J.-B. Plouhinec, A. Ouellet, and Z. Guo
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmdd-6-3509-2013, https://doi.org/10.5194/gmdd-6-3509-2013, 2013
Revised manuscript not accepted
S. Charbit, C. Dumas, M. Kageyama, D. M. Roche, and C. Ritz
The Cryosphere, 7, 681–698, https://doi.org/10.5194/tc-7-681-2013, https://doi.org/10.5194/tc-7-681-2013, 2013
M. Kageyama, U. Merkel, B. Otto-Bliesner, M. Prange, A. Abe-Ouchi, G. Lohmann, R. Ohgaito, D. M. Roche, J. Singarayer, D. Swingedouw, and X Zhang
Clim. Past, 9, 935–953, https://doi.org/10.5194/cp-9-935-2013, https://doi.org/10.5194/cp-9-935-2013, 2013
M.-N. Woillez, M. Kageyama, N. Combourieu-Nebout, and G. Krinner
Biogeosciences, 10, 1561–1582, https://doi.org/10.5194/bg-10-1561-2013, https://doi.org/10.5194/bg-10-1561-2013, 2013
Y. Chavaillaz, F. Codron, and M. Kageyama
Clim. Past, 9, 517–524, https://doi.org/10.5194/cp-9-517-2013, https://doi.org/10.5194/cp-9-517-2013, 2013
A. M. Haywood, D. J. Hill, A. M. Dolan, B. L. Otto-Bliesner, F. Bragg, W.-L. Chan, M. A. Chandler, C. Contoux, H. J. Dowsett, A. Jost, Y. Kamae, G. Lohmann, D. J. Lunt, A. Abe-Ouchi, S. J. Pickering, G. Ramstein, N. A. Rosenbloom, U. Salzmann, L. Sohl, C. Stepanek, H. Ueda, Q. Yan, and Z. Zhang
Clim. Past, 9, 191–209, https://doi.org/10.5194/cp-9-191-2013, https://doi.org/10.5194/cp-9-191-2013, 2013
B. Ringeval, P. O. Hopcroft, P. J. Valdes, P. Ciais, G. Ramstein, A. J. Dolman, and M. Kageyama
Clim. Past, 9, 149–171, https://doi.org/10.5194/cp-9-149-2013, https://doi.org/10.5194/cp-9-149-2013, 2013
Y. Y. Yu, P. A. Finke, H. B. Wu, and Z. T. Guo
Geosci. Model Dev., 6, 29–44, https://doi.org/10.5194/gmd-6-29-2013, https://doi.org/10.5194/gmd-6-29-2013, 2013
Related subject area
Subject: Climate Modelling | Archive: Terrestrial Archives | Timescale: Holocene
A global Data Assimilation of Moisture Patterns from 21,000–0 BP (DAMP-21ka) using lake level proxy records
New probabilistic methods for quantitative climate reconstructions applied to palynological data from Lake Kinneret
Internal climate variability and spatial temperature correlations during the past 2000 years
The 4.2 ka BP event in the Levant
Climate change and ecosystems dynamics over the last 6000 years in the Middle Atlas, Morocco
The evolution of sub-monsoon systems in the Afro-Asian monsoon region during the Holocene– comparison of different transient climate model simulations
Regional climate model simulations for Europe at 6 and 0.2 k BP: sensitivity to changes in anthropogenic deforestation
Investigating the consistency between proxy-based reconstructions and climate models using data assimilation: a mid-Holocene case study
Skill and reliability of climate model ensembles at the Last Glacial Maximum and mid-Holocene
Proxy benchmarks for intercomparison of 8.2 ka simulations
Influence of orbital forcing and solar activity on water isotopes in precipitation during the mid- and late Holocene
Simulated oxygen isotopes in cave drip water and speleothem calcite in European caves
Mechanisms for European summer temperature response to solar forcing over the last millennium
Holocene land-cover reconstructions for studies on land cover-climate feedbacks
On the importance of paleoclimate modelling for improving predictions of future climate change
Christopher L. Hancock, Michael P. Erb, Nicholas P. McKay, and Sylvia G. Dee
EGUsphere, https://doi.org/10.5194/egusphere-2024-746, https://doi.org/10.5194/egusphere-2024-746, 2024
Short summary
Short summary
We reconstruct global hydroclimate anomalies for the past 21,000 years using a data assimilation methodology blending observations recorded in lake sediments with the climate dynamics simulated by climate models. The reconstruction resolves data-model disagreement in East Africa and North America, and we find that changing global temperatures and associated circulation patterns as well as orbital forcing are the dominant controls on global precipitation over this interval.
Timon Netzel, Andrea Miebach, Thomas Litt, and Andreas Hense
EGUsphere, https://doi.org/10.5194/egusphere-2023-1790, https://doi.org/10.5194/egusphere-2023-1790, 2023
Short summary
Short summary
New probabilistic methods for local quantitative palaeoclimate reconstructions are presented in a Bayesian framework and applied to plant proxy data from Lake Kinneret. We use recent climate data and arboreal pollen from the sediment of this lake as predefined boundary conditions. The result shows a climate reconstruction of the mean December–February temperature and annual precipitation with the corresponding uncertainty ranges during the Holocene in this region.
Pepijn Bakker, Hugues Goosse, and Didier M. Roche
Clim. Past, 18, 2523–2544, https://doi.org/10.5194/cp-18-2523-2022, https://doi.org/10.5194/cp-18-2523-2022, 2022
Short summary
Short summary
Natural climate variability plays an important role in the discussion of past and future climate change. Here we study centennial temperature variability and the role of large-scale ocean circulation variability using different climate models, geological reconstructions and temperature observations. Unfortunately, uncertainties in models and geological reconstructions are such that more research is needed before we can describe the characteristics of natural centennial temperature variability.
David Kaniewski, Nick Marriner, Rachid Cheddadi, Joël Guiot, and Elise Van Campo
Clim. Past, 14, 1529–1542, https://doi.org/10.5194/cp-14-1529-2018, https://doi.org/10.5194/cp-14-1529-2018, 2018
Short summary
Short summary
Studies have long suggested that a protracted drought phase, termed the 4.2 ka BP event, directly impacted subsistence systems (dry farming agro-production, pastoral nomadism, and fishing) and outlying nomad habitats, forcing rain-fed cereal agriculturalists into habitat-tracking when agro-innovations were not available. Here, we focus on this crucial period to examine whether drought was active in the eastern Mediterranean Old World, especially in the Levant.
Majda Nourelbait, Ali Rhoujjati, Abdelfattah Benkaddour, Matthieu Carré, Frederique Eynaud, Philippe Martinez, and Rachid Cheddadi
Clim. Past, 12, 1029–1042, https://doi.org/10.5194/cp-12-1029-2016, https://doi.org/10.5194/cp-12-1029-2016, 2016
Short summary
Short summary
The present study is related the climate changes and their environmental impacts during the last 6 ky from a fossil record collected in the Middle Atlas, Morocco. We used the reconstruction of three climate variables and geo-chemical elements to evaluate the relationships between all the environmental variables. In summary, this present study confirms the overall climate stability over the last 6 ky and highlights the presence of a short and abrupt climate event at about 5.2 ka cal BP.
