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S1: Accumulation-rate data: 

Originally, the accumulation rates used to feed the ice-flow model were optimised in order to match the time 
scale from Meese et al. (1994) for the Holocene, based on annual-layer-counting. Seierstad et al. (2014) 
transferred the GISP2 chronology to the GICC05 reference timeframe using multiple match points to the NGRIP 
and GRIP ice cores, both already on GICC05. We used these match points and modified the GISP2 ages in 
between match points linearly in order to match exactly the GICC05 duration for the considered interval 
duration. This way, the detailed GISP2 annual-layer-counting information is kept, but is only 
stretched/compressed in time. This was done for all intervals in between two match points. The accumulation 
data were then re-calculated accordingly as obviously this is needed in order to keep the same total amount of ice 
accumulated at the GISP2 site. 

S2: Sensitivity study on the impact of filtering of accumulation on the model outputs and the influence of 
the accumulation on Holocene δ15N data 

In order to investigate the influence of smoothing of the accumulation-rate data on the model outputs, the high 
resolution accumulation-rate dataset in the time window of 20 yr to 12000 yr (Fig. 2a) were low-pass filtered 
with cut-off-periods between 20 yr and 500 yr, and used to drive the firn model. The surface-temperature input 
was set as constant with a value of -31 °C for this time window. Then, the deviations of the filtered from the 
unfiltered accumulation rates and model outputs were calculated. Figure S2 shows the absolute (I) as well as the 
relative deviations (II) (relative to the unfiltered scenario) as a function of the cut-off-periods for the 
accumulation-rate input-data, δ15N, and LID model outputs. Regarding the standard deviation (1σ) of the relative 
accumulation deviations as a measure for the mean deviation of the filtered minus the unfiltered values show that 
filtering the accumulation rates leads to a mean deviation of about 20 % between the filtered and unfiltered 
accumulation-rate data, depending on the used cut-off-period (see Fig. S2IIa). We use the mean 99 % quantile of 
the same analysis (Fig. S2IIb) as a measure for the maximum deviation between the filtered and unfiltered 
values. The filtering clearly leads to a maximum accumulation-rate deviation of about 50 %. The comparison of 
the related deviations in δ15N and LID outputs reveals that the changes in the accumulation rates do not lead to a 
change in the same order for the model outputs. Indeed, the filtering of the accumulation-rate data lead to 
deviations of less than 0.6 % and less than 1.5 % for the mean and the maximum δ15N and LID deviations, 
respectively (Fig. S2IIc,d). Therefore, it can be argued that a low-pass filtering of the accumulation rates for cut-
off-periods between 20 yr and 500 yr does only have a small impact on the model outputs as long as the major 
trends are being conserved, because the filtering does not modify the mean accumulation. This result is expected 
due to the fact that the LID and finally δ15N changes are the result of the integration of the accumulation over the 
whole firn column. The integration-time corresponds to the age of the ice at the LID, which is in the order of 
200 yr for the Holocene in Greenland. 

Finally, we test which fraction of the measured δ15N variations can be attributed to accumulation changes. For 
this, we perform a sensitivity experiment (Fig. S3) where the temperature input was set as a constant value of -
31 °C, and used together with the high-resolution accumulation-rate data (Fig. 2a) to model the LID (Fig. S3a) 
and δ15N (Fig. S3b) values. Due to the absence of temperature changes, only the accumulation-rate changes drive 
the evolution of the diffusive-column-height (LID) over time which modulates the δ15N values. Next, the 
modelled δ15N variations are compared to the δ15N measurement data (Fig. 5III) (Kobashi et al., 2008b) to 
examine the influence of the accumulation-rate changes on changes in δ15N for two cases. First, for the 8.2k 
event, the signal amplitude in δ15N is about three times higher for the measured data compared to the modelled 
ones (measured data: Δδ15N8.2k,meas ≈ 60 permeg (one permeg equals 10-6); modelled data: 
Δδ15N8.2k,mod ≈ 20 permeg). The comparison of the standard deviations of the measured data with the modelled 
δ15N data for the last 10 kyr (both quantities were normalized with their respective means), shows an even higher 
deviation of the measured versus the modelled variabilities by a factor of about eight. 

measured data: std[δ15N10kyr,meas − mean(δ15N10kyr,meas)] ≈ 37 permeg; 

modelled data: std[δ15N10kyr,mod − mean(δ15N10kyr,mod)] ≈ 4.5 permeg; 

This analysis supports our assumption that the accumulation-rate history alone cannot fully explain the observed 
variability in δ15N during the Holocene, and gives an upper limit for the contribution of the accumulation rate to 
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the δ15N signal. Therefore, the remaining part of the measured δ15N variations has to be related to changes in 
surface temperature. 

