Articles | Volume 14, issue 7
https://doi.org/10.5194/cp-14-1051-2018
https://doi.org/10.5194/cp-14-1051-2018
Research article
 | 
12 Jul 2018
Research article |  | 12 Jul 2018

Rapid increase in simulated North Atlantic dust deposition due to fast change of northwest African landscape during the Holocene

Sabine Egerer, Martin Claussen, and Christian Reick

Related authors

The link between marine sediment records and changes in Holocene Saharan landscape: simulating the dust cycle
Sabine Egerer, Martin Claussen, Christian Reick, and Tanja Stanelle
Clim. Past, 12, 1009–1027, https://doi.org/10.5194/cp-12-1009-2016,https://doi.org/10.5194/cp-12-1009-2016, 2016
Short summary

Related subject area

Subject: Climate Modelling | Archive: Modelling only | Timescale: Holocene
Insights into the Australian mid-Holocene climate using downscaled climate models
Andrew L. Lowry and Hamish A. McGowan
Clim. Past, 20, 2309–2325, https://doi.org/10.5194/cp-20-2309-2024,https://doi.org/10.5194/cp-20-2309-2024, 2024
Short summary
Modelling Mediterranean ocean biogeochemistry of the Last Glacial Maximum
Katharina D. Six, Uwe Mikolajewicz, and Gerhard Schmiedl
Clim. Past, 20, 1785–1816, https://doi.org/10.5194/cp-20-1785-2024,https://doi.org/10.5194/cp-20-1785-2024, 2024
Short summary
Mid-Holocene climate at mid-latitudes: assessing the impact of Saharan greening
Marco Gaetani, Gabriele Messori, Francesco S. R. Pausata, Shivangi Tiwari, M. Carmen Alvarez Castro, and Qiong Zhang
Clim. Past, 20, 1735–1759, https://doi.org/10.5194/cp-20-1735-2024,https://doi.org/10.5194/cp-20-1735-2024, 2024
Short summary
Dynamic interaction between lakes, climate, and vegetation across northern Africa during the mid-Holocene
Nora Farina Specht, Martin Claussen, and Thomas Kleinen
Clim. Past, 20, 1595–1613, https://doi.org/10.5194/cp-20-1595-2024,https://doi.org/10.5194/cp-20-1595-2024, 2024
Short summary
Simulating dust emissions and secondary organic aerosol formation over northern Africa during the mid-Holocene Green Sahara period
Putian Zhou, Zhengyao Lu, Jukka-Pekka Keskinen, Qiong Zhang, Juha Lento, Jianpu Bian, Twan van Noije, Philippe Le Sager, Veli-Matti Kerminen, Markku Kulmala, Michael Boy, and Risto Makkonen
Clim. Past, 19, 2445–2462, https://doi.org/10.5194/cp-19-2445-2023,https://doi.org/10.5194/cp-19-2445-2023, 2023
Short summary

Cited articles

Adkins, J., deMenocal, P., and Eshel, G.: The “African Humid Period” and the Record of Marine Upwelling from Excess 230Th in ODP Hole 658C, Paleoceanography, 21, PA4203, https://doi.org/10.1029/2005PA001200, 2006. a, b, c, d, e, f, g
Albani, S., Mahowald, N. M., Winckler, G., Anderson, R. F., Bradtmiller, L. I., Delmonte, B., François, R., Goman, M., Heavens, N. G., Hesse, P. P., Hovan, S. A., Kang, S. G., Kohfeld, K. E., Lu, H., Maggi, V., Mason, J. A., Mayewski, P. A., McGee, D., Miao, X., Otto-Bliesner, B. L., Perry, A. T., Pourmand, A., Roberts, H. M., Rosenbloom, N., Stevens, T., and Sun, J.: Twelve thousand years of dust: the Holocene global dust cycle constrained by natural archives, Clim. Past, 11, 869–903, https://doi.org/10.5194/cp-11-869-2015, 2015. a, b, c, d, e, f, g, h
Armitage, S. J., Bristow, C. S., and Drake, N. A.: West African monsoon dynamics inferred from abrupt fluctuations of Lake Mega-Chad, P. Natl. Acad. Sci., 112, 8543–8548, https://doi.org/10.1073/pnas.1417655112, 2015. a
Baker, R. A., Adams, C., Bell, G. T., Jickells, D. T., and Ganzeveld, L.: Estimation of atmospheric nutrient inputs to the Atlantic Ocean from 50°N to 50°S based on large scale field sampling: Iron and other dust associated elements, Global Biogeochem. Cy., 27, 755–767, https://doi.org/10.1002/gbc.20062, 2013. a
Bartlein, P.: Pollen-based continental climate reconstructions at 6 and 21 ka: a global synthesis, Clim. Dynam., 37, 775–802, https://doi.org/10.1007/s00382-010-0904-1, 2011. a, b, c, d
Download
Short summary
We find a rapid increase in simulated dust deposition between 6 and 4 ka BP that is fairly consistent with an abrupt change in dust deposition that was observed in marine sediment records at around 5 ka BP. This rapid change is caused by a rapid increase in simulated dust emissions in the western Sahara due to a fast decline in vegetation cover and a locally strong reduction of lake area. Our study identifies spatial and temporal heterogeneity in the transition of the North African landscape.