A. Dallmeyer, M. Claussen, N. Fischer, K. Haberkorn, S. Wagner, M. Pfeiffer, L. Jin, V. Khon, Y. Wang, and U. Herzschuh
Clim. Past, 11, 305–326, https://doi.org/10.5194/cp-11-305-2015, https://doi.org/10.5194/cp-11-305-2015, 2015
G. Strandberg, E. Kjellström, A. Poska, S. Wagner, M.-J. Gaillard, A.-K. Trondman, A. Mauri, B. A. S. Davis, J. O. Kaplan, H. J. B. Birks, A. E. Bjune, R. Fyfe, T. Giesecke, L. Kalnina, M. Kangur, W. O. van der Knaap, U. Kokfelt, P. Kuneš, M. Lata\l owa, L. Marquer, F. Mazier, A. B. Nielsen, B. Smith, H. Seppä, and S. Sugita
Clim. Past, 10, 661–680, https://doi.org/10.5194/cp-10-661-2014, https://doi.org/10.5194/cp-10-661-2014, 2014
A. Mairesse, H. Goosse, P. Mathiot, H. Wanner, and S. Dubinkina
Clim. Past, 9, 2741–2757, https://doi.org/10.5194/cp-9-2741-2013, https://doi.org/10.5194/cp-9-2741-2013, 2013
J. C. Hargreaves, J. D. Annan, R. Ohgaito, A. Paul, and A. Abe-Ouchi
Clim. Past, 9, 811–823, https://doi.org/10.5194/cp-9-811-2013, https://doi.org/10.5194/cp-9-811-2013, 2013
C. Morrill, D. M. Anderson, B. A. Bauer, R. Buckner, E. P. Gille, W. S. Gross, M. Hartman, and A. Shah
Clim. Past, 9, 423–432, https://doi.org/10.5194/cp-9-423-2013, https://doi.org/10.5194/cp-9-423-2013, 2013
S. Dietrich, M. Werner, T. Spangehl, and G. Lohmann
Clim. Past, 9, 13–26, https://doi.org/10.5194/cp-9-13-2013, https://doi.org/10.5194/cp-9-13-2013, 2013
A. Wackerbarth, P. M. Langebroek, M. Werner, G. Lohmann, S. Riechelmann, A. Borsato, and A. Mangini
Clim. Past, 8, 1781–1799, https://doi.org/10.5194/cp-8-1781-2012, https://doi.org/10.5194/cp-8-1781-2012, 2012
D. Swingedouw, L. Terray, J. Servonnat, and J. Guiot
Clim. Past, 8, 1487–1495, https://doi.org/10.5194/cp-8-1487-2012, https://doi.org/10.5194/cp-8-1487-2012, 2012
M.-J. Gaillard, S. Sugita, F. Mazier, A.-K. Trondman, A. Broström, T. Hickler, J. O. Kaplan, E. Kjellström, U. Kokfelt, P. Kuneš, C. Lemmen, P. Miller, J. Olofsson, A. Poska, M. Rundgren, B. Smith, G. Strandberg, R. Fyfe, A. B. Nielsen, T. Alenius, L. Balakauskas, L. Barnekow, H. J. B. Birks, A. Bjune, L. Björkman, T. Giesecke, K. Hjelle, L. Kalnina, M. Kangur, W. O. van der Knaap, T. Koff, P. Lagerås, M. Latałowa, M. Leydet, J. Lechterbeck, M. Lindbladh, B. Odgaard, S. Peglar, U. Segerström, H. von Stedingk, and H. Seppä
Clim. Past, 6, 483–499, https://doi.org/10.5194/cp-6-483-2010, https://doi.org/10.5194/cp-6-483-2010, 2010
J. C. Hargreaves and J. D. Annan
Clim. Past, 5, 803–814, https://doi.org/10.5194/cp-5-803-2009, https://doi.org/10.5194/cp-5-803-2009, 2009
Cited articles
An, C., Zhao, J., Tao, S., Lv, Y., Dong, W., Li, H., Jin, M., and Wang, Z.:
Dust variation recorded by lacustrine sediments from arid Central Asia since
∼15 cal ka BP and its implication for atmospheric
circulation, Quaternary Res., 75, 566–573, 2011.
Bao, Q., Lin, P., Zhou, T., Liu, Y., Yu, Y., Wu, G., He, B., He, J., Li, L.,
Li, J., Li, Y., Liu, H., Qiao, F., Song, Z., Wang, B., Wang, J., Wang, P.,
Wang, X., Wang, Z., Wu, B., Wu, T., Xu, Y., Yu, H., Zhao, W., Zheng, W., and
Zhou, L.: The flexible global ocean-atmosphere-land system model, spectral
version 2: FGOALS-s2, Adv. Atmos. Sci., 30, 561–576, 2013.
Bartlein, P. J., Harrison, S. P., Brewer, S., Connor, S., Davis, B. A. S.,
Gajewski, K., Guiot, J., Harrison-Prentice, T. I., Henderson, A., Peyron, O.,
Prentice, I. C., Scholze, M., Seppä, H., Shuman, B., Sugita, S.,
Thompson, R. S., Viau, A. E., Williams, J., and Wu, H. B.: Pollen-based
continental climate reconstructions at 6 and 21 ka: a global synthesis,
Clim. Dynam., 37, 775–802, 2011.
Berger, A.: Long-Term Variations of Daily Insolation and Quaternary Climatic
Changes, J. Atmos. Sci., 35, 2362–2367, 1978.
Betts, R. A.: Offset of the potential carbon sink from boreal forestation by
decreases in surface albedo, Nature, 408, 187–190, 2000.
Bigelow, N. H., Brubaker, L. B., Edwards, M. E., Harrison, S. P., Prentice,
I. C., Anderson, P. M., Andreev, A. A., Bartlein, P. J., Christensen, T. R.,
Cramer, W., Kaplan, J. O., Lozhkin, A. V., Matveyeva, N. V., Murray, D. F.,
David McGuire, A., Razzhivin, V. Y., Ritchie, J. C., Smith, B., Walker, A.
D., Gajewski, K., Wolf, V., Holmqvist, B. H., Igarashi, Y., Kremenetskii, K.,
Paus, A., Pisaric, M. F. J., and Volkova, V. S.: Climate change and Arctic
ecosystems: 1. Vegetation changes north of 55∘ N between the last
glacial maximum, mid-Holocene and present, J. Geophys. Res.,
108, 1–25, 2003.
Bonan, G. B.: Forests and Climate Change: Forcings, Feedbacks, and the
Climate Benefits of Forests, Science, 320, 1444–1449, 2008.
Bonfils, C., de Noblet-Ducoudré, N., Braconnot, P., and Joussaume, S.: Hot
Desert Albedo and Climate Change: Mid-Holocene Monsoon in North Africa,
J. Climate, 14, 3724–3737, 2001.
Braconnot, P. and Kageyama, M.: Shortwave forcing and feedbacks in Last
Glacial Maximum and Mid-Holocene PMIP3 simulations, Philos. T. R. Soc. A, 373, 2054–2060, 2015.
Braconnot, P., Otto-Bliesner, B., Harrison, S., Joussaume, S., Peterchmitt,
J.-Y., Abe-Ouchi, A., Crucifix, M., Driesschaert, E., Fichefet, Th., Hewitt,
C. D., Kageyama, M., Kitoh, A., Laîné, A., Loutre, M.-F., Marti, O.,
Merkel, U., Ramstein, G., Valdes, P., Weber, S. L., Yu, Y., and Zhao, Y.:
Results of PMIP2 coupled simulations of the Mid-Holocene and Last Glacial
Maximum – Part 1: experiments and large-scale features, Clim. Past, 3,
261–277, https://doi.org/10.5194/cp-3-261-2007, 2007a.
Braconnot, P., Otto-Bliesner, B., Harrison, S., Joussaume, S., Peterchmitt, J.-Y., Abe-Ouchi, A., Crucifix, M., Driesschaert, E., Fichefet, Th., Hewitt, C. D., Kageyama, M., Kitoh, A., Loutre, M.-F., Marti, O., Merkel, U., Ramstein, G., Valdes, P., Weber, L., Yu, Y., and Zhao, Y.: Results of PMIP2 coupled simulations of the Mid-Holocene and Last Glacial Maximum – Part 2: feedbacks with emphasis on the location of the ITCZ and mid- and high latitudes heat budget, Clim. Past, 3, 279-296, https://doi.org/10.5194/cp-3-279-2007, 2007b.
Braconnot, P., Harrison, S. P., Kageyama, M., Bartlein, P. J.,
Masson-Delmotte, V., Abe-Ouchi, A., Otto-Bliesner, B., and Zhao, Y.:
Evaluation of climate models using palaeoclimatic data, Nat. Clim.
Change, 2, 417–421, 2012.
Cai, Y.: Study on environmental change in Zoige Plateau: Evidence from the
vegetation record since 24000 a B.P., Chinese Academy of Geological Sciences,
Mater Dissertation, 2008 (in Chinese with English abstract).
Caudill, M. and Bulter, C.: Understanding Neural Networks, Basic Networks, 1,
309–331, 1992.
Chapin, F. S., Sturm, M., Serreze, M. C., McFadden, J. P., Key, J. R., Lloyd,
A. H.,
McGuire, A. D., Rupp, T. S., Lynch, A. H., Schimel, J. P., Beringer, J.,
Chapman, W. L., Epstein, H. E., Euskirchen, E. S., Hinzman, L. D., Jia, G.,
Ping, C.L., Tape, K. D., Thompson, C. D. C., Walker, D. A., and Welker, J.
