Articles | Volume 14, issue 3
https://doi.org/10.5194/cp-14-321-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-14-321-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Reinforcing the North Atlantic backbone: revision and extension of the composite splice at ODP Site 982
MARUM – Center for Marine Environmental Sciences, University of
Bremen, Bremen, Germany
Thomas Westerhold
MARUM – Center for Marine Environmental Sciences, University of
Bremen, Bremen, Germany
David Hodell
Department of Earth Sciences, University
of Cambridge, Cambridge CB2 3EQ, UK
Ursula Röhl
MARUM – Center for Marine Environmental Sciences, University of
Bremen, Bremen, Germany
Related authors
Ji-Eun Kim, Thomas Westerhold, Laia Alegret, Anna Joy Drury, Ursula Röhl, and Elizabeth M. Griffith
Clim. Past, 18, 2631–2641, https://doi.org/10.5194/cp-18-2631-2022, https://doi.org/10.5194/cp-18-2631-2022, 2022
Short summary
Short summary
This study attempts to gain a better understanding of the marine biological carbon pump and ecosystem functioning under warmer-than-today conditions. Our records from marine sediments show the Pacific tropical marine biological carbon pump was driven by variations in seasonal insolation in the tropics during the Late Cretaceous and may play a key role in modulating climate and the carbon cycle globally in the future.
Anna Joy Drury, Diederik Liebrand, Thomas Westerhold, Helen M. Beddow, David A. Hodell, Nina Rohlfs, Roy H. Wilkens, Mitchell Lyle, David B. Bell, Dick Kroon, Heiko Pälike, and Lucas J. Lourens
Clim. Past, 17, 2091–2117, https://doi.org/10.5194/cp-17-2091-2021, https://doi.org/10.5194/cp-17-2091-2021, 2021
Short summary
Short summary
We use the first high-resolution southeast Atlantic carbonate record to see how climate dynamics evolved since 30 million years ago (Ma). During ~ 30–13 Ma, eccentricity (orbital circularity) paced carbonate deposition. After the mid-Miocene Climate Transition (~ 14 Ma), precession (Earth's tilt direction) increasingly drove carbonate variability. In the latest Miocene (~ 8 Ma), obliquity (Earth's tilt) pacing appeared, signalling increasing high-latitude influence.
Mitchell Lyle, Anna Joy Drury, Jun Tian, Roy Wilkens, and Thomas Westerhold
Clim. Past, 15, 1715–1739, https://doi.org/10.5194/cp-15-1715-2019, https://doi.org/10.5194/cp-15-1715-2019, 2019
Short summary
Short summary
Ocean sediment records document changes in Earth’s carbon cycle and ocean productivity. We present 8 Myr CaCO3 and bulk sediment records from seven eastern Pacific scientific drill sites to identify intervals of excess CaCO3 dissolution (high carbon storage in the oceans) and excess burial of plankton hard parts indicating high productivity. We define the regional extent of production intervals and explore the impact of the closure of the Atlantic–Pacific Panama connection on CaCO3 burial.
Roy H. Wilkens, Thomas Westerhold, Anna J. Drury, Mitchell Lyle, Thomas Gorgas, and Jun Tian
Clim. Past, 13, 779–793, https://doi.org/10.5194/cp-13-779-2017, https://doi.org/10.5194/cp-13-779-2017, 2017
Short summary
Short summary
Here we introduce the Code for Ocean Drilling Data (CODD), a unified and consistent system for integrating disparate data streams such as micropaleontology, physical properties, core images, geochemistry, and borehole logging. As a test case, data from Ocean Drilling Program Leg 154 (Ceara Rise – western equatorial Atlantic) were assembled into a new regional composite benthic stable isotope record covering the last 5 million years.
Julia de Entrambasaguas, Thomas Westerhold, Heather L. Jones, and Laia Alegret
J. Micropalaeontol., 43, 303–322, https://doi.org/10.5194/jm-43-303-2024, https://doi.org/10.5194/jm-43-303-2024, 2024
Short summary
Short summary
The Gulf Stream plays a crucial role in the ocean stability and climate regulation of the Northern Hemisphere. By analysing the fossil microorganisms that lived in the water column and the ocean floor, as well as reconstructing the ancient ocean's biogeochemistry, we were able to trace longitudinal shifts in the Gulf Stream during the late Eocene (36 Ma). Our results provide insight into the Gulf Stream's behaviour and the NW Atlantic's palaeoceanography during the Late Eocene (ca. 36 Ma).
Marci M. Robinson, Kenneth G. Miller, Tali L. Babila, Timothy J. Bralower, James V. Browning, Marlow J. Cramwinckel, Monika Doubrawa, Gavin L. Foster, Megan K. Fung, Sean Kinney, Maria Makarova, Peter P. McLaughlin, Paul N. Pearson, Ursula Röhl, Morgan F. Schaller, Jean M. Self-Trail, Appy Sluijs, Thomas Westerhold, James D. Wright, and James C. Zachos
Sci. Dril., 33, 47–65, https://doi.org/10.5194/sd-33-47-2024, https://doi.org/10.5194/sd-33-47-2024, 2024
Short summary
Short summary
The Paleocene–Eocene Thermal Maximum (PETM) is the closest geological analog to modern anthropogenic CO2 emissions, but its causes and the responses remain enigmatic. Coastal plain sediments can resolve this uncertainty, but their discontinuous nature requires numerous sites to constrain events. Workshop participants identified 10 drill sites that target the PETM and other interesting intervals. Our post-drilling research will provide valuable insights into Earth system responses.
Julia Homann, Niklas Karbach, Stacy A. Carolin, Daniel H. James, David Hodell, Sebastian F. M. Breitenbach, Ola Kwiecien, Mark Brenner, Carlos Peraza Lope, and Thorsten Hoffmann
Biogeosciences, 20, 3249–3260, https://doi.org/10.5194/bg-20-3249-2023, https://doi.org/10.5194/bg-20-3249-2023, 2023
Short summary
Short summary
Cave stalagmites contain substances that can be used to reconstruct past changes in local and regional environmental conditions. We used two classes of biomarkers (polycyclic aromatic hydrocarbons and monosaccharide anhydrides) to detect the presence of fire and to also explore changes in fire regime (e.g. fire frequency, intensity, and fuel source). We tested our new method on a stalagmite from Mayapan, a large Maya city on the Yucatán Peninsula.
Rodrigo Martínez-Abarca, Michelle Abstein, Frederik Schenk, David Hodell, Philipp Hoelzmann, Mark Brenner, Steffen Kutterolf, Sergio Cohuo, Laura Macario-González, Mona Stockhecke, Jason Curtis, Flavio S. Anselmetti, Daniel Ariztegui, Thomas Guilderson, Alexander Correa-Metrio, Thorsten Bauersachs, Liseth Pérez, and Antje Schwalb
Clim. Past, 19, 1409–1434, https://doi.org/10.5194/cp-19-1409-2023, https://doi.org/10.5194/cp-19-1409-2023, 2023
Short summary
Short summary
Lake Petén Itzá, northern Guatemala, is one of the oldest lakes in the northern Neotropics. In this study, we analyzed geochemical and mineralogical data to decipher the hydrological response of the lake to climate and environmental changes between 59 and 15 cal ka BP. We also compare the response of Petén Itzá with other regional records to discern the possible climate forcings that influenced them. Short-term climate oscillations such as Greenland interstadials and stadials are also detected.
