Articles | Volume 20, issue 9
https://doi.org/10.5194/cp-20-2031-2024
https://doi.org/10.5194/cp-20-2031-2024
Research article
 | 
16 Sep 2024
Research article |  | 16 Sep 2024

New estimates of sulfate diffusion rates in the EPICA Dome C ice core

Rachael H. Rhodes, Yvan Bollet-Quivogne, Piers Barnes, Mirko Severi, and Eric W. Wolff

Related authors

What does the impurity variability at the microscale represent in ice cores? Insights from a conceptual approach
Piers Larkman, Rachael H. Rhodes, Nicolas Stoll, Carlo Barbante, and Pascal Bohleber
EGUsphere, https://doi.org/10.5194/egusphere-2024-1723,https://doi.org/10.5194/egusphere-2024-1723, 2024
Short summary
Assessment of the southern polar and subpolar warming in the PMIP4 Last Interglacial simulations using paleoclimate data syntheses
Qinggang Gao, Emilie Capron, Louise C. Sime, Rachael H. Rhodes, Rahul Sivankutty, Xu Zhang, Bette L. Otto-Bliesner, and Martin Werner
EGUsphere, https://doi.org/10.5194/egusphere-2024-1261,https://doi.org/10.5194/egusphere-2024-1261, 2024
Short summary
Preindustrial to present-day changes in atmospheric carbon monoxide: agreements and gaps between ice archives and global model reconstructions
Xavier Faïn, Sophie Szopa, Vaishali Naïk, Patricia Martinerie, David M. Etheridge, Rachael H. Rhodes, Cathy M. Trudinger, Vasilii V. Petrenko, Kévin Fourteau, and Phillip Place
EGUsphere, https://doi.org/10.5194/egusphere-2024-653,https://doi.org/10.5194/egusphere-2024-653, 2024
Short summary
Evaporative controls on Antarctic precipitation: an ECHAM6 model study using innovative water tracer diagnostics
Qinggang Gao, Louise C. Sime, Alison J. McLaren, Thomas J. Bracegirdle, Emilie Capron, Rachael H. Rhodes, Hans Christian Steen-Larsen, Xiaoxu Shi, and Martin Werner
The Cryosphere, 18, 683–703, https://doi.org/10.5194/tc-18-683-2024,https://doi.org/10.5194/tc-18-683-2024, 2024
Short summary
Laser Ablation – ICP-MS measurements for high resolution chemical ice core analyses with a first application to an ice core from Skytrain Ice Rise (Antarctica)
Helene Hoffmann, Jason Day, Rachael Rhodes, Mackenzie Grieman, Jack Humby, Isobel Rowell, Christoph Nehrbass-Ahles, Robert Mulvaney, Sally Gibson, and Eric Wolff
EGUsphere, https://doi.org/10.5194/egusphere-2023-3071,https://doi.org/10.5194/egusphere-2023-3071, 2024
Short summary

Related subject area

Subject: Proxy Use-Development-Validation | Archive: Ice Cores | Timescale: Pleistocene
Evaluating marine dust records as templates for optical dating of Oldest Ice
Jessica Ng, Jeffrey Severinghaus, Ryan Bay, and Delia Tosi
Clim. Past, 20, 1437–1449, https://doi.org/10.5194/cp-20-1437-2024,https://doi.org/10.5194/cp-20-1437-2024, 2024
Short summary
Effective diffusivity of sulfuric acid in Antarctic ice cores
Tyler J. Fudge, Raphael Sauvage, Linh Vu, Benjamin H. Hills, Mirko Severi, and Edwin D. Waddington
Clim. Past, 20, 297–312, https://doi.org/10.5194/cp-20-297-2024,https://doi.org/10.5194/cp-20-297-2024, 2024
Short summary
The WAIS Divide deep ice core WD2014 chronology – Part 2: Annual-layer counting (0–31 ka BP)
Michael Sigl, Tyler J. Fudge, Mai Winstrup, Jihong Cole-Dai, David Ferris, Joseph R. McConnell, Ken C. Taylor, Kees C. Welten, Thomas E. Woodruff, Florian Adolphi, Marion Bisiaux, Edward J. Brook, Christo Buizert, Marc W. Caffee, Nelia W. Dunbar, Ross Edwards, Lei Geng, Nels Iverson, Bess Koffman, Lawrence Layman, Olivia J. Maselli, Kenneth McGwire, Raimund Muscheler, Kunihiko Nishiizumi, Daniel R. Pasteris, Rachael H. Rhodes, and Todd A. Sowers
Clim. Past, 12, 769–786, https://doi.org/10.5194/cp-12-769-2016,https://doi.org/10.5194/cp-12-769-2016, 2016
Short summary
Comparing past accumulation rate reconstructions in East Antarctic ice cores using 10Be, water isotopes and CMIP5-PMIP3 models
A. Cauquoin, A. Landais, G. M. Raisbeck, J. Jouzel, L. Bazin, M. Kageyama, J.-Y. Peterschmitt, M. Werner, E. Bard, and ASTER Team
Clim. Past, 11, 355–367, https://doi.org/10.5194/cp-11-355-2015,https://doi.org/10.5194/cp-11-355-2015, 2015
Short summary
The WAIS Divide deep ice core WD2014 chronology – Part 1: Methane synchronization (68–31 ka BP) and the gas age–ice age difference
C. Buizert, K. M. Cuffey, J. P. Severinghaus, D. Baggenstos, T. J. Fudge, E. J. Steig, B. R. Markle, M. Winstrup, R. H. Rhodes, E. J. Brook, T. A. Sowers, G. D. Clow, H. Cheng, R. L. Edwards, M. Sigl, J. R. McConnell, and K. C. Taylor
Clim. Past, 11, 153–173, https://doi.org/10.5194/cp-11-153-2015,https://doi.org/10.5194/cp-11-153-2015, 2015

Cited articles

Barnes, P. R. F., Wolff, E. W., Mader, H. M., Udisti, R., Castellano, E., and Röthlisberger, R.: Evolution of chemical peak shapes in the Dome C, Antarctica, ice core, J. Geophys. Res.-Atmos., 108, 4126, https://doi.org/10.1029/2002JD002538, 2003a. 
Barnes, P. R. F., Wolff, E. W., Mallard, D. C., and Mader, H. M.: SEM studies of the morphology and chemistry of polar ice, Microsc. Res. Tech., 62, 62–69, https://doi.org/10.1002/jemt.10385, 2003b. 
Bohleber, P., Roman, M., Šala, M., Delmonte, B., Stenni, B., and Barbante, C.: Two-dimensional impurity imaging in deep Antarctic ice cores: snapshots of three climatic periods and implications for high-resolution signal interpretation, The Cryosphere, 15, 3523–3538, https://doi.org/10.5194/tc-15-3523-2021, 2021. 
Download
Short summary
Some ionic components slowly move through glacier ice by diffusion, but the rate of this diffusion, its exact mechanism(s), and the factors that might influence it are poorly understood. In this study, we model how peaks in sulfate, deposited at Dome C on the Antarctic ice sheet after volcanic eruptions, change with depth and time. We find that the sulfate diffusion rate in ice is relatively fast in young ice near the surface, but the rate is markedly reduced over time.