Articles | Volume 20, issue 1
https://doi.org/10.5194/cp-20-1-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-20-1-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Paleocene–Eocene age glendonites from the Mid-Norwegian Margin – indicators of cold snaps in the hothouse?
Madeleine L. Vickers
CORRESPONDING AUTHOR
Centre for Planetary Habitability (PHAB), University of Oslo, P.O. Box 1028 Blindern, 0315 Oslo, Norway
Morgan T. Jones
Centre for Planetary Habitability (PHAB), University of Oslo, P.O. Box 1028 Blindern, 0315 Oslo, Norway
Department of Ecology and Environmental Science (EMG), Umeå University, 901 87 Umeå, Sweden
Jack Longman
Department of Geography and Environmental Sciences, Northumbria University, Newcastle-upon-Tyne NE1 8ST, UK
David Evans
Institute of Geosciences, Goethe University Frankfurt, Altenhöferallee 1, 60438 Frankfurt am Main, Germany
FIERCE, Frankfurt Isotope & Element Research Center, Goethe University Frankfurt, Altenhöferallee 1, 60438 Frankfurt am Main, Germany
School of Ocean and Earth Science, University of Southampton, Southampton SO14 3ZH, UK
Clemens V. Ullmann
Camborne School of Mines, University of Exeter, Penryn Campus, Penryn TR10 9FE, UK
Ella Wulfsberg Stokke
Centre for Planetary Habitability (PHAB), University of Oslo, P.O. Box 1028 Blindern, 0315 Oslo, Norway
Martin Vickers
Department of Chemistry, UCL, 20 Gordon Street, London WC1H 0AJ, UK
Joost Frieling
Department of Earth Sciences, University of Oxford, Oxford OX1 3AN, UK
Dustin T. Harper
Department of Geology & Geophysics, University of Utah, Salt Lake City, UT 84112, USA
Vincent J. Clementi
Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ 08901, USA
A full list of authors appears at the end of the paper.
Related authors
Kim Senger, Denise Kulhanek, Morgan T. Jones, Aleksandra Smyrak-Sikora, Sverre Planke, Valentin Zuchuat, William J. Foster, Sten-Andreas Grundvåg, Henning Lorenz, Micha Ruhl, Kasia K. Sliwinska, Madeleine L. Vickers, and Weimu Xu
Sci. Dril., 32, 113–135, https://doi.org/10.5194/sd-32-113-2023, https://doi.org/10.5194/sd-32-113-2023, 2023
Short summary
Short summary
Geologists can decipher the past climates and thus better understand how future climate change may affect the Earth's complex systems. In this paper, we report on a workshop held in Longyearbyen, Svalbard, to better understand how rocks in Svalbard (an Arctic archipelago) can be used to quantify major climatic shifts recorded in the past.
Stephen P. Hesselbo, Aisha Al-Suwaidi, Sarah J. Baker, Giorgia Ballabio, Claire M. Belcher, Andrew Bond, Ian Boomer, Remco Bos, Christian J. Bjerrum, Kara Bogus, Richard Boyle, James V. Browning, Alan R. Butcher, Daniel J. Condon, Philip Copestake, Stuart Daines, Christopher Dalby, Magret Damaschke, Susana E. Damborenea, Jean-Francois Deconinck, Alexander J. Dickson, Isabel M. Fendley, Calum P. Fox, Angela Fraguas, Joost Frieling, Thomas A. Gibson, Tianchen He, Kat Hickey, Linda A. Hinnov, Teuntje P. Hollaar, Chunju Huang, Alexander J. L. Hudson, Hugh C. Jenkyns, Erdem Idiz, Mengjie Jiang, Wout Krijgsman, Christoph Korte, Melanie J. Leng, Timothy M. Lenton, Katharina Leu, Crispin T. S. Little, Conall MacNiocaill, Miguel O. Manceñido, Tamsin A. Mather, Emanuela Mattioli, Kenneth G. Miller, Robert J. Newton, Kevin N. Page, József Pálfy, Gregory Pieńkowski, Richard J. Porter, Simon W. Poulton, Alberto C. Riccardi, James B. Riding, Ailsa Roper, Micha Ruhl, Ricardo L. Silva, Marisa S. Storm, Guillaume Suan, Dominika Szűcs, Nicolas Thibault, Alfred Uchman, James N. Stanley, Clemens V. Ullmann, Bas van de Schootbrugge, Madeleine L. Vickers, Sonja Wadas, Jessica H. Whiteside, Paul B. Wignall, Thomas Wonik, Weimu Xu, Christian Zeeden, and Ke Zhao
Sci. Dril., 32, 1–25, https://doi.org/10.5194/sd-32-1-2023, https://doi.org/10.5194/sd-32-1-2023, 2023
Short summary
Short summary
We present initial results from a 650 m long core of Late Triasssic to Early Jurassic (190–202 Myr) sedimentary strata from the Cheshire Basin, UK, which is shown to be an exceptional record of Earth evolution for the time of break-up of the supercontinent Pangaea. Further work will determine periodic changes in depositional environments caused by solar system dynamics and used to reconstruct orbital history.