David A. Hodell, Simon J. Crowhurst, Lucas Lourens, Vasiliki Margari, John Nicolson, James E. Rolfe, Luke C. Skinner, Nicola C. Thomas, Polychronis C. Tzedakis, Maryline J. Mleneck-Vautravers, and Eric W. Wolff
Clim. Past, 19, 607–636, https://doi.org/10.5194/cp-19-607-2023, https://doi.org/10.5194/cp-19-607-2023, 2023
Short summary
Short summary
We produced a 1.5-million-year-long history of climate change at International Ocean Discovery Program Site U1385 of the Iberian margin, a well-known location for rapidly accumulating sediments on the seafloor. Our record demonstrates that longer-term orbital changes in Earth's climate were persistently overprinted by abrupt millennial-to-centennial climate variability. The occurrence of abrupt climate change is modulated by the slower variations in Earth's orbit and climate background state.
Pauline Cornuault, Thomas Westerhold, Heiko Pälike, Torsten Bickert, Karl-Heinz Baumann, and Michal Kucera
Biogeosciences, 20, 597–618, https://doi.org/10.5194/bg-20-597-2023, https://doi.org/10.5194/bg-20-597-2023, 2023
Short summary
Short summary
We generated high-resolution records of carbonate accumulation rate from the Miocene to the Quaternary in the tropical Atlantic Ocean to characterize the variability in pelagic carbonate production during warm climates. It follows orbital cycles, responding to local changes in tropical conditions, as well as to long-term shifts in climate and ocean chemistry. These changes were sufficiently large to play a role in the carbon cycle and global climate evolution.
Ji-Eun Kim, Thomas Westerhold, Laia Alegret, Anna Joy Drury, Ursula Röhl, and Elizabeth M. Griffith
Clim. Past, 18, 2631–2641, https://doi.org/10.5194/cp-18-2631-2022, https://doi.org/10.5194/cp-18-2631-2022, 2022
Short summary
Short summary
This study attempts to gain a better understanding of the marine biological carbon pump and ecosystem functioning under warmer-than-today conditions. Our records from marine sediments show the Pacific tropical marine biological carbon pump was driven by variations in seasonal insolation in the tropics during the Late Cretaceous and may play a key role in modulating climate and the carbon cycle globally in the future.
Eric W. Wolff, Hubertus Fischer, Tas van Ommen, and David A. Hodell
Clim. Past, 18, 1563–1577, https://doi.org/10.5194/cp-18-1563-2022, https://doi.org/10.5194/cp-18-1563-2022, 2022
Short summary
Short summary
Projects are underway to drill ice cores in Antarctica reaching 1.5 Myr back in time. Dating such cores will be challenging. One method is to match records from the new core against datasets from existing marine sediment cores. Here we explore the options for doing this and assess how well the ice and marine records match over the existing 800 000-year time period. We are able to recommend a strategy for using marine data to place an age scale on the new ice cores.
Anna Joy Drury, Diederik Liebrand, Thomas Westerhold, Helen M. Beddow, David A. Hodell, Nina Rohlfs, Roy H. Wilkens, Mitchell Lyle, David B. Bell, Dick Kroon, Heiko Pälike, and Lucas J. Lourens
Clim. Past, 17, 2091–2117, https://doi.org/10.5194/cp-17-2091-2021, https://doi.org/10.5194/cp-17-2091-2021, 2021
Short summary
Short summary
We use the first high-resolution southeast Atlantic carbonate record to see how climate dynamics evolved since 30 million years ago (Ma). During ~ 30–13 Ma, eccentricity (orbital circularity) paced carbonate deposition. After the mid-Miocene Climate Transition (~ 14 Ma), precession (Earth's tilt direction) increasingly drove carbonate variability. In the latest Miocene (~ 8 Ma), obliquity (Earth's tilt) pacing appeared, signalling increasing high-latitude influence.
Cinthya Nava-Fernandez, Adam Hartland, Fernando Gázquez, Ola Kwiecien, Norbert Marwan, Bethany Fox, John Hellstrom, Andrew Pearson, Brittany Ward, Amanda French, David A. Hodell, Adrian Immenhauser, and Sebastian F. M. Breitenbach
Hydrol. Earth Syst. Sci., 24, 3361–3380, https://doi.org/10.5194/hess-24-3361-2020, https://doi.org/10.5194/hess-24-3361-2020, 2020
Short summary
Short summary
Speleothems are powerful archives of past climate for understanding modern local hydrology and its relation to regional circulation patterns. We use a 3-year monitoring dataset to test the sensitivity of Waipuna Cave to seasonal changes and El Niño–Southern Oscillation (ENSO) dynamics. Drip water data suggest a fast response to rainfall events; its elemental composition reflects a seasonal cycle and ENSO variability. Waipuna Cave speleothems have a high potential for past ENSO reconstructions.
Mitchell Lyle, Anna Joy Drury, Jun Tian, Roy Wilkens, and Thomas Westerhold
Clim. Past, 15, 1715–1739, https://doi.org/10.5194/cp-15-1715-2019, https://doi.org/10.5194/cp-15-1715-2019, 2019
Short summary
Short summary
Ocean sediment records document changes in Earth’s carbon cycle and ocean productivity. We present 8 Myr CaCO3 and bulk sediment records from seven eastern Pacific scientific drill sites to identify intervals of excess CaCO3 dissolution (high carbon storage in the oceans) and excess burial of plankton hard parts indicating high productivity. We define the regional extent of production intervals and explore the impact of the closure of the Atlantic–Pacific Panama connection on CaCO3 burial.
Christopher J. Hollis, Tom Dunkley Jones, Eleni Anagnostou, Peter K. Bijl, Marlow Julius Cramwinckel, Ying Cui, Gerald R. Dickens, Kirsty M. Edgar, Yvette Eley, David Evans, Gavin L. Foster, Joost Frieling, Gordon N. Inglis, Elizabeth M. Kennedy, Reinhard Kozdon, Vittoria Lauretano, Caroline H. Lear, Kate Littler, Lucas Lourens, A. Nele Meckler, B. David A. Naafs, Heiko Pälike, Richard D. Pancost, Paul N. Pearson, Ursula Röhl, Dana L. Royer, Ulrich Salzmann, Brian A. Schubert, Hannu Seebeck, Appy Sluijs, Robert P. Speijer, Peter Stassen, Jessica Tierney, Aradhna Tripati, Bridget Wade, Thomas Westerhold, Caitlyn Witkowski, James C. Zachos, Yi Ge Zhang, Matthew Huber, and Daniel J. Lunt
Geosci. Model Dev., 12, 3149–3206, https://doi.org/10.5194/gmd-12-3149-2019, https://doi.org/10.5194/gmd-12-3149-2019, 2019
Short summary
Short summary
The Deep-Time Model Intercomparison Project (DeepMIP) is a model–data intercomparison of the early Eocene (around 55 million years ago), the last time that Earth's atmospheric CO2 concentrations exceeded 1000 ppm. Previously, we outlined the experimental design for climate model simulations. Here, we outline the methods used for compilation and analysis of climate proxy data. The resulting climate
atlaswill provide insights into the mechanisms that control past warm climate states.
