Articles | Volume 14, issue 6
https://doi.org/10.5194/cp-14-789-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-14-789-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Climate sensitivity and meridional overturning circulation in the late Eocene using GFDL CM2.1
David K. Hutchinson
CORRESPONDING AUTHOR
Department of Geological Sciences, Stockholm University, 10691
Stockholm, Sweden
Agatha M. de Boer
Department of Geological Sciences, Stockholm University, 10691
Stockholm, Sweden
Helen K. Coxall
Department of Geological Sciences, Stockholm University, 10691
Stockholm, Sweden
Rodrigo Caballero
Department of Meteorology, Stockholm University, 10691 Stockholm,
Sweden
Johan Nilsson
Department of Meteorology, Stockholm University, 10691 Stockholm,
Sweden
Michiel Baatsen
IMAU, Utrecht University, Princetonplein 5, 3584CC Utrecht, the
Netherlands
Related authors
Kasia K. Śliwińska, Helen K. Coxall, David K. Hutchinson, Diederik Liebrand, Stefan Schouten, and Agatha M. de Boer
Clim. Past, 19, 123–140, https://doi.org/10.5194/cp-19-123-2023, https://doi.org/10.5194/cp-19-123-2023, 2023
Short summary
Short summary
We provide a sea surface temperature record from the Labrador Sea (ODP Site 647) based on organic geochemical proxies across the late Eocene and early Oligocene. Our study reveals heterogenic cooling of the Atlantic. The cooling of the North Atlantic is difficult to reconcile with the active Atlantic Meridional Overturning Circulation (AMOC). We discuss possible explanations like uncertainty in the data, paleogeography and atmospheric CO2 boundary conditions, model weaknesses, and AMOC activity.
David K. Hutchinson, Helen K. Coxall, Daniel J. Lunt, Margret Steinthorsdottir, Agatha M. de Boer, Michiel Baatsen, Anna von der Heydt, Matthew Huber, Alan T. Kennedy-Asser, Lutz Kunzmann, Jean-Baptiste Ladant, Caroline H. Lear, Karolin Moraweck, Paul N. Pearson, Emanuela Piga, Matthew J. Pound, Ulrich Salzmann, Howie D. Scher, Willem P. Sijp, Kasia K. Śliwińska, Paul A. Wilson, and Zhongshi Zhang
Clim. Past, 17, 269–315, https://doi.org/10.5194/cp-17-269-2021, https://doi.org/10.5194/cp-17-269-2021, 2021
Short summary
Short summary
The Eocene–Oligocene transition was a major climate cooling event from a largely ice-free world to the first major glaciation of Antarctica, approximately 34 million years ago. This paper reviews observed changes in temperature, CO2 and ice sheets from marine and land-based records at this time. We present a new model–data comparison of this transition and find that CO2-forced cooling provides the best explanation of the observed global temperature changes.
Daniel J. Lunt, Fran Bragg, Wing-Le Chan, David K. Hutchinson, Jean-Baptiste Ladant, Polina Morozova, Igor Niezgodzki, Sebastian Steinig, Zhongshi Zhang, Jiang Zhu, Ayako Abe-Ouchi, Eleni Anagnostou, Agatha M. de Boer, Helen K. Coxall, Yannick Donnadieu, Gavin Foster, Gordon N. Inglis, Gregor Knorr, Petra M. Langebroek, Caroline H. Lear, Gerrit Lohmann, Christopher J. Poulsen, Pierre Sepulchre, Jessica E. Tierney, Paul J. Valdes, Evgeny M. Volodin, Tom Dunkley Jones, Christopher J. Hollis, Matthew Huber, and Bette L. Otto-Bliesner
Clim. Past, 17, 203–227, https://doi.org/10.5194/cp-17-203-2021, https://doi.org/10.5194/cp-17-203-2021, 2021
Short summary
Short summary
This paper presents the first modelling results from the Deep-Time Model Intercomparison Project (DeepMIP), in which we focus on the early Eocene climatic optimum (EECO, 50 million years ago). We show that, in contrast to previous work, at least three models (CESM, GFDL, and NorESM) produce climate states that are consistent with proxy indicators of global mean temperature and polar amplification, and they achieve this at a CO2 concentration that is consistent with the CO2 proxy record.
Gordon N. Inglis, Fran Bragg, Natalie J. Burls, Marlow Julius Cramwinckel, David Evans, Gavin L. Foster, Matthew Huber, Daniel J. Lunt, Nicholas Siler, Sebastian Steinig, Jessica E. Tierney, Richard Wilkinson, Eleni Anagnostou, Agatha M. de Boer, Tom Dunkley Jones, Kirsty M. Edgar, Christopher J. Hollis, David K. Hutchinson, and Richard D. Pancost
Clim. Past, 16, 1953–1968, https://doi.org/10.5194/cp-16-1953-2020, https://doi.org/10.5194/cp-16-1953-2020, 2020
Short summary
Short summary
This paper presents estimates of global mean surface temperatures and climate sensitivity during the early Paleogene (∼57–48 Ma). We employ a multi-method experimental approach and show that i) global mean surface temperatures range between 27 and 32°C and that ii) estimates of
bulkequilibrium climate sensitivity (∼3 to 4.5°C) fall within the range predicted by the IPCC AR5 Report. This work improves our understanding of two key climate metrics during the early Paleogene.
Eleanor Rainsley, Chris S. M. Turney, Nicholas R. Golledge, Janet M. Wilmshurst, Matt S. McGlone, Alan G. Hogg, Bo Li, Zoë A. Thomas, Richard Roberts, Richard T. Jones, Jonathan G. Palmer, Verity Flett, Gregory de Wet, David K. Hutchinson, Mathew J. Lipson, Pavla Fenwick, Ben R. Hines, Umberto Binetti, and Christopher J. Fogwill
Clim. Past, 15, 423–448, https://doi.org/10.5194/cp-15-423-2019, https://doi.org/10.5194/cp-15-423-2019, 2019
Short summary
Short summary
The New Zealand subantarctic islands, in the Pacific sector of the Southern Ocean, provide valuable records of past environmental change. We find that the Auckland Islands hosted a small ice cap around 384 000 years ago, but that there was little glaciation during the Last Glacial Maximum, around 21 000 years ago, in contrast to mainland New Zealand. This shows that the climate here is susceptible to changes in regional factors such as sea-ice expanse and the position of ocean fronts.
Sohan Suresan, Nili Harnik, and Rodrigo Caballero
EGUsphere, https://doi.org/10.5194/egusphere-2024-2745, https://doi.org/10.5194/egusphere-2024-2745, 2024
This preprint is open for discussion and under review for Weather and Climate Dynamics (WCD).
Short summary
Short summary
This study explores how extreme winter weather events across the Northern Hemisphere are influenced by the rare merging of the Atlantic and African jets, beyond the typical factors like NAO and ENSO. We identify unique surface signals and changes in cyclone paths associated with such persistent jet merging over the Atlantic, offering insights into these extreme winter weather patterns.
Arthur Merlijn Oldeman, Michiel L. J. Baatsen, Anna S. von der Heydt, Frank M. Selten, and Henk A. Dijkstra
Earth Syst. Dynam., 15, 1037–1054, https://doi.org/10.5194/esd-15-1037-2024, https://doi.org/10.5194/esd-15-1037-2024, 2024
Short summary
Short summary
We might be able to constrain uncertainty in future climate projections by investigating variations in the climate of the past. In this study, we investigate the interactions of climate variability between the tropical Pacific (El Niño) and the North Pacific in a warm past climate – the mid-Pliocene, a period roughly 3 million years ago. Using model simulations, we find that, although the variability in El Niño was reduced, the variability in the North Pacific atmosphere was not.
Aleksa Stanković, Gabriele Messori, Joaquim G. Pinto, and Rodrigo Caballero
Weather Clim. Dynam., 5, 821–837, https://doi.org/10.5194/wcd-5-821-2024, https://doi.org/10.5194/wcd-5-821-2024, 2024
Short summary
Short summary
The article studies extreme winds near the surface over the North Atlantic Ocean. These winds are caused by storms that pass through this region. The strongest storms that have occurred in the winters from 1950–2020 are studied in detail and compared to weaker but still strong storms. The analysis shows that the storms associated with the strongest winds are preceded by another older storm that travelled through the same region and made the conditions suitable for development of extreme winds.
Dennis H.A. Vermeulen, Michiel L. J. Baatsen, and Anna S. von der Heydt
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-30, https://doi.org/10.5194/cp-2024-30, 2024
Revised manuscript accepted for CP
Short summary
Short summary
Late-Eocene summers, 34 million years ago, were hot on Antarctica, with temperatures up to 30 °C. We also know that during that period the first Antarctic Ice Sheet formed. Since climate models don’t show this transition from warm climate to ice sheet formation accurately, we imposed regional ice sheets onto the continent in a realistic climate, and show that these ice sheets don't melt away. This suggests that the initiation of ice sheet growth might indeed have happened during warmer periods.
Flor Vermassen, Clare Bird, Tirza M. Weitkamp, Kate F. Darling, Hanna Farnelid, Céline Heuzé, Allison Y. Hsiang, Salar Karam, Christian Stranne, Marcus Sundbom, and Helen K. Coxall
EGUsphere, https://doi.org/10.5194/egusphere-2024-1091, https://doi.org/10.5194/egusphere-2024-1091, 2024
Short summary
Short summary
We provide the first systematic survey of planktonic foraminifera in the high Arctic Ocean. Our results describe the abundance and species composition under summer sea-ice. They indicate that the polar specialist N. pachyderma is the only species present, with subpolar species absent. The dataset will be a valuable reference for continued monitoring of the state of planktonic foraminifera communities as they respond to the ongoing sea-ice decline and the ‘Atlantification’ of the Arctic Ocean.
Jonna van Mourik, Hylke de Vries, and Michiel Baatsen
EGUsphere, https://doi.org/10.5194/egusphere-2024-999, https://doi.org/10.5194/egusphere-2024-999, 2024
Short summary
Short summary
Atmospheric blockings are quasi-stationary high-pressure areas with large influences on our weather. We show that using the most common blocking index does not only lead to stationary blocks, but also to east- and westward moving blocks. These respective moving blocks are found to have different characteristics in size and location. Even though they are not stationary, they still impact our surface temperatures. Thus, for impact analyses no restriction in propagation velocity is needed.
Arthur Merlijn Oldeman, Michiel L. J. Baatsen, Anna S. von der Heydt, Aarnout J. van Delden, and Henk A. Dijkstra
Weather Clim. Dynam., 5, 395–417, https://doi.org/10.5194/wcd-5-395-2024, https://doi.org/10.5194/wcd-5-395-2024, 2024
Short summary
Short summary
The mid-Pliocene, a geological period around 3 million years ago, is sometimes considered the best analogue for near-future climate. It saw similar CO2 concentrations to the present-day but also a slightly different geography. In this study, we use climate model simulations and find that the Northern Hemisphere winter responds very differently to increased CO2 or to the mid-Pliocene geography. Our results weaken the potential of the mid-Pliocene as a future climate analogue.
Nico Wunderling, Anna S. von der Heydt, Yevgeny Aksenov, Stephen Barker, Robbin Bastiaansen, Victor Brovkin, Maura Brunetti, Victor Couplet, Thomas Kleinen, Caroline H. Lear, Johannes Lohmann, Rosa Maria Roman-Cuesta, Sacha Sinet, Didier Swingedouw, Ricarda Winkelmann, Pallavi Anand, Jonathan Barichivich, Sebastian Bathiany, Mara Baudena, John T. Bruun, Cristiano M. Chiessi, Helen K. Coxall, David Docquier, Jonathan F. Donges, Swinda K. J. Falkena, Ann Kristin Klose, David Obura, Juan Rocha, Stefanie Rynders, Norman Julius Steinert, and Matteo Willeit
Earth Syst. Dynam., 15, 41–74, https://doi.org/10.5194/esd-15-41-2024, https://doi.org/10.5194/esd-15-41-2024, 2024
Short summary
Short summary
This paper maps out the state-of-the-art literature on interactions between tipping elements relevant for current global warming pathways. We find indications that many of the interactions between tipping elements are destabilizing. This means that tipping cascades cannot be ruled out on centennial to millennial timescales at global warming levels between 1.5 and 2.0 °C or on shorter timescales if global warming surpasses 2.0 °C.
Michiel Baatsen, Peter Bijl, Anna von der Heydt, Appy Sluijs, and Henk Dijkstra
Clim. Past, 20, 77–90, https://doi.org/10.5194/cp-20-77-2024, https://doi.org/10.5194/cp-20-77-2024, 2024
Short summary
Short summary
This work introduces the possibility and consequences of monsoons on Antarctica in the warm Eocene climate. We suggest that such a monsoonal climate can be important to understand conditions in Antarctica prior to large-scale glaciation. We can explain seemingly contradictory indications of ice and vegetation on the continent through regional variability. In addition, we provide a new mechanism through which most of Antarctica remained ice-free through a wide range of global climatic changes.
Xin Ren, Daniel J. Lunt, Erica Hendy, Anna von der Heydt, Ayako Abe-Ouchi, Bette Otto-Bliesner, Charles J. R. Williams, Christian Stepanek, Chuncheng Guo, Deepak Chandan, Gerrit Lohmann, Julia C. Tindall, Linda E. Sohl, Mark A. Chandler, Masa Kageyama, Michiel L. J. Baatsen, Ning Tan, Qiong Zhang, Ran Feng, Stephen Hunter, Wing-Le Chan, W. Richard Peltier, Xiangyu Li, Youichi Kamae, Zhongshi Zhang, and Alan M. Haywood
Clim. Past, 19, 2053–2077, https://doi.org/10.5194/cp-19-2053-2023, https://doi.org/10.5194/cp-19-2053-2023, 2023
Short summary
Short summary
We investigate the Maritime Continent climate in the mid-Piacenzian warm period and find it is warmer and wetter and the sea surface salinity is lower compared with preindustrial period. Besides, the fresh and warm water transfer through the Maritime Continent was stronger. In order to avoid undue influence from closely related models in the multimodel results, we introduce a new metric, the multi-cluster mean, which could reveal spatial signals that are not captured by the multimodel mean.
Emma Holmberg, Gabriele Messori, Rodrigo Caballero, and Davide Faranda
Earth Syst. Dynam., 14, 737–765, https://doi.org/10.5194/esd-14-737-2023, https://doi.org/10.5194/esd-14-737-2023, 2023
Short summary
Short summary
We analyse the duration of large-scale patterns of air movement in the atmosphere, referred to as persistence, and whether unusually persistent patterns favour warm-temperature extremes in Europe. We see no clear relationship between summertime heatwaves and unusually persistent patterns. This suggests that heatwaves do not necessarily require the continued flow of warm air over a region and that local effects could be important for their occurrence.
Jasper de Jong, Michiel L. J. Baatsen, and Aarnout J. van Delden
EGUsphere, https://doi.org/10.5194/egusphere-2023-1259, https://doi.org/10.5194/egusphere-2023-1259, 2023
Preprint archived
Short summary
Short summary
Tropical cyclones often embed a ring-shaped vorticity tower, instead of a centre maximum. Inspired to identify mechanisms in the conservation of such a vorticity structure, we examined the vorticity budget in a simulation of hurricane Irma (2017) near lifetime-peak intensity. Hurricane Irma persisted as a category five hurricane for three consecutive days. We find that vertical exchange of momentum by diabatic heating compensates the advective vorticity loss and eddy activity plays a minor role.
