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Abstract. Greenland past temperature history can be re-
constructed by forcing the output of a firn-densification and
heat-diffusion model to fit multiple gas-isotope data (δ15N or
δ40Ar or δ15Nexcess) extracted from ancient air in Greenland
ice cores using published accumulation-rate (Acc) datasets.
We present here a novel methodology to solve this in-
verse problem, by designing a fully automated algorithm. To
demonstrate the performance of this novel approach, we be-
gin by intentionally constructing synthetic temperature histo-
ries and associated δ15N datasets, mimicking real Holocene
data that we use as “true values” (targets) to be compared
to the output of the algorithm. This allows us to quantify
uncertainties originating from the algorithm itself. The pre-
sented approach is completely automated and therefore min-
imizes the “subjective” impact of manual parameter tuning,
leading to reproducible temperature estimates. In contrast to
many other ice-core-based temperature reconstruction meth-
ods, the presented approach is completely independent from
ice-core stable-water isotopes, providing the opportunity to
validate water-isotope-based reconstructions or reconstruc-
tions where water isotopes are used together with δ15N or
δ40Ar. We solve the inverse problem T (δ15N, Acc) by us-
ing a combination of a Monte Carlo based iterative approach
and the analysis of remaining mismatches between modelled
and target data, based on cubic-spline filtering of random
numbers and the laboratory-determined temperature sensitiv-
ity for nitrogen isotopes. Additionally, the presented recon-
struction approach was tested by fitting measured δ40Ar and
δ15Nexcess data, which led as well to a robust agreement be-
tween modelled and measured data. The obtained final mis-
matches follow a symmetric standard-distribution function.
For the study on synthetic data, 95 % of the mismatches com-

pared to the synthetic target data are in an envelope between
3.0 to 6.3 permeg for δ15N and 0.23 to 0.51 K for temper-
ature (2σ , respectively). In addition to Holocene tempera-
ture reconstructions, the fitting approach can also be used for
glacial temperature reconstructions. This is shown by fitting
of the North Greenland Ice Core Project (NGRIP) δ15N data
for two Dansgaard–Oeschger events using the presented ap-
proach, leading to results comparable to other studies.

1 Introduction

Holocene climate variability is of key interest to our soci-
ety, since it represents a time of moderate natural variations
prior to anthropogenic disturbance, often referred to as a
baseline for today’s increasing greenhouse effect driven by
mankind. Yet, high-resolution studies are still very sparse
and therefore limit the investigation of decadal and even cen-
tennial climate variations over the course of the Holocene.
One of the first studies about changes in the Holocene cli-
mate was conducted in the early 1970s by Denton and Kar-
lén (1973). The authors investigated rapid changes in glacier
extents around the globe potentially resulting from variations
of Holocene climatic conditions. Mayewski et al. (2004) used
these data as the base of a multiproxy study identifying rapid
climate changes (so-called RCCs) globally distributed over
the whole Holocene time period. Although not all proxy
data showed an equal behaviour in timing and extent dur-
ing the quasi-periodic RCC patterns, the authors found ev-
idence for a highly variable Holocene climate controlled by
multiple mechanisms, which significantly affects ecosystems
(de Beaulieu et al., 2017; Crausbay et al., 2017; Pál et al.,

Published by Copernicus Publications on behalf of the European Geosciences Union.



764 M. Döring and M. C. Leuenberger: Novel automated inversion algorithm for temperature reconstruction

2016) and human societies (Holmgren et al., 2016; Lespez et
al., 2016). Precise high-resolution temperature estimates can
contribute significantly to the understanding of these mech-
anisms. Ice-core proxy data offer multiple paths for recon-
structing past climate and temperature variability. The stud-
ies of Cuffey et al. (1995), Cuffey and Clow (1997) and Dahl-
Jensen et al. (1998) demonstrate the usefulness of invert-
ing the measured borehole-temperature profile for surface-
temperature-history estimates for the investigated drilling
site using a coupled heat- and ice-flow model. Because of
smoothing effects due to heat diffusion within an ice sheet,
this method is unable to resolve fast temperature oscilla-
tions and leads to a rapid reduction of the time resolution
towards the past. Another approach to reconstruct past tem-
perature is based on the calibration of water-stable isotopes
of oxygen and hydrogen (δ18Oice, δDice) from ice-core water-
samples assuming a constant (and mostly linear) relationship
between temperature and isotopic composition due to frac-
tionation effects during ocean evaporation, cloud formation
and snow and ice precipitation (Johnsen et al., 2001; Stuiver
et al., 1995). This method provides a rather robust tool for
reconstructing past temperature for times where large tem-
perature excursions occur when an adequate relationship is
used (Dansgaard–Oeschger events, glacial–interglacial tran-
sitions; Dansgaard et al., 1982; Johnsen et al., 1992). Also,
in the Holocene where Greenland temperature variations
are comparatively small, seasonal changes of precipitation
as well as of evaporation conditions at the source region
may contribute to water-isotope-data variations (Huber et al.,
2006; Kindler et al., 2014; Werner et al., 2001). A relatively
new method for ice-core-based temperature reconstructions
uses the thermal fractionation of stable isotopes of air com-
pounds (nitrogen and argon) within a firn layer of an ice sheet
(Huber et al., 2006; Kindler et al., 2014; Kobashi et al., 2011;
Orsi et al., 2014; Severinghaus et al., 1998, 2001). The mea-
sured nitrogen- and argon-isotope records of air enclosed in
bubbles in an ice core can be used as a paleothermometer due
to (i) the stability of isotopic compositions of nitrogen and ar-
gon in the atmosphere at orbital timescales and (ii) the fact
that changes are only driven by firn processes (Leuenberger
et al., 1999; Mariotti, 1983; Severinghaus et al., 1998). To ro-
bustly reconstruct the surface temperature for a given drilling
site, the use of firn models describing gas and heat diffusion
throughout the ice sheet is necessary to decompose the grav-
itational from the thermal-diffusion influence on the isotope
signals.

This work addresses two issues relevant for temperature
reconstructions based on nitrogen and argon isotopes. First,
we introduce a novel, entirely automated approach for invert-
ing gas-isotope data to surface-temperature estimates. For
that, we force the output of a firn-densification and heat-
diffusion model to fit gas-isotope data. This methodology can
be used for many different optimization tasks not restricted
to ice-core data. As we will show, the approach works in ad-
dition to δ15N for all relevant gas-isotope quantities (δ15N,

δ40Ar, δ15Nexcess) and for Holocene and glacial data as well.
Furthermore, the possibility of fitting all relevant gas-isotope
quantities, individually or combined, makes it possible, for
the first time, to validate the temperature solution gained
from a single isotope species by comparison to the solu-
tion calculated from other isotope quantities. This approach
is a completely new method which enables the automated
fitting of gas-isotope data without any manual tuning of pa-
rameters, minimizing any potential “subjective” impacts on
temperature estimates as well as working hours. Also, ex-
cept for the model spin-up, the presented temperature recon-
struction approach is completely independent from water-
stable isotopes (δ18Oice, δDice), which provides the oppor-
tunity to validate water-isotope-based reconstructions (e.g.
Masson-Delmotte, 2005) or reconstructions where water iso-
topes are used together with δ15N or δ40Ar (e.g. Capron et
al., 2010; Huber et al., 2006; Landais et al., 2004). To our
knowledge, there are only two other reconstruction methods
independent from water-stable isotopes that have been ap-
plied to Holocene gas-isotope data, without a priori assump-
tion on the shape of a temperature change. The studies from
Kobashi et al. (2008a, 2017) use the second-order parame-
ter δ15Nexcess to calculate firn-temperature gradients, which
are later temporally integrated from past to future over the
time series of interest using the firn-densification and heat-
diffusion model from Goujon et al. (2003). Additionally Orsi
et al. (2014) use a linearized firn-model approach together
with δ15N and δ40Ar data to extract surface-temperature his-
tories. The method presented here can be used when no δ40Ar
data are available, which is often the case because δ40Ar is
a more analytically challenging measurement and is not as
commonly measured as δ15N and further allows a compari-
son among solutions obtained from any of the available iso-
tope quantities.

Second, we investigate the accuracy of our novel fitting
approach by examining the method on different synthetic
nitrogen-isotope and temperature scenarios. The aim of this
work is to study the uncertainties emerging from the algo-
rithm itself. Furthermore, the focal questions in this study
are what the minimal mismatch in δ15N for Holocene-like
data we can reach is and what the implication for the final
temperature mismatches is. Studying and moreover answer-
ing these questions makes it mandatory to create well-defined
δ15N targets and related temperature histories. It is impossi-
ble to answer these questions without using synthetic data
in a methodology study. The aim is to evaluate the accu-
racy and associated uncertainty of the inverse method itself to
then later apply this method to real δ15N, δ40Ar or δ15Nexcess
datasets, for which of course the original driving temperature
histories are unknown.
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Figure 1. Schematic illustration of the presented gas-isotope fitting algorithm. The algorithm is implemented in four steps: step 1: first-guess
input calculation; step 2: iteratively Monte Carlo based input change (indicated by the open half cycles); step 3: signal complementation with
high-frequency information; step 4: final correction. In contrast to the synthetic data study on Holocene-like data where the accumulation
input Acc(t) was fixed, for the proof of concept on glacial data, the accumulation and temperature input was iteratively changed in parallel
indicated by the grey variables Accg,0 and Accmc,fin. For the glacial study, only steps 1 and 2 were used.

2 Methods and data

2.1 Reconstruction approach

The problem that we deal with is an inverse problem, since
the effect, observed as δ15N variations, is dependent on
its drivers, i.e. temperature and accumulation-rate changes.
Hence, the temperature that we would like to reconstruct
depends on δ15N and accumulation-rate changes. To solve
this inverse problem, the firn-densification and heat-diffusion
model (from now on referred to as firn model), which is a
non-linear transfer function of temperature and accumulation
rate to firn states and relates to δ15N values, is run iteratively

to match the modelled and measured δ15N values (or other
gas species). The automated procedure is significantly more
efficient and less time consuming than a manual approach.
The Holocene temperature reconstruction is implemented by
the following four steps (Fig. 1):

– Step 1: a prior temperature input (first guess) is con-
structed, which serves as the starting point for the opti-
mization.