Alena Giesche, Michael Staubwasser, Cameron A. Petrie, and David A. Hodell
Clim. Past, 15, 73–90, https://doi.org/10.5194/cp-15-73-2019, https://doi.org/10.5194/cp-15-73-2019, 2019
Short summary
Short summary
A foraminifer oxygen isotope record from the northeastern Arabian Sea was used to reconstruct winter and summer monsoon strength from 5.4 to 3.0 ka. We found a 200-year period of strengthened winter monsoon (4.5–4.3 ka) that coincides with the earliest phase of the Mature Harappan period of the Indus Civilization, followed by weakened winter and summer monsoons by 4.1 ka. Aridity spanning both rainfall seasons at 4.1 ka may help to explain some of the observed archaeological shifts.
Tom Dunkley Jones, Hayley R. Manners, Murray Hoggett, Sandra Kirtland Turner, Thomas Westerhold, Melanie J. Leng, Richard D. Pancost, Andy Ridgwell, Laia Alegret, Rob Duller, and Stephen T. Grimes
Clim. Past, 14, 1035–1049, https://doi.org/10.5194/cp-14-1035-2018, https://doi.org/10.5194/cp-14-1035-2018, 2018
Short summary
Short summary
The Paleocene–Eocene Thermal Maximum (PETM) is a transient global warming event associated with a doubling of atmospheric carbon dioxide concentrations. Here we document a major increase in sediment accumulation rates on a subtropical continental margin during the PETM, likely due to marked changes in hydro-climates and sediment transport. These high sedimentation rates persist through the event and may play a key role in the removal of carbon from the atmosphere by the burial of organic carbon.
Ariadna Salabarnada, Carlota Escutia, Ursula Röhl, C. Hans Nelson, Robert McKay, Francisco J. Jiménez-Espejo, Peter K. Bijl, Julian D. Hartman, Stephanie L. Strother, Ulrich Salzmann, Dimitris Evangelinos, Adrián López-Quirós, José Abel Flores, Francesca Sangiorgi, Minoru Ikehara, and Henk Brinkhuis
Clim. Past, 14, 991–1014, https://doi.org/10.5194/cp-14-991-2018, https://doi.org/10.5194/cp-14-991-2018, 2018
Short summary
Short summary
Here we reconstruct ice sheet and paleoceanographic configurations in the East Antarctic Wilkes Land margin based on a multi-proxy study conducted in late Oligocene (26–25 Ma) sediments from IODP Site U1356. The new obliquity-forced glacial–interglacial sedimentary model shows that, under the high CO2 values of the late Oligocene, ice sheets had mostly retreated to their terrestrial margins and the ocean was very dynamic with shifting positions of the polar fronts and associated water masses.
Thomas Westerhold, Ursula Röhl, Roy H. Wilkens, Philip D. Gingerich, William C. Clyde, Scott L. Wing, Gabriel J. Bowen, and Mary J. Kraus
Clim. Past, 14, 303–319, https://doi.org/10.5194/cp-14-303-2018, https://doi.org/10.5194/cp-14-303-2018, 2018
Short summary
Short summary
Here we present a high-resolution timescale synchronization of continental and marine deposits for one of the most pronounced global warming events, the Paleocene–Eocene Thermal Maximum, which occurred 56 million years ago. New high-resolution age models for the Bighorn Basin Coring Project (BBCP) drill cores help to improve age models for climate records from deep-sea drill cores and for the first time point to a concurrent major change in marine and terrestrial biota 54.25 million years ago.
Joost Frieling, Gert-Jan Reichart, Jack J. Middelburg, Ursula Röhl, Thomas Westerhold, Steven M. Bohaty, and Appy Sluijs
Clim. Past, 14, 39–55, https://doi.org/10.5194/cp-14-39-2018, https://doi.org/10.5194/cp-14-39-2018, 2018
Short summary
Short summary
Past periods of rapid global warming such as the Paleocene–Eocene Thermal Maximum are used to study biotic response to climate change. We show that very high peak PETM temperatures in the tropical Atlantic (~ 37 ºC) caused heat stress in several marine plankton groups. However, only slightly cooler temperatures afterwards allowed highly diverse plankton communities to bloom. This shows that tropical plankton communities may be susceptible to extreme warming, but may also recover rapidly.
Thomas Westerhold, Ursula Röhl, Thomas Frederichs, Claudia Agnini, Isabella Raffi, James C. Zachos, and Roy H. Wilkens
Clim. Past, 13, 1129–1152, https://doi.org/10.5194/cp-13-1129-2017, https://doi.org/10.5194/cp-13-1129-2017, 2017
Short summary
Short summary
We assembled a very accurate geological timescale from the interval 47.8 to 56.0 million years ago, also known as the Ypresian stage. We used cyclic variations in the data caused by periodic changes in Earthäs orbit around the sun as a metronome for timescale construction. Our new data compilation provides the first geological evidence for chaos in the long-term behavior of planetary orbits in the solar system, as postulated almost 30 years ago, and a possible link to plate tectonics events.
Roy H. Wilkens, Thomas Westerhold, Anna J. Drury, Mitchell Lyle, Thomas Gorgas, and Jun Tian
Clim. Past, 13, 779–793, https://doi.org/10.5194/cp-13-779-2017, https://doi.org/10.5194/cp-13-779-2017, 2017
Short summary
Short summary
Here we introduce the Code for Ocean Drilling Data (CODD), a unified and consistent system for integrating disparate data streams such as micropaleontology, physical properties, core images, geochemistry, and borehole logging. As a test case, data from Ocean Drilling Program Leg 154 (Ceara Rise – western equatorial Atlantic) were assembled into a new regional composite benthic stable isotope record covering the last 5 million years.
David A. Hodell and James E. T. Channell
Clim. Past, 12, 1805–1828, https://doi.org/10.5194/cp-12-1805-2016, https://doi.org/10.5194/cp-12-1805-2016, 2016
Short summary
Short summary
For the past 2.7 million years the Earth's climate has switched more than 50 times between a cold glacial and warm interglacial state. We found the trend towards larger ice sheets over the past 2.7 million years was accompanied by changes in the style, frequency, and intensity of shorter-term (millennial) variability. We suggest the interaction between millennial climate change and longer-term variations in the Earth's orbit may be important for explaining the patterns of Quaternary climate.
Oliver Friedrich, Sietske J. Batenburg, Kazuyoshi Moriya, Silke Voigt, Cécile Cournède, Iris Möbius, Peter Blum, André Bornemann, Jens Fiebig, Takashi Hasegawa, Pincelli M. Hull, Richard D. Norris, Ursula Röhl, Thomas Westerhold, Paul A. Wilson, and IODP Expedition
Clim. Past Discuss., https://doi.org/10.5194/cp-2016-51, https://doi.org/10.5194/cp-2016-51, 2016
Manuscript not accepted for further review
Short summary
Short summary
A lack of knowledge on the timing of Late Cretaceous climatic change inhibits our understanding of underlying causal mechanisms. Therefore, we used an expanded deep ocean record from the North Atlantic that shows distinct sedimentary cyclicity suggesting orbital forcing. A high-resolution carbon-isotope record from bulk carbonates allows to identify global trends in the carbon cycle. Our new carbon isotope record and the established cyclostratigraphy may serve as a future reference site.