Morgan T. Jones, Ella W. Stokke, Alan D. Rooney, Joost Frieling, Philip A. E. Pogge von Strandmann, David J. Wilson, Henrik H. Svensen, Sverre Planke, Thierry Adatte, Nicolas Thibault, Madeleine L. Vickers, Tamsin A. Mather, Christian Tegner, Valentin Zuchuat, and Bo P. Schultz
Clim. Past, 19, 1623–1652, https://doi.org/10.5194/cp-19-1623-2023, https://doi.org/10.5194/cp-19-1623-2023, 2023
Short summary
Short summary
There are periods in Earth’s history when huge volumes of magma are erupted at the Earth’s surface. The gases released from volcanic eruptions and from sediments heated by the magma are believed to have caused severe climate changes in the geological past. We use a variety of volcanic and climatic tracers to assess how the North Atlantic Igneous Province (56–54 Ma) affected the oceans and atmosphere during a period of extreme global warming.
Alice Paine, Joost Frieling, Timothy Shanahan, Tamsin Mather, Nicholas McKay, Stuart Robinson, David Pyle, Isabel Fendley, Ruth Kiely, and William Gosling
EGUsphere, https://doi.org/10.5194/egusphere-2024-2123, https://doi.org/10.5194/egusphere-2024-2123, 2024
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
Few tropical Hg records extend beyond ~12 ka, meaning our current understanding of Hg behaviour may not fully account for the impact of long-term hydroclimate changes on the Hg cycle in these environments. Here, we present a ~96,000-year Hg record from Lake Bosumtwi, Ghana. A coupled response is observed between Hg flux and shifts in sediment composition reflective of changes in lake level, and suggesting that hydroclimate may be a key driver of tropical Hg cycling over millennial-timescales.
Sina Panitz, Michael Rogerson, Jack Longman, Nick Scroxton, Tim J. Lawson, Tim C. Atkinson, Vasile Ersek, James Baldini, Lisa Baldini, Stuart Umbo, Mahjoor A. Lone, Gideon M. Henderson, and Sebastian F. M. Breitenbach
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-48, https://doi.org/10.5194/cp-2024-48, 2024
Revised manuscript under review for CP
Short summary
Short summary
Reconstructions of past glaciations tell us about how ice sheets grow and retreat. In this study, we use speleothems (cave deposits, e.g., stalagmites) in the British Isles to help constrain the extent of past glaciations both in time and space. Speleothems require liquid water to grow, and therefore, their presence indicates the absence of ice above the cave. By dating these speleothems we can improve existing reconstructions of past ice sheets.
Flavia Boscolo-Galazzo, David Evans, Elaine Mawbey, William Gray, Paul Pearson, and Bridget Wade
EGUsphere, https://doi.org/10.5194/egusphere-2024-1608, https://doi.org/10.5194/egusphere-2024-1608, 2024
Short summary
Short summary
Here we present a comparison of results from the Mg/Ca and oxygen stable isotopes paleothermometers obtained from 57 modern to fossil species of planktonic foraminifera from the last 15 million of years. We find that the occurrence (or not) of species-species offsets in Mg/Ca is conservative between ancestor-descendent species, and that taking into account species kinship can significantly improve temperature reconstructions by several degrees.
Chris D. Fokkema, Tobias Agterhuis, Danielle Gerritsma, Myrthe de Goeij, Xiaoqing Liu, Pauline de Regt, Addison Rice, Laurens Vennema, Claudia Agnini, Peter K. Bijl, Joost Frieling, Matthew Huber, Francien Peterse, and Appy Sluijs
Clim. Past, 20, 1303–1325, https://doi.org/10.5194/cp-20-1303-2024, https://doi.org/10.5194/cp-20-1303-2024, 2024
Short summary
Short summary
Polar amplification (PA) is a key uncertainty in climate projections. The factors that dominantly control PA are difficult to separate. Here we provide an estimate for the non-ice-related PA by reconstructing tropical ocean temperature variability from the ice-free early Eocene, which we compare to deep-ocean-derived high-latitude temperature variability across short-lived warming periods. We find a PA factor of 1.7–2.3 on 20 kyr timescales, which is somewhat larger than model estimates.