– Step 2: a long-term solution which passes through the
δ15N data (here synthetic target data) is generated fol-
lowing a Monte Carlo approach. It is assumed that
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the smooth solution contains all long-term temperature
trends (centuries to millennia) as well as firn-column
height changes (temperature and accumulation-rate de-
pendent) that drive the gravitational background signal
in δ15N.

– Step 3: the long-term temperature solution is comple-
mented by superimposing short-term information di-
rectly extracted from the δ15N data (here synthetic
target data). This step adds short-term temperature
changes (decadal) in the same time resolution as the
data.

– Step 4: the gained temperature solution is further cor-
rected using information extracted from the mismatch
between the synthetic target and modelled δ15N time se-
ries.

The functionality of the presented inversion algorithm
is schematically displayed in Fig. 1. It guides the reader
through chapters and documents where variables, listed in
Table 1, are in use. In the following, a detailed description of
each step is given.

2.1.1 Step 1: prior input

The starting point of the optimization procedure is the first
guess. To construct the first-guess temperature input Tg,0(t),
a constant temperature of −29.6 ◦C is used for the complete
Holocene section, which corresponds to the last value of the
temperature spin-up (Fig. 2b).

2.1.2 Step 2: Monte Carlo type input generator –
generating long-term solutions

During the second step of the optimization, the prior tem-
perature input Tg,0(t) from step 1 is iteratively (j ) changed
following a Monte Carlo approach. The basic idea of the
Monte Carlo approach is to generate smooth temperature in-
puts Tmc,j (t) by superimposing low-pass-filtered values P j

of uniformly distributed random values P r,j on the prior in-
put Tmc,j−1. Then, the new input is fed to the firn model and
the mismatch Dδ15Nmc,j

(with X ≡ δ15Nmc,j ) between the
modelled δ15Nmc,j (here Xmod), calculated from the model
output, and the synthetic δ15Nsyn (here Xtarget) is computed
for every time step (i) of the target data δ15Nsyn according to

DX =
1
n

∑n

i=1

∣∣DX,i∣∣= 1
n

∑n

i=1

∣∣Xtarget,i −Xmod,i
∣∣ . (1)

(Note: if not otherwise stated, all mismatches in this study
labelled with “D” are calculated similar to Eq. 1.)
Dδ15Nmc

serves as the criterion which is minimized dur-
ing the optimization in step 2. If the mismatch Dδ15Nmc,j

de-
creases compared to the prior input (Tmc,j−1, Dδ15Nmc,j−1

),
the new input is saved and used as the new guess

(Tg,j = Tmc,j ). This procedure is repeated until conver-
gence is achieved, leading to the final long-term temperature
Tmc,fin(t). Table 2 lists the number of improvements and iter-
ations performed for the different synthetic datasets.

The perturbation of the current guess Tg,j is conducted in
the following way: let T g,0 = Tg,0(t) be the vector contain-
ing the prior temperature input. A second vector (P r,1) with
the same number of elements nmc as T g,0 is generated, con-
taining nmc uniformly distributed random numbers within the
limits of an also randomly (equally distributed) chosen stan-
dard deviation (SD). SD is chosen from a range of 0.05–0.50,
which means that the maximum allowed perturbation of a
single temperature value T (t0) is in a range of ±5 to ±50 %.
Creating the synthetic frequencies, P r,1 is low-pass filtered
using cubic-spline filtering (Enting, 1987) with an equally
distributed random cut-off period (COP) in the range of 500
to 2000 years generating the vector P 1. Hereby the low-pass
filtering of P r,1 reduces the amplitudes of the perturbation of
T g,0. The new surface temperature input T mc,1 is calculated
from P 1 according to

T mc,1 = T T
g,0 · (1̂+P 1). (2)

The superscript “T” stands for transposed and 1̂ is the n by
1 matrix of ones.

This approach provides a high potential for parallel com-
puting. In this study, an eight-core computer was used, gen-
erating and running eight different inputs of T mc simulta-
neously, minimizing the time to find an improved solution.
For example, during the 706 iterations for scenario S2, about
5600 different inputs were created and tested, leading to
351 improvements (see Table 2). Since it is possible to find
more than one improvement per iteration step due to the par-
allelization on eight CPUs, the solution giving the minimal
misfit Dδ15Nmc,j

is chosen as new first-guess for the next it-
eration step. This leads to a decrease of the used improve-
ments for the optimization (e.g. for S2, 172 of the 351 im-
provements were used). Additionally, a first gas-age scale
(1agemc,fin(t)) is extracted from the model using the last im-
proved conditions, which will then be used in step 3.

2.1.3 Step 3: adding short-term (high-frequency)
information

In step 3, the missing short-term temperature history provid-
ing a suitable fit between modelled and synthetic δ15N data is
directly extracted from the pointwise mismatchDδ15Nmc,fin

(t),
between the modelled δ15Nmc,fin(t) obtained in step 2 and the
synthetic δ15Nsyn target. Note that for a real reconstruction,
this mismatch is calculated using the measured δ15Nmeas
dataset instead of the synthetic one. Dδ15Nmc,fin

(t) can be in-
terpreted in first order as the detrended high-frequency signal
of the synthetic δ15Nsyn target. Dδ15Nmc,fin

(t) is transferred to
the gas-age scale using 1agemc,fin(t) provided by the firn-
model output for the smooth temperature input Tmc,fin(t).
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Table 1. Used variables and acronyms with their explanations.

Variable Explanation

αT thermal-diffusion constant calculated from Eq. (12)
α18O slope for δ18Oice calibration (surface-temperature spin-up), Eq. (13)
Acc accumulation-rate data
Accg,0 first-guess (prior) input accumulation-rate data
Accmc,fin modelled accumulation-rate data from the final Monte Carlo output
β intercept for δ18Oice calibration (surface-temperature spin-up), Eq. (13)
COP cut-off period for cubic-spline filtering
corr index related to the final correction step (step 4)
CZ convective zone
D mean mismatch (general) calculated from Eq. (1)
D(t), Di pointwise mismatches (general)
Dδ15N mean mismatch of δ15N
Dδ15Ncorr

mean mismatch of δ15N (δ15Nsyn vs. δ15Ncorr) calculated from the output of the final correction (step 4)
Dδ15Ng,0

mean mismatch of δ15N (δ15Nsyn vs. δ15Ng,0) calculated from the output of the first-guess data

Dδ15Nhf
mean mismatch of δ15N (δ15Nsyn vs. δ15Nhf) calculated from the output of the high-frequency step (step 3)

Dδ15Nmc,fin
mean mismatch of δ15N (δ15Nsyn vs. δ15Nmc,fin) calculated from the final Monte Carlo output (step 2)

Dgl minimization criterion for the proof of concept on glacial data as used in Eq. (14)
DT mean mismatch of temperature
DTcorr mean mismatch of temperature (Tsyn vs. Tcorr) calculated from the output of the final correction (step 4)
DTg,0 mean mismatch of temperature calculated from Tsyn vs. Tg,0
DThf mean mismatch of temperature (Tsyn vs. Thf) calculated from the output of the high-frequency step (step 3)
DTmc mean mismatch of temperature calculated from the final output of the Monte Carlo step (step 2)
δ15Ncorr modelled δ15N signal from the output of the final correction (step 4)
δ15Ngrav gravitational component of the δ15N signal
δ15Ng,0 modelled δ15N signal from the output of the first-guess data (step 1)
δ15Nhf modelled δ15N signal from the output of the high-frequency step (step 3)
δ15Nmc,fin modelled (smooth) δ15N signal from the final Monte Carlo output (step 2)
δ15Nmod modelled δ15N signal (general)
δ15Ntherm thermal-fractionation/thermal-diffusion component of the δ15N signal
δ15Nsyn synthetic δ15N target (fitting target)
1age gas-age – ice-age difference
1agemc,fin final gas-age – ice-age output from the Monte Carlo step (step 2)
1δ15Ncv δ15N correction values calculated from 1δ15Nmax and 1δ15Nmin
1δ15Nmax δ15N correction values calculated from the linear dependency of xcfmax,δ15N
1δ15Nmin δ15N correction values calculated from the linear dependency of xcfmin,δ15N
1m molar mass-difference between the heavy and light isotopes
1T high-frequency temperature signal obtained from Eq. (3) (step 3)
εδ15N uncertainty of the δ15N data as used in Eq. (14)
ε1age uncertainty of the 1age data as used in Eq. (14)
g gravitational acceleration
g,0 index related to the first-guess (prior) data (step 1)
hf index related to the high-frequency step (step 3)
i time index
IF “integrated factor” calculated from Eq. (6), needed for the final correction step (step 4)
j running index for the Monte Carlo iterations (step 2)
lagmax time lag attributed to the maximum of the sample cross-correlation function (xcf), (general)
lagmax,δ15N time lag attributed to the maximum of the sample cross-correlation function (xcf) of IF(t) vs. Dδ15Nhf

(t)
lagmax,T time lag attributed to the maximum of the sample cross-correlation function (xcf) of IF(t) vs. DThf (t)
lagmin time lag attributed to the minimum of the sample cross-correlation function (general)
lagmin,δ15N time lag attributed to the minimum of the sample cross-correlation function of IF(t) vs. Dδ15Nhf

(t)
lagmin,T time lag attributed to the minimum of the sample cross-correlation function of IF(t) vs. DThf (t)
mc index related to the Monte Carlo step (step 2)
mc,fin index related to the final Monte Carlo output (step 2)
n number of data points of the target
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Table 1. Continued.