Jonathan Wiskandt, Inga Monika Koszalka, and Johan Nilsson
The Cryosphere, 17, 2755–2777, https://doi.org/10.5194/tc-17-2755-2023, https://doi.org/10.5194/tc-17-2755-2023, 2023
Short summary
Short summary
Understanding ice–ocean interactions under floating ice tongues in Greenland and Antarctica is a major challenge in climate modelling and a source of uncertainty in future sea level projections. We use a high-resolution ocean model to investigate basal melting and melt-driven circulation under the floating tongue of Ryder Glacier, northwestern Greenland. We study the response to oceanic and atmospheric warming. Our results are universal and relevant for the development of climate models.
Johan Nilsson, Eef van Dongen, Martin Jakobsson, Matt O'Regan, and Christian Stranne
The Cryosphere, 17, 2455–2476, https://doi.org/10.5194/tc-17-2455-2023, https://doi.org/10.5194/tc-17-2455-2023, 2023
Short summary
Short summary
We investigate how topographical sills suppress basal glacier melt in Greenlandic fjords. The basal melt drives an exchange flow over the sill, but there is an upper flow limit set by the Atlantic Water features outside the fjord. If this limit is reached, the flow enters a new regime where the melt is suppressed and its sensitivity to the Atlantic Water temperature is reduced.
Louise C. Sime, Rahul Sivankutty, Irene Vallet-Malmierca, Agatha M. de Boer, and Marie Sicard
Clim. Past, 19, 883–900, https://doi.org/10.5194/cp-19-883-2023, https://doi.org/10.5194/cp-19-883-2023, 2023
Short summary
Short summary
It is not known if the Last Interglacial (LIG) experienced Arctic summers that were sea ice free: models show a wide spread in LIG Arctic temperature and sea ice results. Evaluation against sea ice markers is hampered by few observations. Here, an assessment of 11 climate model simulations against summer temperatures shows that the most skilful models have a 74 %–79 % reduction in LIG sea ice. The measurements of LIG areas indicate a likely mix of ice-free and near-ice-free LIG summers.
Jesse R. Farmer, Katherine J. Keller, Robert K. Poirier, Gary S. Dwyer, Morgan F. Schaller, Helen K. Coxall, Matt O'Regan, and Thomas M. Cronin
Clim. Past, 19, 555–578, https://doi.org/10.5194/cp-19-555-2023, https://doi.org/10.5194/cp-19-555-2023, 2023
Short summary
Short summary
Oxygen isotopes are used to date marine sediments via similar large-scale ocean patterns over glacial cycles. However, the Arctic Ocean exhibits a different isotope pattern, creating uncertainty in the timing of past Arctic climate change. We find that the Arctic Ocean experienced large local oxygen isotope changes over glacial cycles. We attribute this to a breakdown of stratification during ice ages that allowed for a unique low isotope value to characterize the ice age Arctic Ocean.
Kasia K. Śliwińska, Helen K. Coxall, David K. Hutchinson, Diederik Liebrand, Stefan Schouten, and Agatha M. de Boer
Clim. Past, 19, 123–140, https://doi.org/10.5194/cp-19-123-2023, https://doi.org/10.5194/cp-19-123-2023, 2023
Short summary
Short summary
We provide a sea surface temperature record from the Labrador Sea (ODP Site 647) based on organic geochemical proxies across the late Eocene and early Oligocene. Our study reveals heterogenic cooling of the Atlantic. The cooling of the North Atlantic is difficult to reconcile with the active Atlantic Meridional Overturning Circulation (AMOC). We discuss possible explanations like uncertainty in the data, paleogeography and atmospheric CO2 boundary conditions, model weaknesses, and AMOC activity.
Julia E. Weiffenbach, Michiel L. J. Baatsen, Henk A. Dijkstra, Anna S. von der Heydt, Ayako Abe-Ouchi, Esther C. Brady, Wing-Le Chan, Deepak Chandan, Mark A. Chandler, Camille Contoux, Ran Feng, Chuncheng Guo, Zixuan Han, Alan M. Haywood, Qiang Li, Xiangyu Li, Gerrit Lohmann, Daniel J. Lunt, Kerim H. Nisancioglu, Bette L. Otto-Bliesner, W. Richard Peltier, Gilles Ramstein, Linda E. Sohl, Christian Stepanek, Ning Tan, Julia C. Tindall, Charles J. R. Williams, Qiong Zhang, and Zhongshi Zhang
Clim. Past, 19, 61–85, https://doi.org/10.5194/cp-19-61-2023, https://doi.org/10.5194/cp-19-61-2023, 2023
Short summary
Short summary
We study the behavior of the Atlantic Meridional Overturning Circulation (AMOC) in the mid-Pliocene. The mid-Pliocene was about 3 million years ago and had a similar CO2 concentration to today. We show that the stronger AMOC during this period relates to changes in geography and that this has a significant influence on ocean temperatures and heat transported northwards by the Atlantic Ocean. Understanding the behavior of the mid-Pliocene AMOC can help us to learn more about our future climate.
Michiel L. J. Baatsen, Anna S. von der Heydt, Michael A. Kliphuis, Arthur M. Oldeman, and Julia E. Weiffenbach
Clim. Past, 18, 657–679, https://doi.org/10.5194/cp-18-657-2022, https://doi.org/10.5194/cp-18-657-2022, 2022
Short summary
Short summary
The Pliocene was a period during which atmospheric CO2 was similar to today (i.e. ~ 400 ppm). We present the results of model simulations carried out within the Pliocene Model Intercomparison Project Phase 2 (PlioMIP2) using the CESM 1.0.5. We find a climate that is much warmer than today, with augmented polar warming, increased precipitation, and strongly reduced sea ice cover. In addition, several leading modes of variability in temperature show an altered behaviour.
Sonja Murto, Rodrigo Caballero, Gunilla Svensson, and Lukas Papritz
Weather Clim. Dynam., 3, 21–44, https://doi.org/10.5194/wcd-3-21-2022, https://doi.org/10.5194/wcd-3-21-2022, 2022
Short summary
Short summary
This study uses reanalysis data to investigate the role of atmospheric blocking, prevailing high-pressure systems and mid-latitude cyclones in driving high-Arctic wintertime warm extreme events. These events are mainly preceded by Ural and Scandinavian blocks, which are shown to be significantly influenced and amplified by cyclones in the North Atlantic. It also highlights processes that need to be well captured in climate models for improving their representation of Arctic wintertime climate.
Zixuan Han, Qiong Zhang, Qiang Li, Ran Feng, Alan M. Haywood, Julia C. Tindall, Stephen J. Hunter, Bette L. Otto-Bliesner, Esther C. Brady, Nan Rosenbloom, Zhongshi Zhang, Xiangyu Li, Chuncheng Guo, Kerim H. Nisancioglu, Christian Stepanek, Gerrit Lohmann, Linda E. Sohl, Mark A. Chandler, Ning Tan, Gilles Ramstein, Michiel L. J. Baatsen, Anna S. von der Heydt, Deepak Chandan, W. Richard Peltier, Charles J. R. Williams, Daniel J. Lunt, Jianbo Cheng, Qin Wen, and Natalie J. Burls
Clim. Past, 17, 2537–2558, https://doi.org/10.5194/cp-17-2537-2021, https://doi.org/10.5194/cp-17-2537-2021, 2021
Short summary
Short summary
Understanding the potential processes responsible for large-scale hydrological cycle changes in a warmer climate is of great importance. Our study implies that an imbalance in interhemispheric atmospheric energy during the mid-Pliocene could have led to changes in the dynamic effect, offsetting the thermodynamic effect and, hence, altering mid-Pliocene hydroclimate cycling. Moreover, a robust westward shift in the Pacific Walker circulation can moisten the northern Indian Ocean.
Arthur M. Oldeman, Michiel L. J. Baatsen, Anna S. von der Heydt, Henk A. Dijkstra, Julia C. Tindall, Ayako Abe-Ouchi, Alice R. Booth, Esther C. Brady, Wing-Le Chan, Deepak Chandan, Mark A. Chandler, Camille Contoux, Ran Feng, Chuncheng Guo, Alan M. Haywood, Stephen J. Hunter, Youichi Kamae, Qiang Li, Xiangyu Li, Gerrit Lohmann, Daniel J. Lunt, Kerim H. Nisancioglu, Bette L. Otto-Bliesner, W. Richard Peltier, Gabriel M. Pontes, Gilles Ramstein, Linda E. Sohl, Christian Stepanek, Ning Tan, Qiong Zhang, Zhongshi Zhang, Ilana Wainer, and Charles J. R. Williams
Clim. Past, 17, 2427–2450, https://doi.org/10.5194/cp-17-2427-2021, https://doi.org/10.5194/cp-17-2427-2021, 2021
Short summary
Short summary
In this work, we have studied the behaviour of El Niño events in the mid-Pliocene, a period of around 3 million years ago, using a collection of 17 climate models. It is an interesting period to study, as it saw similar atmospheric carbon dioxide levels to the present day. We find that the El Niño events were less strong in the mid-Pliocene simulations, when compared to pre-industrial climate. Our results could help to interpret El Niño behaviour in future climate projections.
Ellen Berntell, Qiong Zhang, Qiang Li, Alan M. Haywood, Julia C. Tindall, Stephen J. Hunter, Zhongshi Zhang, Xiangyu Li, Chuncheng Guo, Kerim H. Nisancioglu, Christian Stepanek, Gerrit Lohmann, Linda E. Sohl, Mark A. Chandler, Ning Tan, Camille Contoux, Gilles Ramstein, Michiel L. J. Baatsen, Anna S. von der Heydt, Deepak Chandan, William Richard Peltier, Ayako Abe-Ouchi, Wing-Le Chan, Youichi Kamae, Charles J. R. Williams, Daniel J. Lunt, Ran Feng, Bette L. Otto-Bliesner, and Esther C. Brady
Clim. Past, 17, 1777–1794, https://doi.org/10.5194/cp-17-1777-2021, https://doi.org/10.5194/cp-17-1777-2021, 2021
Short summary
Short summary
The mid-Pliocene Warm Period (~ 3.2 Ma) is often considered an analogue for near-future climate projections, and model results from the PlioMIP2 ensemble show an increase of rainfall over West Africa and the Sahara region compared to pre-industrial conditions. Though previous studies of future projections show a west–east drying–wetting contrast over the Sahel, these results indicate a uniform rainfall increase over the Sahel in warm climates characterized by increased greenhouse gas forcing.
Matt O'Regan, Thomas M. Cronin, Brendan Reilly, Aage Kristian Olsen Alstrup, Laura Gemery, Anna Golub, Larry A. Mayer, Mathieu Morlighem, Matthias Moros, Ole L. Munk, Johan Nilsson, Christof Pearce, Henrieka Detlef, Christian Stranne, Flor Vermassen, Gabriel West, and Martin Jakobsson
The Cryosphere, 15, 4073–4097, https://doi.org/10.5194/tc-15-4073-2021, https://doi.org/10.5194/tc-15-4073-2021, 2021
Short summary
Short summary
Ryder Glacier is a marine-terminating glacier in north Greenland discharging ice into the Lincoln Sea. Here we use marine sediment cores to reconstruct its retreat and advance behavior through the Holocene. We show that while Sherard Osborn Fjord has a physiography conducive to glacier and ice tongue stability, Ryder still retreated more than 40 km inland from its current position by the Middle Holocene. This highlights the sensitivity of north Greenland's marine glaciers to climate change.
Zhongshi Zhang, Xiangyu Li, Chuncheng Guo, Odd Helge Otterå, Kerim H. Nisancioglu, Ning Tan, Camille Contoux, Gilles Ramstein, Ran Feng, Bette L. Otto-Bliesner, Esther Brady, Deepak Chandan, W. Richard Peltier, Michiel L. J. Baatsen, Anna S. von der Heydt, Julia E. Weiffenbach, Christian Stepanek, Gerrit Lohmann, Qiong Zhang, Qiang Li, Mark A. Chandler, Linda E. Sohl, Alan M. Haywood, Stephen J. Hunter, Julia C. Tindall, Charles Williams, Daniel J. Lunt, Wing-Le Chan, and Ayako Abe-Ouchi
Clim. Past, 17, 529–543, https://doi.org/10.5194/cp-17-529-2021, https://doi.org/10.5194/cp-17-529-2021, 2021
Short summary
Short summary
The Atlantic Meridional Overturning Circulation (AMOC) is an important topic in the Pliocene Model Intercomparison Project. Previous studies have suggested a much stronger AMOC during the Pliocene than today. However, our current multi-model intercomparison shows large model spreads and model–data discrepancies, which can not support the previous hypothesis. Our study shows good consistency with future projections of the AMOC.
David K. Hutchinson, Helen K. Coxall, Daniel J. Lunt, Margret Steinthorsdottir, Agatha M. de Boer, Michiel Baatsen, Anna von der Heydt, Matthew Huber, Alan T. Kennedy-Asser, Lutz Kunzmann, Jean-Baptiste Ladant, Caroline H. Lear, Karolin Moraweck, Paul N. Pearson, Emanuela Piga, Matthew J. Pound, Ulrich Salzmann, Howie D. Scher, Willem P. Sijp, Kasia K. Śliwińska, Paul A. Wilson, and Zhongshi Zhang
Clim. Past, 17, 269–315, https://doi.org/10.5194/cp-17-269-2021, https://doi.org/10.5194/cp-17-269-2021, 2021
Short summary
Short summary
The Eocene–Oligocene transition was a major climate cooling event from a largely ice-free world to the first major glaciation of Antarctica, approximately 34 million years ago. This paper reviews observed changes in temperature, CO2 and ice sheets from marine and land-based records at this time. We present a new model–data comparison of this transition and find that CO2-forced cooling provides the best explanation of the observed global temperature changes.
Daniel J. Lunt, Fran Bragg, Wing-Le Chan, David K. Hutchinson, Jean-Baptiste Ladant, Polina Morozova, Igor Niezgodzki, Sebastian Steinig, Zhongshi Zhang, Jiang Zhu, Ayako Abe-Ouchi, Eleni Anagnostou, Agatha M. de Boer, Helen K. Coxall, Yannick Donnadieu, Gavin Foster, Gordon N. Inglis, Gregor Knorr, Petra M. Langebroek, Caroline H. Lear, Gerrit Lohmann, Christopher J. Poulsen, Pierre Sepulchre, Jessica E. Tierney, Paul J. Valdes, Evgeny M. Volodin, Tom Dunkley Jones, Christopher J. Hollis, Matthew Huber, and Bette L. Otto-Bliesner
Clim. Past, 17, 203–227, https://doi.org/10.5194/cp-17-203-2021, https://doi.org/10.5194/cp-17-203-2021, 2021
Short summary
Short summary
This paper presents the first modelling results from the Deep-Time Model Intercomparison Project (DeepMIP), in which we focus on the early Eocene climatic optimum (EECO, 50 million years ago). We show that, in contrast to previous work, at least three models (CESM, GFDL, and NorESM) produce climate states that are consistent with proxy indicators of global mean temperature and polar amplification, and they achieve this at a CO2 concentration that is consistent with the CO2 proxy record.
Michiel Baatsen, Anna S. von der Heydt, Matthew Huber, Michael A. Kliphuis, Peter K. Bijl, Appy Sluijs, and Henk A. Dijkstra
Clim. Past, 16, 2573–2597, https://doi.org/10.5194/cp-16-2573-2020, https://doi.org/10.5194/cp-16-2573-2020, 2020
Short summary
Short summary
Warm climates of the deep past have proven to be challenging to reconstruct with the same numerical models used for future predictions. We present results of CESM simulations for the middle to late Eocene (∼ 38 Ma), in which we managed to match the available indications of temperature well. With these results we can now look into regional features and the response to external changes to ultimately better understand the climate when it is in such a warm state.