S3: Cross-correlation experiments 

Several analyses were conducted in order to investigate the remaining mismatches in δ15N and temperature after 
the high-frequency (step 3) and the correction part (step 4) of the reconstruction, respectively. First, the total 
misfit of δ15N (Dδ15Ntot) was separated into two fractions: gravitational (Dδ15Ngrav) and thermal-diffusion 
mismatches (Dδ15Ntherm) of δ15N (Fig. S4). Figure S4 indicates that the main fraction of the total mismatch of δ15N 
is due to the misfit of the thermal-diffusion component of the δ15N signal, whereas the gravitational misfit of 
δ15N has only a minor contribution. The ratio of the standard deviations σ(Dδ15Ntherm)/σ(Dδ15Ngrav) is about 2.4 for 
the high-frequency solution, and about 2.3 for the corrected signal, showing that the misfit in the thermal-
diffusion part is more than twice as high as in the gravitational component.  

In Fig. S5a the xcf between the mismatch of total δ15N (Dδ15Ntot,hf) and the misfit of temperature (DT,hf) is shown. 
The cross correlation leads to two extrema (r1a=0.70, r2a=˗0.55) on two certain lags (l1a=˗2 yr, l2a=+126 yr). In 
subplot (b) and (c) the same analysis is conducted between the mismatch of the gravitational (Dδ15Ngrav,hf) 
component (b), and the thermal-diffusion (Dδ15Ntherm,hf) component (c) of δ15N and the temperature mismatch. It 
is obvious that the xcf of (a) is a combination of (b) and (c). The direct correlation on l1a of (a) can be attributed 
mainly to the mismatch of the thermal-diffusion component of δ15N, whereas the negative correlation on l2a is 
due to the mismatch of the gravitational component of δ15N. Regarding the xcfs of (a)-(c) at a certain lag l, i.e. l 
= 0 yr shows that here (and on most of the other lags) the correlations between Dδ15Ngrav,hf with DT,hf and 
Dδ15Ntherm,hf with DT,hf work in opposite directions, which makes it difficult to find a way to correct the remaining 
temperature mismatch using only information from Dδ15Ntot,hf

 for measurement data (when only Dδ15Ntot,hf is 
available). The correlation on l1a in (a) is weakened, whereas the lag l2a is shifted to higher values because of the 
superposition of gravitational and thermal-diffusion mismatch. Figure S5d shows also that the gravitational and 
thermal-diffusion mismatches of δ15N are not independent, but the correlations at the extrema are relatively weak 
(r1d=0.38, r2d=˗0.56). The negative correlation r2d is a sign for the compensation effect between the gravitational 
and thermal-diffusion signals in δ15N due to the high-frequency part of the reconstruction, whereas no 
explanation could be found for the positive correlation r1d. The symmetric behaviour of the lags for r1d and r2d (l1d 

= ˗88 yr ≈ ˗l2d=93 yr) suggest that r1d could be an artefact of a periodic behaviour of Dδ15Ngrav,hf and Dδ15Ntherm,hf. 
Figures S6a-d show the same analysis after the correction part of the reconstruction. It is evident that in all cases 
the extrema in the different xcfs break down due to the correction of the temperature signal, which is the 
consequence of the decreasing mismatches of temperature as well as of δ15N. The comparison of the subplots (a), 
(b) and (c) also shows that the remaining temperature misfits after the correction are mainly driven by the 
mismatches of the thermal-diffusion signal of δ15N with a minor contribution of the gravitational misfit. 