M.: Role of Land-Surface Changes in Arctic Summer Warming, Science, 310,
657–660, 2005.
Chen, F., Cheng, B., Zhao, Y., Zhu, Y., and Madsen, D. B.: Holocene
environmental change inferred from a high-resolution pollen record, Lake
Zhuyeze, arid China, The Holocene, 16, 675–684, 2006.
Chen, F., Xu, Q., Chen, J., Birks, H. J. B., Liu, J., Zhang, S., Jin, L., An,
C., Telford, R. J., Cao, X., Wang, Z., Zhang, X., Selvaraj, K., Lu, H., Li,
Y., Zheng, Z., Wang, H., Zhou, A., Dong, G., Zhang, J., Huang, X.,
Bloemendal, J., and Rao, Z.: East Asian summer monsoon precipitation
variability since the last deglaciation, Sci. Rep., 5, 1–11, 2015.
Cheng, B., Chen, F., and Zhang, J.: Palaeovegetational and
Palaeoenvironmental Changes in Gonghe Basin since Last Deglaciation, Ac.
Geogr. Sin., 11, 1336–1344, 2010 (in Chinese with English abstract).
Cheng, H., Edwards, R. L., Sinha, A., Spötl, C., Yi, L., Chen, S., Kelly,
M., Kathayat, G., Wang, X., Li, X., Kong, X., Wang, Y., Ning, Y., and Zhang,
H.: The Asian monsoon over the past 640,000 years and ice age terminations,
Nature, 534, 640–646, 2016.
Cheng, Y.: Vegetation and climate change in the north-central part of the
Loess Plateau since 26,000 years, China University of Geosciences, Master
Dissertation, 2011 (in Chinese with English abstract).
Collins, W. J., Bellouin, N., Doutriaux-Boucher, M., Gedney, N., Halloran, P., Hinton, T., Hughes, J., Jones, C. D., Joshi, M., Liddicoat, S., Martin, G., O'Connor, F., Rae, J., Senior, C., Sitch, S., Totterdell, I., Wiltshire, A., and Woodward, S.: Development and evaluation of an Earth-System model – HadGEM2, Geosci. Model Dev., 4, 1051–1075, https://doi.org/10.5194/gmd-4-1051-2011, 2011.
Cui, M., Luo, Y., and Sun, X.: Paleovegetational and paleoclimatic changed in
Ha'ni Lake, Jilin since 5 ka BP, Mar. Geol. Quatern. Geol., 26,
117–122, 2006 (in Chinese with English abstract).
Dallmeyer, A., Claussen, M., Ni, J., Cao, X., Wang, Y., Fischer, N., Pfeiffer, M., Jin, L., Khon, V., Wagner, S., Haberkorn, K., and Herzschuh, U.: Biome changes in Asia since the mid-Holocene – an analysis of different transient Earth system model simulations, Clim. Past, 13, 107–134, https://doi.org/10.5194/cp-13-107-2017, 2017.
Davis, B. A. S., Brewer, S., Stevenson, A. C., and Guiot, J.: The temperature
of Europe during the Holocene reconstructed from pollen data, Quaternary Sci. Rev., 22, 1701–1716, 2003.
Diffenbaugh, N. S., Sloan, L. C., Snyder, M. A., Bell, J. L., Kaplan, J., Shafer,
S. L., and Bartlein, P. J.: Vegetation sensitivity to global anthropogenic
carbon dioxide emissions in a topographically complex region, Global
Biogeochem. Cy., 17, 1067, https://doi.org/10.1029/2002GB001974, 2003.
Dufresne, J. L., Foujols, M. A., Denvil, S., Caubel, A., Marti, O., Aumont, O.,
Balkanski, Y., Bekki, S., Bellenger, H., Benshila, R., Bony, S., Bopp, L.,
Braconnot, P., Brockmann, P., Cadule, P., Cheruy, F., Codron, F., Cozic, A.,
Cugnet, D., Noblet, N., Duvel, J.P., Ethe, C., Fairhead, L., Fichefet, T.,
Flavoni, S., Friedlingstein, P., Grandpeix, J. Y., Guez, L., Guilyardi, E.,
Hauglustaine, D., Hourdin, F., Idelkadi, A., Ghattas, J., Joussaume, S.,
Kageyama, M., Krinner, G., Labetoulle, S., Lahellec, A., Lefevre, M.-F.,
Lefevre, F., Levy, C., Li, Z. X., Lloyd, J., Lott, F., Madec, G., Mancip, M.,
Marchand, M., Masson, S., Meurdesoif, Y., Mignot, J., Musat, I., Parouty, S.,
Polcher, J., Rio, C., Schulz, M., Swingedouw, D., Szopa, S., Talandier, C.,
Terray, P., Viovy, N., and Vuichard, N.: Climate change projections using the
IPSL-CM5 Earth system model: from CMIP3 to CMIP5, Clim. Dynam., 40,
2123–2165, 2013.
EPICA Community Members: Eight glacial cycles from an Antarctic ice core,
Nature, 429, 623–628, 2004.
Food and Agricultural Organization: Soil Map of the World 1 : 5 000 000, FAO, 1995.
Farrera, I., Harrison, S. P., Prentice, I. C., Ramstein, G., Guiot, J.,
Bartlein, P. J., Bonnefille, R., Bush, M., Cramer, W., von Grafenstein, U.,
Holmgren, K., Hooghiemstra, H., Hope, G., Jolly, D., Lauritzen, S. E., Ono,
Y., Pinot, S., Stute, M., and Yu, G.: Tropical climates at the Last Glacial
Maximum: a new synthesis of terrestrial palaeoclimate data. I. Vegetation,
lake-levels and geochemistry, Clim. Dynam., 15, 823–856, 1999.
Fischer, N. and Jungclaus, J. H.: Evolution of the seasonal temperature cycle in a transient Holocene simulation: orbital forcing and sea-ice, Clim. Past, 7, 1139–1148, https://doi.org/10.5194/cp-7-1139-2011, 2011.
Ganopolski, A., Kubatzki, C., Claussen, M., Brovkin, V., and Petoukhov, V.:
The Influence of Vegetation-Atmosphere-Ocean Interaction on Climate during
the Mid-Holocene, Science, 280, 1916–1919, 1998.
Gent, P. R., Danabasoglu, G., Donner, L. J., Holland, M. M., Hunke, E. C., Jayne,
S. R., Lawrence, D. M., Neale, R. B., Rasch, P. J., Vertenstein, M., Worley,
P. H., Yang, Z., and Zhang, M.: The community climate system model version 4,
J. Climate, 24, 4973–4991, 2011.
Giorgetta, M. A., Jungclaus, J., Reick, C. H., Legutke, S., Bader, J.,
Bottinger, M., Brovkin, V., Crueger, T., Esch, M., Fieg, K., Glushak, K.,
Gayler, V., Haak, H., Hollweg, H. D., Ilyina, T., Kinne, S., Kornblueh, L.,
Matei, D., Mauritsen, T., Mikolajewicz, U., Mueller, W., Notz, D., Pithan,
F., Raddatz, T. J., Rast, S., Redler, R., Roeckner, E., Schmidt, H., Schnur,
R., Segschneider, J., Six, K. D., Stockhause, M., Timmreck, C., Wegner, J.,
Widmann, H., Wieners, K. H., Claussen, M., Marotzke, J., and Stevens, B.:
Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for
the Coupled Model Intercomparison Project phase 5, J. Adv.
Model. Earth Syst., 5, 572–597, 2013.
Gong, X.: High-resolution paleovegetation reconstruction from pollen in
Jiachuanyuan, Baoji, Capital Normal University, Master Dissertation, 2006 (in
Chinese with English abstract).
Guiot, J. and Goeury, C.: PPPBASE, a software for statistical analysis of
paleoecological and paleoclimatological data, Dendrochronologia, 14, 295–300,
1996.
Guiot, J., Harrison, S., and Prentice, I. C.: Reconstruction of Holocene
precipitation patterns in Europe using pollen and lake level data, Quaternary Res., 40, 139–149, 1993.