Wesley de Nooijer, Qiong Zhang, Qiang Li, Qiang Zhang, Xiangyu Li, Zhongshi Zhang, Chuncheng Guo, Kerim H. Nisancioglu, Alan M. Haywood, Julia C. Tindall, Stephen J. Hunter, Harry J. Dowsett, Christian Stepanek, Gerrit Lohmann, Bette L. Otto-Bliesner, Ran Feng, Linda E. Sohl, Mark A. Chandler, Ning Tan, Camille Contoux, Gilles Ramstein, Michiel L. J. Baatsen, Anna S. von der Heydt, Deepak Chandan, W. Richard Peltier, Ayako Abe-Ouchi, Wing-Le Chan, Youichi Kamae, and Chris M. Brierley
Clim. Past, 16, 2325–2341, https://doi.org/10.5194/cp-16-2325-2020, https://doi.org/10.5194/cp-16-2325-2020, 2020
Short summary
Short summary
The simulations for the past climate can inform us about the performance of climate models in different climate scenarios. Here, we analyse Arctic warming in an ensemble of 16 simulations of the mid-Pliocene Warm Period (mPWP), when the CO2 level was comparable to today. The results highlight the importance of slow feedbacks in the model simulations and imply that we must be careful when using simulations of the mPWP as an analogue for future climate change.
Alan M. Haywood, Julia C. Tindall, Harry J. Dowsett, Aisling M. Dolan, Kevin M. Foley, Stephen J. Hunter, Daniel J. Hill, Wing-Le Chan, Ayako Abe-Ouchi, Christian Stepanek, Gerrit Lohmann, Deepak Chandan, W. Richard Peltier, Ning Tan, Camille Contoux, Gilles Ramstein, Xiangyu Li, Zhongshi Zhang, Chuncheng Guo, Kerim H. Nisancioglu, Qiong Zhang, Qiang Li, Youichi Kamae, Mark A. Chandler, Linda E. Sohl, Bette L. Otto-Bliesner, Ran Feng, Esther C. Brady, Anna S. von der Heydt, Michiel L. J. Baatsen, and Daniel J. Lunt
Clim. Past, 16, 2095–2123, https://doi.org/10.5194/cp-16-2095-2020, https://doi.org/10.5194/cp-16-2095-2020, 2020
Short summary
Short summary
The large-scale features of middle Pliocene climate from the 16 models of PlioMIP Phase 2 are presented. The PlioMIP2 ensemble average was ~ 3.2 °C warmer and experienced ~ 7 % more precipitation than the pre-industrial era, although there are large regional variations. PlioMIP2 broadly agrees with a new proxy dataset of Pliocene sea surface temperatures. Combining PlioMIP2 and proxy data suggests that a doubling of atmospheric CO2 would increase globally averaged temperature by 2.6–4.8 °C.
Gordon N. Inglis, Fran Bragg, Natalie J. Burls, Marlow Julius Cramwinckel, David Evans, Gavin L. Foster, Matthew Huber, Daniel J. Lunt, Nicholas Siler, Sebastian Steinig, Jessica E. Tierney, Richard Wilkinson, Eleni Anagnostou, Agatha M. de Boer, Tom Dunkley Jones, Kirsty M. Edgar, Christopher J. Hollis, David K. Hutchinson, and Richard D. Pancost
Clim. Past, 16, 1953–1968, https://doi.org/10.5194/cp-16-1953-2020, https://doi.org/10.5194/cp-16-1953-2020, 2020
Short summary
Short summary
This paper presents estimates of global mean surface temperatures and climate sensitivity during the early Paleogene (∼57–48 Ma). We employ a multi-method experimental approach and show that i) global mean surface temperatures range between 27 and 32°C and that ii) estimates of
bulkequilibrium climate sensitivity (∼3 to 4.5°C) fall within the range predicted by the IPCC AR5 Report. This work improves our understanding of two key climate metrics during the early Paleogene.
Ying Liu, Rodrigo Caballero, and Joy Merwin Monteiro
Geosci. Model Dev., 13, 4399–4412, https://doi.org/10.5194/gmd-13-4399-2020, https://doi.org/10.5194/gmd-13-4399-2020, 2020
Short summary
Short summary
The calculation of atmospheric radiative transfer is the most computationally expensive part of climate models. Reducing this computational burden could potentially improve our ability to simulate the earth's climate at finer scales. We propose using a statistical model – a deep neural network – to compute approximate radiative transfer in the earth's atmosphere. We demonstrate a significant reduction in computational burden as compared to a traditional scheme, especially when using GPUs.
Erin L. McClymont, Heather L. Ford, Sze Ling Ho, Julia C. Tindall, Alan M. Haywood, Montserrat Alonso-Garcia, Ian Bailey, Melissa A. Berke, Kate Littler, Molly O. Patterson, Benjamin Petrick, Francien Peterse, A. Christina Ravelo, Bjørg Risebrobakken, Stijn De Schepper, George E. A. Swann, Kaustubh Thirumalai, Jessica E. Tierney, Carolien van der Weijst, Sarah White, Ayako Abe-Ouchi, Michiel L. J. Baatsen, Esther C. Brady, Wing-Le Chan, Deepak Chandan, Ran Feng, Chuncheng Guo, Anna S. von der Heydt, Stephen Hunter, Xiangyi Li, Gerrit Lohmann, Kerim H. Nisancioglu, Bette L. Otto-Bliesner, W. Richard Peltier, Christian Stepanek, and Zhongshi Zhang
Clim. Past, 16, 1599–1615, https://doi.org/10.5194/cp-16-1599-2020, https://doi.org/10.5194/cp-16-1599-2020, 2020
Short summary
Short summary
We examine the sea-surface temperature response to an interval of climate ~ 3.2 million years ago, when CO2 concentrations were similar to today and the near future. Our geological data and climate models show that global mean sea-surface temperatures were 2.3 to 3.2 ºC warmer than pre-industrial climate, that the mid-latitudes and high latitudes warmed more than the tropics, and that the warming was particularly enhanced in the North Atlantic Ocean.
Kirsty M. Edgar, Steven M. Bohaty, Helen K. Coxall, Paul R. Bown, Sietske J. Batenburg, Caroline H. Lear, and Paul N. Pearson
J. Micropalaeontol., 39, 117–138, https://doi.org/10.5194/jm-39-117-2020, https://doi.org/10.5194/jm-39-117-2020, 2020
Short summary
Short summary
We identify the first continuous carbonate-bearing sediment record from the tropical ocean that spans the entirety of the global warming event, the Middle Eocene Climatic Optimum, ca. 40 Ma. We determine significant mismatches between middle Eocene calcareous microfossil datums from the tropical Pacific Ocean and established low-latitude zonation schemes. We highlight the potential of ODP Site 865 for future investigations into environmental and biotic changes throughout the early Paleogene.
Sara Broomé, Léon Chafik, and Johan Nilsson
Ocean Sci., 16, 715–728, https://doi.org/10.5194/os-16-715-2020, https://doi.org/10.5194/os-16-715-2020, 2020
Short summary
Short summary
Observations in the Nordic Seas have shown a general warming and an increase in sea surface height over the last few decades. However, our results reveal that the sea surface heights and heat content in the decade following the mid-2000s have not risen much or even stagnated. This is most prominent in the eastern Nordic Seas, where waters of Atlantic origin dominate. We conclude that this stagnation is possibly a consequence of decreased heat transport from the subpolar North Atlantic.
Malin Ödalen, Jonas Nycander, Andy Ridgwell, Kevin I. C. Oliver, Carlye D. Peterson, and Johan Nilsson
Biogeosciences, 17, 2219–2244, https://doi.org/10.5194/bg-17-2219-2020, https://doi.org/10.5194/bg-17-2219-2020, 2020
Short summary
Short summary
In glacial periods, ocean uptake of carbon is likely a key player for achieving low atmospheric CO2. In climate models, ocean biological uptake of carbon (C) and phosphorus (P) are often assumed to occur in fixed proportions.
In this study, we allow the ratio of C : P to vary and simulate, to first approximation, the complex biological changes that occur in the ocean over long timescales. We show here that, for glacial–interglacial cycles, this complexity contributes to low atmospheric CO2.
Christian Berndt, Sverre Planke, Damon Teagle, Ritske Huismans, Trond Torsvik, Joost Frieling, Morgan T. Jones, Dougal A. Jerram, Christian Tegner, Jan Inge Faleide, Helen Coxall, and Wei-Li Hong
Sci. Dril., 26, 69–85, https://doi.org/10.5194/sd-26-69-2019, https://doi.org/10.5194/sd-26-69-2019, 2019
Short summary
Short summary
The northeast Atlantic encompasses archetypal examples of volcanic rifted margins. Twenty-five years after the last ODP leg on these volcanic margins, the reasons for excess melting are still disputed with at least three competing hypotheses being discussed. We are proposing a new drilling campaign that will constrain the timing, rates of volcanism, and vertical movements of rifted margins.
Eleanor Rainsley, Chris S. M. Turney, Nicholas R. Golledge, Janet M. Wilmshurst, Matt S. McGlone, Alan G. Hogg, Bo Li, Zoë A. Thomas, Richard Roberts, Richard T. Jones, Jonathan G. Palmer, Verity Flett, Gregory de Wet, David K. Hutchinson, Mathew J. Lipson, Pavla Fenwick, Ben R. Hines, Umberto Binetti, and Christopher J. Fogwill
Clim. Past, 15, 423–448, https://doi.org/10.5194/cp-15-423-2019, https://doi.org/10.5194/cp-15-423-2019, 2019
Short summary
Short summary
The New Zealand subantarctic islands, in the Pacific sector of the Southern Ocean, provide valuable records of past environmental change. We find that the Auckland Islands hosted a small ice cap around 384 000 years ago, but that there was little glaciation during the Last Glacial Maximum, around 21 000 years ago, in contrast to mainland New Zealand. This shows that the climate here is susceptible to changes in regional factors such as sea-ice expanse and the position of ocean fronts.
Joy Merwin Monteiro, Jeremy McGibbon, and Rodrigo Caballero
Geosci. Model Dev., 11, 3781–3794, https://doi.org/10.5194/gmd-11-3781-2018, https://doi.org/10.5194/gmd-11-3781-2018, 2018
Short summary
Short summary
In the same way that the fruit fly or the yeast cell serve as model systems in biology, climate scientists use a range of computer models to gain a fundamental understanding of our climate system. These models range from extremely simple models that can run on your phone to those that require supercomputers. Sympl and climt are packages that make it easy for climate scientists to build a hierarchy of such models using Python, which facilitates easy to read and self-documenting models.
Christian Stranne, Larry Mayer, Martin Jakobsson, Elizabeth Weidner, Kevin Jerram, Thomas C. Weber, Leif G. Anderson, Johan Nilsson, Göran Björk, and Katarina Gårdfeldt
Ocean Sci., 14, 503–514, https://doi.org/10.5194/os-14-503-2018, https://doi.org/10.5194/os-14-503-2018, 2018
Short summary
Short summary
The ocean surface mixed layer depth (MLD) is an important parameter within several research disciplines, as variations in the MLD influence air–sea CO2 exchange and ocean primary production. A new method is presented in which acoustic mapping of the MLD is done remotely by means of echo sounders. This method allows for observations of high-frequency variability in the MLD, as horizontal and temporal resolutions can be increased by orders of magnitude compared to traditional in situ measurements.
Michiel Baatsen, Anna S. von der Heydt, Matthew Huber, Michael A. Kliphuis, Peter K. Bijl, Appy Sluijs, and Henk A. Dijkstra
Clim. Past Discuss., https://doi.org/10.5194/cp-2018-43, https://doi.org/10.5194/cp-2018-43, 2018
Revised manuscript not accepted
Short summary
Short summary
The Eocene marks a period where the climate was in a hothouse state, without any continental-scale ice sheets. Such climates have proven difficult to reproduce in models, especially their low temperature difference between equator and poles. Here, we present high resolution CESM simulations using a new geographic reconstruction of the middle-to-late Eocene. The results provide new insights into a period for which knowledge is limited, leading up to a transition into the present icehouse state.
Göran Björk, Martin Jakobsson, Karen Assmann, Leif G. Andersson, Johan Nilsson, Christian Stranne, and Larry Mayer
Ocean Sci., 14, 1–13, https://doi.org/10.5194/os-14-1-2018, https://doi.org/10.5194/os-14-1-2018, 2018
Short summary
Short summary
This study presents detailed bathymetric data along with hydrographic data at two deep passages across the Lomonosov Ridge in the Arctic Ocean. The southern channel is relatively smooth with a sill depth close to 1700 m. Hydrographic data reveals an eastward flow in the southern part and opposite in the northern part. The northern passage is characterized by a narrow and steep ridge with a sill depth of 1470 m. Here, water exchange appears to occur in well-defined but irregular vertical layers.
Henrik Carlson and Rodrigo Caballero
Clim. Past, 13, 1037–1048, https://doi.org/10.5194/cp-13-1037-2017, https://doi.org/10.5194/cp-13-1037-2017, 2017
Short summary
Short summary
Climate models are able to simulate the surface temperature of the early Eocene as reconstructed from paleoclimatology data, but only by using extremely high CO2 concentrations or clouds that are more transparent to solar radiation. We explore the potential for distinguishing among these two forcing agents via their impact on regional climate. Better constraining the radiative forcing that led to Eocene warmth has important implications for understanding Earth's climate sensitivity.
Martin Jakobsson, Christof Pearce, Thomas M. Cronin, Jan Backman, Leif G. Anderson, Natalia Barrientos, Göran Björk, Helen Coxall, Agatha de Boer, Larry A. Mayer, Carl-Magnus Mörth, Johan Nilsson, Jayne E. Rattray, Christian Stranne, Igor Semiletov, and Matt O'Regan
Clim. Past, 13, 991–1005, https://doi.org/10.5194/cp-13-991-2017, https://doi.org/10.5194/cp-13-991-2017, 2017
Short summary
Short summary
The Arctic and Pacific oceans are connected by the presently ~53 m deep Bering Strait. During the last glacial period when the sea level was lower than today, the Bering Strait was exposed. Humans and animals could then migrate between Asia and North America across the formed land bridge. From analyses of sediment cores and geophysical mapping data from Herald Canyon north of the Bering Strait, we show that the land bridge was flooded about 11 000 years ago.
Johan Nilsson, Martin Jakobsson, Chris Borstad, Nina Kirchner, Göran Björk, Raymond T. Pierrehumbert, and Christian Stranne
The Cryosphere, 11, 1745–1765, https://doi.org/10.5194/tc-11-1745-2017, https://doi.org/10.5194/tc-11-1745-2017, 2017
Short summary
Short summary
Recent data suggest that a 1 km thick ice shelf extended over the glacial Arctic Ocean during MIS 6, about 140 000 years ago. Here, we theoretically analyse the development and equilibrium features of such an ice shelf. The ice shelf was effectively dammed by the Fram Strait and the mean ice-shelf thickness was controlled primarily by the horizontally integrated mass balance. Our results can aid in resolving some outstanding questions of the state of the glacial Arctic Ocean.