Variable Explanation

nmc length of the Holocene temperature vectors (w/o spin-off)
�N2,i thermal-diffusion sensitivity calculated from Eq. (4)
P j spline-filtered P r,j
P r,j vector containing nmc uniformly distributed random numbers
R ideal gas constant
ρice ice density
ρLID lock-in density, density threshold for calculating zLID
SD standard deviation of the random numbers for P r,j
σδ15Ncorr

standard deviation of Dδ15Ncorr
(t) (=Dδ15Ncorr,i

)
2σδ15Ncorr,95

95 % quantile of Dδ15Ncorr
(t) (=Dδ15Ncorr,i

)
σδ15Nhf

standard deviation of Dδ15Nhf
(t) (=Dδ15Nhf,i

)
σTcorr standard deviation of DTcorr (t) (=DTcorr,i )
2σTcorr,95 95 % quantile of DTcorr (t) (=DTcorr,i )
σThf standard deviation of DThf (t) (=DThf,i )
T , T firn mean firn temperature
Tbottom temperatures at the bottom of the diffusive firn layer
Tcorr temperature signal calculated from the final correction step (step 4)
Tg,0 first-guess (prior) temperature input
Thf temperature signal calculated from the high-frequency step (step 3)
Tmc,j Monte Carlo temperature guess for iteration j
Tmc,fin (smooth) temperature modelled from the final Monte Carlo output (step 2)
Tspin surface-temperature spin-up
Tsurf temperatures at the top of the diffusive firn layer
wRMSE mean squared errors weighted with data uncertainty as used in Eq. (14)
xcf/XCF sample cross-correlation function, needed for the final correction step (step 4)
xcfmax maximum of the sample cross-correlation function (general)
xcfmax,δ15N maximum of the sample cross-correlation function of IF(t) vs. Dδ15Nhf

(t)
xcfmax,T maximum of the sample cross-correlation function of IF(t) vs. DThf (t)
xcfmin minimum of the sample cross-correlation function
xcfmin,δ15N minimum of the sample cross-correlation function of IF(t) vs. Dδ15Nhf

(t)
xcfmin,T minimum of the sample cross-correlation function of IF(t) vs. DThf (t)
Xmod modelled data (general), can be δ15N, T or measured data (δ40Ar, δ15Nexc)
Xtarget fitting target (general), can be synthetic δ15Nsyn, Tsyn or measured data (δ40Ar, δ15Nexc)
zLID, LID lock-in depth

Table 2. Summary for the Monte Carlo approach: mismatch Dg,0 between the modelled δ15N (or temperature) values using the first-guess
input and the synthetic δ15N (or temperature) target for each scenario. Dmc is the mismatch between the modelled δ15N (or temperature)
using the final Monte Carlo temperature solution and the synthetic δ15N (or temperature) target for each scenario.

Scenario S1 S2 S3 S4 S5 H1 H2 H3

Dδ15Ng,0
(permeg) 13.3 48.4 27.0 23.3 22.4 23.8 24.1 23.8

Dδ15Nmc,fin
(permeg) 11.3 12.4 12.7 11.9 11.5 5.8 6.9 8.2

δ15N improvement (permeg) 2.0 36.0 14.3 11.4 10.9 18.0 17.2 15.6
δ15N improvement (%) 15.0 74.4 53.0 48.9 48.7 75.6 71.4 65.5
No. improvements 119 351 152 108 174 223 173 325
No. used improvements 89 174 103 74 102 129 112 193
No. iterations 2103 706 620 656 637 1636 1027 2086
No. tried solutions 16 824 5648 4960 5248 5096 13 088 8216 16 688
Execution time (h) 52.6 17.7 15.5 16.4 15.9 40.9 25.7 52.2
DTg,0 (K) 1.24 5.24 2.45 2.09 2.17 2.34 2.38 2.32
DTmc (K) 0.61 0.69 0.70 0.64 0.64 0.32 0.39 0.46
Temp. improvement (K) 0.63 4.55 1.75 1.45 1.53 2.02 1.99 1.86
Temp. improvement (%) 50.8 86.8 71.4 69.4 70.5 86.3 83.6 80.2
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Figure 2. (a) Used accumulation-rate input time series divided in a Holocene and a spin-up section, with time resolution in the Holocene
section (20 to 10 520 years b2k) of 1 year. The time resolution for the transition between the Holocene and the spin-up section (10 520
to 12 000 years b2k) is 1 year as well. This is in opposition to the rest of the spin-up section which has a time resolution of 20 years.
(b) Surface-temperature spin-up calculated from δ18Oice calibration. Time resolution equals the accumulation-rate spin-up section. The
first-guess surface temperature input is simply a constant value.

This is needed to insure synchroneity between the high-
frequency temperature variations 1T (t) extracted from the
mismatch Dδ15Nmc,fin

(t) on the ice-age scale and the smooth
temperature solution Tmc,fin(t). Additionally, the signal is
shifted by about 10 years towards modern values to ac-
count for gas diffusion from the surface to the lock-in depth
(Schwander et al., 1993), which is not yet implemented in
the firn model. This is necessary for adding the calculated
short-term temperature changes 1T (t) to the smooth signal

Tmc,fin(t). The1T values are calculated according to Eq. (3):

1Ti =
Dδ15Nmc,fin,i

�N2,i
, (3)

using the thermal-diffusion sensitivity �N2,i for nitrogen-
isotope fractionation from Grachev and Severinghaus (2003):
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�N2,i =
8.656‰

T i
−

1232‰ ·K

T
2
i

. (4)

T i is the mean firn temperature in Kelvin which is calculated
by the firn model for each time point i. To reconstruct the fi-
nal (high-frequency) temperature input (Thf(t)), the extracted
short-term temperature signal 1T (t) is simply added to the
long-term temperature input Tmc,fin(t):

Thf,i = Tmc,fin,i +1Ti . (5)

2.1.4 Step 4: final correction of the surface temperature
solution

For a further improvement of the remaining δ15N and result-
ing surface-temperature misfits (Dδ15Nhf

(t),DThf (t)), it is im-
portant to find a correction method that contains information
that is also available when using measured data. The bene-
fit of the synthetic data study is that several later-unknown
quantities can be calculated and used for improving the re-
construction approach (see Sects. 3 and 4). For instance, it
is possible to split the synthetic δ15Nsyn data in the gravi-
tational and thermodiffusion parts or to use the temperature
misfit, which is unknown in reality. The idea underlying the
correction algorithm explained hereafter is that the remain-
ing misfits of δ15N (Dδ15Nhf

(t)) and temperature (DThf (t)) are
connected to the Monte Carlo (step 2) and high-frequency
part (step 3) of the reconstruction algorithm. In the present
inversion framework, it is not possible to find a long-term
solution δ15Nmc,fin (or Tmc,fin) which exactly passes through
the δ15Nsyn (or Tsyn) target in the middle of the variance in
all parts of the time series. This leads to a slight over- or un-
derestimation of δ15Nmc,fin(t) and their corresponding tem-
perature values Tmc,fin(t). For example, a slightly too low
(or too high) smooth temperature estimate Tmc,fin leads to
a small increase (or decrease) of the firn-column height, cre-
ating a wrong gravitational background signal in δ15Nmc,fin
on a later point in time (because the firn column needs some
time to react). An additional error in the thermal-diffusion
signal is also created due to the high-frequency part of the
reconstruction (step 3), because the high-frequency informa-
tion is directly extracted from the deviation of the synthetic
target δ15Nsyn(t) and the modelled δ15Nmc,fin(t) from the fi-
nal long-term solution Tmc,fin(t) of the Monte Carlo part.
Therefore, this error is transferred into the next step of the
reconstruction and partly creates the remaining deviations.

To investigate this problem, the deviationsDδ15Nmc,fin
(t) of

the synthetic target data δ15Nsyn to δ15Nmc,fin of the Monte
Carlo part are numerically integrated over a time window of
200 years (Sect. 4, Supplement Sect. S3), and thereafter the
window is shifted from past to future in 1-year steps resulting
in a time series called IF(t). IF(t) equals a 200-year running
mean of Dδ15Nmc,fin

(t). For t, the middle position of the win-
dow is allocated. The time evolution of IF(t) is a measure

for the deviation of the long-term solution δ15Nmc,fin(t) (or
Tmc,fin(t)) from the perfect middle passage through the tar-
get data δ15Nsyn(t) (or Tsyn(t)) and for the slight over- and
underestimation of the resulting temperature.

IF(t)=
1

200

t+100∫
t−100

(
δ15Nsyn(t)− δ15Nmc,fin (t)

)
dt

=
1

200

t+100∫
t−100

Dδ15Nmc,fin
(t)dt (6)

Next, the sample cross-correlation function (xcf) (Box et al.,
1994) is applied to IF(t) and the remaining misfits Dδ15Nhf

(t)
of δ15N after the high-frequency part. The xcf shows two
extrema (Fig. 3a), a maximum (xcfmax) and a minimum
(xcfmin) at two certain lags (lagmax,δ15N at xcfmax,δ15N and
lagmin,δ15N at xcfmin,δ15N). Now, the same analysis is con-
ducted for IF(t) versus the temperature mismatch DThf (t)
(Fig. 3b), which shows an equal behaviour (two extrema,
lagmax,T at xcfmax,T and lagmin,T at xcfmin,T ). Comparing
the two cross correlations shows that lagmax,δ15N equals the
negative lagmin,T and lagmin,δ15N corresponds to the negative
lagmax,T (Fig. 3d, e). The idea for the correction is that the
extrema in the cross-correlation IF(t) versus Dδ15Nhf

(t) with
the positive lag (positive means here that Dδ15Nhf

(t) has to
be shifted to past values relative to IF(t)) creates the mis-
fit of temperature DThf (t) on the negative lag (modern di-
rection) of IF(t) versus DThf (t), and vice versa. So, IF(t)
yields information about the cause and allows us to cor-
rect this effect between the remaining mismatches,Dδ15Nhf

(t)
and DThf (t), over the whole time series. The lags are not
sharp signals, due to the fact that (i) the cross correlations
are conducted over the whole analysed record, leading to
an averaging of this cause-and-effect relationship and that
(ii) IF(t) is a smoothed quantity itself. The correction of
the reconstructed temperature after the high-frequency part
is conducted in the following way: from the two linear re-
lationships between IF(t) and Dδ15Nhf

(t) at the two lags
(lagmax,δ15N at xcfmax,δ15N, lagmin,δ15N at xcfmin,δ15N), two
sets of δ15N correction values (1δ15Nmax(t) from xcfmax,δ15N
and 1δ15Nmin(t) from xcfmin,δ15N) are calculated. Then, the
lags are inverted (Fig. 3c, e), shifting the two sets of the
δ15N correction values to the attributed lags of the cross
correlation between IF(t) and DThf (t) (e.g. 1δ15Nmin(t) to
lag from xcfmax,T from the cross correlation between IF(t)
and DThf (t)), therefore changing the time assignments of
1δ15Nmin(t) and 1δ15Nmax(t) to 1δ15Nmin(t + lagmax,T )
and 1δ15Nmax(t + lagmin,T ). Now, the 1δ15Nmax(t) and
1δ15Nmin(t) are summed up component-wise, leading to the
time series1δ15Ncv(t). From Eq. (3) with1δ15Ncv,i instead
ofDδ15Nmc,fin,i

, the corresponding temperature correction val-
ues are calculated and added to the high-frequency tempera-
ture solution Thf(t), giving the corrected temperature Tcorr(t).
Finally, Tcorr(t) is used to run the firn model to calculate the
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(a) (b)

(c) (d) (e)

Figure 3. Scenario S1: (a) cross-correlation function (xcf) between IF(t) and the remaining mismatch in δ15N (Dδ15Nhf
(t)), after the high-

frequency part shows two extrema: the maximum correlation (max xcf) and the minimum correlation (min xcf). (b) Cross-correlation function
(xcf) between IF(t) and the remaining mismatch in temperature (DThf (t)), after the high-frequency part, shows two extrema: the maximum
correlation (max xcf) and the minimum correlation (min xcf). (c) Inverting of panel (a) in x (lag) and y (correlation coefficient) direction.
(d) Comparison between panels (a) and (b). (e) Comparison between panels (a) and (c). The temperature-correction values are calculated
from the linear dependency between IF(t) and Dδ15Nhf

(t). After shifting IF(t) to max xcf (lag max) and to min xcf (lag min), 1δ15Nmax(t)

and 1δ15Nmin(t) are calculated. Next, 1δ15Nmax(t) and 1δ15Nmin(t) are inverted. That means, for 1δ15Nmax(t), the values are shifted
back (−lag max) and shifted further to lag min. After inverting,1δ15Nmax(t) and1δ15Nmin(t) are summed up component-wise to calculate
1δ15Ncv(t). Using 1δ15Ncv(t) in Eq. (3) leads to the temperature-correction values which are added to the temperature Thf.

corrected δ15Ncorr(t) time series. This cause-and-effect rela-
tionship found in the cross correlations between IF(t) and
Dδ15Nhf

(t), and IF(t) and DThf (t), is exemplarily shown in
Fig. 3 for scenario S1 and was found for all eight synthetic
scenarios. The derived correction algorithm leads to a fur-
ther reduction of the mismatches of about 40 % in δ15N and
temperature (see Sect. 3.2).

2.2 Firn-densification and heat-diffusion model

Surface-temperature reconstruction relies on firn densifica-
tion combined with gas and heat diffusion (Severinghaus
et al., 1998). In this study, the firn-densification and heat-
diffusion model, developed by Schwander et al. (1997), is
used to reconstruct firn parameters for calculating synthetic
δ15N values depending on the input time series. It is a semi-
empirical model based on the work of Herron and Lang-
way (1980) and Barnola et al. (1991), and implemented us-
ing the Crank and Nicholson algorithm (Crank, 1975), and
was also used for the temperature reconstructions by Hu-
ber et al. (2006) and Kindler et al. (2014). Besides surface-
temperature time series, accurate accumulation-rate data are
needed to run the model. The model then calculates the den-
sification and heat-diffusion history of the firn layer and pro-
vides parameters for calculating the fractionation of the ni-
trogen isotopes for each time step, according to the following

equations:

δ15Ngrav (zLID, t)=
(
e
1m·g·zLID(t)

R·T (t) 1
)
· 1000 (7)

δ15Ntherm(t)=
[(

Tsurf (t)
Tbottom (t)

)αT

− 1
]
· 1000 (8)

δ15Nmod(t)= δ15Ngrav(t)+ δ15Ntherm(t). (9)

δ15Ngrav(t) is the component of the isotopic fractionation
due to the gravitational settling (Craig et al., 1988; Schwan-
der, 1989) and depends on the lock-in depth (LID) zLID(t)
and the mean firn temperature T (t) (Leuenberger et al.,
1999). g is the gravitational acceleration,1m the molar mass
difference between the heavy and light isotopes (equal to
10−3 kg mol−1 for nitrogen) and R the ideal gas constant.
zLID is defined as a density threshold ρLID, which is slightly
sensitive to surface temperature, following the formula from
Martinerie et al. (1994), with a small offset correction of
14 kg m−3 to account for the presence of a non-diffusive zone
(Schwander et al., 1997):

ρLID(kgm−3)=
1

1
ρice
− 6.95 · 10−7

· T − 4.3 · 10−5 − 14, (10)

where

ρice(kgm−3)= 916.5−0.14438·T −1.5175·10−4
·T

2
. (11)
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The thermal-fractionation component of the δ15N signal
(Severinghaus et al., 1998) is calculated using Eq. (8), where
Tsurf(t) and Tbottom(t) stand for the temperatures at the top
and the bottom of the diffusive firn layer. In contrast to
Tsurf(t), which is an input parameter for the model, Tbottom(t)
is calculated by the model for each time step. The thermal-
diffusion constant αT was measured by Grachev and Sever-
inghaus (2003) for nitrogen (Eq. 12):

αT =

(
8.656−

1323K

T

)
· 10−3. (12)

The firn model used here behaves purely as a forward model,
which means that for the given input time series the output
parameters (here, finally δ15Nmod(t)) can be calculated, but it
is not easily possible to construct from measured isotope data
the related surface-temperature or accumulation-rate histo-
ries. The goal of the presented study is an automatization of
this inverse-modelling procedure for the reconstruction of the
rather small Holocene temperature variations.

2.3 Measurement, input data and timescale

2.3.1 Timescale

For the entire study, the GICC05 chronology is used (Ras-
mussen et al., 2014; Seierstad et al., 2014). During the whole
reconstruction procedure, the two input time series (sur-
face temperature and accumulation rate) are split into two
parts. The first part ranges from 20 to 10 520 years b2k
(called the “Holocene section”) and the second one from
10 520 to 35 000 years b2k (“spin-up section”). The entire
accumulation-rate input, as well as the spin-up section of the
surface-temperature input, remains unchanged during the re-
construction procedure.

2.3.2 Accumulation-rate data

Besides surface temperatures, accumulation-rate data are
needed to drive the firn model. In this study, we use the
original accumulation rates, reconstructed in Cuffey and
Clow (1997), produced using an ice-flow model adapted to
the Greenland Ice Sheet Project Two (GISP2) location but
adapted to the GICC05 chronology (Rasmussen et al., 2008;
Seierstad et al., 2014). A detailed description of the adaption
procedure can be found in Sect. S1 of the Supplement. The
raw accumulation-rate data for the main part of the spin-up
section (12 000 to 35 000 years b2k) are linearly interpolated
to a 20-year grid and low-pass filtered with a 200-year COP
using cubic-spline filtering (Enting, 1987). For the Holocene
section (20–10 520 years b2k) and the transition part between
Holocene and spin-up section (10 520 to 12 000 years b2k),
the raw accumulation-rate data are linearly interpolated to a
1-year grid to obtain equidistant integer point-to-point dis-
tances which are necessary for the reconstruction, and to
preserve as much information as possible for this time pe-
riod (Fig. 2a). Except for these technical adjustments, the

accumulation-rate input remains unmodified, assuming high
reliability of these data during the Holocene. The accumu-
lation data were reconstructed using annual layer counting,
and a thinning model which should lead to maximum rela-
tive uncertainty of 10 % for the first 1500 of the 3000 m ice
core (Cuffey and Clow, 1997). From the three accumulation-
rate scenarios reconstructed in Cuffey and Clow (1997) and
adapted here to the GICC05 chronology, the intermediate one
is chosen (red curves in Fig. S1 in the Supplement). Since the
differences between the scenarios are not important for the
evaluation of the reconstruction approach, they are not taken
into account for this study.

Additionally, two sensitivity experiments were conducted
(see Sect. S2 in the Supplement) in order to investigate (i) the
influence of low-pass filtering of the high-resolution accumu-
lation rates on the model outputs and (ii) the possible contri-
bution of the accumulation-rate variability to the δ15N data
during the Holocene. The first experiment shows that filter-
ing the accumulation rates with cut-off periods in the range
of 20 to 500 years has nearly no influence on the modelled
δ15N or lock-in depth as long as the major trends are being
conserved. The second experiment leads to the finding that
the accumulation-rate variability explains about 12 to 30 %
of δ15N variability. A total of 30 % corresponds to the 8.2 kyr
event and 12 % to the mean of the whole Holocene period
including the 8.2 kyr event. Hence, the influence of accumu-
lation changes, excluding the extreme 8.2 kyr event, is gen-
erally below 10 % during most parts of the Holocene.

2.3.3 δ18Oice data

Oxygen-isotope data from the GISP2 ice-core-water sam-
ples measured at the University of Washington’s Quater-
nary Isotope Laboratory are used to construct the surface-
temperature input of the model spin-up (12 to 35 kyr b2k,
Grootes et al., 1993; Grootes and Stuiver, 1997; Meese et al.,
1994; Steig et al., 1994; Stuiver et al., 1995; data availability:
Grootes and Stuiver, 1999). The raw δ18Oice data are filtered
and interpolated in the same way as the accumulation-rate
data for the spin-up part.