Guiot, J., Torre, F., Jolly, D., Peyron, O., Boreux, J. J., and Cheddadi, R.:
Inverse vegetation modeling by Monte Carlo sampling to reconstruct
palaeoclimates under changed precipitation seasonality and CO2
conditions: application to glacial climate in Mediterranean region,
Ecol. Model., 127, 119–140, 2000.
Guo, L., Feng, Z., Lee, X., Liu, L., and Wang, L.: Holocene climatic and
environmental changes recorded in Baahar Nuur Lake in the Ordos Plateau,
Southern Mongolia of china, Chinese Sci. Bull., 52, 959–966, 2007.
Hargreaves, J. C., Annan, J. D., Ohgaito, R., Paul, A., and Abe-Ouchi, A.: Skill and reliability of climate model ensembles at the Last Glacial Maximum and mid-Holocene, Clim. Past, 9, 811–823, https://doi.org/10.5194/cp-9-811-2013, 2013.
Harrison, S. P., Bartlein, P. J., Brewer, S., Prentice, I. C., Boyd, M.,
Hessler, I., Holmgren, K., Izumi, K., and Willis, K.: Climate model
benchmarking with glacial and mid-Holocene climates, Clim. Dynam., 43,
671–688, 2014.
Harrison, S. P., Bartlein, P. J., K., Izumi, Li, G., Annan, J., Hargreaves,
J., Braconnot, P., and Kageyama, M.: Evaluation of CMIP5 paleo-simulations to
improve climate projections, Nat. Clim. Change, 5, 735–743, 2015.
Harrison, S., P., Braconnot, P., Hewitt, C., and Stouffer, R., J.: Fourth
International Workshop of the Palaeoclimate Modelling Intercomparison Project
(PMIP): Lauching PMIP2 Phase II, EOS, 83, 447–457, 2002.
Herzschuh, U., Kramer, A., Mischke, S., and Zhang, C.: Quantitative climate
and vegetation trends since the late glacial on the northeastern Tibetan
Plateau deduced from Koucha Lake pollen spectra, Quaternary Res., 71,
162–171, 2009.
Herzschuh, U., Kürschner, H., and Mischke, S.: Temperature variability
and vertical vegetation belt shifts during the last ∼ 50,000 yr in the
Qilian mountains (NE margin of the Tibetan Plateau, China), Quaternary Res., 66, 133–146, 2006.
Huang, C., Elis, V. C., and Li, S.: Holocene environmental changes of Western
and Northern Qinghai-Xizang Plateau Based on pollen analysis, Ac.
Micropalaeontol. Sin., 4, 423–432, 1996 (in Chinese with English
abstract).
Jeffrey, S. J., Rotstayn, L. D., Collier, M., Dravitzki, S. M., Hamalainen, C.,
Moeseneder, C., Wong, K. K., and Syktus, J. I.: Australia' s CMIP5 submission
using the CSIRO-Mk3.6 model, Aust. Meteorol. Ocean., 63, 1–13, 2013.
Jia, L. and Zhang, Y.: Studies on Palynological assemblages and
paleoenvironment of late Quaternary on the east margin of the Chanjiang
(Yangtze) river delta, Ac. Micropalaeontol. Sin., 23, 70–76, 2006 (in
Chinese with English abstract).
Jiang, D., Lang, X., Tian, Z., and Wang, T.: Considerable Model–Data
Mismatch in Temperature over China during the Mid-Holocene: Results of PMIP
Simulations, J. Climate, 25, 4135–4153, 2012.
Jiang, D., Tian, Z., and Lang, X.: Mid-Holocene net precipitation changes
over China: model-data comparison, Quaternary Sci. Rev., 82, 104–120,
2013.
Jiang, D., Tian, Z., and Lang, X.: Reliability of climate models for China
through the IPCC Third to Fifth Assessment Reports, Int. J.
Climatol., 36, 1114–1133, 2016.
Jiang, Q. and Piperno, R. D.: Environmental and archaeological implications
of a late Quaternary palynological sequence, Poyang lake, Southern China,
Quaternary Res., 52, 250–258, 1999.
Jiang, W., Guiot, J., Chu, G., Wu, H., Yuan, B., Hatté, C., and Guo, Z.:
An improved methodology of the modern analogues technique for palaeoclimate
reconstruction in arid and semi-arid regions, Boreas, 39, 145–153, 2010.
Jiang, W., Guo, Z., Sun, X., Wu, H., Chu, G., Yuan, B., Hatte, C., and Guiot,
J.: Reconstruction of climate and vegetation changes of Lake Bayanchagan
(Inner Mongolia): Holocene variability of the East Asian monsoon, Quaternary Res., 65, 411–420, 2006.
Jiang, W., Leroy, S. G., Ogle, N., Chu, G., Wang, L., and Liu, J.: Natural
and authropogenic forest fires recorded in the Holocene pollen record from a
Jinchuan peat bog, northeastern China, Palaeogeogr. Palaeocl., 261, 47–57, 2008.
Joussaume, S. and Taylor, K. E.: Status of the paleoclimate modeling intercomparison project (PMIP), World Meteorological Organization-Publications-WMO TD, 425–430, 1995.
Joussaume, S., Taylor, K. E., Braconnot, P., Mitchell, J. F. B., Kutzbach, J.
E., Harrison, S. P., Prentice, I. C., Broccoli, A. J., Abe-Ouchi, A.,
Bartlein, P. J., Bonfils, C., Dong, B., Guiot, J., Herterich, K., Hewitt, C.
D., Jolly, D., Kim, J. W., Kislov, A., Kitoh, A., Loutre, M. F., Masson, V.,
McAvaney, B., McFarlane, N., de Noblet, N., Peltier, W. R., Peterschmitt, J.
Y., Pollard, D., Rind, D., Royer, J. F., Schlesinger, M. E., Syktus, J.,
Thompson, S., Valdes, P., Vettoretti, G., Webb, R. S., and Wyputta, U.: Monsoon
changes for 6000 years ago: Results of 18 simulations from the Paleoclimate
Modeling Intercomparison Project (PMIP), Geophys. Res. Lett., 26,
856–862, 1999.
Kaplan, J. O., Bigelow, N. H., Bartlein, P. J., Christensen, T. R., Cramer,
W., Harrison, S. P., Matveyeva, N. V., McGuire, A. D., Murray, D. F.,
Prentice, I. C., Razzhivin, V. Y., Smith, B., Anderson, P. M., Andreev, A.
A., Brubaker, L. B., Edwards, M. E., and Lozhkin, A. V.: Climate change and
Arctic ecosystems: 2. Modeling, palaeodata-model comparisons, and future
projections, J. Geophys. Res.-Atmos., 108, 8171,
https://doi.org/10.1029/2002JD002559, 2003.
Kohfeld, K. E. and Harrison, S.: How well we can simulate past climates?
Evaluating the models using global palaeoenvironmental datasets, Quaternary Sci. Rev., 19, 321–346, 2000.
Kong, Z., Xu, Q., Yang, X., Sun, L., and Liang, W.: Analysis of sporopollen
assemblages of Holocene alluvial deposits in the Yinmahe River Basin, Hebei
Province, and preliminary study on temporal and spatial changes of
vegetation, Ac. Phytoecol. Sin., 24, 724–730, 2000 (in Chinese with
English abstract).
Lee, Y. and Liew, M.: Pollen stratigraphy, vegetation and environment of the
last glacial and Holocene-A record from Toushe Basin, central Taiwan,
Palaeogeogr. Palaeocl., 287, 58–66, 2010.
Li, B. and Sun, J.: Vegetation and climate environment during Holocene in
Xi'an region of Loess Plateau, China, Mar. Geol. Quatern. Geol.,
3, 125–132, 2005 (in Chinese with English abstract).
Li, C., Wu, Y., and Hou, X.: Holocene vegetation and climate in Northeast
China revealed from Jingbo Lake sediment, Quatern. Int., 229,
67–73, 2011.
Li, L., Lin, P., Yu, Y., Wang, B., Zhou, T., Liu, L., Liu, J., Bao, Q., Xu,
S., Huang, W., Xia, K., Pu, Y., Dong, L., Shen, S., Liu, Y., Hu, N., Liu, M.,
Sun, W., Shi, X., Zheng, W., Wu, B., Song, M., Liu, H., Zhang, X., Wu, G.,
Xue, W., Huang, X., Yang, G., Song, Z., and Qiao, F.: The flexible global
ocean-atmosphere-land system model, Grid-point Version 2: FGOALS-g2, Adv. Atmos. Sci., 30, 543–560, 2013.
Li, Q., Wu, H., Guo, Z., Yu, Y., Ge, J., Wu, J., Zhao, D., and Sun, A.:
Distribution and vegetation reconstruction of the deserts of northern China
during the mid-Holocene, Geophys. Res. Lett., 41, 2184–5191, 2014.
Li, X. and Liu, J.: Holocene vegetational and environmental changes at Mt.
Luoji, Sichuan, Ac. Geogr. Sin., 1, 44–51, 1988 (in Chinese with
English abstract).
Li, X., Zhao, K., Dodson, J., and Zhou, X.: Moisture dynamics in central Asia
for the last 15 kyr: new evidence from Yili Valley, Xinjiang, NW China,
Quaternary Sci. Rev., 30, 23–34, 2011.
Li, X., Zhou, J., and Dodson, J.: The vegetation characteristics of the
“yuan” area at Yaoxian on the loess plateau in china over the last 12?000
years, Rev. Palaeobot. Palyno., 124, 1–7, 2003.
Li, X., Zhou, W., An, Z., and Dodson, J.: The vegetation and monsoon
variations at the desert-loess transition belt at Midiwan in northern China
for the last 13 ka, Holocene, 13, 779–784, 2003.
Li, Z., Hai, Y., Zhou, Y., Luo, R., and Zhang, Q.: Pollen Component of Lacustrain
Deposit and its Palaeo-environment Significance in the Downstream Region of
Urumqi Riever since 30 Ka BP, Arid Land Geogr., 24, 201–205, 2001 (in
Chinese with English abstract).
Liu, H., Cui, H., Tian, Y., and Xu, L.: Temporal-spatial variances of
Holocene precipitation at the Marginal area of the East Monsoon influences
from pollen evidence, Ac. Botan. Sin., 44, 864–871, 2002 (in Chinese
with English abstract).
Liu, H., Tang, X., Sun, D., and Wang, K.: Palynofloras of the Dajiuhu Basin
in Shennongjia mountains during the last 12.5 ka, Ac. Micropalaeontol.
Sin., 1, 101–109, 2001 (in Chinese with English abstract).
Liu, J., Zhao, S., Cheng, J., Bao, J., and Yin, G.: A study of vegetation and
climate evolution since the Holocene near the banks of the Qiangtang River in
Hangzhou Bay, Earth Sci. Front., 5, 235–245, 2007 (in Chinese with
English abstract).
Liu, M., Huang, Y., and Kuo, M.: Pollen stratigraphy, vegetation and
environment of the last glacial and Holocene-A record from Toushe Basin,
central Taiwan, Quatern. Int., 14, 16–33, 2006.
Liu, Y., Liu, J., and Han, J.: Pollen record and climate changing since
12.0 ka BP in Erlongwan Maar Lake, Jilin province, Journal of Jilin
University (Earth Science Edition), 39, 93–98, 2009 (in Chinese with English
abstract).
Liu, Y., Zhang, S., Liu, J., You, H., and Han, J.: Vegetation and environment
history of erlongwan Maar lake during the late Pleistocene on pollen record,
Ac. Micropalaeontol. Sin., 25, 274–280, 2008 (in Chinese with English
abstract).
Liu, Z., Harrison, S. P., Kutzbach, J. E., and Otto-Bliesner, B.: Global
monsoons in the mid-Holocene and oceanic feedback, Clim. Dynam., 22,
157–182, 2004.
Liu, Z., Wang, Y., Gallimore, R., Gasse, F., Johnson, T., deMenocal, P.,
Adkins, J., Notaro, M., Prentice, I. C., Kutzbach, J., Jacob, R., Behling, P.,
Wang, L., and Ong, E.: Simulating the transient evolution and abrupt change
of Northern Africa atmosphere–ocean–terrestrial ecosystem in the Holocene,
Quaternary Sci. Rev., 26, 1818–1837, 2007.
Liu, Z., Zhu, J., Rosenthal, Y., Zhang, X., Otto-Bliesner, B. L., Timmermann,
A., Smith, R. S., Lohmann, G., Zheng, W., and Elison Timm, O.: The Holocene
temperature conundrum, P. Natl. Acad. Sci. USA, 111,
E3501–E3505, 2014.
Lu, H., Wu, N., Liu, K.-b., Zhu, L., Yang, X., Yao, T., Wang, L., Li, Q.,
Liu, X., Shen, C., Li, X., Tong, G., and Jiang, H.: Modern pollen
distributions in Qinghai-Tibetan Plateau and the development of transfer
functions for reconstructing Holocene environmental changes, Quaternary Sci. Rev., 30, 947–966, 2012.
Luo, H.: Characteristics of the Holocene sporopollen flora and climate change
in the Coqên area, Tibet, Chengdu University of Technology, Master
Dissertation, 2008 (in Chinese with English abstract).
Mann, M. E., Zhang, Z., Hughes, M. K., Bradley, R. S., Miller, S. K.,
Rutherford, S., and Ni, F.: Proxy-based reconstructions of hemispheric and
global surface temperature variations over the past two millennia,
P. Natl. Acad. Sci., 105, 13252–13256, 2008.
Marchant, R., Cleef, A., Harrison, S. P., Hooghiemstra, H., Markgraf, V., van Boxel, J., Ager, T., Almeida, L., Anderson, R., Baied, C., Behling, H., Berrio, J. C., Burbridge, R., Björck, S., Byrne, R., Bush, M., Duivenvoorden, J., Flenley, J., De Oliveira, P., van Geel, B., Graf, K., Gosling, W. D., Harbele, S., van der Hammen, T., Hansen, B., Horn, S., Kuhry, P., Ledru, M.-P., Mayle, F., Leyden, B., Lozano-García, S., Melief, A. M., Moreno, P., Moar, N. T., Prieto, A., van Reenen, G., Salgado-Labouriau, M., Schäbitz, F., Schreve-Brinkman, E. J., and Wille, M.: Pollen-based biome reconstructions for Latin America at 0, 6000 and 18 000 radiocarbon years ago, Clim. Past, 5, 725–767, https://doi.org/10.5194/cp-5-725-2009, 2009.
Marcott, S., Shakun, J., U Clark, P., and Mix, A.: A Reconstruction of
Regional and Global Temperature for the Past 11,300 Years, Science,
1198–1201, 2013.
Marsicek, J., Shuman, B. N., Bartlein, P. J., Shafer, S. L., and Brewer, S.:
Reconciling divergent trends and millennial variations in Holocene
temperatures, Nature, 554, 92–96, 2018.
Mauri, A., Davis, B. A. S., Collins, P. M., and Kaplan, J. O.: The climate of
Europe during the Holocene: a gridded pollen-based reconstruction and its
multi-proxy evaluation, Quaternary Sci. Rev., 112, 109–127, 2015.
Ma, Y., Zhang, H., Pachur, H., Wunnemann, B., Li, J., and Feng, Z.: Late
Glacial and Holocene vegetation history and paleoclimate of the Tengger
Desert, northwestern China, Chinese Sci. Bull., 48, 1457–1463, 2003.
Members of the China Quaternary Pollen Data Base (CQPD): Pollen-based Biome
reconstruction at Middle Holocene (6 ka BP) and Last Glacial Maximum (18 ka BP) in China, Ac. Botan. Sin., 42, 1201–1209, 2000 (in Chinese with
English abstract).
MARGO Project Members: Constraints on the magnitude and patterns of ocean
cooling at the Last Glacial Maximum, Nat. Geosci., 2, 127–130, 2009.
Meng, X., Zhu, D., Shao, Z., Han, J., Yu, J., Meng, Q., Lv, R., and Luo, P.:
Paleoclimatic and Plaeoenvironmental Evolution Since Holocene in the Ningwu
Area, Shanxi Province, Ac. Geol. Sin., 3, 316–323, 2007 (in Chinese
with English abstract).
Ni, J., Sykes, M. T., Prentice, I. C., and Cramer, W.: Modelling the
vegetation of China using the process-based equilibrium terrestrial biosphere
model BIOME3, Global Ecol. Biogeogr., 9, 463–479, 2000.