Daniel J. Lunt, Matthew Huber, Eleni Anagnostou, Michiel L. J. Baatsen, Rodrigo Caballero, Rob DeConto, Henk A. Dijkstra, Yannick Donnadieu, David Evans, Ran Feng, Gavin L. Foster, Ed Gasson, Anna S. von der Heydt, Chris J. Hollis, Gordon N. Inglis, Stephen M. Jones, Jeff Kiehl, Sandy Kirtland Turner, Robert L. Korty, Reinhardt Kozdon, Srinath Krishnan, Jean-Baptiste Ladant, Petra Langebroek, Caroline H. Lear, Allegra N. LeGrande, Kate Littler, Paul Markwick, Bette Otto-Bliesner, Paul Pearson, Christopher J. Poulsen, Ulrich Salzmann, Christine Shields, Kathryn Snell, Michael Stärz, James Super, Clay Tabor, Jessica E. Tierney, Gregory J. L. Tourte, Aradhna Tripati, Garland R. Upchurch, Bridget S. Wade, Scott L. Wing, Arne M. E. Winguth, Nicky M. Wright, James C. Zachos, and Richard E. Zeebe
Geosci. Model Dev., 10, 889–901, https://doi.org/10.5194/gmd-10-889-2017, https://doi.org/10.5194/gmd-10-889-2017, 2017
Short summary
Short summary
In this paper we describe the experimental design for a set of simulations which will be carried out by a range of climate models, all investigating the climate of the Eocene, about 50 million years ago. The intercomparison of model results is called 'DeepMIP', and we anticipate that we will contribute to the next IPCC report through an analysis of these simulations and the geological data to which we will compare them.
Louise C. Sime, Dominic Hodgson, Thomas J. Bracegirdle, Claire Allen, Bianca Perren, Stephen Roberts, and Agatha M. de Boer
Clim. Past, 12, 2241–2253, https://doi.org/10.5194/cp-12-2241-2016, https://doi.org/10.5194/cp-12-2241-2016, 2016
Short summary
Short summary
Latitudinal shifts in the Southern Ocean westerly wind jet could explain large observed changes in the glacial to interglacial ocean CO2 inventory. However there is considerable disagreement in modelled deglacial-warming jet shifts. Here multi-model output is used to show that expansion of sea ice during the glacial period likely caused a slight poleward shift and intensification in the westerly wind jet. Issues with model representation of the winds caused much of the previous disagreement.
Michiel Baatsen, Douwe J. J. van Hinsbergen, Anna S. von der Heydt, Henk A. Dijkstra, Appy Sluijs, Hemmo A. Abels, and Peter K. Bijl
Clim. Past, 12, 1635–1644, https://doi.org/10.5194/cp-12-1635-2016, https://doi.org/10.5194/cp-12-1635-2016, 2016
Short summary
Short summary
One of the major difficulties in modelling palaeoclimate is constricting the boundary conditions, causing significant discrepancies between different studies. Here, a new method is presented to automate much of the process of generating the necessary geographical reconstructions. The latter can be made using various rotational frameworks and topography/bathymetry input, allowing for easy inter-comparisons and the incorporation of the latest insights from geoscientific research.
M. Löfverström, R. Caballero, J. Nilsson, and J. Kleman
Clim. Past, 10, 1453–1471, https://doi.org/10.5194/cp-10-1453-2014, https://doi.org/10.5194/cp-10-1453-2014, 2014
U. Schuster, A. J. Watson, D. C. E. Bakker, A. M. de Boer, E. M. Jones, G. A. Lee, O. Legge, A. Louwerse, J. Riley, and S. Scally
Earth Syst. Sci. Data, 6, 175–183, https://doi.org/10.5194/essd-6-175-2014, https://doi.org/10.5194/essd-6-175-2014, 2014
M. Berger, J. Brandefelt, and J. Nilsson
Clim. Past, 9, 969–982, https://doi.org/10.5194/cp-9-969-2013, https://doi.org/10.5194/cp-9-969-2013, 2013
A. Goldner, M. Huber, and R. Caballero
Clim. Past, 9, 173–189, https://doi.org/10.5194/cp-9-173-2013, https://doi.org/10.5194/cp-9-173-2013, 2013
Related subject area
Subject: Climate Modelling | Archive: Modelling only | Timescale: Cenozoic
South Asian summer monsoon enhanced by the uplift of the Iranian Plateau in Middle Miocene
Response of Late-Eocene warmth to incipient glaciation on Antarctica
Aerosol uncertainties in tropical precipitation changes for the mid-Pliocene warm period
Highly stratified mid-Pliocene Southern Ocean in PlioMIP2
Improve iLOVECLIM (version 1.1) with a multi-layer snow model: surface mass balance evolution during the Last Interglacial
The geometry of sea-level change across a mid-Pliocene glacial cycle
The hydrological cycle and ocean circulation of the Maritime Continent in the Pliocene: results from PlioMIP2
On the climatic influence of CO2 forcing in the Pliocene
Unraveling the mechanisms and implications of a stronger mid-Pliocene Atlantic Meridional Overturning Circulation (AMOC) in PlioMIP2
Warm mid-Pliocene conditions without high climate sensitivity: the CCSM4-Utrecht (CESM 1.0.5) contribution to the PlioMIP2
Evaluating the large-scale hydrological cycle response within the Pliocene Model Intercomparison Project Phase 2 (PlioMIP2) ensemble
Reduced El Niño variability in the mid-Pliocene according to the PlioMIP2 ensemble
Data-constrained assessment of ocean circulation changes since the middle Miocene in an Earth system model
Simulation of the mid-Pliocene Warm Period using HadGEM3: experimental design and results from model–model and model–data comparison
Mid-Pliocene West African Monsoon rainfall as simulated in the PlioMIP2 ensemble
Mid-Pliocene Atlantic Meridional Overturning Circulation simulated in PlioMIP2
Contribution of the coupled atmosphere–ocean–sea ice–vegetation model COSMOS to the PlioMIP2
Sensitivity of mid-Pliocene climate to changes in orbital forcing and PlioMIP's boundary conditions
Pliocene Model Intercomparison Project (PlioMIP2) simulations using the Model for Interdisciplinary Research on Climate (MIROC4m)
The origin of Asian monsoons: a modelling perspective
Changes in the high-latitude Southern Hemisphere through the Eocene–Oligocene transition: a model–data comparison
PlioMIP2 simulations with NorESM-L and NorESM1-F
The effect of mountain uplift on eastern boundary currents and upwelling systems
Modeling a modern-like pCO2 warm period (Marine Isotope Stage KM5c) with two versions of an Institut Pierre Simon Laplace atmosphere–ocean coupled general circulation model
The HadCM3 contribution to PlioMIP phase 2
An energy balance model for paleoclimate transitions
Precipitation δ18O on the Himalaya–Tibet orogeny and its relationship to surface elevation
On the mechanisms of warming the mid-Pliocene and the inference of a hierarchy of climate sensitivities with relevance to the understanding of climate futures
Difference between the North Atlantic and Pacific meridional overturning circulation in response to the uplift of the Tibetan Plateau
Sensitivity of the Eocene climate to CO2 and orbital variability
The influence of ice sheets on temperature during the past 38 million years inferred from a one-dimensional ice sheet–climate model
Regional and global climate for the mid-Pliocene using the University of Toronto version of CCSM4 and PlioMIP2 boundary conditions
Changes to the tropical circulation in the mid-Pliocene and their implications for future climate
Reconstructing geographical boundary conditions for palaeoclimate modelling during the Cenozoic
Model simulations of early westward flow across the Tasman Gateway during the early Eocene
Arctic sea ice simulation in the PlioMIP ensemble
The Pliocene Model Intercomparison Project (PlioMIP) Phase 2: scientific objectives and experimental design
Tropical cyclone genesis potential across palaeoclimates
Orbital control on late Miocene climate and the North African monsoon: insight from an ensemble of sub-precessional simulations
Interannual climate variability seen in the Pliocene Model Intercomparison Project
Ice sheet model dependency of the simulated Greenland Ice Sheet in the mid-Pliocene
Using results from the PlioMIP ensemble to investigate the Greenland Ice Sheet during the mid-Pliocene Warm Period
Links between CO2, glaciation and water flow: reconciling the Cenozoic history of the Antarctic Circumpolar Current
Modelling global-scale climate impacts of the late Miocene Messinian Salinity Crisis
The challenge of simulating the warmth of the mid-Miocene climatic optimum in CESM1
Uncertainties in the modelled CO2 threshold for Antarctic glaciation
Investigating vegetation–climate feedbacks during the early Eocene
Evaluating the dominant components of warming in Pliocene climate simulations
The role of eastern Tethys seaway closure in the Middle Miocene Climatic Transition (ca. 14 Ma)
Mid-Pliocene East Asian monsoon climate simulated in the PlioMIP
Meng Zuo, Yong Sun, Yan Zhao, Gilles Ramstein, Lin Ding, and Tianjun Zhou
Clim. Past, 20, 1817–1836, https://doi.org/10.5194/cp-20-1817-2024, https://doi.org/10.5194/cp-20-1817-2024, 2024
Short summary
Short summary
Our research explores the intensification of the South Asian summer monsoon (SASM) during the Middle Miocene (17–12 Ma). Using an advanced model, we reveal that the uplift of the Iranian Plateau significantly influenced the SASM, especially in northwestern India. This finding surpasses the impact of factors like Himalayan uplift and global CO2 changes. We shed light on the complex dynamics shaping ancient monsoons, providing valuable insights into Earth's climatic history.
Dennis H.A. Vermeulen, Michiel L. J. Baatsen, and Anna S. von der Heydt
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-30, https://doi.org/10.5194/cp-2024-30, 2024
Revised manuscript accepted for CP
Short summary
Short summary
Late-Eocene summers, 34 million years ago, were hot on Antarctica, with temperatures up to 30 °C. We also know that during that period the first Antarctic Ice Sheet formed. Since climate models don’t show this transition from warm climate to ice sheet formation accurately, we imposed regional ice sheets onto the continent in a realistic climate, and show that these ice sheets don't melt away. This suggests that the initiation of ice sheet growth might indeed have happened during warmer periods.
Anni Zhao, Ran Feng, Chris M. Brierley, Jian Zhang, and Yongyun Hu
Clim. Past, 20, 1195–1211, https://doi.org/10.5194/cp-20-1195-2024, https://doi.org/10.5194/cp-20-1195-2024, 2024
Short summary
Short summary
We analyse simulations with idealised aerosol scenarios to examine the importance of aerosol forcing on mPWP precipitation and how aerosol uncertainty could explain the data–model mismatch. We find further warming, a narrower and stronger ITCZ, and monsoon domain rainfall change after removal of industrial emissions. Aerosols have more impacts on tropical precipitation than the mPWP boundary conditions. This highlights the importance of prescribed aerosol scenarios in simulating mPWP climate.
Julia E. Weiffenbach, Henk A. Dijkstra, Anna S. von der Heydt, Ayako Abe-Ouchi, Wing-Le Chan, Deepak Chandan, Ran Feng, Alan M. Haywood, Stephen J. Hunter, Xiangyu Li, Bette L. Otto-Bliesner, W. Richard Peltier, Christian Stepanek, Ning Tan, Julia C. Tindall, and Zhongshi Zhang
Clim. Past, 20, 1067–1086, https://doi.org/10.5194/cp-20-1067-2024, https://doi.org/10.5194/cp-20-1067-2024, 2024
Short summary
Short summary
Elevated atmospheric CO2 concentrations and a smaller Antarctic Ice Sheet during the mid-Pliocene (~ 3 million years ago) cause the Southern Ocean surface to become fresher and warmer, which affects the global ocean circulation. The CO2 concentration and the smaller Antarctic Ice Sheet both have a similar and approximately equal impact on the Southern Ocean. The conditions of the Southern Ocean in the mid-Pliocene could therefore be analogous to those in a future climate with smaller ice sheets.
Thi-Khanh-Dieu Hoang, Aurélien Quiquet, Christophe Dumas, Andreas Born, and Didier M. Roche
EGUsphere, https://doi.org/10.5194/egusphere-2024-556, https://doi.org/10.5194/egusphere-2024-556, 2024
Short summary
Short summary
To improve the simulation of surface mass balance (SMB) that influences the advance-retreat of ice sheets, we run a snow model BESSI (BErgen Snow Simulator) with transient climate forcing obtained from an Earth system model iLOVECLIM over Greenland and Antarctica during the Last Interglacial period (130–116 kaBP). Compared to the existing simple SMB scheme of iLOVECLIM, BESSI gives more details about SMB processes with higher physics constraints while maintaining a low computational cost.
Meghan E. King, Jessica R. Creveling, and Jerry X. Mitrovica
EGUsphere, https://doi.org/10.5194/egusphere-2024-344, https://doi.org/10.5194/egusphere-2024-344, 2024
Short summary
Short summary
In this study, we compute glacial-interglacial sea-level changes across the mid-Pliocene Warm Period (MPWP; 3.264 – 3.025 Ma) produced from ice mass loss of different ice sheets. Our results quantify the relationship between local and global mean sea-level (GMSL) change and highlight the level of consistency in this mapping across different ice melt scenarios. These predictions can help to guide site selection in any effort to constrain the sources and magnitude of MPWP GMSL change.
Xin Ren, Daniel J. Lunt, Erica Hendy, Anna von der Heydt, Ayako Abe-Ouchi, Bette Otto-Bliesner, Charles J. R. Williams, Christian Stepanek, Chuncheng Guo, Deepak Chandan, Gerrit Lohmann, Julia C. Tindall, Linda E. Sohl, Mark A. Chandler, Masa Kageyama, Michiel L. J. Baatsen, Ning Tan, Qiong Zhang, Ran Feng, Stephen Hunter, Wing-Le Chan, W. Richard Peltier, Xiangyu Li, Youichi Kamae, Zhongshi Zhang, and Alan M. Haywood
Clim. Past, 19, 2053–2077, https://doi.org/10.5194/cp-19-2053-2023, https://doi.org/10.5194/cp-19-2053-2023, 2023
Short summary
Short summary
We investigate the Maritime Continent climate in the mid-Piacenzian warm period and find it is warmer and wetter and the sea surface salinity is lower compared with preindustrial period. Besides, the fresh and warm water transfer through the Maritime Continent was stronger. In order to avoid undue influence from closely related models in the multimodel results, we introduce a new metric, the multi-cluster mean, which could reveal spatial signals that are not captured by the multimodel mean.
Lauren E. Burton, Alan M. Haywood, Julia C. Tindall, Aisling M. Dolan, Daniel J. Hill, Ayako Abe-Ouchi, Wing-Le Chan, Deepak Chandan, Ran Feng, Stephen J. Hunter, Xiangyu Li, W. Richard Peltier, Ning Tan, Christian Stepanek, and Zhongshi Zhang
Clim. Past, 19, 747–764, https://doi.org/10.5194/cp-19-747-2023, https://doi.org/10.5194/cp-19-747-2023, 2023
Short summary
Short summary
Warm climates of the Pliocene (~ 3 million years ago) are similar to projections of the near future. We find elevated concentrations of atmospheric carbon dioxide to be the most important forcing for driving changes in Pliocene surface air temperature, sea surface temperature, and precipitation. However, changes caused by the nature of Pliocene ice sheets and orography are also important, affecting the extent to which we can use the Pliocene as an analogue for our warmer future.