T. Westerhold, U. Röhl, T. Frederichs, S. M. Bohaty, and J. C. Zachos
Clim. Past, 11, 1181–1195, https://doi.org/10.5194/cp-11-1181-2015, https://doi.org/10.5194/cp-11-1181-2015, 2015
Short summary
Short summary
Testing hypotheses for mechanisms and dynamics of past climate change relies on the accuracy of geological dating. Development of a highly accurate geological timescale for the Cenozoic Era has previously been hampered by discrepancies between radioisotopic and astronomical dating methods, as well as a stratigraphic gap in the middle Eocene. We close this gap and provide a fundamental advance in establishing a reliable and highly accurate geological timescale for the last 66 million years.
T. Westerhold, U. Röhl, H. Pälike, R. Wilkens, P. A. Wilson, and G. Acton
Clim. Past, 10, 955–973, https://doi.org/10.5194/cp-10-955-2014, https://doi.org/10.5194/cp-10-955-2014, 2014
W. C. Clyde, P. D. Gingerich, S. L. Wing, U. Röhl, T. Westerhold, G. Bowen, K. Johnson, A. A. Baczynski, A. Diefendorf, F. McInerney, D. Schnurrenberger, A. Noren, K. Brady, and the BBCP Science Team
Sci. Dril., 16, 21–31, https://doi.org/10.5194/sd-16-21-2013, https://doi.org/10.5194/sd-16-21-2013, 2013
D. A. Hodell, L. Lourens, D. A. V. Stow, J. Hernández-Molina, C. A. Alvarez Zarikian, and the Shackleton Site Project Members
Sci. Dril., 16, 13–19, https://doi.org/10.5194/sd-16-13-2013, https://doi.org/10.5194/sd-16-13-2013, 2013
J. A. Collins, A. Govin, S. Mulitza, D. Heslop, M. Zabel, J. Hartmann, U. Röhl, and G. Wefer
Clim. Past, 9, 1181–1191, https://doi.org/10.5194/cp-9-1181-2013, https://doi.org/10.5194/cp-9-1181-2013, 2013
D. Liebrand, L. J. Lourens, D. A. Hodell, B. de Boer, R. S. W. van de Wal, and H. Pälike
Clim. Past, 7, 869–880, https://doi.org/10.5194/cp-7-869-2011, https://doi.org/10.5194/cp-7-869-2011, 2011
Related subject area
Subject: Proxy Use-Development-Validation | Archive: Marine Archives | Timescale: Cenozoic
A clumped isotope calibration of coccoliths at well-constrained culture temperatures for marine temperature reconstructions
Can we reliably reconstruct the mid-Pliocene Warm Period with sparse data and uncertain models?
Paleocene–Eocene age glendonites from the Mid-Norwegian Margin – indicators of cold snaps in the hothouse?
Assessing environmental change associated with early Eocene hyperthermals in the Atlantic Coastal Plain, USA
Technical note: A new online tool for δ18O–temperature conversions
A 15-million-year surface- and subsurface-integrated TEX86 temperature record from the eastern equatorial Atlantic
Sclerochronological evidence of pronounced seasonality from the late Pliocene of the southern North Sea basin and its implications
Pliocene evolution of the tropical Atlantic thermocline depth
Maastrichtian–Rupelian paleoclimates in the southwest Pacific – a critical re-evaluation of biomarker paleothermometry and dinoflagellate cyst paleoecology at Ocean Drilling Program Site 1172
Southern Ocean bottom-water cooling and ice sheet expansion during the middle Miocene climate transition
Rapid and sustained environmental responses to global warming: the Paleocene–Eocene Thermal Maximum in the eastern North Sea
Atmospheric carbon dioxide variations across the middle Miocene climate transition
OPTiMAL: a new machine learning approach for GDGT-based palaeothermometry
Technical note: A new automated radiolarian image acquisition, stacking, processing, segmentation and identification workflow
Late Paleocene–early Eocene Arctic Ocean sea surface temperatures: reassessing biomarker paleothermometry at Lomonosov Ridge
Surface-circulation change in the southwest Pacific Ocean across the Middle Eocene Climatic Optimum: inferences from dinoflagellate cysts and biomarker paleothermometry
A new age model for the Pliocene of the southern North Sea basin: a multi-proxy climate reconstruction
Joint inversion of proxy system models to reconstruct paleoenvironmental time series from heterogeneous data
Mercury anomalies across the Palaeocene–Eocene Thermal Maximum
Highly variable Pliocene sea surface conditions in the Norwegian Sea
The PRISM4 (mid-Piacenzian) paleoenvironmental reconstruction
Revisiting carbonate chemistry controls on planktic foraminifera Mg / Ca: implications for sea surface temperature and hydrology shifts over the Paleocene–Eocene Thermal Maximum and Eocene–Oligocene transition
The Paleocene–Eocene Thermal Maximum at DSDP Site 277, Campbell Plateau, southern Pacific Ocean
The bivalve Glycymeris planicostalis as a high-resolution paleoclimate archive for the Rupelian (Early Oligocene) of central Europe
Pliocene diatom and sponge spicule oxygen isotope ratios from the Bering Sea: isotopic offsets and future directions
Re-evaluation of the age model for North Atlantic Ocean Site 982 – arguments for a return to the original chronology
Exploring the controls on element ratios in middle Eocene samples of the benthic foraminifera Oridorsalis umbonatus
Application of Fourier Transform Infrared Spectroscopy (FTIR) for assessing biogenic silica sample purity in geochemical analyses and palaeoenvironmental research
Alexander J. Clark, Ismael Torres-Romero, Madalina Jaggi, Stefano M. Bernasconi, and Heather M. Stoll
Clim. Past, 20, 2081–2101, https://doi.org/10.5194/cp-20-2081-2024, https://doi.org/10.5194/cp-20-2081-2024, 2024
Short summary
Short summary
Coccoliths are abundant in sediments across the world’s oceans, yet it is difficult to apply traditional carbon or oxygen isotope methodologies for temperature reconstructions. We show that our coccolith clumped isotope temperature calibration with well-constrained temperatures systematically differs from inorganic carbonate calibrations. We suggest the use of our well-constrained calibration for future coccolith carbonate temperature reconstructions.
James D. Annan, Julia C. Hargreaves, Thorsten Mauritsen, Erin McClymont, and Sze Ling Ho
Clim. Past, 20, 1989–1999, https://doi.org/10.5194/cp-20-1989-2024, https://doi.org/10.5194/cp-20-1989-2024, 2024
Short summary
Short summary
We have created a new global surface temperature reconstruction of the climate of the mid-Pliocene Warm Period, representing the period roughly 3.2 million years before the present day. We estimate that the globally averaged mean temperature was around 3.9 °C warmer than it was in pre-industrial times, but there is significant uncertainty in this value.
Madeleine L. Vickers, Morgan T. Jones, Jack Longman, David Evans, Clemens V. Ullmann, Ella Wulfsberg Stokke, Martin Vickers, Joost Frieling, Dustin T. Harper, Vincent J. Clementi, and IODP Expedition 396 Scientists
Clim. Past, 20, 1–23, https://doi.org/10.5194/cp-20-1-2024, https://doi.org/10.5194/cp-20-1-2024, 2024
Short summary
Short summary
The discovery of cold-water glendonite pseudomorphs in sediments deposited during the hottest part of the Cenozoic poses an apparent climate paradox. This study examines their occurrence, association with volcanic sediments, and speculates on the timing and extent of cooling, fitting this with current understanding of global climate during this period. We propose that volcanic activity was key to both physical and chemical conditions that enabled the formation of glendonites in these sediments.
William Rush, Jean Self-Trail, Yang Zhang, Appy Sluijs, Henk Brinkhuis, James Zachos, James G. Ogg, and Marci Robinson
Clim. Past, 19, 1677–1698, https://doi.org/10.5194/cp-19-1677-2023, https://doi.org/10.5194/cp-19-1677-2023, 2023
Short summary
Short summary
The Eocene contains several brief warming periods referred to as hyperthermals. Studying these events and how they varied between locations can help provide insight into our future warmer world. This study provides a characterization of two of these events in the mid-Atlantic region of the USA. The records of climate that we measured demonstrate significant changes during this time period, but the type and timing of these changes highlight the complexity of climatic changes.
Daniel E. Gaskell and Pincelli M. Hull
Clim. Past, 19, 1265–1274, https://doi.org/10.5194/cp-19-1265-2023, https://doi.org/10.5194/cp-19-1265-2023, 2023
Short summary
Short summary
One of the most common ways of reconstructing temperatures in the geologic past is by analyzing oxygen isotope ratios in fossil shells. However, converting these data to temperatures can be a technically complicated task. Here, we present a new online tool that automates this task.
Carolien M. H. van der Weijst, Koen J. van der Laan, Francien Peterse, Gert-Jan Reichart, Francesca Sangiorgi, Stefan Schouten, Tjerk J. T. Veenstra, and Appy Sluijs
Clim. Past, 18, 1947–1962, https://doi.org/10.5194/cp-18-1947-2022, https://doi.org/10.5194/cp-18-1947-2022, 2022
Short summary
Short summary
The TEX86 proxy is often used by paleoceanographers to reconstruct past sea-surface temperatures. However, the origin of the TEX86 signal in marine sediments has been debated since the proxy was first proposed. In our paper, we show that TEX86 carries a mixed sea-surface and subsurface temperature signal and should be calibrated accordingly. Using our 15-million-year record, we subsequently show how a TEX86 subsurface temperature record can be used to inform us on past sea-surface temperatures.
Andrew L. A. Johnson, Annemarie M. Valentine, Bernd R. Schöne, Melanie J. Leng, and Stijn Goolaerts
Clim. Past, 18, 1203–1229, https://doi.org/10.5194/cp-18-1203-2022, https://doi.org/10.5194/cp-18-1203-2022, 2022
Short summary
Short summary
Determining seasonal temperatures demands proxies that record the highest and lowest temperatures over the annual cycle. Many record neither, but oxygen isotope profiles from shells in principle record both. Oxygen isotope data from late Pliocene bivalve molluscs of the southern North Sea basin show that the seasonal temperature range was at times much higher than previously estimated and higher than now. This suggests reduced oceanic heat supply, in contrast to some previous interpretations.
Carolien M. H. van der Weijst, Josse Winkelhorst, Wesley de Nooijer, Anna von der Heydt, Gert-Jan Reichart, Francesca Sangiorgi, and Appy Sluijs
Clim. Past, 18, 961–973, https://doi.org/10.5194/cp-18-961-2022, https://doi.org/10.5194/cp-18-961-2022, 2022
Short summary
Short summary
A hypothesized link between Pliocene (5.3–2.5 million years ago) global climate and tropical thermocline depth is currently only backed up by data from the Pacific Ocean. In our paper, we present temperature, salinity, and thermocline records from the tropical Atlantic Ocean. Surprisingly, the Pliocene thermocline evolution was remarkably different in the Atlantic and Pacific. We need to reevaluate the mechanisms that drive thermocline depth, and how these are tied to global climate change.
Peter K. Bijl, Joost Frieling, Marlow Julius Cramwinckel, Christine Boschman, Appy Sluijs, and Francien Peterse
Clim. Past, 17, 2393–2425, https://doi.org/10.5194/cp-17-2393-2021, https://doi.org/10.5194/cp-17-2393-2021, 2021
Short summary
Short summary
Here, we use the latest insights for GDGT and dinocyst-based paleotemperature and paleoenvironmental reconstructions in late Cretaceous–early Oligocene sediments from ODP Site 1172 (East Tasman Plateau, Australia). We reconstruct strong river runoff during the Paleocene–early Eocene, a progressive decline thereafter with increased wet/dry seasonality in the northward-drifting hinterland. Our critical review leaves the anomalous warmth of the Eocene SW Pacific Ocean unexplained.
Thomas J. Leutert, Sevasti Modestou, Stefano M. Bernasconi, and A. Nele Meckler
Clim. Past, 17, 2255–2271, https://doi.org/10.5194/cp-17-2255-2021, https://doi.org/10.5194/cp-17-2255-2021, 2021
Short summary
Short summary
The Miocene climatic optimum associated with high atmospheric CO2 levels (~17–14 Ma) was followed by a period of dramatic climate change. We present a clumped isotope-based bottom-water temperature record from the Southern Ocean covering this key climate transition. Our record reveals warm conditions and a substantial cooling preceding the main ice volume increase, possibly caused by thresholds involved in ice growth and/or regional effects at our study site.
Ella W. Stokke, Morgan T. Jones, Lars Riber, Haflidi Haflidason, Ivar Midtkandal, Bo Pagh Schultz, and Henrik H. Svensen
Clim. Past, 17, 1989–2013, https://doi.org/10.5194/cp-17-1989-2021, https://doi.org/10.5194/cp-17-1989-2021, 2021
Short summary
Short summary
In this paper, we present new sedimentological, geochemical, and mineralogical data exploring the environmental response to climatic and volcanic impact during the Paleocene–Eocene Thermal Maximum (~55.9 Ma; PETM). Our data suggest a rise in continental weathering and a shift to anoxic–sulfidic conditions. This indicates a rapid environmental response to changes in the carbon cycle and temperatures and highlights the important role of shelf areas as carbon sinks driving the PETM recovery.
Markus Raitzsch, Jelle Bijma, Torsten Bickert, Michael Schulz, Ann Holbourn, and Michal Kučera
Clim. Past, 17, 703–719, https://doi.org/10.5194/cp-17-703-2021, https://doi.org/10.5194/cp-17-703-2021, 2021
Short summary
Short summary
At approximately 14 Ma, the East Antarctic Ice Sheet expanded to almost its current extent, but the role of CO2 in this major climate transition is not entirely known. We show that atmospheric CO2 might have varied on 400 kyr cycles linked to the eccentricity of the Earth’s orbit. The resulting change in weathering and ocean carbon cycle affected atmospheric CO2 in a way that CO2 rose after Antarctica glaciated, helping to stabilize the climate system on its way to the “ice-house” world.