Ni, J., Yu, G., Harrison, S. P., and Prentice, I. C.: Palaeovegetation in China
during the late Quaternary: Biome reconstructions based on a global scheme of
plant functional types, Palaeogeogr. Palaeocl.,
289, 44–61, 2010.
Oguntunde, P. G., Ajayi, A. E., and Giesen, N.: Tillage and surface moisture
effects on bare-soil albedo of a tropical loamy sand, Soil Till.
Res., 85, 107–114, 2006.
O'ishi, R., Abe-Ouchi, A., Prentice, I. C., and Sitch, S.: Vegetation dynamics
and plant CO2 responses as positive feedbacks in a greenhouse world,
Geophys. Res. Lett., 36, L11706, https://doi.org/10.1029/2009GL038217, 2009.
Otto, J., Raddatz, T., Claussen, M., Brovkin, V., and Gayler, V.: Separation of
atmosphere-ocean-vegetation feedbacks and synergies for mid-Holocene climate,
Geophys. Res. Lett., 36, L09701, https://doi.org/10.1029/2009GL037482, 2009.
Peyron, O., Guiot, J., Cheddadi, R., Tarasov, P., Reille, M., De Beaulieu,
J. L., Bottema, S., and Andrieu, V.: Climatic reconstruction in Europe
for 18,000 YR B.P. from pollen data, Quaternary Res., 49, 183–196, 1998.
Peyron, O., Jolly, D., Bonnefille, R., Vincens, A., and Guiot, J.: Climate of
East Africa 6000 14C yr B.P. as Inferred from Pollen Data, Quaternary Res., 54, 90–101, 2000.
Pickett, E. J., Harrison, S. P., Hope, G., Harle, K., Dodson, J. R., Peter Kershaw, A., Colin Prentice, I., Backhouse, J. , Colhoun, E. A., D'Costa, D., Flenley, J., Grindrod, J., Haberle, S., Hassell, C., Kenyon, C., Macphail, M., Martin, H., Martin, A. H., McKenzie, M., Newsome, J. C., Penny, D., Powell, J., Ian Raine, J., Southern, W., Stevenson, J., Sutra, J., Thomas, I., Kaars, S., and Ward, J.: Pollen-based reconstructions of biome distributions for Australia, Southeast Asia and the Pacific (SEAPAC region) at 0, 6000 and 18,000 14C yr BP, J. Biogeogr., 31, 1381–1444, https://doi.org/10.1111/j.1365-2699.2004.01001.x, 2004.
Prentice, I. C., Guiot, J., Huntley, B., Jolly, D., and Cheddadi, R.:
Reconstructing biomes from palaeoecological data: A general method and its
application to European pollen data at 0 and 6 ka, Clim. Dynam., 12,
185–194, 1996.
Prentice, I. C. and Jolly, D.: Mid-Holocene and glacial-maximum vegetation
geography of the northern continents and Africa, J. Biogeogr., 27,
507–519, 2000.
Reimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Ramsey,
C. B., Buck, C. E., Cheng, H., Edwards, R. L., Friedrich, M., Grootes, P. M.,
Guilderson, T. P., Haflidason, H., Hajdas, I., Hatté, C., Heaton, T. J.,
Hoffmann, D. L., Hogg, A. G., Hughen, K. A., Kaiser, K. F., Kromer, B.,
Manning, S. W., Niu, M., Reimer, R. W., Richards, D. A., Scott, E. M.,
Southon, J. R., Staff, R. A., Turney, C. S. M., and van der Plicht, J.:
IntCal13 and Marine13 Radiocarbon Age Calibration Curves 0–50,000 Years cal
BP, Radiocarbon, 55, 1869–1887, https://doi.org/10.2458/azu_js_rc.55.16947,
2013.
Schmidt, G. A., Annan, J. D., Bartlein, P. J., Cook, B. I., Guilyardi, E., Hargreaves, J. C., Harrison, S. P., Kageyama, M., LeGrande, A. N., Konecky, B., Lovejoy, S., Mann, M. E., Masson-Delmotte, V., Risi, C., Thompson, D., Timmermann, A., Tremblay, L.-B., and Yiou, P.: Using palaeo-climate comparisons to constrain future projections in CMIP5, Clim. Past, 10, 221–250, https://doi.org/10.5194/cp-10-221-2014, 2014a.
Schmidt, G. A., Kelley, M., Nazarenko, L., Ruedy, R., Russell, G. L., Aleinov, I., Bauer, M., Bauer, S. E., Bhat, M. K., Bleck, R., Canuto, V., Chen, Y.,
Cheng, Y., Clune, T.L., Del Genio, A., de Fainchtein, R., Faluvegi, G.,
Hansen, J. E., Healy, R. J., Kiang, N. Y., Koch, D., Lacis, A. A., Legrande,
A. N., Lerner, J., Lo, K. K., Matthews, E. E., Menon, S., Miller, R. L., Oinas,
V., Oloso, A. O., Perlwitz, J. P., Puma, M. J., Putman, W. M., Rind, D., Romanou,
A., Sato, M., Shindell, D. T., Sun, S., Syed Rahman, A., Tausnev, N.,
Tsigaridis, K., Under, N., Voulgarakis, A., Yao, M., and Zhang, J.:
Configuration and assessment of the GISS ModelE2 contributions to the CMIP5
archive, J. Adv. Model. Earth Syst., 6, 141–184, 2014b.
Shakun, J. D., Clark, P. U., He, F., Marcott, S. A., Mix, A. C., Liu, Z.,
Otto-Bliesner, B., Schmittner, A., and Bard, E.: Global warming preceded by
increasing carbon dioxide concentrations during the last deglaciation,
Nature, 484, 49–55, 2012.
Shen, C., Liu, K., Tang, L., and Overpeck, J. T.: Quantitative relationships
between modern pollen rain and climate in the Tibetan Plateau, Rev.
Palaeobot. Palyno., 140, 61–77, 2006.
Shen, J., Jones, R. T., Yang, X., Dearing, J. A., and Wang, S.: The Holocene
vegetation history of lake Erhai, Yunnan province southwestern china: the
role of climate and human forcings, The Holocene, 16, 265–276, 2006.
Shen, J., Liu, X., Matsumoto, R., Wang, S., Yang, X., Tang, L., and Shen, C.:
Multi-index high-resolution paleoclimatic evolution of sediments in Qinghai
Lake since the late glacial period, Sci. China Ser. D, 6, 582–589, 2004 (in Chinese with English abstract).
Shu, J., Wang, W., and Chen, Y.: Holocene vegetation and environment changes
in the NW Taihu Plain, Jiangsu Province, East China, Ac.
Micropalaeontologica Sin., 2, 210–221, 2007 (in Chinese with English
abstract).
Shu, Q., Xiao, J., Zhang, M., Zhao, Z., Chen, Y., and Li, J.: Climate Change
in Northern Jiangsu Basin since the Last Interglacial, Geological Science and
Technology Information, 5, 59–64, 2008 (in Chinese with English abstract).
Song, M., Zhou, C., and Ouyang, H.: Simulated distribution of vegetation
types in response to climate change on the Tibetan Plateau, J.
Veg. Sci., 16, 341–350, 2005.
Sun, A. and Feng, Z.: Holocene climate reconstructions from the fossil
pollen record at Qigai Nuur in the southern Mongolian Plateau, The Holocene,
23, 1391–1402, 2013.
Sun, L., Xu, Q., Yang, X., Liang, W., Sun, Z., and Chen, S.: Vegetation and
environmental changes in the Xuanhua Basin of Hebei Province since
Postglacial, J. Geomech., 4, 303–308, 2001 (in Chinese with
English abstract).
Sun, Q., Zhou, J., Shen, J., Cheng, P., Wu, F., and Xie, X.: Mid-Holocene
environmental characteristics recorded in the sediments of the Bohai Sea in
the northern environmental sensitive zone, Sci. China Ser. D, 9, 838–849, 2006 (in Chinese with English abstract).
Sun, X. and Xia, Z.: Paleoenvironment Changes Since Mid-Holocene Revealed by
a Palynological Sequence from Sihenan Profile in Luoyang, Henan Province,
Acta Scientiarum Naturalium Universitatis Pekinensis, 2, 289–294, 2005 (in
Chinese with English abstract).
Sun, X., Wang, F., and Sun, C.: Pollen-climate response surfaces of selected
taxa from Northern China, Sci. China Ser. D, 39, 486–493,
1996.