Julia E. Weiffenbach, Michiel L. J. Baatsen, Henk A. Dijkstra, Anna S. von der Heydt, Ayako Abe-Ouchi, Esther C. Brady, Wing-Le Chan, Deepak Chandan, Mark A. Chandler, Camille Contoux, Ran Feng, Chuncheng Guo, Zixuan Han, Alan M. Haywood, Qiang Li, Xiangyu Li, Gerrit Lohmann, Daniel J. Lunt, Kerim H. Nisancioglu, Bette L. Otto-Bliesner, W. Richard Peltier, Gilles Ramstein, Linda E. Sohl, Christian Stepanek, Ning Tan, Julia C. Tindall, Charles J. R. Williams, Qiong Zhang, and Zhongshi Zhang
Clim. Past, 19, 61–85, https://doi.org/10.5194/cp-19-61-2023, https://doi.org/10.5194/cp-19-61-2023, 2023
Short summary
Short summary
We study the behavior of the Atlantic Meridional Overturning Circulation (AMOC) in the mid-Pliocene. The mid-Pliocene was about 3 million years ago and had a similar CO2 concentration to today. We show that the stronger AMOC during this period relates to changes in geography and that this has a significant influence on ocean temperatures and heat transported northwards by the Atlantic Ocean. Understanding the behavior of the mid-Pliocene AMOC can help us to learn more about our future climate.
Michiel L. J. Baatsen, Anna S. von der Heydt, Michael A. Kliphuis, Arthur M. Oldeman, and Julia E. Weiffenbach
Clim. Past, 18, 657–679, https://doi.org/10.5194/cp-18-657-2022, https://doi.org/10.5194/cp-18-657-2022, 2022
Short summary
Short summary
The Pliocene was a period during which atmospheric CO2 was similar to today (i.e. ~ 400 ppm). We present the results of model simulations carried out within the Pliocene Model Intercomparison Project Phase 2 (PlioMIP2) using the CESM 1.0.5. We find a climate that is much warmer than today, with augmented polar warming, increased precipitation, and strongly reduced sea ice cover. In addition, several leading modes of variability in temperature show an altered behaviour.
Zixuan Han, Qiong Zhang, Qiang Li, Ran Feng, Alan M. Haywood, Julia C. Tindall, Stephen J. Hunter, Bette L. Otto-Bliesner, Esther C. Brady, Nan Rosenbloom, Zhongshi Zhang, Xiangyu Li, Chuncheng Guo, Kerim H. Nisancioglu, Christian Stepanek, Gerrit Lohmann, Linda E. Sohl, Mark A. Chandler, Ning Tan, Gilles Ramstein, Michiel L. J. Baatsen, Anna S. von der Heydt, Deepak Chandan, W. Richard Peltier, Charles J. R. Williams, Daniel J. Lunt, Jianbo Cheng, Qin Wen, and Natalie J. Burls
Clim. Past, 17, 2537–2558, https://doi.org/10.5194/cp-17-2537-2021, https://doi.org/10.5194/cp-17-2537-2021, 2021
Short summary
Short summary
Understanding the potential processes responsible for large-scale hydrological cycle changes in a warmer climate is of great importance. Our study implies that an imbalance in interhemispheric atmospheric energy during the mid-Pliocene could have led to changes in the dynamic effect, offsetting the thermodynamic effect and, hence, altering mid-Pliocene hydroclimate cycling. Moreover, a robust westward shift in the Pacific Walker circulation can moisten the northern Indian Ocean.
Arthur M. Oldeman, Michiel L. J. Baatsen, Anna S. von der Heydt, Henk A. Dijkstra, Julia C. Tindall, Ayako Abe-Ouchi, Alice R. Booth, Esther C. Brady, Wing-Le Chan, Deepak Chandan, Mark A. Chandler, Camille Contoux, Ran Feng, Chuncheng Guo, Alan M. Haywood, Stephen J. Hunter, Youichi Kamae, Qiang Li, Xiangyu Li, Gerrit Lohmann, Daniel J. Lunt, Kerim H. Nisancioglu, Bette L. Otto-Bliesner, W. Richard Peltier, Gabriel M. Pontes, Gilles Ramstein, Linda E. Sohl, Christian Stepanek, Ning Tan, Qiong Zhang, Zhongshi Zhang, Ilana Wainer, and Charles J. R. Williams
Clim. Past, 17, 2427–2450, https://doi.org/10.5194/cp-17-2427-2021, https://doi.org/10.5194/cp-17-2427-2021, 2021
Short summary
Short summary
In this work, we have studied the behaviour of El Niño events in the mid-Pliocene, a period of around 3 million years ago, using a collection of 17 climate models. It is an interesting period to study, as it saw similar atmospheric carbon dioxide levels to the present day. We find that the El Niño events were less strong in the mid-Pliocene simulations, when compared to pre-industrial climate. Our results could help to interpret El Niño behaviour in future climate projections.
Katherine A. Crichton, Andy Ridgwell, Daniel J. Lunt, Alex Farnsworth, and Paul N. Pearson
Clim. Past, 17, 2223–2254, https://doi.org/10.5194/cp-17-2223-2021, https://doi.org/10.5194/cp-17-2223-2021, 2021
Short summary
Short summary
The middle Miocene (15 Ma) was a period of global warmth up to 8 °C warmer than present. We investigate changes in ocean circulation and heat distribution since the middle Miocene and the cooling to the present using the cGENIE Earth system model. We create seven time slices at ~2.5 Myr intervals, constrained with paleo-proxy data, showing a progressive reduction in atmospheric CO2 and a strengthening of the Atlantic Meridional Overturning Circulation.
Charles J. R. Williams, Alistair A. Sellar, Xin Ren, Alan M. Haywood, Peter Hopcroft, Stephen J. Hunter, William H. G. Roberts, Robin S. Smith, Emma J. Stone, Julia C. Tindall, and Daniel J. Lunt
Clim. Past, 17, 2139–2163, https://doi.org/10.5194/cp-17-2139-2021, https://doi.org/10.5194/cp-17-2139-2021, 2021
Short summary
Short summary
Computer simulations of the geological past are an important tool to improve our understanding of climate change. We present results from a simulation of the mid-Pliocene (approximately 3 million years ago) using the latest version of the UK’s climate model. The simulation reproduces temperatures as expected and shows some improvement relative to previous versions of the same model. The simulation is, however, arguably too warm when compared to other models and available observations.
Ellen Berntell, Qiong Zhang, Qiang Li, Alan M. Haywood, Julia C. Tindall, Stephen J. Hunter, Zhongshi Zhang, Xiangyu Li, Chuncheng Guo, Kerim H. Nisancioglu, Christian Stepanek, Gerrit Lohmann, Linda E. Sohl, Mark A. Chandler, Ning Tan, Camille Contoux, Gilles Ramstein, Michiel L. J. Baatsen, Anna S. von der Heydt, Deepak Chandan, William Richard Peltier, Ayako Abe-Ouchi, Wing-Le Chan, Youichi Kamae, Charles J. R. Williams, Daniel J. Lunt, Ran Feng, Bette L. Otto-Bliesner, and Esther C. Brady
Clim. Past, 17, 1777–1794, https://doi.org/10.5194/cp-17-1777-2021, https://doi.org/10.5194/cp-17-1777-2021, 2021
Short summary
Short summary
The mid-Pliocene Warm Period (~ 3.2 Ma) is often considered an analogue for near-future climate projections, and model results from the PlioMIP2 ensemble show an increase of rainfall over West Africa and the Sahara region compared to pre-industrial conditions. Though previous studies of future projections show a west–east drying–wetting contrast over the Sahel, these results indicate a uniform rainfall increase over the Sahel in warm climates characterized by increased greenhouse gas forcing.
Zhongshi Zhang, Xiangyu Li, Chuncheng Guo, Odd Helge Otterå, Kerim H. Nisancioglu, Ning Tan, Camille Contoux, Gilles Ramstein, Ran Feng, Bette L. Otto-Bliesner, Esther Brady, Deepak Chandan, W. Richard Peltier, Michiel L. J. Baatsen, Anna S. von der Heydt, Julia E. Weiffenbach, Christian Stepanek, Gerrit Lohmann, Qiong Zhang, Qiang Li, Mark A. Chandler, Linda E. Sohl, Alan M. Haywood, Stephen J. Hunter, Julia C. Tindall, Charles Williams, Daniel J. Lunt, Wing-Le Chan, and Ayako Abe-Ouchi
Clim. Past, 17, 529–543, https://doi.org/10.5194/cp-17-529-2021, https://doi.org/10.5194/cp-17-529-2021, 2021
Short summary
Short summary
The Atlantic Meridional Overturning Circulation (AMOC) is an important topic in the Pliocene Model Intercomparison Project. Previous studies have suggested a much stronger AMOC during the Pliocene than today. However, our current multi-model intercomparison shows large model spreads and model–data discrepancies, which can not support the previous hypothesis. Our study shows good consistency with future projections of the AMOC.
Christian Stepanek, Eric Samakinwa, Gregor Knorr, and Gerrit Lohmann
Clim. Past, 16, 2275–2323, https://doi.org/10.5194/cp-16-2275-2020, https://doi.org/10.5194/cp-16-2275-2020, 2020
Short summary
Short summary
Future climate is expected to be warmer than today. We study climate based on simulations of the mid-Pliocene (about 3 million years ago), which was a time of elevated temperatures, and discuss implications for the future. Our results are provided towards a comparison to both proxy evidence and output of other climate models. We simulate a mid-Pliocene climate that is both warmer and wetter than today. Some climate characteristics can be more directly transferred to the near future than others.
Eric Samakinwa, Christian Stepanek, and Gerrit Lohmann
Clim. Past, 16, 1643–1665, https://doi.org/10.5194/cp-16-1643-2020, https://doi.org/10.5194/cp-16-1643-2020, 2020
Short summary
Short summary
Boundary conditions, forcing, and methodology for the two phases of PlioMIP differ considerably. We compare results from PlioMIP1 and PlioMIP2 simulations. We also carry out sensitivity experiments to infer the relative contribution of different boundary conditions to mid-Pliocene warmth. Our results show dominant effects of mid-Pliocene geography on the climate state and also that prescribing orbital forcing for different time slices within the mid-Pliocene could lead to pronounced variations.
Wing-Le Chan and Ayako Abe-Ouchi
Clim. Past, 16, 1523–1545, https://doi.org/10.5194/cp-16-1523-2020, https://doi.org/10.5194/cp-16-1523-2020, 2020
Short summary
Short summary
We carry out several modelling experiments to investigate the climate of the mid-Piacenzian warm period (~ 3.205 Ma) when CO2 levels were similar to those of present day. The global surface air temperature is 3.1 °C higher compared to pre-industrial ones. Like previous experiments, the scale of warming suggested by proxy sea surface temperature (SST) data in the northern North Atlantic is not replicated. However, tropical Pacific SST shows good agreement with more recently published proxy data.
Delphine Tardif, Frédéric Fluteau, Yannick Donnadieu, Guillaume Le Hir, Jean-Baptiste Ladant, Pierre Sepulchre, Alexis Licht, Fernando Poblete, and Guillaume Dupont-Nivet
Clim. Past, 16, 847–865, https://doi.org/10.5194/cp-16-847-2020, https://doi.org/10.5194/cp-16-847-2020, 2020
Short summary
Short summary
The Asian monsoons onset has been suggested to be as early as 40 Ma, in a palaeogeographic and climatic context very different from modern conditions. We test the likeliness of an early monsoon onset through climatic modelling. Our results reveal a very arid central Asia and several regions in India, Myanmar and eastern China experiencing highly seasonal precipitations. This suggests that monsoon circulation is not paramount in triggering the highly seasonal patterns recorded in the fossils.
Alan T. Kennedy-Asser, Daniel J. Lunt, Paul J. Valdes, Jean-Baptiste Ladant, Joost Frieling, and Vittoria Lauretano
Clim. Past, 16, 555–573, https://doi.org/10.5194/cp-16-555-2020, https://doi.org/10.5194/cp-16-555-2020, 2020
Short summary
Short summary
Global cooling and a major expansion of ice over Antarctica occurred ~ 34 million years ago at the Eocene–Oligocene transition (EOT). A large secondary proxy dataset for high-latitude Southern Hemisphere temperature before, after and across the EOT is compiled and compared to simulations from two coupled climate models. Although there are inconsistencies between the models and data, the comparison shows amongst other things that changes in the Drake Passage were unlikely the cause of the EOT.
Xiangyu Li, Chuncheng Guo, Zhongshi Zhang, Odd Helge Otterå, and Ran Zhang
Clim. Past, 16, 183–197, https://doi.org/10.5194/cp-16-183-2020, https://doi.org/10.5194/cp-16-183-2020, 2020
Short summary
Short summary
Here we report the PlioMIP2 simulations by two versions of the Norwegian Earth System Model (NorESM) with updated boundary conditions derived from Pliocene Research, Interpretation and Synoptic Mapping version 4. The two NorESM versions both produce warmer and wetter Pliocene climate with deeper and stronger Atlantic meridional overturning circulation. Compared to PlioMIP1, PlioMIP2 simulates lower Pliocene warming with NorESM-L, likely due to the closure of seaways at northern high latitudes.
Gerlinde Jung and Matthias Prange
Clim. Past, 16, 161–181, https://doi.org/10.5194/cp-16-161-2020, https://doi.org/10.5194/cp-16-161-2020, 2020
Short summary
Short summary
All major mountain ranges were uplifted during Earth's history. Previous work showed that African uplift might have influenced upper-ocean cooling in the Benguela region. But the surface ocean cooled also in other upwelling regions during the last 10 million years. We performed a set of model experiments altering topography in major mountain regions to explore the effects on atmosphere and ocean. The simulations show that mountain uplift is important for upper-ocean temperature evolution.
Ning Tan, Camille Contoux, Gilles Ramstein, Yong Sun, Christophe Dumas, Pierre Sepulchre, and Zhengtang Guo
Clim. Past, 16, 1–16, https://doi.org/10.5194/cp-16-1-2020, https://doi.org/10.5194/cp-16-1-2020, 2020
Short summary
Short summary
To understand the warm climate during the late Pliocene (~3.205 Ma), modeling experiments with the new boundary conditions are launched and analyzed based on the Institut Pierre Simon Laplace (IPSL) atmosphere–ocean coupled general circulation model (AOGCM). Our results show that the warming in mid- to high latitudes enhanced due to the modifications of the land–sea mask and land–ice configuration. The pCO2 uncertainties within the records can produce asymmetrical warming patterns.
Stephen J. Hunter, Alan M. Haywood, Aisling M. Dolan, and Julia C. Tindall
Clim. Past, 15, 1691–1713, https://doi.org/10.5194/cp-15-1691-2019, https://doi.org/10.5194/cp-15-1691-2019, 2019
Short summary
Short summary
In this paper, we model climate of the mid-Piacenzian warm period (mPWP; ~3 million years ago), a geological analogue for contemporary climate. Using the HadCM3 climate model, we show how changes in CO2 and geography contributed to mPWP climate. We find mPWP warmth focussed in the high latitudes, geography-driven precipitation changes, complex changes in sea surface temperature and intensified overturning in the North Atlantic (AMOC).
Brady Dortmans, William F. Langford, and Allan R. Willms
Clim. Past, 15, 493–520, https://doi.org/10.5194/cp-15-493-2019, https://doi.org/10.5194/cp-15-493-2019, 2019
Short summary
Short summary
In geology and in paleoclimate science, most changes are caused by well-understood forces acting slowly over long periods of time. However, in highly nonlinear physical systems, mathematical bifurcation theory predicts that small changes in forcing can cause major changes in the system in a short period of time. This paper explores some sudden changes in the paleoclimate history of the Earth, where it appears that bifurcation theory gives a more satisfying explanation than uniformitarianism.
Hong Shen and Christopher J. Poulsen
Clim. Past, 15, 169–187, https://doi.org/10.5194/cp-15-169-2019, https://doi.org/10.5194/cp-15-169-2019, 2019
Short summary
Short summary
The stable isotopic composition of water (δ18O) preserved in terrestrial sediments has been used to reconstruct surface elevations. The method is based on the observed decrease in δ18O with elevation, attributed to rainout during air mass ascent. We use a climate model to test the δ18O–elevation relationship during Tibetan–Himalayan uplift. We show that δ18O is a poor indicator of past elevation over most of the region, as processes other than rainout are important when elevations are lower.