Tom Dunkley Jones, Yvette L. Eley, William Thomson, Sarah E. Greene, Ilya Mandel, Kirsty Edgar, and James A. Bendle
Clim. Past, 16, 2599–2617, https://doi.org/10.5194/cp-16-2599-2020, https://doi.org/10.5194/cp-16-2599-2020, 2020
Short summary
Short summary
We explore the utiliity of the composition of fossil lipid biomarkers, which are commonly preserved in ancient marine sediments, in providing estimates of past ocean temperatures. The group of lipids concerned show compositional changes across the modern oceans that are correlated, to some extent, with local surface ocean temperatures. Here we present new machine learning approaches to improve our understanding of this temperature sensitivity and its application to reconstructing past climates.
Martin Tetard, Ross Marchant, Giuseppe Cortese, Yves Gally, Thibault de Garidel-Thoron, and Luc Beaufort
Clim. Past, 16, 2415–2429, https://doi.org/10.5194/cp-16-2415-2020, https://doi.org/10.5194/cp-16-2415-2020, 2020
Short summary
Short summary
Radiolarians are marine micro-organisms that produce a siliceous shell that is preserved in the fossil record and can be used to reconstruct past climate variability. However, their study is only possible after a time-consuming manual selection of their shells from the sediment followed by their individual identification. Thus, we develop a new fully automated workflow consisting of microscopic radiolarian image acquisition, image processing and identification using artificial intelligence.
Appy Sluijs, Joost Frieling, Gordon N. Inglis, Klaas G. J. Nierop, Francien Peterse, Francesca Sangiorgi, and Stefan Schouten
Clim. Past, 16, 2381–2400, https://doi.org/10.5194/cp-16-2381-2020, https://doi.org/10.5194/cp-16-2381-2020, 2020
Short summary
Short summary
We revisit 15-year-old reconstructions of sea surface temperatures in the Arctic Ocean for the late Paleocene and early Eocene epochs (∼ 57–53 million years ago) based on the distribution of fossil membrane lipids of archaea preserved in Arctic Ocean sediments. We find that improvements in the methods over the past 15 years do not lead to different results. However, data quality is now higher and potential biases better characterized. Results confirm remarkable Arctic warmth during this time.
Marlow Julius Cramwinckel, Lineke Woelders, Emiel P. Huurdeman, Francien Peterse, Stephen J. Gallagher, Jörg Pross, Catherine E. Burgess, Gert-Jan Reichart, Appy Sluijs, and Peter K. Bijl
Clim. Past, 16, 1667–1689, https://doi.org/10.5194/cp-16-1667-2020, https://doi.org/10.5194/cp-16-1667-2020, 2020
Short summary
Short summary
Phases of past transient warming can be used as a test bed to study the environmental response to climate change independent of tectonic change. Using fossil plankton and organic molecules, here we reconstruct surface ocean temperature and circulation in and around the Tasman Gateway during a warming phase 40 million years ago termed the Middle Eocene Climatic Optimum. We find that plankton assemblages track ocean circulation patterns, with superimposed variability being related to temperature.
Emily Dearing Crampton-Flood, Lars J. Noorbergen, Damian Smits, R. Christine Boschman, Timme H. Donders, Dirk K. Munsterman, Johan ten Veen, Francien Peterse, Lucas Lourens, and Jaap S. Sinninghe Damsté
Clim. Past, 16, 523–541, https://doi.org/10.5194/cp-16-523-2020, https://doi.org/10.5194/cp-16-523-2020, 2020
Short summary
Short summary
The mid-Pliocene warm period (mPWP; 3.3–3.0 million years ago) is thought to be the last geological interval with similar atmospheric carbon dioxide concentrations as the present day. Further, the mPWP was 2–3 °C warmer than present, making it a good analogue for estimating the effects of future climate change. Here, we construct a new precise age model for the North Sea during the mPWP, and provide a detailed reconstruction of terrestrial and marine climate using a multi-proxy approach.
Gabriel J. Bowen, Brenden Fischer-Femal, Gert-Jan Reichart, Appy Sluijs, and Caroline H. Lear
Clim. Past, 16, 65–78, https://doi.org/10.5194/cp-16-65-2020, https://doi.org/10.5194/cp-16-65-2020, 2020
Short summary
Short summary
Past climate conditions are reconstructed using indirect and incomplete geological, biological, and geochemical proxy data. We propose that such reconstructions are best obtained by statistical inversion of hierarchical models that represent how multi–proxy observations and calibration data are produced by variation of environmental conditions in time and/or space. These methods extract new information from traditional proxies and provide robust, comprehensive estimates of uncertainty.
Morgan T. Jones, Lawrence M. E. Percival, Ella W. Stokke, Joost Frieling, Tamsin A. Mather, Lars Riber, Brian A. Schubert, Bo Schultz, Christian Tegner, Sverre Planke, and Henrik H. Svensen
Clim. Past, 15, 217–236, https://doi.org/10.5194/cp-15-217-2019, https://doi.org/10.5194/cp-15-217-2019, 2019
Short summary
Short summary
Mercury anomalies in sedimentary rocks are used to assess whether there were periods of elevated volcanism in the geological record. We focus on five sites that cover the Palaeocene–Eocene Thermal Maximum, an extreme global warming event that occurred 55.8 million years ago. We find that sites close to the eruptions from the North Atlantic Igneous Province display significant mercury anomalies across this time interval, suggesting that magmatism played a role in the global warming event.
Paul E. Bachem, Bjørg Risebrobakken, Stijn De Schepper, and Erin L. McClymont
Clim. Past, 13, 1153–1168, https://doi.org/10.5194/cp-13-1153-2017, https://doi.org/10.5194/cp-13-1153-2017, 2017
Short summary
Short summary
We present a high-resolution multi-proxy study of the Norwegian Sea, covering the 5.33 to 3.14 Ma time window within the Pliocene. We show that large-scale climate transitions took place during this warmer than modern time, most likely in response to ocean gateway transformations. Strong warming at 4.0 Ma in the Norwegian Sea, when regions closer to Greenland cooled, indicate that increased northward ocean heat transport may be compatible with expanding glaciation and Arctic sea ice growth.
Harry Dowsett, Aisling Dolan, David Rowley, Robert Moucha, Alessandro M. Forte, Jerry X. Mitrovica, Matthew Pound, Ulrich Salzmann, Marci Robinson, Mark Chandler, Kevin Foley, and Alan Haywood
Clim. Past, 12, 1519–1538, https://doi.org/10.5194/cp-12-1519-2016, https://doi.org/10.5194/cp-12-1519-2016, 2016
Short summary
Short summary
Past intervals in Earth history provide unique windows into conditions much different than those observed today. We investigated the paleoenvironments of a past warm interval (~ 3 million years ago). Our reconstruction includes data sets for surface temperature, vegetation, soils, lakes, ice sheets, topography, and bathymetry. These data are being used along with global climate models to expand our understanding of the climate system and to help us prepare for future changes.
David Evans, Bridget S. Wade, Michael Henehan, Jonathan Erez, and Wolfgang Müller
Clim. Past, 12, 819–835, https://doi.org/10.5194/cp-12-819-2016, https://doi.org/10.5194/cp-12-819-2016, 2016
Short summary
Short summary
We show that seawater pH exerts a substantial control on planktic foraminifera Mg / Ca, a widely applied palaeothermometer. As a result, temperature reconstructions based on this proxy are likely inaccurate over climatic events associated with a significant change in pH. We examine the implications of our findings for hydrological and temperature shifts over the Paleocene-Eocene Thermal Maximum and for the degree of surface ocean precursor cooling before the Eocene-Oligocene transition.
C. J. Hollis, B. R. Hines, K. Littler, V. Villasante-Marcos, D. K. Kulhanek, C. P. Strong, J. C. Zachos, S. M. Eggins, L. Northcote, and A. Phillips
Clim. Past, 11, 1009–1025, https://doi.org/10.5194/cp-11-1009-2015, https://doi.org/10.5194/cp-11-1009-2015, 2015
Short summary
Short summary
Re-examination of a Deep Sea Drilling Project sediment core (DSDP Site 277) from the western Campbell Plateau has identified the initial phase of the Paleocene-Eocene Thermal Maximum (PETM) within nannofossil chalk, the first record of the PETM in an oceanic setting in the southern Pacific Ocean (paleolatitude of ~65°S). Geochemical proxies indicate that intermediate and surface waters warmed by ~6° at the onset of the PETM prior to the full development of the negative δ13C excursion.
E. O. Walliser, B. R. Schöne, T. Tütken, J. Zirkel, K. I. Grimm, and J. Pross
Clim. Past, 11, 653–668, https://doi.org/10.5194/cp-11-653-2015, https://doi.org/10.5194/cp-11-653-2015, 2015
A. M. Snelling, G. E. A. Swann, J. Pike, and M. J. Leng
Clim. Past, 10, 1837–1842, https://doi.org/10.5194/cp-10-1837-2014, https://doi.org/10.5194/cp-10-1837-2014, 2014
K. T. Lawrence, I. Bailey, and M. E. Raymo
Clim. Past, 9, 2391–2397, https://doi.org/10.5194/cp-9-2391-2013, https://doi.org/10.5194/cp-9-2391-2013, 2013
C. F. Dawber and A. K. Tripati
Clim. Past, 8, 1957–1971, https://doi.org/10.5194/cp-8-1957-2012, https://doi.org/10.5194/cp-8-1957-2012, 2012
G. E. A. Swann and S. V. Patwardhan
Clim. Past, 7, 65–74, https://doi.org/10.5194/cp-7-65-2011, https://doi.org/10.5194/cp-7-65-2011, 2011
Cited articles
Andersson, C. and Jansen, E.: A Miocene (8–12 Ma) intermediate water benthic stable isotope record from the northeastern Atlantic, ODP Site 982, Paleoceanography, 18, 1013, https://doi.org/10.1029/2001PA000657, 2003.
Bickert, T., Haug, G. H., and Tiedemann, R.: Late Neogene benthic stable isotope record of Ocean Drilling Program Site 999: Implications for Caribbean paleoceanography, organic carbon burial, and the Messinian Salinity Crisis, Paleoceanography, 19, PA1023, https://doi.org/10.1029/2002PA000799, 2004.
Bolton, C. T., Lawrence, K. T., Gibbs, S. J., Wilson, P. A., and Herbert, T. D.: Biotic and geochemical evidence for a global latitudinal shift in ocean biogeochemistry and export productivity during the late Pliocene, Earth Planet. Sc. Lett., 308, 200–210, https://doi.org/10.1016/j.epsl.2011.05.046, 2011.
De Vleeschouwer, D., Vahlenkamp, M., Crucifix, M., and Pälike, H.: Alternating Southern and Northern Hemisphere climate response to astronomical forcing during the past 35 m.y, Geology, 45, 375–378, https://doi.org/10.1130/G38663.1, 2017.
Drury, A. J., John, C. M., and Shevenell, A. E.: Evaluating climatic response to external radiative forcing during the late Miocene to early Pliocene: New perspectives from eastern equatorial Pacific (IODP U1338) and North Atlantic (ODP 982) locations, Paleoceanography, 31, 167–184, https://doi.org/10.1002/2015PA002881, 2016.
Drury, A. J., Westerhold, T., Frederichs, T., Tian, J., Wilkens, R., Channell, J. E. T., Evans, H., John, C. M., Lyle, M., and Röhl, U.: Late Miocene climate and time scale reconciliation: Accurate orbital calibration from a deep-sea perspective, Earth Planet. Sc. Lett., 475, 254–266, https://doi.org/10.1016/j.epsl.2017.07.038, 2017.
Grinsted, A., Moore, J. C., and Jevrejeva, S.: Application of the cross wavelet transform and wavelet coherence to geophysical time series, Nonlinear Process. Geophys., 11, 561–566, 2004.
Haq, B., Worsley, T., and Burckle, L.: Late Miocene marine carbon-isotopic shift and synchroneity of some phytoplanktonic biostratigraphic events, Geology, 8, 427–431, 1980.
Herbert, T. D., Lawrence, K. T., Tzanova, A., Peterson, L. C., Caballero-Gill, R., and Kelly, C. S.: Late Miocene global cooling and the rise of modern ecosystems, Nat. Geosci., 9, 843–847, https://doi.org/10.1038/NGEO2813, 2016.
Hilgen, F. J., Lourens, L. J., Van Dam, J. A., Beu, A. G., Boyes, A. F., Cooper, R. A., Krijgsman, W., Ogg, J. G., Piller, W. E., and Wilson, D. S.: The Neogene Period, in: The Geologic Time Scale, Elsevier, Boston, 2012, 923–978, ISBN 9780444594259, https://doi.org/10.1016/B978-0-444-59425-9.00029-9, 2012.
Hodell, D. A. and Venz-Curtis, K. A.: Late Neogene history of deepwater ventilation in the Southern Ocean, Geochem. Geophy. Geosy., 7, Q09001, https://doi.org/10.1029/2005GC001211, 2006.
Hodell, D. A., Benson, R. H., Kent, D. V, Boersma, A., and Bied, K. R. E.: Magnetostratigraphic, biostratigraphic, and stable-isotope stratigraphy of an upper Miocene drill core from the Sale-Briqueterie (northwestern Morocco) – a high-resolution chronology for the Messinian stage, Paleoceanography, 9, 835–855, https://doi.org/10.1029/94pa01838, 1994.
Hodell, D. A., Curtis, J. H., Sierro, F. J., and Raymo, M. E.: Correlation of late Miocene to early Pliocene sequences between the Mediterranean and North Atlantic, Paleoceanography, 16, 164–178, https://doi.org/10.1029/1999pa000487, 2001.
Holbourn, A., Kuhnt, W., Schulz, M., Flores, J. A., and Andersen, N.: Orbitally-paced climate evolution during the middle Miocene “Monterey” carbon-isotope excursion, Earth Planet. Sc. Lett., 261, 534–550, https://doi.org/10.1016/j.epsl.2007.07.026, 2007.
Keigwin, L. D.: Late Cenozoic stable isotope stratigraphy and paleoceanography of DSDP sites from the east equatorial and central North Pacific Ocean, Earth Planet. Sc. Lett., 45, 361–382, https://doi.org/10.1215/03616878-2682650, 1979.
Khelifi, N., Sarnthein, M., and Naafs, B. D. A.: Technical note: Late Pliocene age control and composite depths at ODP Site 982, revisited, Clim. Past, 8, 79–87, https://doi.org/10.5194/cp-8-79-2012, 2012.