Swann, A. L., Fung, I. Y., Levis, S., Bonan, G. B., and Doney, S. C.: Changes
in Arctic vegetation amplify high-latitude warming through the greenhouse
effect, P. Natl. Acad. Sci. USA, 107, 1295–1300,
2010.
Sykes, M. T., Prentice, I. C., and Laarif, F.: Quantifying the impact of global
climate change on potential natural vegetation, Clim. Change, 41, 37–52,
1999.
Tang, L. and An, C.: Holocene vegetation change and pollen record of drought
events in the Loess Plateau, Prog. Nat. Sci., 10, 1371–1382, 2007
(in Chinese with English abstract).
Tang, L. and Shen, C.: Holocene pollen records of the Qinghai-Xizang
Plateau, Ac. Micropalaeontol. Sin., 4, 407–422, 1996 (in Chinese with
English abstract).
Tang, L., Shen, C., Kong, Z., Wang, F., and Liao, K.: Pollen evidence of
climate during the last glacial maximum in Eastern Tibetan Plateau, J. Glaciol., 2, 37–44, 1998 (in Chinese with English abstract).
Tang, L., Shen, C., Li, C., Peng, J., and Liu, H.: Pollen-inferred vegetation
and environmental changes in the central Tibetan Plateau since 8200 yr B.P.,
Sci. China Ser. D, 5, 615-625, 2009 (in Chinese with
English abstract).
Tao, S., An, C., Chen, F., Tang, L., Wang, Z., Lv, Y., Li, Z., Zheng, T., and
Zhao, J.: Vegetation and environment since the 16.7 cal ka BP in Balikun
Lake, Xinjiang, China, Chinese Sci. Bull., 11, 1026–1035, 2010 (in
Chinese with English abstract).
Taylor, K. E., Crucifix, M., Braconnot, P., Hewitt, C. D., Doutriaux. C.,
Broccoli, A. J., Mitchell, J. F. B., and Webb, M. J.: Estimating shortwave
radiative forcing and response in climate models, J. Climate, 20,
2530–2543, 2007.
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An overview of CMIP5 and the
experiment design, B. Am. Meteorol. Soc., 93,
485–498, 2012.
Voldoire, A., Sanchez-Gomez, E., Salas y Melia, D., Decharme, B., Cassou,
C.,Senesi, S., Valcke, S., Beau, I., Alias, A., Chevallier, M., Deque, M.,
Deshayes, J., Douville, H., Fernandez, E., Madec, G., Maisonnave, E., Moine,
M., Planton, S., Saint-Martin, D., Szopa, S., Tyteca, S., Alkama, R.,
Belamari, S., Braun, A., Coquart, L., and Chauvin, F.: The CNRM-CM5.1 global
climate model: description and basic evaluation, Clim. Dynam., 40,
2091–2121, 2012.
Wang, H., Liu, H., Zhu, J., and Yin, Y.: Holocene environmental changes as
recorded by mineral magnetism of sediments from Anguli-nuur Lake,
southeastern Inner Mongolia Plateau, China,
Palaeogeogr. Palaeocl., 285, 30–49, 2010.
Wang, S., Lv, H., and Liu, J.: Environmental characteristics of the early
Holocene suitable period revealed by the high-resolution sporopollen record
of Huguangyan Lake, Chinese Sci. Bull., 11, 1285–1291, 2007 (in Chinese
with English abstract).
Wang, X., Wang, J., Cao, L., Yang, J., Yang, X., Peng, Z., and Jin, G.: Late
Quaternary Pollen Records and Climate Significance in Guangzhou, Acta
Scientiarum Naturalium Universitatis Sunyatseni, 3, 113–121, 2010 (in Chinese
with English abstract).
Wang, X., Zhang, G., Li, W., Zhang, X., Zhang, E., and Xiao, X.:
Environmental changes during early-middle Holocene from the sediment record
of the Chaohu Lake, Anhui Province, Chinese Sci. Bull., 53, 153–160,
2008.
Wang, Y., Wang, S., Jiang, F., and Tong, G.: Palynological records in Xipu
section, Yangyuan, J. Geomech., 2, 171–175, 2003 (in Chinese with
English abstract).
Wang, Y., Wang, S., Zhao, Z., Qin, Y., Ma, Y., Sun, J., Sun, H., and Tian,
M.: Vegetation and Environmental Changes in Hexiqten Qi of Inner Mongolia in
the Past 16000 Years, Ac. Geosci. Sin., 5, 449–453, 2005 (in Chinese
with English abstract).
Wang, Y., Zhao, Z., Qiao, Y., Wang, S., Li, C., and Song, L.: Paleoclimatic
and paleoenvironmental evolution since the late glacial epoch as recorded by
sporopollen from the Hongyuan peat section on the Zoigê Plateau, northern
Sichuan, China, Geol. Bull. China, 7, 827–832, 2006 (in Chinese
with English abstract).
Watanabe, S., Hajima, T., Sudo, K., Nagashima, T., Takemura, T., Okajima, H., Nozawa, T., Kawase, H., Abe, M., Yokohata, T., Ise, T., Sato, H., Kato, E., Takata, K., Emori, S., and Kawamiya, M.: MIROC-ESM 2010: model description and basic results of CMIP5-20c3m experiments, Geosci. Model Dev., 4, 845–872, https://doi.org/10.5194/gmd-4-845-2011, 2011.
Webb III., T.: Global paleoclimatic data base for 6000 yr BP, Brown Univ.,
Providence, RI (USA), Dept. of Geological Sciences, DOE/EV/10097-6; Other:
ON: DE85006628 United States Other: ON: DE85006628 NTIS, PC A08/MF A01, HEDB
English, 1985.
Wen, R., Xiao, J., Chang, Z., Zhai, D., Xu, Q., Li, Y., and Itoh, S.: Holocene
precipitation and temperature variations in the East Asian monsoonal margin
from pollen data from Hulun Lake in northeastern Inner Mongolia, China,
Boreas, 39, 262–272, 2010.
Weninger, B., Jöris, O., and Danzeglocke, U.: CalPal-2007, Cologne
Radiocarbon Calibration and Palaeoclimate Research Package, available at: http://www.calpal.de/ (last access: 21 June 2019), 2007.
Wischnewski, J., Mischke, S., Wang, Y., and Herzschuh, U.: Reconstructing
climate variability on the northeastern Tibetan Plateau since the last
Lateglacial – a multi-proxy, dual-site approach comparing terrestrial and
aquatic signals, Quaternary Sci. Rev., 30, 82–97, 2011.
Wohlfahrt, J., Harrison, S. P., and Braconnot, P.: Synergistic feedbacks
between ocean and vegetation on mid- and high-latitude climates during the
mid-Holocene, Clim. Dynam., 22, 223–238, 2004.
Wu, H., Guiot, J., Brewer, S., and Guo, Z.: Climatic changes in Eurasia and
Africa at the last glacial maximum and mid-Holocene: reconstruction from
pollen data using inverse vegetation modeling, Clim. Dynam., 29, 211–229,
2007.
Wu, H., Luo, Y., Jiang, W., Li, Q., Sun, A., and Guo, Z.: Paleoclimate
reconstruction from pollen data using inverse vegetation approach: Validation
of model using modern data, Quaternary Sci., 36, 520–529, 2016 (in
Chinese with English abstract).
Wu, H., Ma, Y., Feng, Z., Sun, A., Zhang, C., Li, F., and Kuang, J.: A high
resolution record of vegetation and environmental variation through the last
∼ 25,000 years in the western part of the Chinese Loess Plateau,
Palaeogeogr. Palaeocl., 273, 191–199, 2009.
Xia, Y.: Preliminary study on vegetational development and climatic changes
in the Sanjiang Plain in the last 12000 years, Sci. Geogr. Sinica,
8, 241–249, 1988 (in Chinese with English abstract).
Xia, Z., Chen, G., Zheng, G., Chen, F., and Han, J.: Climate background of
the evolution from Paleolithic to Neolithic cultural transition during the
last deglaciation in the middle reaches of the Yellow River, Chinese Sci. Bull., 47, 71–75, 2002.
Xiao, J., Lv, H., Zhou, W., Zhao, Z., and Hao, R.: Pollen Vegetation and
Environmental Evolution of the Great Lakes in Jiangxi Province since the Last
Glacial Maximum, Sci. China Ser. D, 6, 789–797, 2007
(in Chinese with English abstract).
Xiao, J., Xu, Q., Nakamura, T., Yang, X., Liang, W., and Inouchi, Y.:
Holocene vegetation variation in the Daihai Lake region of north-central
China: a direct indication of the Asian monsoon climatic history, Quaternary Sci. Rev., 23, 1669–1679, 2004.
Xiao, X., Haberle, S. G., Shen, J., Yang, X., Han, Y., Zhang, E., and Wang,
S.: Latest Pleistocene and Holocene vegetation and climate history inferred
from an alpine lacustrine record, northwestern Yunnan Province, southwestern
China, Quaternary Sci. Rev., 86, 35–48, 2014.
Xie, Y., Li, C., Wang, Q., and Yin, H.: Climatic Change since 9 ka BP:
Evidence from Jiangling Area, Jianghan Plain, China, Sci. Geogr. Sinica, 2, 199–204, 2006 (in Chinese with English abstract).
Xin, X., Wu, T., and Zhang, J.: Introduction of CMIP5 experiments carried out
with the climate system models of Beijing climate Center, Adv. Clim.
Change Res., 4, 41–49, 2013.
Xu, J.: Analysis of the Holocene Loess Pollen in Xifeng Area and its
Vegetation Evolution, Capital Normal University, Master Dissertation, 2006
(in Chinese with English abstract).
Xu, Q., Chen, S., Kong, Z., and Du, N.: Preliminary discussion of vegetation
succession and climate change since the Holocene in the Baiyangdian Lake
district, Ac. Phytoecol. Geobotan. Sin., 2, 65–73, 1988 (in
Chinese with English abstract).
Xu, Q., Yang, Z., Cui, Z., Yang, X., and Liang.: A Study on Pollen Analysis
of Qiguoshan Section and Ancestor Living Environment in Chifeng Area, Nei
Mongol, Sci. Geogr. Sinica, 4, 453–456, 2002 (in Chinese with
English abstract).
Xu, Y.: The assemblage of Holocene spore pollen and its environment in Bosten
Lake area Xinjiang, Arid Land Geogr., 2, 43–49, 1998 (in Chinese with
English abstract).
Xue, S. and Li, X.: Holocene vegetation characteristics of the southern
Loess Plateau in the Weihe River valley in China, Rev. Palaeobot. Palyno., 160 46–52, 2010.
Yang, J., Cui, Z., Yi, Zhao., Zhang, W., and Liu, K.: Glacial Lacustrine
Sediment's Response to Climate Change since Holocene in Diancang Mountain,
Ac. Geogr. Sin., 4, 525–533, 2004 (in Chinese with English abstract).
Yang, X., Wang, S., and Tong, G.: Character of anology and changes of monsoon
climate over the last 10000 years in Gucheng Lake, Jiangsu province, J. Integr. Plant Biol., 7, 576–581, 1996 (in Chinese with English
abstract).
Yang, Y. and Wang, S.: Study on mire development and paleoenvironment change
since 8.0 ka BP in the northern part of the Sangjiang Plain, Sci. Geogr. Sinica, 23, 32–38, 2003 (in Chinese with English abstract).
Yang, Y., Huang, C., Wang, S., and Kong, Z: Study on the mire development and
palaeogeographical environment change since the early period of the Holocene
in the east part of the Xiliaohe Plain, Sci. Geogr. Sinica, 21,
242–249, 2001 (in Chinese with English abstract).
Yang, Z.: Reconstruction of climate and environment since the Holocene in
Diaojiaohaizi Lake Area, Daqing Mountains,Inner Mongolia, Ac. Ecol.
Sin., 4, 538–543, 2001 (in Chinese with English abstract).
Yu, L., Wang, N., Cheng, H., Long, H., and Zhao, Q.: Holocene environmental
change in the marginal area of the Asian monsoon: a record from Zhuye Lake,
NW china, Boreas, 38, 349–361, 2009.
Yukimoto, S., Adachi, Y., Hosaka, M., Sakami, T., Yoshimura, H., Hirabara,
M., Tanaka, T. Y., Shindo, E., Tsujino, H., Deushi, M., Mizuta, R., Yabu, S.,
Obata, A., Nakano, H., Koshiro, T., Ose, T., and Kitoh, A.: A new global
climate model of the meteorological research institute: MRI-CGCM3-model
description and basic performance, J. Meterol. Soc.
Jpn., 90, 23–64, 2012.
Zhang, W., Mu, K., Cui, Z., Feng, J., and Yang, J.: Record of the
environmental change since Holocene in the region of Gongwang mountain, Yunan
Province, Earth Environ., 4, 343–350, 2007 (in Chinese with English
abstract).
Zhang, Y. G., Pagani, M., and Liu, Z.: A 12-Million-Year Temperature History
of the tropical Pacific Ocean, Science, 344, 84–87, 2014.
Zhang, Y. and Yu, S.: Palynological assemblages of late Quaternary from the
Shenzhen region and its paleoenvironment evolution, Mar. Geol.
Quatern. Geol., 2, 109–114, 1999 (in Chinese with English abstract).
Zhang, Y., Jia, L., and Lyu, B.: Studies on Evolution of Vegetation and
Climate since 7000 Years ago in Estuary of Changjiang River Region, Mar.
Sci. Bull., 3, 27–34, 2004 (in Chinese with English abstract).
Zhang, Y., Song, M., and Welker, J. M.: Simulating Alpine Tundra Vegetation
Dynamics in Response to Global Warming in China, in: Global Warming, edited by: Harris, S.
A., InTech, 11, 221–250, 2010.
Zhang, Z., Xu, Q., Li, Y., Yang, X., Jin, Z., and Tang, J.: Environmental
changes of the Yin ruins area based on pollen analysis, Quaternary Sci.,
27, 461–468, 2007 (in Chinese with English abstract).
Zhao, J., Hou, Y., Du, J., and Chen, Y.: Holocene environmental changes in
the Guanzhong Plain, Arid Land Geogr., 1, 17–22, 2003 (in Chinese with
English abstract).
Zhao, Y., Yu, Z., Chen, F., Ito, E., and Zhao, C.: Holocene vegetation and
climate history at Hurleg Lake in the Qaidam Basin, northwest China, Rev. Palaeobotany Palynology, 145, 275–288, 2007.
Zheng, R., Xu, X., Zhu, J., Ji, F., Huang, Z., and Li, J.: Division of late
Quaternary strata and analysis of palaeoenvironment in Fuzhou Basin,
Seismol. Geol., 4, 503–513, 2002 (in Chinese with English abstract).
Zheng, X., Zhang, H., Ming, Q., Chang, F., Meng, H., Zhang, W., Liu, M., and
Shen, C.: Vegetational and environmental changes since 15ka B.P. recorded by
lake Lugu in the southwest monsoon domain region, Quaternary Sci., 6,
1314–1326, 2014 (in Chinese with English abstract).
Zhou, J., Liu, D., Zhuang, Z., Wang, Z., and Liu, L.: The sediment layers and
the records of the Paleoenvironment in the Chaoyanggang Lagoon,Rongcheng City
of Shandong Province Since Holocene Transgression, Periodical of Ocean
University of China, 38, 803–808, 2008 (in Chinese with English abstract).
Zhu, C., Ma, C., Zhang, W., Zheng, C., Tan, L., Lu, X., Liu, K., and Chen,
H.: Pollenrecord from Dajiuhu Basin of Shennongjia and environmental changes
since 15.753 ka BP, Quaternary Sci., 5, 814–826, 2006 (in Chinese with
English abstract).
Zou, S., Cheng, G., Xiao, H., Xu, B., and Feng, Z.: Holocene natural rhythms
of vegetation and present potential ecology in the western Chinese Loess
Plateau, Quatern. Int., 194, 55–67, 2009.
Short summary
The mid-Holocene has been an excellent target for comparing models and data. This work shows that, over China, all the ocean–atmosphere general circulation models involved in PMIP3 show a very large discrepancy with pollen data reconstruction when comparing annual and seasonal temperature. It demonstrates that to reconcile models and data and to capture the signature of seasonal thermal response, it is necessary to integrate non-linear processes, particularly those related to vegetation changes.
The mid-Holocene has been an excellent target for comparing models and data. This work shows...