Deepak Chandan and W. Richard Peltier
Clim. Past, 14, 825–856, https://doi.org/10.5194/cp-14-825-2018, https://doi.org/10.5194/cp-14-825-2018, 2018
Short summary
Short summary
We infer the physical mechanisms by which the mid-Pliocene could have sustained a warm climate. We also provide a mid-Pliocene perspective on a range of climate sensitivities applicable on several timescales. Warming inferred on the basis of these sensitivity parameters is compared to forecasted levels of warming. This leads us to conclude that projections for 300–500 years into the future underestimate the potential for warming because they do not account for long-timescale feedback processes.
Baohuang Su, Dabang Jiang, Ran Zhang, Pierre Sepulchre, and Gilles Ramstein
Clim. Past, 14, 751–762, https://doi.org/10.5194/cp-14-751-2018, https://doi.org/10.5194/cp-14-751-2018, 2018
Short summary
Short summary
The present numerical experiments undertaken by a coupled atmosphere–ocean model indicate that the uplift of the Tibetan Plateau alone could have been a potential driver for the reorganization of Pacific and Atlantic meridional overturning circulations between the late Eocene and early Oligocene. In other words, the Tibetan Plateau could play an important role in maintaining the current large-scale overturning circulation in the Atlantic and Pacific.
John S. Keery, Philip B. Holden, and Neil R. Edwards
Clim. Past, 14, 215–238, https://doi.org/10.5194/cp-14-215-2018, https://doi.org/10.5194/cp-14-215-2018, 2018
Short summary
Short summary
In the Eocene (~ 55 million years ago), the Earth had high levels of atmospheric CO2, so studies of the Eocene can provide insights into the likely effects of present-day fossil fuel burning. We ran a low-resolution but very fast climate model with 50 combinations of CO2 and orbital parameters, and an Eocene layout of the oceans and continents. Climatic effects of CO2 are dominant but precession and obliquity strongly influence monsoon rainfall and ocean–land temperature contrasts, respectively.
Lennert B. Stap, Roderik S. W. van de Wal, Bas de Boer, Richard Bintanja, and Lucas J. Lourens
Clim. Past, 13, 1243–1257, https://doi.org/10.5194/cp-13-1243-2017, https://doi.org/10.5194/cp-13-1243-2017, 2017
Short summary
Short summary
We show the results of transient simulations with a coupled climate–ice sheet model over the past 38 million years. The CO2 forcing of the model is inversely obtained from a benthic δ18O stack. These simulations enable us to study the influence of ice sheet variability on climate change on long timescales. We find that ice sheet–climate interaction strongly enhances Earth system sensitivity and polar amplification.
Deepak Chandan and W. Richard Peltier
Clim. Past, 13, 919–942, https://doi.org/10.5194/cp-13-919-2017, https://doi.org/10.5194/cp-13-919-2017, 2017
Short summary
Short summary
This paper discusses the climate of the mid-Pliocene warm period (~ 3.3–3 Mya) obtained using coupled climate simulations at CMIP5 resolution with the CCSM4 model and the boundary conditions (BCs) prescribed for the PlioMIP2 program. It is found that climate simulations performed with these BCs capture the warming patterns inferred from proxy data much better than what was possible with the BCs for the original PlioMIP program.
Shawn Corvec and Christopher G. Fletcher
Clim. Past, 13, 135–147, https://doi.org/10.5194/cp-13-135-2017, https://doi.org/10.5194/cp-13-135-2017, 2017
Short summary
Short summary
The mid-Pliocene warm period is sometimes thought of as being a climate that could closely resemble the climate in the near-term due to anthropogenic climate change. Here we examine the tropical atmospheric circulation as modeled by PlioMIP (the Pliocene Model Intercomparison Project). We find that there are many similarities and some important differences to projections of future climate, with the pattern of sea surface temperature (SST) warming being a key factor in explaining the differences.
Michiel Baatsen, Douwe J. J. van Hinsbergen, Anna S. von der Heydt, Henk A. Dijkstra, Appy Sluijs, Hemmo A. Abels, and Peter K. Bijl
Clim. Past, 12, 1635–1644, https://doi.org/10.5194/cp-12-1635-2016, https://doi.org/10.5194/cp-12-1635-2016, 2016
Short summary
Short summary
One of the major difficulties in modelling palaeoclimate is constricting the boundary conditions, causing significant discrepancies between different studies. Here, a new method is presented to automate much of the process of generating the necessary geographical reconstructions. The latter can be made using various rotational frameworks and topography/bathymetry input, allowing for easy inter-comparisons and the incorporation of the latest insights from geoscientific research.
Willem P. Sijp, Anna S. von der Heydt, and Peter K. Bijl
Clim. Past, 12, 807–817, https://doi.org/10.5194/cp-12-807-2016, https://doi.org/10.5194/cp-12-807-2016, 2016
Short summary
Short summary
The timing and role in ocean circulation and climate of the opening of Southern Ocean gateways is as yet elusive. Here, we present the first model results specific to the early-to-middle Eocene where, in agreement with the field evidence, a southerly shallow opening of the Tasman Gateway does indeed cause a westward flow across the Tasman Gateway, in agreement with recent micropalaeontological studies.
Fergus W. Howell, Alan M. Haywood, Bette L. Otto-Bliesner, Fran Bragg, Wing-Le Chan, Mark A. Chandler, Camille Contoux, Youichi Kamae, Ayako Abe-Ouchi, Nan A. Rosenbloom, Christian Stepanek, and Zhongshi Zhang
Clim. Past, 12, 749–767, https://doi.org/10.5194/cp-12-749-2016, https://doi.org/10.5194/cp-12-749-2016, 2016
Short summary
Short summary
Simulations of pre-industrial and mid-Pliocene Arctic sea ice by eight GCMs are analysed. Ensemble variability in sea ice extent is greater in the mid-Pliocene summer, when half of the models simulate sea-ice-free conditions. Weaker correlations are seen between sea ice extent and temperatures in the pre-industrial era compared to the mid-Pliocene. The need for more comprehensive sea ice proxy data is highlighted, in order to better compare model performances.
Alan M. Haywood, Harry J. Dowsett, Aisling M. Dolan, David Rowley, Ayako Abe-Ouchi, Bette Otto-Bliesner, Mark A. Chandler, Stephen J. Hunter, Daniel J. Lunt, Matthew Pound, and Ulrich Salzmann
Clim. Past, 12, 663–675, https://doi.org/10.5194/cp-12-663-2016, https://doi.org/10.5194/cp-12-663-2016, 2016
Short summary
Short summary
Our paper presents the experimental design for the second phase of the Pliocene Model Intercomparison Project (PlioMIP). We outline the way in which climate models should be set up in order to study the Pliocene – a period of global warmth in Earth's history which is relevant for our understanding of future climate change. By conducting a model intercomparison we hope to understand the uncertainty associated with model predictions of a warmer climate.
J. H. Koh and C. M. Brierley
Clim. Past, 11, 1433–1451, https://doi.org/10.5194/cp-11-1433-2015, https://doi.org/10.5194/cp-11-1433-2015, 2015
Short summary
Short summary
Here we diagnose simulated changes in large-scale climate variables associated with the formation of tropical cyclones (i.e. hurricanes and typhoons). The cumulative potential for storm formation is pretty constant, despite the climate changes between the Last Glacial Maximum and the warm Pliocene. There are, however, coherent shifts in the relative strength of the storm regions. Little connection appears between the past behaviour in the five models studied and their future projections.
A. Marzocchi, D. J. Lunt, R. Flecker, C. D. Bradshaw, A. Farnsworth, and F. J. Hilgen
Clim. Past, 11, 1271–1295, https://doi.org/10.5194/cp-11-1271-2015, https://doi.org/10.5194/cp-11-1271-2015, 2015
Short summary
Short summary
This paper investigates the climatic response to orbital forcing through the analysis of an ensemble of simulations covering a late Miocene precession cycle. Including orbital variability in our model–data comparison reduces the mismatch between the proxy record and model output. Our results indicate that ignoring orbital variability could lead to miscorrelations in proxy reconstructions. The North African summer monsoon's sensitivity is high to orbits, moderate to paleogeography and low to CO2.
C. M. Brierley
Clim. Past, 11, 605–618, https://doi.org/10.5194/cp-11-605-2015, https://doi.org/10.5194/cp-11-605-2015, 2015
Short summary
Short summary
Previously, model ensembles have shown little consensus in the response of the El Niño–Southern Oscillation (ENSO) to imposed forcings – either for the past or future. The recent coordinated experiment on the warm Pliocene (~3 million years ago) shows surprising agreement that there was a robustly weaker ENSO with a shift to lower frequencies. Suggested physical mechanisms cannot explain this coherent signal, and it warrants further investigation.
S. J. Koenig, A. M. Dolan, B. de Boer, E. J. Stone, D. J. Hill, R. M. DeConto, A. Abe-Ouchi, D. J. Lunt, D. Pollard, A. Quiquet, F. Saito, J. Savage, and R. van de Wal
Clim. Past, 11, 369–381, https://doi.org/10.5194/cp-11-369-2015, https://doi.org/10.5194/cp-11-369-2015, 2015
Short summary
Short summary
The paper assess the Greenland Ice Sheet’s sensitivity to a warm period in the past, a time when atmospheric CO2 concentrations were comparable to current levels. We quantify ice sheet volume and locations in Greenland and find that the ice sheets are less sensitive to differences in ice sheet model configurations than to changes in imposed climate forcing. We conclude that Pliocene ice was most likely to be limited to highest elevations in eastern and southern Greenland.
A. M. Dolan, S. J. Hunter, D. J. Hill, A. M. Haywood, S. J. Koenig, B. L. Otto-Bliesner, A. Abe-Ouchi, F. Bragg, W.-L. Chan, M. A. Chandler, C. Contoux, A. Jost, Y. Kamae, G. Lohmann, D. J. Lunt, G. Ramstein, N. A. Rosenbloom, L. Sohl, C. Stepanek, H. Ueda, Q. Yan, and Z. Zhang
Clim. Past, 11, 403–424, https://doi.org/10.5194/cp-11-403-2015, https://doi.org/10.5194/cp-11-403-2015, 2015
Short summary
Short summary
Climate and ice sheet models are often used to predict the nature of ice sheets in Earth history. It is important to understand whether such predictions are consistent among different models, especially in warm periods of relevance to the future. We use input from 15 different climate models to run one ice sheet model and compare the predictions over Greenland. We find that there are large differences between the predicted ice sheets for the warm Pliocene (c. 3 million years ago).
J.-B. Ladant, Y. Donnadieu, and C. Dumas
Clim. Past, 10, 1957–1966, https://doi.org/10.5194/cp-10-1957-2014, https://doi.org/10.5194/cp-10-1957-2014, 2014
R. F. Ivanovic, P. J. Valdes, R. Flecker, and M. Gutjahr
Clim. Past, 10, 607–622, https://doi.org/10.5194/cp-10-607-2014, https://doi.org/10.5194/cp-10-607-2014, 2014
A. Goldner, N. Herold, and M. Huber
Clim. Past, 10, 523–536, https://doi.org/10.5194/cp-10-523-2014, https://doi.org/10.5194/cp-10-523-2014, 2014
E. Gasson, D. J. Lunt, R. DeConto, A. Goldner, M. Heinemann, M. Huber, A. N. LeGrande, D. Pollard, N. Sagoo, M. Siddall, A. Winguth, and P. J. Valdes
Clim. Past, 10, 451–466, https://doi.org/10.5194/cp-10-451-2014, https://doi.org/10.5194/cp-10-451-2014, 2014
C. A. Loptson, D. J. Lunt, and J. E. Francis
Clim. Past, 10, 419–436, https://doi.org/10.5194/cp-10-419-2014, https://doi.org/10.5194/cp-10-419-2014, 2014
D. J. Hill, A. M. Haywood, D. J. Lunt, S. J. Hunter, F. J. Bragg, C. Contoux, C. Stepanek, L. Sohl, N. A. Rosenbloom, W.-L. Chan, Y. Kamae, Z. Zhang, A. Abe-Ouchi, M. A. Chandler, A. Jost, G. Lohmann, B. L. Otto-Bliesner, G. Ramstein, and H. Ueda
Clim. Past, 10, 79–90, https://doi.org/10.5194/cp-10-79-2014, https://doi.org/10.5194/cp-10-79-2014, 2014
N. Hamon, P. Sepulchre, V. Lefebvre, and G. Ramstein
Clim. Past, 9, 2687–2702, https://doi.org/10.5194/cp-9-2687-2013, https://doi.org/10.5194/cp-9-2687-2013, 2013
R. Zhang, Q. Yan, Z. S. Zhang, D. Jiang, B. L. Otto-Bliesner, A. M. Haywood, D. J. Hill, A. M. Dolan, C. Stepanek, G. Lohmann, C. Contoux, F. Bragg, W.-L. Chan, M. A. Chandler, A. Jost, Y. Kamae, A. Abe-Ouchi, G. Ramstein, N. A. Rosenbloom, L. Sohl, and H. Ueda
Clim. Past, 9, 2085–2099, https://doi.org/10.5194/cp-9-2085-2013, https://doi.org/10.5194/cp-9-2085-2013, 2013
Cited articles
Abbot, D. S., Huber, M., Bousquet, G., and Walker, C. C.: High-CO2 cloud
radiative forcing feedback over both land and ocean in a global climate
model, Geophys. Res. Lett., 36, L05702, https://doi.org/10.1029/2008GL036703, 2009.
Abelson, M. and Erez, J.: The onset of modern-like Atlantic meridional
overturning circulation at the Eocene-Oligocene transition: Evidence,
causes, and possible implications for global cooling, Geochem. Geophy.
Geosy., 18, 2177–2199, https://doi.org/10.1002/2017GC006826, 2017.
Alexeev, V. A., Langen, P. L., and Bates, J. R.: Polar amplification of
surface warming on an aquaplanet in “ghost forcing” experiments without
sea ice feedbacks, Clim. Dynam., 24, 655–666,
https://doi.org/10.1007/s00382-005-0018-3, 2005.
Anagnostou, E., John, E. H., Edgar, K. M., Foster, G. L., Ridgwell, A.,
Inglis, G. N., Pancost, R. D., Lunt, D. J., and Pearson, P. N.: Changing
atmospheric CO2 concentration was the primary driver of early Cenozoic
climate, Nature, 533, 380–384, 2016.
Baatsen, M., van Hinsbergen, D. J. J., von der Heydt, A. S., Dijkstra, H. A.,
Sluijs, A., Abels, H. A., and Bijl, P. K.: Reconstructing geographical
boundary conditions for palaeoclimate modelling during the Cenozoic, Clim.
Past, 12, 1635–1644, https://doi.org/10.5194/cp-12-1635-2016, 2016.
Baatsen, M., von der Heydt, A. S., Huber, M., Kliphuis, M. A., Bijl, P. K.,
Sluijs, A., and Dijkstra, H. A.: Equilibrium state and sensitivity of the
simulated middle-to-late Eocene climate, Clim. Past Discuss.,
https://doi.org/10.5194/cp-2018-43, in review, 2018a.
Baatsen, M. L. J., von der Heydt, A. S., Kliphuis, M., Viebahn, J., and
Dijkstra, H. A.: Multiple states in the late Eocene ocean circulation, Global
Planet. Change, 163, 18–28,
https://doi.org/10.1016/j.gloplacha.2018.02.009, 2018b.