Kim Senger, Grace Shephard, Fenna Ammerlaan, Owen Anfinson, Pascal Audet, Bernard Coakley, Victoria Ershova, Jan Inge Faleide, Sten-Andreas Grundvåg, Rafael Kenji Horota, Karthik Iyer, Julian Janocha, Morgan Jones, Alexander Minakov, Margaret Odlum, Anna M. R. Sartell, Andrew Schaeffer, Daniel Stockli, Marie A. Vander Kloet, and Carmen Gaina
Geosci. Commun. Discuss., https://doi.org/10.5194/gc-2024-3, https://doi.org/10.5194/gc-2024-3, 2024
Revised manuscript accepted for GC
Short summary
Short summary
The article describes a course that we have developed at the University Centre in Svalbard that covers many aspects of Arctic Geology. The students experience this from a wide range of lecturers, focussing both on the small and larger scales, and covering many geoscientific disciplines.
Alice R. Paine, Isabel M. Fendley, Joost Frieling, Tamsin A. Mather, Jack H. Lacey, Bernd Wagner, Stuart A. Robinson, David M. Pyle, Alexander Francke, Theodore R. Them II, and Konstantinos Panagiotopoulos
Biogeosciences, 21, 531–556, https://doi.org/10.5194/bg-21-531-2024, https://doi.org/10.5194/bg-21-531-2024, 2024
Short summary
Short summary
Many important processes within the global mercury (Hg) cycle operate over thousands of years. Here, we explore the timing, magnitude, and expression of Hg signals retained in sediments of lakes Prespa and Ohrid over the past ∼90 000 years. Divergent signals suggest that local differences in sediment composition, lake structure, and water balance influence the local Hg cycle and determine the extent to which sedimentary Hg signals reflect local- or global-scale environmental changes.
Joost Frieling, Linda van Roij, Iris Kleij, Gert-Jan Reichart, and Appy Sluijs
Biogeosciences, 20, 4651–4668, https://doi.org/10.5194/bg-20-4651-2023, https://doi.org/10.5194/bg-20-4651-2023, 2023
Short summary
Short summary
We present a first species-specific evaluation of marine core-top dinoflagellate cyst carbon isotope fractionation (εp) to assess natural pCO2 dependency on εp and explore its geological deep-time paleo-pCO2 proxy potential. We find that εp differs between genera and species and that in Operculodinium centrocarpum, εp is controlled by pCO2 and nutrients. Our results highlight the added value of δ13C analyses of individual micrometer-scale sedimentary organic carbon particles.
Kim Senger, Denise Kulhanek, Morgan T. Jones, Aleksandra Smyrak-Sikora, Sverre Planke, Valentin Zuchuat, William J. Foster, Sten-Andreas Grundvåg, Henning Lorenz, Micha Ruhl, Kasia K. Sliwinska, Madeleine L. Vickers, and Weimu Xu
Sci. Dril., 32, 113–135, https://doi.org/10.5194/sd-32-113-2023, https://doi.org/10.5194/sd-32-113-2023, 2023
Short summary
Short summary
Geologists can decipher the past climates and thus better understand how future climate change may affect the Earth's complex systems. In this paper, we report on a workshop held in Longyearbyen, Svalbard, to better understand how rocks in Svalbard (an Arctic archipelago) can be used to quantify major climatic shifts recorded in the past.
Stephen P. Hesselbo, Aisha Al-Suwaidi, Sarah J. Baker, Giorgia Ballabio, Claire M. Belcher, Andrew Bond, Ian Boomer, Remco Bos, Christian J. Bjerrum, Kara Bogus, Richard Boyle, James V. Browning, Alan R. Butcher, Daniel J. Condon, Philip Copestake, Stuart Daines, Christopher Dalby, Magret Damaschke, Susana E. Damborenea, Jean-Francois Deconinck, Alexander J. Dickson, Isabel M. Fendley, Calum P. Fox, Angela Fraguas, Joost Frieling, Thomas A. Gibson, Tianchen He, Kat Hickey, Linda A. Hinnov, Teuntje P. Hollaar, Chunju Huang, Alexander J. L. Hudson, Hugh C. Jenkyns, Erdem Idiz, Mengjie Jiang, Wout Krijgsman, Christoph Korte, Melanie J. Leng, Timothy M. Lenton, Katharina Leu, Crispin T. S. Little, Conall MacNiocaill, Miguel O. