Articles | Volume 14, issue 6
Clim. Past, 14, 763–788, 2018
https://doi.org/10.5194/cp-14-763-2018

Special issue: “Global Challenges for our Common Future: a paleoscience perspective”...

Clim. Past, 14, 763–788, 2018
https://doi.org/10.5194/cp-14-763-2018
Research article
12 Jun 2018
Research article | 12 Jun 2018

Novel automated inversion algorithm for temperature reconstruction using gas isotopes from ice cores

Michael Döring and Markus C. Leuenberger

Related authors

Comparison of Holocene temperature reconstructions based on GISP2 multiple-gas-isotope measurements
Michael Döring and Markus Christian Leuenberger
Clim. Past Discuss., https://doi.org/10.5194/cp-2020-132,https://doi.org/10.5194/cp-2020-132, 2020
Manuscript not accepted for further review
Short summary
Comparison of Holocene temperature reconstructions based on GISP2 multiple-gas-isotope measurements
Michael Döring and Markus Christian Leuenberger
Clim. Past Discuss., https://doi.org/10.5194/cp-2019-132,https://doi.org/10.5194/cp-2019-132, 2019
Manuscript not accepted for further review
Short summary
Post-bubble close-off fractionation of gases in polar firn and ice cores: effects of accumulation rate on permeation through overloading pressure
T. Kobashi, T. Ikeda-Fukazawa, M. Suwa, J. Schwander, T. Kameda, J. Lundin, A. Hori, H. Motoyama, M. Döring, and M. Leuenberger
Atmos. Chem. Phys., 15, 13895–13914, https://doi.org/10.5194/acp-15-13895-2015,https://doi.org/10.5194/acp-15-13895-2015, 2015
Short summary

Related subject area

Subject: Proxy Use-Development-Validation | Archive: Ice Cores | Timescale: Holocene
A multi-ice-core, annual-layer-counted Greenland ice-core chronology for the last 3800 years: GICC21
Giulia Sinnl, Mai Winstrup, Tobias Erhardt, Eliza Cook, Camilla Jensen, Anders Svensson, Bo Møllesøe Vinther, Raimund Muscheler, and Sune Olander Rasmussen
Clim. Past Discuss., https://doi.org/10.5194/cp-2021-155,https://doi.org/10.5194/cp-2021-155, 2021
Revised manuscript accepted for CP
Short summary
How precipitation intermittency sets an optimal sampling distance for temperature reconstructions from Antarctic ice cores
Thomas Münch, Martin Werner, and Thomas Laepple
Clim. Past, 17, 1587–1605, https://doi.org/10.5194/cp-17-1587-2021,https://doi.org/10.5194/cp-17-1587-2021, 2021
Short summary
Five thousand years of fire history in the high North Atlantic region: natural variability and ancient human forcing
Delia Segato, Maria Del Carmen Villoslada Hidalgo, Ross Edwards, Elena Barbaro, Paul Vallelonga, Helle Astrid Kjær, Marius Simonsen, Bo Vinther, Niccolò Maffezzoli, Roberta Zangrando, Clara Turetta, Dario Battistel, Orri Vésteinsson, Carlo Barbante, and Andrea Spolaor
Clim. Past, 17, 1533–1545, https://doi.org/10.5194/cp-17-1533-2021,https://doi.org/10.5194/cp-17-1533-2021, 2021
Short summary
Variations in mineralogy of dust in an ice core obtained from northwestern Greenland over the past 100 years
Naoko Nagatsuka, Kumiko Goto-Azuma, Akane Tsushima, Koji Fujita, Sumito Matoba, Yukihiko Onuma, Remi Dallmayr, Moe Kadota, Motohiro Hirabayashi, Jun Ogata, Yoshimi Ogawa-Tsukagawa, Kyotaro Kitamura, Masahiro Minowa, Yuki Komuro, Hideaki Motoyama, and Teruo Aoki
Clim. Past, 17, 1341–1362, https://doi.org/10.5194/cp-17-1341-2021,https://doi.org/10.5194/cp-17-1341-2021, 2021
Short summary
Cryptotephra from the Icelandic Veiðivötn 1477 CE eruption in a Greenland ice core: confirming the dating of volcanic events in the 1450s CE and assessing the eruption's climatic impact
Peter M. Abbott, Gill Plunkett, Christophe Corona, Nathan J. Chellman, Joseph R. McConnell, John R. Pilcher, Markus Stoffel, and Michael Sigl
Clim. Past, 17, 565–585, https://doi.org/10.5194/cp-17-565-2021,https://doi.org/10.5194/cp-17-565-2021, 2021
Short summary

Cited articles

Barnola, J.-M., Pimienta, P., Raynaud, D., and Korotkevich, Y. S.: CO2-climate relationship as deduced from the Vostok ice core: a re-examination based on new measurements and on a re-evaluation of the air dating, Tellus B, 43, 83–90, https://doi.org/10.1034/j.1600-0889.1991.t01-1-00002.x, 1991. 
Box, G. E. P., Jenkins, G. M., and Reinsel, G. C.: Time Series Analysis – Forecasting and Control, 3rd Edition, Prentice Hall, Englewood Cliff, New Jersey, USA, 1994. 
Capron, E., Landais, A., Chappellaz, J., Schilt, A., Buiron, D., Dahl-Jensen, D., Johnsen, S. J., Jouzel, J., Lemieux-Dudon, B., Loulergue, L., Leuenberger, M., Masson-Delmotte, V., Meyer, H., Oerter, H., and Stenni, B.: Millennial and sub-millennial scale climatic variations recorded in polar ice cores over the last glacial period, Clim. Past, 6, 345–365, https://doi.org/10.5194/cp-6-345-2010, 2010. 
Craig, H., Horibe, Y. and Sowers, T.: Gravitational separation of gases and isotopes in polar ice caps, Science, 242, 1675–8, https://doi.org/10.1126/science.242.4886.1675, 1988. 
Crank, J.: The Mathematics of Diffusion, Clarendon, Oxford, UK, 414 pp., 1975. 
Download
Short summary
We present a novel approach for ice-core-based temperature reconstructions, which is based on gas-isotope data measured on enclosed air bubbles in ice cores. The processes of air movement and enclosure are highly temperature dependent due to heat diffusion in and densification of the snow and ice. Our method inverts a model, which describes these processes, to desired temperature histories. This paper examines the performance of our novel approach on different synthetic isotope-data scenarios.