Barker, P. F., Filippelli, G. M., Florindo, F., Martin, E. E., and Scher, H.
D.: Onset and role of the Antarctic Circumpolar Current, Deep-Sea Res. Pt
II, 54, 2388–2398,
https://doi.org/10.1016/j.dsr2.2007.07.028, 2007.
Bijl, P. K., Schouten, S., Sluijs, A., Reichart, G.-J., Zachos, J. C., and
Brinkhuis, H.: Early Palaeogene temperature evolution of the southwest
Pacific Ocean, Nature, 461, 776–779, 2009.
Bohaty, S. M., Zachos, J. C., and Delaney, M. L.: Foraminiferal Mg/Ca
evidence for Southern Ocean cooling across the Eocene–Oligocene transition,
Earth Planet. Sc. Lett., 317–318 (Supplement C), 251–261,
https://doi.org/10.1016/j.epsl.2011.11.037, 2012.
Borrelli, C., Cramer, B. S., and Katz, M. E.: Bipolar Atlantic deepwater
circulation in the middle-late Eocene: Effects of Southern Ocean gateway
openings, Paleoceanography, 29, 308–327, https://doi.org/10.1002/2012PA002444, 2014.
Cox, M. D.: An Idealized Model of the World Ocean. Part I: The Global-Scale
Water Masses, J. Phys. Oceanogr., 19, 1730–1752,
https://doi.org/10.1175/1520-0485(1989)019<1730:AIMOTW>2.0.CO;2,
1989.
Coxall, H. K. and Pearson, P. N.: The Eocene-Oligocene transition, Deep-Time Perspectives on Climate Change: Marrying the Signal from
Computer Models and Biological Proxies, Geological Society, London, UK, 351–387, 2007.
Coxall, H. K., Wilson, P. A., Palike, H., Lear, C. H., and Backman, J.: Rapid
stepwise onset of Antarctic glaciation and deeper calcite compensation in
the Pacific Ocean, Nature, 433, 53–57, https://doi.org/10.1038/nature03135, 2005.
Cramer, B. S., Toggweiler, J. R., Wright, J. D., Katz, M. E., and Miller, K.
G.: Ocean overturning since the Late Cretaceous: Inferences from a new
benthic foraminiferal isotope compilation, Paleoceanography, 24, PA4216,
https://doi.org/10.1029/2008PA001683, 2009.
Danabasoglu, G., McWilliams, J. C., and Large, W. G.: Approach to Equilibrium
in Accelerated Global Oceanic Models, J. Climate, 9, 1092–1110,
https://doi.org/10.1175/1520-0442(1996)009<1092:ATEIAG>2.0.CO;2,
1996.
de Boer, A. M. and Hogg, A. M.: Control of the glacial carbon budget by
topographically induced mixing, Geophys. Res. Lett., 41, 4277–4284,
https://doi.org/10.1002/2014GL059963, 2014.
DeConto, R. M. and Pollard, D.: Rapid Cenozoic glaciation of Antarctica
induced by declining atmospheric CO2, Nature, 421, 245–249,
https://doi.org/10.1038/nature01290, 2003.
Delworth, T. L., Broccoli, A. J., Rosati, A., Stouffer, R. J., Balaji, V.,
Beesley, J. A., Cooke, W. F., Dixon, K. W., Dunne, J., Dunne, K. A.,
Durachta, J. W., Findell, K. L., Ginoux, P., Gnanadesikan, A., Gordon, C.
T., Griffies, S. M., Gudgel, R., Harrison, M. J., Held, I. M., Hemler, R.
S., Horowitz, L. W., Klein, S. A., Knutson, T. R., Kushner, P. J.,
Langenhorst, A. R., Lee, H.-C., Lin, S.-J., Lu, J., Malyshev, S. L., Milly,
P. C. D., Ramaswamy, V., Russell, J., Schwarzkopf, M. D., Shevliakova, E.,
Sirutis, J. J., Spelman, M. J., Stern, W. F., Winton, M., Wittenberg, A. T.,
Wyman, B., Zeng, F., and Zhang, R.: GFDL's CM2 Global Coupled Climate Models.
Part I: Formulation and Simulation Characteristics, J. Climate, 19,
643–674, https://doi.org/10.1175/JCLI3629.1, 2006.
Delworth, T. L., Rosati, A., Anderson, W., Adcroft, A. J., Balaji, V.,
Benson, R., Dixon, K., Griffies, S. M., Lee, H.-C., Pacanowski, R. C.,
Vecchi, G. A., Wittenberg, A. T., Zeng, F., and Zhang, R.: Simulated Climate
and Climate Change in the GFDL CM2.5 High-Resolution Coupled Climate Model,
J. Climate, 25, 2755–2781, https://doi.org/10.1175/JCLI-D-11-00316.1, 2012.
Douglas, P. M. J., Affek, H. P., Ivany, L. C., Houben, A. J. P., Sijp, W.
P., Sluijs, A., Schouten, S., and Pagani, M.: Pronounced zonal heterogeneity
in Eocene southern high-latitude sea surface temperatures., P. Natl.
Acad. Sci. USA, 111, 6582–6587, https://doi.org/10.1073/pnas.1321441111, 2014.
Dupont-Nivet, G., Krijgsman, W., Langereis, C. G., Abels, H. A., Dai, S., and
Fang, X.: Tibetan plateau aridification linked to global cooling at the
Eocene–Oligocene transition, Nature, 445, 635–638, 2007.
Durack, P. J., Wijffels, S. E., and Matear, R. J.: Ocean Salinities Reveal
Strong Global Water Cycle Intensification During 1950 to 2000, Science,
336, 455–458, https://doi.org/10.1126/science.1212222, 2012.
Eldrett, J. S., Greenwood, D. R., Harding, I. C., and Huber, M.: Increased
seasonality through the Eocene to Oligocene transition in northern high
latitudes, Nature, 459, 969–973, https://doi.org/10.1038/nature08069, 2009.
Elsworth, G., Galbraith, E., Halverson, G., and Yang, S.: Enhanced weathering
and CO2 drawdown caused by latest Eocene strengthening of the Atlantic
meridional overturning circulation, Nat. Geosci., 10, 213–216, 2017.
England, M. H., Hutchinson, D. K., Santoso, A., and Sijp, W. P.:
Ice–Atmosphere Feedbacks Dominate the Response of the Climate System to
Drake Passage Closure, J. Climate, 30, 5775–5790,
https://doi.org/10.1175/JCLI-D-15-0554.1, 2017.
Evans, D., Sagoo, N., Renema, W., Cotton, L. J., Müller, W., Todd, J.
A., Saraswati, P. K., Stassen, P., Ziegler, M., Pearson, P. N., Valdes, P.
J., and Affek, H. P.: Eocene greenhouse climate revealed by coupled clumped
isotope-Mg/Ca thermometry, P. Natl. Acad. Sci. USA, 115, 1174—1179,
2018.
Ferreira, D., Cessi, P., Coxall, H. K., de Boer, A., Dijkstra, H. A.,
Drijfhout, S. S., Eldevik, T., Harnik, N., McManus, J. F., Marshall, D. P.,
Nilsson, J., Roquet, F., Schneider, T., and Wills, R. C.: Atlantic-Pacific
asymmetry in deep water formation, Annu. Rev. Earth Pl. Sc., 46, 327–352, https://doi.org/10.1146/annurev-earth-082517-010045,
2018.
Fyke, J. G., D'Orgeville, M., and Weaver, A. J.: Drake Passage and Central
American Seaway controls on the distribution of the oceanic carbon
reservoir, Global. Planet. Change, 128, 72–82,
https://doi.org/10.1016/j.gloplacha.2015.02.011, 2015.
Galbraith, E. D., Gnanadesikan, A., Dunne, J. P., and Hiscock, M. R.:
Regional impacts of iron-light colimitation in a global biogeochemical model,
Biogeosciences, 7, 1043–1064, https://doi.org/10.5194/bg-7-1043-2010, 2010.
Gasson, E., Lunt, D. J., DeConto, R., Goldner, A., Heinemann, M., Huber, M.,
LeGrande, A. N., Pollard, D., Sagoo, N., Siddall, M., Winguth, A., and
Valdes, P. J.: Uncertainties in the modelled CO2 threshold for Antarctic
glaciation, Clim. Past, 10, 451–466, https://doi.org/10.5194/cp-10-451-2014,
2014.
Goldner, A., Huber, M., and Caballero, R.: Does Antarctic glaciation cool the
world?, Clim. Past, 9, 173–189, https://doi.org/10.5194/cp-9-173-2013, 2013.
Goldner, A., Herold, N., and Huber, M.: Antarctic glaciation caused ocean
circulation changes at the Eocene-Oligocene transition, Nature, 511,
574–577, https://doi.org/10.1038/nature13597, 2014.
Gomes Rodrigues, H., Marivaux, L., and Vianey-Liaud, M.: Expansion of open
landscapes in Northern China during the Oligocene induced by dramatic
climate changes: Paleoecological evidence, Palaeogeogr. Palaeocl., 358–360 (Supplement C), 62–71,
https://doi.org/10.1016/j.palaeo.2012.07.025, 2012.
Goosse, H. and Zunz, V.: Decadal trends in the Antarctic sea ice extent
ultimately controlled by ice–ocean feedback, The Cryosphere, 8, 453–470,
https://doi.org/10.5194/tc-8-453-2014, 2014.
Gregory, J. M., Ingram, W. J., Palmer, M. A., Jones, G. S., Stott, P. A.,
Thorpe, R. B., Lowe, J. A., Johns, T. C., and Williams, K. D.: A new method
for diagnosing radiative forcing and climate sensitivity, Geophys. Res.
Lett., 31, L03205, https://doi.org/10.1029/2003GL018747, 2004.
Greve, P., Orlowsky, B., Mueller, B., Sheffield, J., Reichstein, M., and
Seneviratne, S. I.: Global assessment of trends in wetting and drying over
land, Nat. Geosci., 7, 716–721, 2014.
Griffies, S. M., Biastoch, A., Böning, C., Bryan, F., Danabasoglu, G.,
Chassignet, E. P., England, M. H., Gerdes, R., Haak, H., Hallberg, R. W.,
Hazeleger, W., Jungclaus, J., Large, W. G., Madec, G., Pirani, A., Samuels,
B. L., Scheinert, M., Gupta, A. Sen, Severijns, C. A., Simmons, H. L.,
Treguier, A. M., Winton, M., Yeager, S., and Yin, J.: Coordinated Ocean-ice
Reference Experiments (COREs), Ocean Model., 26, 1–46,
https://doi.org/10.1016/j.ocemod.2008.08.007, 2009.
Held, I. M. and Soden, B. J.: Robust responses of the hydrological cycle to
global warming, J. Climate, 19, 5686–5699, https://doi.org/10.1175/JCLI3990.1, 2006.
Herold, N., Seton, M., Müller, R. D., You, Y., and Huber, M.: Middle
Miocene tectonic boundary conditions for use in climate models,
Geochem. Geophy. Geosy., 9, Q10009, https://doi.org/10.1029/2008GC002046,
2008.
Herold, N., Buzan, J., Seton, M., Goldner, A., Green, J. A. M., Müller, R.
D., Markwick, P., and Huber, M.: A suite of early Eocene (∼ 55 Ma) climate
model boundary conditions, Geosci. Model Dev., 7, 2077–2090,
https://doi.org/10.5194/gmd-7-2077-2014, 2014.
Hines, B. R., Hollis, C. J., Atkins, C. B., Baker, J. A., Morgans, H. E. G.,
and Strong, P. C.: Reduction of oceanic temperature gradients in the early
Eocene Southwest Pacific Ocean, Palaeogeogr. Palaeocl.,
475, 41–54, https://doi.org/10.1016/j.palaeo.2017.02.037, 2017.
Huber, M. and Caballero, R.: The early Eocene equable climate problem
revisited, Clim. Past, 7, 603–633, https://doi.org/10.5194/cp-7-603-2011,
2011.
Huber, M. and Sloan, L. C.: Heat transport, deep waters, and thermal
gradients: Coupled simulation of an Eocene greenhouse climate, Geophys. Res.
Lett., 28, 3481–3484, https://doi.org/10.1029/2001GL012943, 2001.
Huber, M., Brinkhuis, H., Stickley, C. E., Döös, K., Sluijs, A.,
Warnaar, J., Schellenberg, S. A., and Williams, G. L.: Eocene circulation of
the Southern Ocean: Was Antarctica kept warm by subtropical waters?,
Paleoceanography, 19, PA4026, https://doi.org/10.1029/2004PA001014, 2004.
Hutchinson, D. K., England, M. H., Hogg, A. M., and Snow, K.:
Interhemispheric Asymmetry of Warming in an Eddy-Permitting Coupled Sector
Model, J. Climate, 28, 7385–7406, https://doi.org/10.1175/JCLI-D-15-0014.1, 2015.
Inglis, G. N., Farnsworth, A., Lunt, D., Foster, G. L., Hollis, C. J.,
Pagani, M., Jardine, P. E., Pearson, P. N., Markwick, P., Galsworthy, A. M.
J., Raynham, L., Taylor, K. W. R., and Pancost, R. D.: Descent toward the
Icehouse: Eocene sea surface cooling inferred from GDGT distributions,
Paleoceanography, 30, 1000–1020, https://doi.org/10.1002/2014PA002723, 2015.
Kamp, P. J. J., Waghorn, D. B., and Nelson, C. S.: Late eocene–early
oligocene integrated isotope stratigraphy and biostratigraphy for paleoshelf
sequences in southern Australia: paleoceanographic implications,
Palaeogeogr. Palaeocl., 80, 311–323,
https://doi.org/10.1016/0031-0182(90)90140-3, 1990.
Kennedy, A. T., Farnsworth, A., Lunt, D. J., Lear, C. H., and Markwick, P.
J.: Atmospheric and oceanic impacts of Antarctic glaciation across the
Eocene–Oligocene transition, Philos. T. R. Soc. A, 373, 20140419,
https://doi.org/10.1098/rsta.2014.0419, 2015.
Kennett, J. P.: Cenozoic Evolution of Antarctic Glaciation, the
Circum-Antarctic Ocean, and Their Impact on Global Paleoceanography, J.
Geophys. Res., 82, 3843–3860, https://doi.org/10.1029/JC082i027p03843, 1977.
Kim, J.-H., van der Meer, J., Schouten, S., Helmke, P., Willmott, V.,
Sangiorgi, F., Koç, N., Hopmans, E. C., and Damsté, J. S. S.: New
indices and calibrations derived from the distribution of crenarchaeal
isoprenoid tetraether lipids: Implications for past sea surface temperature
reconstructions, Geochim. Cosmochim. Ac., 74, 4639–4654,
https://doi.org/10.1016/j.gca.2010.05.027, 2010.
Kirtman, B. P., Bitz, C., Bryan, F., Collins, W., Dennis, J., Hearn, N.,
Kinter, J. L., Loft, R., Rousset, C., Siqueira, L., Stan, C., Tomas, R., and
Vertenstein, M.: Impact of ocean model resolution on CCSM climate
simulations, Clim. Dynam., 39, 1303–1328, https://doi.org/10.1007/s00382-012-1500-3,
2012.
Kobashi, T., Grossman, E. L., Dockery, D. T. and Ivany, L. C.: Water mass
stability reconstructions from greenhouse (Eocene) to icehouse (Oligocene)
for the northern Gulf Coast continental shelf (USA), Paleoceanography,
19, PA1022, https://doi.org/10.1029/2003PA000934, 2004.