2.3.4 Surface-temperature spin-up

The surface-temperature history of the spin-up section
(Fig. 2b) is obtained by calibrating the filtered and inter-
polated δ18Oice data (Eq. 13) using the values for the tem-
perature sensitivity α18O and offset β found by Kindler et
al. (2014) for the North Greenland Ice Core Project (NGRIP)
ice core assuming a linear relationship of δ18Oice with tem-
perature.

Tspin (t)=
1

α18O (t)
·

[
δ18Oice (t)+ 35.2‰

]
− 31.4◦C+β (t) (13)
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The values 35.2 ‰ and −31.4 ◦C are modern-time parame-
ters for the GISP2 site (Grootes and Stuiver, 1997; Schwan-
der et al., 1997). The spin-up is needed to bring the firn model
to a well-defined starting condition that takes possible mem-
ory effects (influence of earlier conditions) of firn states into
account.

2.3.5 Generating synthetic target data

In order to develop and evaluate the presented algorithm,
eight temperature scenarios were constructed and used to
model synthetic δ15N data, which serve later as targets
for the reconstruction. From these eight synthetic surface-
temperature and related δ15N scenarios (S1–S5 and H1–H3),
three datasets (later called Holocene-like scenarios H1–H3)
were constructed in such a way that the resulting δ15N time
series are very close to the δ15N values measured by Kobashi
et al. (2008b) in terms of variability (amplitudes) and fre-
quency (data resolution) of the GISP2 nitrogen-isotope data
(Figs. 4, 5).

The synthetic surface-temperature scenarios S1–S5 are
created by generating a long-term temperature time series
(Tsyn,smooth) analogous to the Monte Carlo part of the recon-
struction procedure for only one iteration step (see Sect. 2.1).
The values for the cut-off period used for the filtering of the
random values, and the SD values (standard deviation of the
random values; see Sect. 2.1) for the first five scenarios can
be found in Table 3. The long-term temperatures (Fig. 4I) are
calculated on a 20-year grid, which is nearly similar to the
time resolution of the GISP2 δ15N measurement values of
about 17 years (Kobashi et al., 2008b). For the Holocene-like
scenarios, the smooth temperature time series were generated
from the temperature reconstruction for the GISP2 δ15N data
(not shown here). The final Holocene surface-temperature
solution was filtered with a 100-year cut-off to obtain the
long-term temperature scenario.

Following this, high-frequency information is added to
the long-term temperature histories. A set of normally dis-
tributed random numbers with a zero mean and a standard
deviation (1σ ) of 1 K for scenarios S1–S5 and 0.3 K for
Holocene-like scenarios H1–H3 is generated on the same 20-
year grid and added up to the long-term temperature time
series. Finally, the resulting synthetic target-temperature sce-
narios (Figs. 4II, 5I) are linearly interpolated to a 1-year grid.

These synthetic temperatures are combined with the spin-
up temperature and are used together with the accumulation-
rate input to feed the firn model. From the model out-
put, the synthetic δ15N targets are calculated according to
Sect. 2.2. The firn-model output provides ice-age as well as
gas-age information. The final synthetic δ15N target time se-
ries (δ15Nsyn) are set intentionally on the ice-age scale to mir-
ror measured data, because no prior information is available
for the gas-age – ice-age difference (1age) for ice-core data.

Table 3. Cut-off periods (COPs) and SD values used for creating
the smooth synthetic temperature scenarios according to the Monte
Carlo approach.

Scenario COP SD
(years)

S1 1135 0.2065
S2 1007 0.3967
S3 1177 0.4002
S4 1315 0.2952
S5 1244 0.2388

3 Results

3.1 Monte Carlo type input generator

Figure 6 shows the evolution of the misfit Dδ15Nmc,j
between

the synthetic target data (δ15Nsyn) and the modelled output
δ15Nmc,j of the Monte Carlo part (step 2) as a function of the
applied iterations (j ) for all synthetic scenarios. One can eas-
ily see that all scenarios show a steep decline of the mismatch
during the first 50 to 200 iterations followed by a rather mod-
erate decrease, which finally leads to a constant value. Dur-
ing the Monte Carlo part, it was possible to reduce the mis-
fit Dδ15Nmc

compared to the first-guess solution Dδ15Ng,0
by

about 15 to 75 % depending on the scenario and the mis-
match of the first-guess solution (see Table 2). This leads to
a reduction of the temperature mismatches DTmc compared
to the first-guess temperature DTg,0 mismatch of about 51 to
87 %.

Figure 7 provides the comparison between the first-guess
(g,0; step 1) and Monte Carlo (mc,fin; step 2) solution ver-
sus the synthetic target data (syn) for the modelled δ15N
(Fig. 7a–c) and surface-temperature values (Fig. 7d–f) for
scenario S5. Subplots (a) and (d) show the time series of the
synthetic target (black dotted line), the first-guess solution
(blue line) and the Monte Carlo solution (red line) for δ15N
and temperature. In subplots (b) and (e), the distribution of
the pointwise mismatch Di of the first-guess (blue) and the
Monte Carlo solutions (red) versus the synthetic target data
for δ15N (Dδ15N) and temperature (DT ) can be found. Sub-
plots (c) and (f) contain the time series for Dδ15N,i and DTi .
The Dδ15Nmc,fin

(t) data (red) are used to calculate the high-
frequency signal that is superimposed to the long-term tem-
perature solution Tmc,fin according to Eqs. (3) and (5) (see
Sect. 2.1, step 3). From Fig. 7, it can be concluded that the
Monte Carlo part of the reconstruction algorithm (step 2)
leads to two major improvements of the first-guess solution.
First, it is obvious that the Monte Carlo approach corrects
the offsets of the first-guess input (g,0), which shifts the mid-
point of the distributions of Dδ15Nmc,i

and DTmc,i to zero (see
blue against red in Fig. 7b, e). The second improvement is
that the distributions become more symmetric and the misfit
is overall reduced (the distributions become narrower) com-
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Figure 4. (I) S1–S5: synthetic smooth temperature scenarios for the construction of the target-temperature data. (II) S1–S5: synthetic target
surface-temperature scenarios. (III) S1–S5: corresponding synthetic δ15N target time series.
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Figure 5. (I) Synthetic target surface-temperature scenarios H1–H3. (II) Corresponding synthetic δ15N target time series H1–H3. (III) GISP2
δ15N measured data (Kobashi et al., 2008b).

pared to the first guess due to the middle passage through
the δ15Nsyn targets. These improvements can be observed for
all eight synthetic scenarios, showing the robustness of the
Monte Carlo part (see Table 2, Fig. 7).

3.2 High-frequency step and final correction

Figure 8 provides the comparison between the Monte Carlo
(mc,fin; step 2), the high-frequency (hf; step 3) and the cor-
rection (corr; step 4) parts of the reconstruction procedure for
the scenario S5. Additional data for all other scenarios can
be found in Table 4. The upper four plots (Fig. 8a–d) illus-
trate each reconstruction step and their effect on the mod-
elled δ15N; the bottom four plots (Fig. 8e–h) show the corre-
sponding results on the temperature. Plots (a) and (e) contain
the time series of the synthetic δ15Nsyn or Tsyn target (syn;
black dotted line), the high-frequency solution (hf; blue line)

and the final solution after the correction part (corr; red line).
For visibility reasons, subplots (b) and (f) display a zoom-in
for a randomly chosen time window of about 500 years for
the same quantities, which shows the excellent agreement in
timing and amplitudes of the modelled δ15N and temperature
compared to the synthetic target data. Histograms (c) and (g)
and subplots (d) and (h) show the distribution and the time
series of the pointwise mismatches (Dδ15Ni for δ15N;DTi for
temperature) between the modelled and the synthetic target
data in δ15N and temperature for each reconstruction step.

Compared to the Monte Carlo solution, the high-frequency
part leads to a large refinement of the reconstructions. For
the mean δ15N misfits Dδ15N, the improvement between the
Monte Carlo and the high-frequency parts is in the range of
64 to 76 % (see Table 4). This leads to a reduction of the
temperature mismatches DT of 43 to 67 %. The standard de-
viations (1σ ) of the pointwise mismatches (Fig. 8c, d, g, h)
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Figure 6. Evolution of the mean misfit (Dδ15Nmc
) of the modelled δ15Nmc versus synthetic target δ15Nsyn as function of the number of

iterations (j ) for the Monte Carlo approach for all synthetic target scenarios.

Table 4. Summary for the high-frequency (hf) and correction part (corr) of the reconstruction approach.D is the mean mismatch between the
modelled δ15N (or temperature) data and the synthetic δ15N (or temperature) target. σ is the standard deviation of the pointwise mismatches
Di . The 95 % quantiles (2σδ15Ncorr,95

or 2σTcorr,95 ) of the pointwise δ15N (or temperature) mismatches are used as an estimate for the 2σ
uncertainty for the final solution (values in bold).

Scenario S1 S2 S3 S4 S5 H1 H2 H3

Dδ15Nhf
(permeg) 2.7 3.6 4.3 3.2 3.5 2.1 2.5 2.6

Improvement (hf vs. MC) (%) 76.1 71.0 66.1 73.1 69.6 63.8 63.8 68.3
σδ15Nhf

(permeg) 3.5 4.6 5.4 4.0 4.3 2.7 3.1 3.3
Dδ15Ncorr

(permeg) 1.7 2.1 2.6 1.9 2.0 1.2 1.3 1.6
Improvement (corr vs. hf) (%) 37.0 41.7 39.5 40.6 42.9 42.9 48.0 38.5
σδ15Ncorr

(permeg) 2.2 2.7 3.3 2.4 2.5 1.5 1.7 1.9
2σδ15Ncorr,95

(permeg) 4.4 5.3 6.3 4.7 4.9 3.0 3.4 3.7
DThf (K) 0.20 0.32 0.33 0.25 0.27 0.18 0.21 0.22
σThf (K) 0.26 0.40 0.43 0.32 0.35 0.22 0.26 0.27
DTcorr (K) 0.12 0.18 0.20 0.14 0.15 0.10 0.11 0.12
σTcorr (K) 0.15 0.24 0.25 0.19 0.19 0.12 0.14 0.15
2σTcorr,95 (K) 0.31 0.48 0.51 0.38 0.37 0.23 0.27 0.30

in δ15N and temperature after the high-frequency parts are
in the range of about 2.7 to 5.4 permeg (one permeg equals
10−6) for δ15N and 0.22 to 0.40 K for the reconstructed tem-
peratures depending on the scenario, which is clearly visible
in the decreasing width of the histograms (Fig. 8c and g, blue
against grey).