Figures S5e-h show the cross-correlations between IF(t) used for the correction of the high-frequency 
temperature solution, and the temperature misfit (e), the mismatch of total δ15N (f), the mismatch of the 
gravitational (g) and thermal-diffusion (h) component of the δ15N signal calculated from the high-frequency 
temperature solution. For the correction, the cross-correlations (e) and (f) were used (see Sect. 2.1, step 4 and 
Fig. 3). Since for measured data neither information about the temperature mismatch (the true temperature is not 
known) nor about the mismatch of the components of δ15N (gravitational, thermal-diffusion) are available, it is 
imperative that the symmetric behaviour between the xcf(IF(t), DT,hf(t)) and inverted xcf(IF(t), Dδ15Ntot,hf(t)) holds 
true. This criterion is fulfilled for all eight synthetic data scenarios and especially for H1-H3. The comparison of 
the subplots (f), (g) and (h) of Fig. S5 show the same findings as before, namely that the xcf for IF(t) versus 
Dδ15Ntot,hf is the combination of the xcfs of IF(t) versus Dδ15Ngrav,hf and IF(t) versus Dδ15Ntherm,hf, and that the major 
fraction of Dδ15Ntot,hf is contributed from Dδ15Ntherm,hf. The advantage to use IF(t) for the correction is the 
symmetry between the two cross-correlations, which is created by two factors. The first one is the allocation of 
the window mid position to the entries of IF, which leads to the symmetric behaviour of the gravitational and 
thermal-diffusion misfits. Second, the shifting of the window in 1 yr steps creating IF(t) over the whole data set 
leads to an averaged information, but even more importantly, to constant dependency between the temperature 
and δ15N mismatches. This can be used later on to fit measured data. 
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The calculation of IF(t) was conducted for different window lengths ranging from 50 yr to 750 yr (Fig. S7). 
Also, the correction was calculated by using only xcfmax or xcfmin of IF(t) versus Dδ15N,hf for correcting the 
temperature input. Figures S7a,b show the remaining mismatches of δ15N (Dδ15N,corr) (a), and temperature (DT,corr) 
(b) after the correction as a function of the used window length for IF(t). The analysis shows that for all 
investigated window lengths the correction reduces the mismatches of δ15N and temperature, whatever correction 
mode was used (calculated with xcfmax, xcfmin, or both quantities, see comparison with the blue line in (a) and 
(b)). Furthermore, the correction works best for window lengths in the range of 100 yr to 300 yr with an 
optimum at 200 yr for all cases. This indicates that the maximum mean duration effect of a δ15N mismatch 
creating a temperature mismatch (and vice versa) is in the same range for the investigated scenarios and such 
small deviations (low permeg level). It is also visible that the correction using both extrema (xcfmax and xcfmin) 
leads to a better correction as the approach using only one quantity. This is somehow surprising because the two 
extrema are the result of the periodicity of IF(t), Dδ15N,hf and DT,hf. An explanation for this result could be that a 
larger section of the temperature time-series is corrected when both extrema are used for the correction, due to 
shifts in both directions. The correction using xcfmax only leads to a better fit than the one with xcfmin, which can 
be attributed to the higher correlation between IF(t) and Dδ15N,hf. Figures S7e,f show the evolution of the lags 
corresponding to the two extrema for the cross-correlations between IF(t), and the δ15N and temperature 
mismatches, respectively. The linear dependency between the lags and the window length (the lags are nearly 
half of the window length) is the result of the construction of IF(t), which means the averaging due to the 
integration in the window of this certain length and the symmetric behaviour due to the allocation of the window 
mid position to the entries of IF(t). 
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Left figures: Right figures:

(I) Tsurf = const. = - 45 °C

(II) Tsurf = const. = - 31 °C

(i) (ii)

(a) (b)

(d)(c)

(e)

(a)

(c)

(b)

(d)

(e)