Khélifi, N., Sarnthein, M., Frank, M., Andersen, N., and Garbe-Schönberg, D.: Late Pliocene variations of the Mediterranean outflow, Mar. Geol., 357, 182–194, https://doi.org/10.1016/j.margeo.2014.07.006, 2014.
Kontakiotis, G., Karakitsios, V., Mortyn, P. G., Antonarakou, A., Drinia, H., Anastasakis, G., Agiadi, K., Kafousia, N., and De Rafelis, M.: New insights into the early Pliocene hydrographic dynamics and their relationship to the climatic evolution of the Mediterranean Sea, Palaeogeogr. Palaeocl., 459, 348–364, https://doi.org/10.1016/j.palaeo.2016.07.025, 2016.
Laskar, J., Joutel, F., and Boudin, F.: Orbital, precessional, and insolation quantities for the Earth from −20 to +10 Myr, Astron. Astrophys., 270, 522–533, 1993.
Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A. C. M., and Levrard, B.: A long-term numerical solution for the insolation quantities of the Earth, Astron. Astrophys., 428, 261–285, https://doi.org/10.1051/0004-6361:20041335, 2004.
Lawrence, K. T., Herbert, T. D., Brown, C. M., Raymo, M. E., and Haywood, A. M.: High-amplitude variations in north atlantic sea surface temperature during the early pliocene warm period, Paleoceanography, 24, 1–15, https://doi.org/10.1029/2008PA001669, 2009.
Lawrence, K. T., Bailey, I., and Raymo, M. E.: Re-evaluation of the age model for North Atlantic Ocean Site 982 – Arguments for a return to the original chronology, Clim. Past, 9, 2391–2397, https://doi.org/10.5194/cp-9-2391-2013, 2013.
Lisiecki, L. E. and Raymo, M. E.: A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records, Paleoceanography, 20, PA1003, https://doi.org/10.1029/2004PA001071, 2005.
Meyers, S. R.: Astrochron: An R Package for Astrochronology, https://cran.r-project.org/package=astrochron, 2014.
Shackleton, N. J. and Hall, M. A.: The Late Miocene Stable Isotope Record, Site 926, in: Proceedings of the Ocean Drilling Program, Scientific Results, vol. 154, edited by: Shackleton, N. J., Curry, W. B., Richter, C., and Bralower, T. J., College Station, TX (Ocean Drilling Program), 367–373, 1997.
Shackleton, N. J., Hall, M. A., and Boersma, A.: Oxygen and carbon isotope data from Leg 74 foraminifers, Initial Reports Deep Sea Drill. Proj., 74, 599–612, https://doi.org/10.2973/dsdp.proc.74.115.1984, 1984.
Shackleton, N. J., Hall, M. A., and Pate, D.: Pliocene Stable Isotope Stratigraphy of Site 846, edited by: Pisias, N. G., Mayer, L. A., Janecek, T. R., Palmer-Julson, A., and van Andel, T. H., Proc. ODP, Sci. Results, 138, 337–355, 1995.
Shipboard Scientific Party Leg 162: Site 982, in: Proceedings of the Ocean Drilling Program, Initial Reports, vol. 162, edited by: Jansen, E., Raymo, M. E., Blum, P., and “Shipboard Scientific Party Exp. 162”, 1996.
van der Laan, E., Gaboardi, S., Hilgen, F. J., and Lourens, L. J.: Regional climate and glacial control on high-resolution oxygen isotope records from Ain el Beida (latest Miocene, northwest Morocco): A cyclostratigraphic analysis in the depth and time domain, Paleoceanography, 20, PA1001, https://doi.org/10.1029/2003PA000995, 2005.
van der Laan, E., Hilgen, F. J., Lourens, L. J., de Kaenel, E., Gaboardi, S., and Iaccarino, S.: Astronomical forcing of Northwest African climate and glacial history during the late Messinian (6.5–5.5 Ma), Palaeogeogr. Palaeocl., 313/314, 107–126, https://doi.org/10.1016/j.palaeo.2011.10.013, 2012.
Venz, K. A. and Hodell, D. A.: New evidence for changes in Plio-Pleistocene deep water circulation from Southern Ocean ODP Leg 177 Site 1090, Palaeogeogr. Palaeocl., 182, 197–220, https://doi.org/10.1016/s0031-0182(01)00496-5, 2002.
Venz, K. A., Hodell, D. A., Stanton, C., and Warnke, D. A.: A 1.0 Myr record of Glacial North Atlantic Intermediate Water variability from ODP site 982 in the northeast Atlantic, Paleoceanography, 14, 42–52, https://doi.org/10.1029/1998PA900013, 1999.
Vidal, L., Bickert, T., Wefer, G., and Röhl, U.: Late Miocene stable isotope stratigraphy of SE Atlantic ODP Site 1085: Relation to Messinian events, Mar. Geol., 180, 71–85, https://doi.org/10.1016/s0025-3227(01)00206-7, 2002.
Wallrabe-Adams, H.-J. and Werner, R.: Data Report: Chemical Composition of Middle Miocene – Lower Pliocene Ash From Sites 982 and 985, Proc. Ocean Drill. Program, 162, 217–230, 1999.
Westerhold, T., Bickert, T., and Röhl, U.: Middle to late Miocene oxygen isotope stratigraphy of ODP site 1085 (SE Atlantic): New constrains on Miocene climate variability and sea-level fluctuations, Palaeogeogr. Palaeocl., 217, 205–222, https://doi.org/10.1016/j.palaeo.2004.12.001, 2005.
Wilkens, R. H., Westerhold, T., Drury, A. J., Lyle, M., Gorgas, T., and Tian, J.: Revisiting the Ceara Rise, equatorial Atlantic Ocean: isotope stratigraphy of ODP Leg 154 from 0 to 5 Ma, Clim. Past, 13, 779–793, https://doi.org/10.5194/cp-13-779-2017, 2017.
Woodruff, F. and Savin, S. M.: Miocene Deepwater Oceanography, Paleoceanography, 4, 87–140, https://doi.org/10.1029/PA004i001p00087, 1989.
Zeeden, C., Hilgen, F., Westerhold, T., Lourens, L., Röhl, U., and Bickert, T.: Revised Miocene splice, astronomical tuning and calcareous plankton biochronology of ODP Site 926 between 5 and 14.4 Ma, Palaeogeogr. Palaeocl., 369, 430–451, https://doi.org/10.1016/j.palaeo.2012.11.009, 2013.
Zeeden, C., Meyers, S. R., Lourens, L. J., and Hilgen, F. J.: Testing astronomically tuned age models, Paleoceanography, 30, 369–383, https://doi.org/10.1002/2014PA002762, 2015.
Short summary
North Atlantic Site 982 is key to our understanding of climate evolution over the past 12 million years. However, the stratigraphy and age model are unverified. We verify the composite splice using XRF core scanning data and establish a revised benthic foraminiferal stable isotope astrochronology from 8.0–4.5 million years ago. Our new stratigraphy accurately correlates the Atlantic and the Mediterranean and suggests a connection between late Miocene cooling and dynamic ice sheet expansion.
North Atlantic Site 982 is key to our understanding of climate evolution over the past 12...