The mismatches after the correction part of the reconstruc-
tion approach show clearly a further decrease of the misfits.
This means that the width of the distributions of the point-
wise mismatches Dδ15Ni as well as DTi is further reduced,
and the distributions become more symmetric (long tales dis-
appear; see histograms c and g; red against blue of Fig. 8).
The time series of the mismatches (Fig. 8d and h) clearly

illustrate that the correction approach mainly tackles the ex-
treme deviations (sharp reduction of extreme values’ occur-
rence in the red distribution compared to the blue distribu-
tion) leading to a further improvement of about 40 % in δ15N
and temperature. Finally, the 95 % quantiles (2σδ15Ncorr,95

,
2σTcorr,95 ) of the remaining pointwise mismatches of δ15N and
temperature (Dδ15Ni or DTi ) were calculated for the final so-
lutions for all scenarios and are used as an estimate for the
2σ uncertainty of the reconstruction algorithm (see Fig. 8c,
g and Table 4). The final uncertainties (2σ ) are of the order of
3.0 to 6.3 permeg for δ15N and 0.23 to 0.51 K for the surface
temperature misfits. It is noteworthy that the measurement
uncertainties (per point) of state-of-the-art δ15N measure-
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Figure 7. (a–c) First-guess (g,0) versus Monte Carlo (mc,fin) δ15N solution for the scenario S5: (a) synthetic target δ15Nsyn (black dotted
line), modelled δ15N time series for the first-guess input (blue line) and Monte Carlo solution (red line). (b) Histogram shows the pointwise
mismatches of Dδ15N for the first-guess solution (blue) and the Monte Carlo solution (red) versus the synthetic target. (c) Time series of
the pointwise mismatches of Dδ15N for the first-guess solution (blue) and the Monte Carlo solution (red) versus the synthetic target. (d–
f) First-guess versus Monte Carlo surface-temperature solution Tsurf for the scenario S5: (d) synthetic surface-temperature target Tsyn (black
dotted line), first-guess temperature input (blue line) and Monte Carlo solution (red line). (e) Histogram shows the pointwise temperature
mismatchesDT for the first-guess solution (blue) and the Monte Carlo solution (red) versus the synthetic surface-temperature target. (f) Time
series of the pointwise temperature mismatchesDT for the first-guess solution (blue) and the Monte Carlo solution (red) versus the synthetic
surface-temperature target.

ments are of the same order of magnitude, i.e. 3 to 5 permeg
(Kobashi et al., 2008b), highlighting the effectiveness of the
presented fitting approach. Table 5 contains the final mis-
matches (2σ ) in 1age between the synthetic target and the
final modelled data after the correction step for all scenarios,
and shows that with a known accumulation rate and assumed
perfect firn physics, it is possible to fit the 1age history in
the Holocene with mean uncertainties better than 2 years. In
other words, the uncertainty in 1age reconstruction due to
the inversion algorithm alone is of the order of 2 years.

4 Discussion

4.1 Monte Carlo type input generator

Figure 9 shows the distribution of the COPs (I) and SD val-
ues (II) used to create the improvements (Sect. 2.1, step 2) for
all scenarios. The cut-off periods are more or less evenly dis-
tributed, which shows that nearly all of the allowed frequency
range (500 to 2000 years) was used to create the improve-
ments during the iterations. In contrast, the distributions of
the SD values show clearly that mostly small SD values are
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Figure 8. (a–d) δ15N: (a) synthetic target δ15Nsyn (black dotted line), modelled δ15N time series after adding high-frequency information
(hf, blue line) and correction (corr, red line) for the scenario S5. (b) Zoom-in for a randomly chosen 500-year interval shows the decrease
of the mismatch after the correction compared to the high-frequency solution. (c) Histogram shows the pointwise mismatches Dδ15N of
the synthetic target δ15Nsyn versus the Monte Carlo solution (mc,fin; grey), the high-frequency solution (hf; blue) and the correction (corr;
red). The 95 % quantile is 4.9 permeg (yellow line) and used as an estimate for 2σ uncertainty of the final solution. (d) Time series of the
pointwise mismatches Dδ15N of the synthetic target δ15Nsyn versus the high-frequency solution (hf; blue) and the correction (corr; red).
(e–h) Temperature: (e) synthetic temperature target Tsyn (black dotted line), modelled temperature time series after adding high-frequency
information (hf; blue line) and correction (corr; red line). (f) Zoom-in for a randomly chosen 500-year interval shows the decrease of the
mismatch after the correction compared to the high-frequency solution. (g) Histogram shows the pointwise mismatches DT of the synthetic
temperature target Tsyn versus the Monte Carlo solution (mc,fin; grey), the high-frequency solution (hf; blue) and the correction (corr; red).
The 95 % quantile is 0.37 K (yellow line) and used as an estimate for 2σ uncertainty of the final solution. (h) Time series for the pointwise
mismatches DT of the synthetic temperature target Tsyn versus the high-frequency solution (hf; blue) and the correction (corr; red).

used to create the improvements, which implies that itera-
tions with small perturbations will more likely lead to an im-
provement than larger ones.

Figure 6 reveals a weak point of the Monte Carlo part,
namely the absence of a suitable termination criterion for
the optimization. The implementation until now is conducted

such that the maximum number of iterations is given by the
user or the iterations are terminated after a certain time (e.g.
15 h). Figure 6 shows that for nearly all scenarios it would
be possible to stop the optimization after about 400 itera-
tions, due to rather small additional improvements later on.
This would decrease the time needed for the Monte Carlo
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Figure 9. (I) Counts of the COPs and (II) counts of the SD values used to create the improvements for the smooth temperature solutions of
the Monte Carlo input generator for all synthetic scenarios (S1–S5 and H1–H3). A SD value of 0.1, for example, means that the maximum
allowed perturbation of one temperature value T (t0) is ±10 %.

Table 5. Final mismatches1(1age) (2σ ) of1age between the cor-
rected solution and the synthetic targets for all scenarios.

Scenario 2σ1(1age) Scenario 2σ1(1age)
(yr) (yr)

S1 1.14 S5 1.24
S2 1.60 H1 1.23
S3 1.98 H2 1.18
S4 1.41 H3 1.30

part to about 10 h (a single iteration needs about 90 s). Since
the goal of the Monte Carlo part is to find a temperature re-
alization that leads to an optimal middle passage through the
δ15N target data, it would be possible to use the mean dif-

ference between the δ15N target and spline-filtered δ15N data
using a certain cut-off period as a termination criterion. This
issue is under investigation at the moment. Another possi-
bility to decrease the time needed for the Monte Carlo part
could be an increase in the number of CPUs used for the par-
allelization of the model runs. For this study, an eight-core
parallelization was used. A further increase in numbers of
workers would improve the speed of the optimization.

4.2 High-frequency step and final correction

To investigate the timing and contributions of the remain-
ing mismatches in δ15N and temperature for scenario S1 af-
ter the high-frequency (step 3) and correction parts (step 4),
different cross-correlation experiments were conducted (see
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Sect. S3 in the Supplement). The experiments led to equal
results. The major fraction of the final mismatches of δ15N
emerges from mismatches in the thermal-diffusion compo-
nent Dδ15Ntherm

. Also a cancellation effect between the grav-
itational component Dδ15Ngrav

and Dδ15Ntherm
of the total mis-

match in δ15N became obvious, affecting the calculation of
lagmax,δ15N and lagmin,δ15N and most likely leading to a fun-
damental residual uncertainty in the low-permeg level for the
corrected δ15N data. The same analyses were conducted for
all synthetic scenarios, leading to similar results.

Additionally, the influence of the window length, used
for the calculation of IF(t), on the correction was analysed,
showing that for all investigated window lengths the cor-
rection reduces the mismatches of δ15N and temperature,
whatever correction mode was used (calculated with xcfmax,
xcfmin or both quantities). Moreover, the correction is most
efficient for window lengths in the range of 100 years to
300 years with an optimum at 200 years for all cases.

4.3 Key points to be considered for the application to
real data

4.3.1 Benefits of the novel gas-isotope fitting approach

In addition to the fitting of δ15N data, the algorithm is able
to fit δ40Ar and δ15Nexcess data as well using the same ba-
sic concepts (Fig. 10). Here, the δ40Ar and δ15Nexcess data
from Kobashi et al. (2008b) were used as the fitting targets.
We reach final mismatches (2σ ) of 4.0 permeg for δ40Ar/4
and 3.7 permeg for δ15Nexcess, which are for both quanti-
ties below the analytical measurement uncertainty of 4.0 to
9.0 permeg for δ40Ar/4 and 5.0 to 9.8 permeg for δ15Nexcess
measured data (Kobashi et al., 2008b).

The automated inversion of different gas-isotope quanti-
ties (δ15N, δ40Ar, δ15Nexcess) provides a unique opportunity
to study the differences in the gained solutions using different
targets and to improve our knowledge about the uncertain-
ties of gas-isotope-based temperature reconstructions using
a single firn model. Next, the presented algorithm is not de-
pendent on the firn model, which leads to the implication that
the algorithm can be coupled to different firn models describ-
ing firn physics in different ways. Furthermore, an automated
reconstruction algorithm avoiding manual manipulation and
leading to reproducible solutions makes it possible for the
first time, to study and learn from the differences between
solutions matching different targets. Finally, differences ob-
tained by applying different firn physics (densification equa-
tions, convective zone, etc.) but the very same inversion algo-
rithm may help to assess firn-model shortcomings, resulting
in more robust uncertainty estimates than it was ever possible
before.