Figure S1: Possible accumulation-rate scenarios (i), the deviation from the averaged scenario (ii) and resulting 
modelled lock-in-depth (LID) (a) and δ15N values (b) and deviations (c), (d), as well as, corresponding temperature 
uncertainties Δϑ (e), for a constant temperature-input (I) -45 °C and (II) -31 °C. 
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Figure S2: (I): Standard deviation (1σ) (a,c,e) and mean 99 % quantile (b,d,f) absolute deviations as a function of the 
cut-off-period (COP) for the last 10 kyr for: (a), (b) filtered minus unfiltered accumulation-rate data. (c), (d) modelled 
lock-in-depths (LID) using the filtered accumulation-rate scenarios minus LID time-series using the unfiltered 
accumulation-rate data. (e),(f) modelled δ15N values using the filtered accumulation-rate scenarios minus δ15N time-
series using the unfiltered accumulation-rate data. (II): (a-d) Standard deviation (1σ) (a,c) and mean 99 % quantile (b,d) 
for the relative deviations compared to the unfiltered accumulation-rate scenario as a function of the cut-off-period for 
the last 10 kyr for: (a), (b) filtered minus unfiltered accumulation-rate data. (c), (d) LID and δ15N deviations using the 
filtered accumulation-rate scenarios minus LID and δ15N time-series using the unfiltered accumulation-rate data.
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Figure S3: Lock-in-depth (LID) (a) and resulting δ15N time-series (b) for the last 10 kyr using a constant surface-temperature 
input of -31 °C and the high resolution accumulation-rate input (Fig. 02a).
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Figure S4: Histograms shows the pointwise mismatches Dδ15N,i in δ15N between the synthetic target data and the δ15N solution of the 
high-frequency part (blue) and the correction part (red) for (a) the mismatch in total δ15N (Dδ15Ntot,i), (b) in the gravitational 
(Dδ15Ngrav,i), and (c) in the thermal-diffusion component (Dδ15Ntherm,i) of δ15N for the synthetic data scenario S1.
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Figure S5: Cross-correlation-functions (xcf) for the scenario S1, investigating the dependencies between the temperature 
mismatch DT, the mismatch Dδ15N in total (tot), gravitational (grav) and thermo-diffusion (therm) fraction of the δ15N signal 
and IF after the high-frequency part (hf); (a) xcf: Dδ15N,tot vs. DT; (b) xcf: Dδ15N,grav vs. DT; (c) xcf: Dδ15N,therm vs. DT; (d) xcf: 
Dδ15N,grav vs. Dδ15N,therm; (e) xcf: IF vs. DT; (f) xcf: IF vs. Dδ15N,tot; (g) xcf: IF vs. Dδ15N,grav vs. DT; (h) xcf: IF vs. Dδ15N,therm.
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Figure S6: Cross-correlation-functions (xcf) for the scenario S1 investigating the dependencies between the temperature 
mismatch DT, the mismatch Dδ15N in total (tot), gravitational (grav) and thermo-diffusion fraction (therm) of the δ15N 
signal and IF after the correction part (corr); (a) xcf: Dδ15N,tot vs. DT; (b) xcf: Dδ15N,grav vs. DT; (c) xcf: Dδ15N,therm vs. DT; (d) 
xcf: Dδ15N,grav vs. Dδ15N,therm; (e) xcf: IF vs. DT; (f) xcf: IF vs. Dδ15N,tot; (g) xcf: IF vs. Dδ15N,grav vs. DT; (h) xcf: IF vs. 
Dδ15N,therm.
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Figure S7: Dependency of the correction on the used window length (50 yr to 750 yr) for calculating IF for the 
scenario S1: (a) Remaining mismatch in δ15N (Dδ15N,corr) versus used window length for IF, after the correction of 
the temperature misfit DT,hf (blue line) and recalculation of δ15N, with the corrected temperature, using the 
maximum (red line) of xcf between IF and the Dδ15N, the minimum (yellow line) of xcf and both (purple line), for 
the correction. (b) Remaining mismatch in temperature (DT,corr) versus used window length for IF, after the 
correction of the temperature misfit DT,hf (blue line), using the maximum (red line) of xcf between IF and Dδ15N, 
the minimum (yellow line) of xcf and both (purple line), for the correction. (c) Maximum (max xcf) correlation 
coefficient for the xcf between IF and DT (blue line), and IF and Dδ15N (red line) as function of the used window 
length for IF. (d) Minimum (min xcf) correlation coefficient for the xcf between IF and DT (blue line), and IF 
and Dδ15N (red line) as a function of the used window length for IF. (e) Related lag to the maximum (max xcf) 
correlation coefficient for the xcf between IF and DT (blue line), and IF and Dδ15N (red line) as a function of the 
used window length for IF. (f) Related lag to the minimum (min xcf) correlation coefficient for the xcf between 
IF and DT (blue line), and IF and Dδ15N (red line) as a function of the used window length for IF.
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