Ladant, J.-B., Donnadieu, Y., Lefebvre, V., and Dumas, C.: The respective
role of atmospheric carbon dioxide and orbital parameters on ice sheet
evolution at the Eocene-Oligocene transition, Paleoceanography, 29,
810–823, https://doi.org/10.1002/2013PA002593, 2014.
de Lavergne, C., Madec, G., Le Sommer, J., Nurser, A. J. G., and Naveira
Garabato, A. C.: The Impact of a Variable Mixing Efficiency on the Abyssal
Overturning, J. Phys. Oceanogr., 46, 663–681,
https://doi.org/10.1175/JPO-D-14-0259.1, 2016.
Lear, C. H. and Lunt, D. J.: How Antarctica got its ice, Science, 352,
34–35, 2016.
Lefebvre, V., Donnadieu, Y., Sepulchre, P., Swingedouw, D., and Zhang, Z.-S.:
Deciphering the role of southern gateways and carbon dioxide on the onset of
the Antarctic Circumpolar Current, Paleoceanography, 27, PA4201,
https://doi.org/10.1029/2012PA002345, 2012.
Liu, Z., Pagani, M., Zinniker, D., DeConto, R., Huber, M., Brinkhuis, H.,
Shah, S. R., Leckie, R. M., and Pearson, A.: Global Cooling During the
Eocene-Oligocene Climate Transition, Science, 323, 1187–1190,
https://doi.org/10.1126/science.1166368, 2009.
Livermore, R., Nankivell, A., Eagles, G., and Morris, P.: Paleogene opening
of Drake Passage, Earth Planet. Sc. Lett., 236, 459–470,
https://doi.org/10.1016/j.epsl.2005.03.027, 2005.
Locarnini, R. A., Mishonov, A. V, Antonov, J. I., Boyer, T. P., Garcia, H.
E., Baranova, O. K., Zweng, M. M., Paver, C. R., Reagan, J. R., Johnson, D.
R., Hamilton, M., and Seidov, D.: World Ocean Atlas 2013, Volume 1:
Temperature, NOAA Atlas NESDIS 73, 40 pp., 2013.
Lunt, D. J., Dunkley Jones, T., Heinemann, M., Huber, M., LeGrande, A.,
Winguth, A., Loptson, C., Marotzke, J., Roberts, C. D., Tindall, J., Valdes,
P., and Winguth, C.: A model–data comparison for a multi-model ensemble of
early Eocene atmosphere–ocean simulations: EoMIP, Clim. Past, 8, 1717–1736,
https://doi.org/10.5194/cp-8-1717-2012, 2012.
Lunt, D. J., Farnsworth, A., Loptson, C., Foster, G. L., Markwick, P.,
O'Brien, C. L., Pancost, R. D., Robinson, S. A., and Wrobel, N.:
Palaeogeographic controls on climate and proxy interpretation, Clim. Past,
12, 1181–1198, https://doi.org/10.5194/cp-12-1181-2016, 2016.
Lunt, D. J., Huber, M., Anagnostou, E., Baatsen, M. L. J., Caballero, R.,
DeConto, R., Dijkstra, H. A., Donnadieu, Y., Evans, D., Feng, R., Foster, G.
L., Gasson, E., von der Heydt, A. S., Hollis, C. J., Inglis, G. N., Jones, S.
M., Kiehl, J., Kirtland Turner, S., Korty, R. L., Kozdon, R., Krishnan, S.,
Ladant, J.-B., Langebroek, P., Lear, C. H., LeGrande, A. N., Littler, K.,
Markwick, P., Otto-Bliesner, B., Pearson, P., Poulsen, C. J., Salzmann, U.,
Shields, C., Snell, K., Stärz, M., Super, J., Tabor, C., Tierney, J. E.,
Tourte, G. J. L., Tripati, A., Upchurch, G. R., Wade, B. S., Wing, S. L.,
Winguth, A. M. E., Wright, N. M., Zachos, J. C., and Zeebe, R. E.: The
DeepMIP contribution to PMIP4: experimental design for model simulations of
the EECO, PETM, and pre-PETM (version 1.0), Geosci. Model Dev., 10, 889–901,
https://doi.org/10.5194/gmd-10-889-2017, 2017.
Maffre, P., Ladant, J.-B., Donnadieu, Y., Sepulchre, P., and Goddéris,
Y.: The influence of orography on modern ocean circulation, Clim. Dynam.,
50, 1277–1289, https://doi.org/10.1007/s00382-017-3683-0, 2018.
Markwick, P. J.: The palaeogeographic and palaeoclimatic significance of
climate proxies for data-model comparisons, in Deep-time perspectives on
climate change: marrying the signal from computer models and biological
proxies, Micropalaeontol. Soc. Spec. Publ. London, 251–312, 2007.
Marshall, J. and Speer, K.: Closure of the meridional overturning
circulation through Southern Ocean upwelling, Nat. Geosci., 5, 171–180,
2012.
Miller, K. G., Wright, J. D., and Fairbanks, R. G.: Unlocking the Ice House:
Oligocene-Miocene oxygen isotopes, eustasy, and margin erosion, J. Geophys.
Res. Solid Ea., 96, 6829–6848, https://doi.org/10.1029/90JB02015, 1991.
Müller, R. D., Sdrolias, M., Gaina, C., and Roest, W. R.: Age, spreading
rates, and spreading asymmetry of the world's ocean crust, Geochem.
Geophy. Geosy., 9, Q04006, https://doi.org/10.1029/2007GC001743, 2008.
Munk, W. and Wunsch, C.: Abyssal recipes II: energetics of tidal and wind
mixing, Deep-Sea Res. Pt I, 45, 1977–2010, 1998.
Murray, R. J.: Explicit Generation of Orthogonal Grids for Ocean Models, J.
Comput. Phys., 126, 251–273, https://doi.org/10.1006/jcph.1996.0136, 1996.
Nycander, J., Hieronymus, M., and Roquet, F.: The nonlinear equation of state
of sea water and the global water mass distribution, Geophys. Res. Lett.,
42, 7714–7721, https://doi.org/10.1002/2015GL065525, 2015.
Okafor, C. U., Thomas, D. J., Wade, B. S., and Firth, J.: Environmental
change in the subtropics during the late middle Eocene greenhouse and global
implications, Geochem., Geophy. Geosy., 10, Q07003, https://doi.org/10.1029/2009GC002450, 2009.
Pearson, P. N., Ditchfield, P. W., Singano, J., Harcourt-Brown, K. G.,
Nicholas, C. J., Olsson, R. K., Shackleton, N. J., and Hall, M. A.: Warm
tropical sea surface temperatures in the Late Cretaceous and Eocene epochs,
Nature, 413, 481–487, 2001.
Pearson, P. N., van Dongen, B. E., Nicholas, C. J., Pancost, R. D.,
Schouten, S., Singano, J. M., and Wade, B. S.: Stable warm tropical climate
through the Eocene Epoch, Geology, 35, 211–214, 2007.
Pearson, P. N., Foster, G. L., and Wade, B. S.: Atmospheric carbon dioxide
through the Eocene–Oligocene climate transition, Nature, 461,
1110–1113, 2009.
Petersen, S. V. and Schrag, D. P.: Antarctic ice growth before and after the
Eocene-Oligocene transition: New estimates from clumped isotope
paleothermometry, Paleoceanography, 30, 1305–1317,
https://doi.org/10.1002/2014PA002769, 2015.
Scotese, C. R.: Atlas of earth history, Vol. 1, Paleogeography, PALEOMAP
Proj. Arlington, TX, USA, 2001.
Seton, M., Müller, R. D., Zahirovic, S., Gaina, C., Torsvik, T.,
Shephard, G., Talsma, A., Gurnis, M., Turner, M., Maus, S. and Chandler, M.:
Global continental and ocean basin reconstructions since 200 Ma,
Earth-Sci. Rev., 113, 212–270,
https://doi.org/10.1016/j.earscirev.2012.03.002, 2012.
Sewall, J. O., Sloan, L. C., Huber, M. and Wing, S.: Climate sensitivity to
changes in land surface characteristics, Global Planet. Change, 26,
445–465, https://doi.org/10.1016/S0921-8181(00)00056-4, 2000.
Sijp, W. P. and England, M. H.: Effect of the Drake Passage Throughflow on
Global Climate, J. Phys. Oceanogr., 34, 1254–1266,
https://doi.org/10.1175/1520-0485(2004)034<1254:EOTDPT>2.0.CO;2,
2004.
Sijp, W. P., England, M. H., and Toggweiler, J. R.: Effect of Ocean Gateway
Changes under Greenhouse Warmth, J. Climate, 22, 6639–6652,
https://doi.org/10.1175/2009JCLI3003.1, 2009.
Sijp, W. P., England, M. H., and Huber, M.: Effect of the deepening of the
Tasman Gateway on the global ocean, Paleoceanography, 26, PA4207,
https://doi.org/10.1029/2011PA002143, 2011.
Sijp, W. P., von der Heydt, A. S., Dijkstra, H. A., Flögel, S., Douglas,
P. M. J., and Bijl, P. K.: The role of ocean gateways on cooling climate on
long time scales, Global Planet. Change, 119, 1–22,
https://doi.org/10.1016/j.gloplacha.2014.04.004, 2014.
Simmons, H. L., Jayne, S. R., Laurent, L. C. S., and Weaver, A. J.: Tidally
driven mixing in a numerical model of the ocean general circulation, Ocean
Model., 6, 245–263, https://doi.org/10.1016/S1463-5003(03)00011-8, 2004.
Sinha, B., Blaker, A. T., Hirschi, J. J.-M., Bonham, S., Brand, M., Josey,
S., Smith, R. S., and Marotzke, J.: Mountain ranges favour vigorous Atlantic
meridional overturning, Geophys. Res. Lett., 39, L02705,
https://doi.org/10.1029/2011GL050485, 2012.
Stärz, M., Jokat, W., Knorr, G., and Lohmann, G.: Threshold in North
Atlantic-Arctic Ocean circulation controlled by the subsidence of the
Greenland-Scotland Ridge, Nat. Commun., 8, 15681, 2017.
Stickley, C. E., Brinkhuis, H., Schellenberg, S. A., Sluijs, A., Röhl,
U., Fuller, M., Grauert, M., Huber, M., Warnaar, J., and Williams, G. L.:
Timing and nature of the deepening of the Tasmanian Gateway,
Paleoceanography, 19, PA4027, https://doi.org/10.1029/2004PA001022, 2004.
Stickley, C. E., St. John, K., Koç, N., Jordan, R. W., Passchier, S.,
Pearce, R. B., and Kearns, L. E.: Evidence for middle Eocene Arctic sea ice
from diatoms and ice-rafted debris, Nature, 460, 376–379, https://doi.org/10.1038/nature08163, 2009.
Thomas, D. J., Korty, R., Huber, M., Schubert, J. A., and Haines, B.: Nd
isotopic structure of the Pacific Ocean 70–30 Ma and numerical evidence for
vigorous ocean circulation and ocean heat transport in a greenhouse world,
Paleoceanography, 29, 454–469, https://doi.org/10.1002/2013PA002535, 2014.
Thorn, V. C. and DeConto, R.: Antarctic climate at the Eocene/Oligocene
boundary – climate model sensitivity to high latitude vegetation type and
comparisons with the palaeobotanical record, Palaeogeogr. Palaeocl., 231, 134–157,
https://doi.org/10.1016/j.palaeo.2005.07.032, 2006.
Toggweiler, J. R. and Samuels, B.: Effect of drake passage on the global
thermohaline circulation, Deep-Sea Res. Pt I, 42, 477–500, 1995.
Torsvik, T. H., Van der Voo, R., Preeden, U., Mac Niocaill, C., Steinberger,
B., Doubrovine, P. V, van Hinsbergen, D. J. J., Domeier, M., Gaina, C.,
Tohver, E., Meert, J. G., McCausland, P. J. A., and Cocks, L. R. M.:
Phanerozoic polar wander, palaeogeography and dynamics, Earth-Sci. Rev., 114,
325–368, https://doi.org/10.1016/j.earscirev.2012.06.007, 2012.
Tripati, A. and Zachos, J.: Late Eocene tropical sea surface temperatures: A
perspective from Panama, Paleoceanography, 17, 4–14,
https://doi.org/10.1029/2000PA000605, 2002.
Utescher, T. and Mosbrugger, V.: Eocene vegetation patterns reconstructed
from plant diversity – A global perspective, Palaeogeogr. Palaeocl., 247, 243–271,
https://doi.org/10.1016/j.palaeo.2006.10.022, 2007.
van Hinsbergen, D. J. J., de Groot, L. V, van Schaik, S. J., Spakman, W.,
Bijl, P. K., Sluijs, A., Langereis, C. G., and Brinkhuis, H.: A Paleolatitude
Calculator for Paleoclimate Studies., PLoS One, 10, e0126946,
https://doi.org/10.1371/journal.pone.0126946, 2015.
Viebahn, J. P., von der Heydt, A. S., Le Bars, D., and Dijkstra, H. A.:
Effects of Drake Passage on a strongly eddying global ocean,
Paleoceanography, 31, 564–581, https://doi.org/10.1002/2015PA002888, 2016.
von der Heydt, A. and Dijkstra, H. A.: Effect of ocean gateways on the
global ocean circulation in the late Oligocene and early Miocene,
Paleoceanography, 21, PA1011, https://doi.org/10.1029/2005PA001149, 2006.
Wade, B. S., Houben, A. J. P., Quaijtaal, W., Schouten, S., Rosenthal, Y.,
Miller, K. G., Katz, M. E., Wright, J. D. and Brinkhuis, H.: Multiproxy
record of abrupt sea-surface cooling across the Eocene-Oligocene transition
in the Gulf of Mexico, Geology, 40, 159–162, 2012.
Warren, B. A.: Why is no deep water formed in the North Pacific?, J. Mar.
Res., 41, 327–347, https://doi.org/10.1357/002224083788520207, 1983.
Wills, R. C. and Schneider, T.: Stationary Eddies and the Zonal Asymmetry of
Net Precipitation and Ocean Freshwater Forcing, J. Climate, 28,
5115–5133, https://doi.org/10.1175/JCLI-D-14-00573.1, 2015.
Winton, M., Takahashi, K. and Held, I. M.: Importance of Ocean Heat Uptake
Efficacy to Transient Climate Change, J. Climate, 23, 2333–2344,
https://doi.org/10.1175/2009JCLI3139.1, 2010.
Wolfe, C. L. and Cessi, P.: Salt Feedback in the Adiabatic Overturning
Circulation, J. Phys. Oceanogr., 44, 1175–1194,
https://doi.org/10.1175/JPO-D-13-0154.1, 2014.
Yang, S., Galbraith, E., and Palter, J.: Coupled climate impacts of the Drake
Passage and the Panama Seaway, Clim. Dynam., 43, 37–52,
https://doi.org/10.1007/s00382-013-1809-6, 2014.
Zhang, Z.-S., Yan, Q., and Wang, H.-J.: Has the Drake Passage Played an
Essential Role in the Cenozoic Cooling?, Atmos. Ocean. Sci. Lett., 3,
288–292, 2010.
Short summary
The Eocene--Oligocene transition was a major cooling event 34 million years ago. Climate model studies of this transition have used low ocean resolution or topography that roughly approximates the time period. We present a new climate model simulation of the late Eocene, with higher ocean resolution and topography which is accurately designed for this time period. These features improve the ocean circulation and gateways which are thought to be important for this climate transition.
The Eocene--Oligocene transition was a major cooling event 34 million years ago. Climate model...