In this publication, we show the functionality and the basic
concepts of the automated inversion algorithm using well-
known synthetic δ15N fitting targets. In this “perfect-world
scenario”, the forward problem, converting surface tempera-

ture to δ15N, as well as the inverse problem, converting δ15N
to surface temperature, are completely described by the used
firn model. Consequently, all sources of signal noise are ig-
nored. For the later use of the algorithm on δ15N, δ40Ar
or δ15Nexcess measured data, this will not be the case any-
more due to different sources of signal noise in the used
measured data. As a result, differences between tempera-
ture solutions obtained from individual targets (δ15N, δ40Ar,
δ15Nexcess) will become obvious. These differences will al-
low us to quantify the uncertainties associated with different
unconstrained processes. Next, we will list and discuss po-
tential sources of uncertainties and try to provide suggestions
for their handling and quantification in our approach.

4.3.2 Measurement uncertainty and firn heterogeneity
(centimetre-scale variability)

Many studies have investigated the influence of firn het-
erogeneity (or density fluctuations) on measurements of air
compounds and quantities (e.g. δ15N, δ40Ar, CH4, CO2,
O2 /N2 ratio, air content) extracted from ice cores resulting
in centimetre-scale variability and leading to additional noise
on the measured data (e.g. Capron et al., 2010; Etheridge et
al., 1992; Fourteau et al., 2017; Fujita et al., 2009; Hörhold
et al., 2011; Huber and Leuenberger, 2004; Rhodes et al.,
2013, 2016). Using discrete measurement techniques instead
of continuous sampling methods makes it difficult to quan-
tify these effects. However, during discrete analyses of ice-
core air data, it is common to measure replicates for given
depths, from which the measurement uncertainties of the gas-
isotope data are calculated using pooled standard deviation
(Hedges and Olkin, 1985). Often, it is not possible to take
real replicates (same depth), and instead the replicates are
taken from nearby depths. Hence, any potential centimetre-
scale variability is to some degree already included in the
measurement uncertainty, because each measurement point
represents the average over a few centimetres of ice. This is
especially the case for low-accumulation sites or glacial ice
samples for which the vertical length of a sample (e.g. 10–
25 cm long for the glacial part of the NGRIP ice core; Kindler
et al., 2014) covers the equivalent of 20 to 50 years of ice
at approximately 35 kyr b2k. Increasing the depth resolution
of the samples would increase our knowledge of centimetre-
scale variability, for, e.g. identifying anomalous entrapped
gas layers that could have been rapidly isolated from the sur-
face due to an overlying high-density layer (e.g. Rosen et al.,
2014). As this variability is likely due to heterogeneity in the
density profile, modelling such heterogeneities (if possible at
all) may not help to better reconstruct a meaningful tempera-
ture history but rather to reproduce the source of noise. This
means that the potential centimetre-scale variability, in many
cases, is already incorporated in the analytical noise obtained
from gas-isotope measurements, due to analytical techniques
themselves. Assuming the measurement uncertainty as Gaus-
sian distributed, it is easy to incorporate this source of uncer-
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Figure 10. Fitting of GISP2 Holocene δ40Ar (a–d) and δ15Nexcess (e–h) data (measurement data from Kobashi et al., 2008b): (a) measured
versus modelled δ40Ar/4 time series. (b) Zoom-in for the same quantity as in panel (a). (c) Time series of the final mismatches 1δ40Ar/4 of
the measured minus the modelled δ40Ar/4 data. (d) Histogram for the same quantity as in panel (c) showing an overall final mismatch (2σ )
of 4.0 permeg and offset (os) of −0.5 permeg. (e) Measured versus modelled δ15Nexcess time series. (f) Zoom-in for the same quantity as in
panel (e). (g) Time series of the final mismatches 1δ15Nexcess of the measured minus the modelled δ15Nexcess data. (h) Histogram for the
same quantity as in panel (g) showing an overall final mismatch (2σ ) of 3.7 permeg and offset (os) of −0.8 permeg.

tainty in the inverse-modelling approach presented here. This
will increase the uncertainty of the temperature according to
Eq. (3).The same equation can also be used for the calcula-
tion of the uncertainty in temperature related to measurement
uncertainty in general.

To answer the pertinent question of how to better extract a
meaningful temperature history from a noisy ice-core record,
an excellent – but costly – solution is of course to use multi-
ple ice cores. For example, a δ15N-based temperature recon-
struction from the combination of data from the GISP2 ice
core with the “sister ice core” GRIP drilled 30 km apart is
likely one of the best ways to overcome potential centimetre-

scale variability. A comparison of ice cores that were drilled
even closer might be even more advantageous.

4.3.3 Smoothing effects due to gas diffusion and
trapping

It is known that gas-diffusion and trapping processes in the
firn can smooth out fast signals and result in a damping of the
amplitudes of gas-isotope signals (e.g. Grachev and Sever-
inghaus, 2005; Spahni, 2003). The duration of gas diffusion
from the top of the diffusive column to the bottom where
the air is closed off in bubbles is for Holocene conditions in
Greenland approximately of the order of 10 years (Schwan-
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der et al., 1997), whereas the data resolution of the synthetic
targets was set to 20 years to mimic the measurement data
from Kobashi et al. (2008b) with a mean data resolution of
about 17 years (see Sect. 2.3: “Generating synthetic target
data”). In the study of Kindler et al. (2014), it was shown
that a glacial Greenland lock-in depth leads to a damping of
the δ15N signal of about 30 % for a 10 K temperature rise in
20 years. We further assume that the smoothing according
to the lock-in process is negligible for Greenland Holocene
conditions according to the much smaller amplitude signals
and shallower LID. Yet, for glacial conditions, it requires at-
tention.

4.3.4 Accumulation-rate uncertainties

For the synthetic data study presented in this paper, it is as-
sumed that the used accumulation-rate data are well known
with zero uncertainty. This simplification is used to show the
functionality and basic concepts of the presented fitting al-
gorithm in every detail on well-known δ15N and tempera-
ture targets and to focus on the final uncertainties originating
from the presented fitting algorithm itself. For the later re-
construction using measured gas-isotope data together with
the published accumulation-rate scenarios shown in Sect. S1
of the Supplement, this will not be the case anymore. Un-
certainties in layer counting and corrections for ice thinning
will lead to a fundamental uncertainty. Especially in the early
Holocene, this can easily exceed 10 %. As the accumulation-
rate data are used to run the firn model, all potential accumu-
lation uncertainties are in part incorporated into the temper-
ature reconstruction. On the other hand, as we discussed in
Sect. S2 of the Supplement, the accumulation-rate variabil-
ity has a minor impact compared to the input temperature
on the variability of δ15N data in the Holocene. The influ-
ence of these quantities, accumulation rate or temperature,
on the temperature reconstruction is not equal; during the
Holocene, accumulation-rate variability explains about 12 to
30 % of δ15N variability. A total of 30 % corresponds to the
8.2 kyr event and 12 % to the mean of the whole Holocene
period including the 8.2 kyr event. Hence, the influence of
accumulation changes, excluding the extreme 8.2 kyr event,
is generally below 10 % during the Holocene. If the accumu-
lation is assumed to be completely correct, then the missing
part will be assigned to temperature variations. Nevertheless,
for the fitting of the Holocene measurement data, we will use
all three accumulation-rate scenarios as shown in Sect. S1 of
the Supplement. The difference in the reconstructed tempera-
tures arising from the differences of these three scenarios will
be used for the uncertainty calculation as well and is most
likely higher than the uncertainty arising from uncertainties
due to the process of producing the accumulation-rate data
and from the conversion of the accumulation-rate data to the
GICC05 timescale.

4.3.5 Convective zone variability

Many studies have shown the existence of a well-mixed
zone at the top of the diffusive firn column, called the con-
vective zone (CZ). The CZ is formed by strong katabatic
winds and pressure gradients between the surface and the
firn (e.g. Kawamura et al., 2006, 2013; Severinghaus et al.,
2010). The existence of a CZ changes the gravitational back-
ground signal in δ15N and δ40Ar as it reduces the diffusive-
column height. The presented fitting algorithm was used to-
gether with the two most frequently used firn models for tem-
perature reconstructions based on stable isotopes of air, the
Schwander et al. (1997) model which has no CZ built in (or
better – a constant CZ of 0 m) and the Goujon firn model
(Goujon et al., 2003) (which assumes a constant convective
zone over time, that can easily be set in the code). This differ-
ence between the two firn models only changes significantly
the absolute temperature rather than the temperature anoma-
lies as it was shown by other studies (e.g. Guillevic et al.,
2013, Fig. 3). In the presented work, we show the results us-
ing the model from Schwander et al. (1997), because the dif-
ferences between the obtained solutions using the two mod-
els are negligible, except a constant temperature offset. Also
noteworthy is that there is no firn model at the moment which
uses a dynamically changing CZ. Indeed, this should be in-
vestigated but requires additional intense work. Additionally,
the knowledge of the time evolution of CZ changes for time
periods of millennia to several hundreds of millennia (in fre-
quency and magnitude) is too poor to estimate the influence
of this quantity on the reconstruction. In principle, it is pos-
sible to cancel out the influence of a potentially changing CZ
by using δ15Nexcess data for temperature reconstruction, as
due to the subtraction of δ40Ar/4 from δ15N the gravitational
term of the signals is eliminated. From that point of view, it
will be interesting to compare temperature solutions gained
from δ15Nexcess fitting with the solutions based on δ15N or
δ40Ar alone. This can offer a useful tool for quantifying the
magnitude and frequency of CZ changes in the time interval
of interest.

It is known that for some very low accumulation-rate
sites in areas with strong katabatic winds (e.g. “megadunes”,
Antarctica) extremely deep CZs can occur, which are po-
tentially able to smooth out even decadal-scale temperature
variations (Severinghaus et al., 2010). For this, its deepness
would need to be of several dozens of metres, which is highly
unrealistic even for glacial Summit conditions (Guillevic et
al., 2013; see discussion in Annex A4, p. 1042) as well as for
the rather stable Holocene period in Greenland for which no
low accumulation and strong katabatic wind situations are to
be expected.

4.4 Proof of concept for glacial data

For glacial conditions, the task of reconstructing temper-
ature (with correct frequency and magnitude) without us-
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ing δ18Oice information is much more challenging due to
the highly variable gas-age – ice-age differences (1age) be-
tween stadial and interstadial conditions. Here, contrary to
the rather stable Holocene period, the 1age can vary by sev-
eral hundreds of years. Also, the accumulation-rate data are
more uncertain than for the Holocene. To prove that the pre-
sented fitting algorithm also works for glacial conditions, we
inverted the δ15N data measured for the NGRIP ice core by
Kindler et al. (2014) for two Dansgaard–Oeschger events,
namely DO6 and DO7. Since the magnitudes of those events
are higher and the signals are smoother than in the Holocene,
we only had to use the Monte Carlo type input generator (see
Sect. 2.1.2) for changing the temperature inputs. To com-
pare our results to the δ18Oice-based and manually calibrated
values from Kindler et al. (2014), we use the ss09sea06bm
timescale (NGRIP members, 2004; Johnsen et al., 2001) as
it was done in the Kindler et al. (2014) publication. For the
model spin-up, we use the accumulation-rate and tempera-
ture data from Kindler et al. (2014) for the time span 36.2
to 60 kyr. The reconstruction window (containing DO6 and
DO7) is set to 32 to 36.2 kyr. As the first-guess (starting
point) of the reconstruction, we use the accumulation-rate
data (Accg,0) for NGRIP from the ss09sea06bm timescale to-
gether with a constant temperature of about −49 ◦C for this
time window. As minimization criterion Dg for the recon-
struction, we simply use the sum of the root mean squared
errors of the δ15N and 1age mismatches weighted with their
uncertainties (wRMSE) according to the following equa-
tion, instead of the mean δ15N misfit alone as used for the
Holocene (Eq. 1).

Dgl = wRMSE
(
δ15N

)
+wRMSE(1age)

=

√√√√ 1
N

∑
i

[
δ15Nmeas,i − δ

15Nmod,i

εδ15Ni

]2

+

√√√√ 1
M

∑
k

[
1agemeas,k −1agemod,k

ε1age,k

]2

. (14)

Here, εδ15Ni and ε1age,k are the uncertainties in δ15N and
1age for the measured values i or k (1age match points:
Guillevic, 2013, p. 65, Table 3.2) and N , M the number
of measurement values. We set εδ15Ni = 20 permeg for all
i (Kindler et al., 2014) and ε1age,k = 50 years for all k.
The relative uncertainties in 1age can easily reach up to
50 % and more in the glacial period using the ss09sea06bm
timescale which results in a pre-eminence of the δ15N mis-
fits over the 1age misfits (10 to 20 % when using GICC05
timescale; Guillevic, 2013, p. 65 Table 3.2). Due to this is-
sue, we have to set 1age uncertainties to 50 years to make
both terms equally important for the fitting algorithm. In
Fig. 11, we show preliminary results. The δ15N and 1age
fitting (Fig. 11a, b) and the resulting gained temperature and
accumulation-rate solutions (Fig. 11c, d) using the presented

algorithm are completely independent from δ18Oice, which
provides the opportunity to evaluate the δ18Oice-based re-
constructions. In this study, the algorithm was used in three
steps. First, starting with the first guess (constant temper-
ature), the temperature was changed as explained before.
The accumulation rate was changed in parallel to the tem-
perature, allowing a random offset shift (up and down) to-
gether with a stretching or compressing (in y direction) of the
accumulation-rate signal over the whole time window (32 to
36.2 kyr). This first step leads to the “Monte Carlo solution
0” (MCS0) which provides a first approximation and is the
base for the next step. For the next step, we fixed the ac-
cumulation rate and let the algorithm only change the tem-
perature to improve the δ15N fit (MCS1). Finally, we allow
the algorithm to change the temperature together with the ac-
cumulation rate using the Monte Carlo type input generator
for both quantities. This allows to change the shape of the
accumulation-rate data. This final step can be seen as a fine
tuning of the gained solutions from the steps before. The ob-
tained mismatches in δ15N and 1age of all steps are at least
of the same quality or better than the δ18Oice-based manual
method from Kindler et al. (2014) (see Table 6). The gained
temperature solutions show a very good agreement in timing
and magnitude compared to the reconstruction of Kindler et
al. (2014). Also, the accumulation-rate solutions show that
the accumulation has to be reduced significantly compared
to the ss09sea06bm data to allow a suitable fit of the δ15N
and 1age target data, a result highly similar to Guillevic
et al. (2013) and Kindler et al. (2014). The mismatches in
δ15N and1age of the final (MCS FIN) solution show a 15 %
smaller misfit of δ15N (2σ ) and an about 31 % smaller misfit
of 1age (2σ ) compared to the Kindler et al. (2014) solu-
tion. Keeping in mind that the used approach is completely
independent from δ18Oice strengthens the functionality and
quality of the presented gas-isotope fitting approach also for
glacial reconstructions. As this section contains a proof of
concept of the presented automated gas-isotope fitting algo-
rithm on glacial data, preliminary results and ongoing work
were shown here. Furthermore, as the presented fitting algo-
rithm was developed and tested in first order for Holocene-
like data, it is highly probable that the functionality of the
algorithm using glacial data will be further extended and ad-
justed in future studies.

5 Conclusion

A novel approach is introduced and described for inverting
a firn-densification and heat-diffusion model to fit small gas-
isotope-data variations as observed throughout the Holocene.
From this new fitting method, it is possible to extract the
surface-temperature history that drives the firn status which
in turn leads to the gas-isotope time series. The approach
is a combination of a Monte Carlo based iterative method
and the analysis of remaining mismatches between modelled
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Figure 11. Proof of concept for glacial reconstructions (NGRIP DO6 and DO7): (a) δ15N target plot: δ15N model output for the first-guess
input (blue line), Kindler et al. (2014) fit (orange dotted line), Monte Carlo solution 0 (MCS0, yellow line), Monte Carlo solution 1 (MCS1,
purple line), final Monte Carlo solution (MCS FIN, green line) and δ15N measurement target (black dotted line, measurement points are black
cycles, data from Kindler et al., 2014). (b) 1age target plot: 1age model output for the first-guess input (blue line), Kindler et al. (2014) fit
(orange dotted line), Monte Carlo solution 0 (MCS0, yellow line), Monte Carlo solution 1 (MCS1, purple line), final Monte Carlo solution
(MCS FIN, green line) and 1age measurement target (black dotted line, measurement points are black cycles, data from Guillevic, 2013).
(c) Temperature solution plot: first-guess input (blue line), Kindler et al. (2014) solution (orange dotted line), Monte Carlo solution 0 (MCS0,
yellow line), Monte Carlo solution 1 (MCS1, purple line) and final Monte Carlo solution (MCS FIN, green line). (d) Accumulation-rate
solution plot: first-guess input (blue line), Kindler et al. (2014) solution (orange dotted line), Monte Carlo solution 0 (MCS0, yellow line),
Monte Carlo solution 1 (MCS1, purple line) and final Monte Carlo solution (MCS FIN, green line).

and target data. The procedure is fully automated and pro-
vides a high potential for parallel computing for time con-
sumption optimization. Additional sensitivity experiments
have shown that accumulation-rate changes have only a mi-
nor influence on short-term variations of δ15N, which them-
selves are mainly driven by high-frequency temperature vari-

ations. To evaluate the performances of the presented ap-
proach, eight different synthetic δ15N time series were cre-
ated from eight known temperature histories. The fitting ap-
proach leads to an excellent agreement in timing and am-
plitudes between the modelled and synthetic δ15N and tem-
perature data. The obtained final mismatches follow a sym-
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Table 6. Proof of concept for glacial reconstruction: Dgl is the used minimization criterion (see Sect. 4.4).

Solution Dg Mismatch δ15N Mean mismatch Mismatch Mean mismatch
(2σ ) (permeg) δ15N∗ (permeg) 1age (2σ ) (yr) 1age∗ (yr)

Kindler et al. (2014) 3.6 44.5 17.9 256 101
First guess 7.8 128.7 63.8 328 138
MCS0 3.1 50.0 19.3 199 82
MCS1 2.9 44.3 17.6 200 84
MCS FIN 2.6 37.8 15.6 175 63

∗ The mean mismatches for δ15N and 1age were calculated according to Eq. (1).

metric standard-distribution function. A total of 95 % of the
mismatches compared to the synthetic data are in an enve-
lope between 3.0 to 6.3 permeg for δ15N and 0.23 to 0.51 K
for temperature, depending on the synthetic temperature sce-
narios. These values can therefore be used as a 2σ estimate
for the reconstruction uncertainty arising from the presented
fitting algorithm itself. For δ15N, the obtained final uncer-
tainties are of the same order of magnitude as state-of-the-art
measurement uncertainty. The presented reconstruction ap-
proach was also successfully applied to δ40Ar and δ15Nexcess
measured data. Moreover, we have shown that the presented
fitting approach can also be applied to glacial temperature re-
constructions with minor algorithm modifications. Based on
the demonstrated flexibility of our inversion methodology, it
is reasonable to adapt this approach for reconstructions of
other non-linear physical processes.

Code and data availability. The synthetic δ15N and temperature
targets, the reconstructed δ15N and temperature data (using the syn-
thetic δ15N as fitting targets), and the used accumulation rates can
be found in the data supplement of this paper available at https:
//doi.pangaea.de/10.1594/PANGAEA.888997 (Döring and Leuen-
berger, 2018). The GISP2 δ18Oice data used in this study for cal-
culating the temperature spin-up can be found in Grootes and Stu-
iver (1999). The source code for the inversion algorithm and addi-
tional auxiliary data are available upon request.
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online at: https://doi.org/10.5194/cp-14-763-2018-supplement.
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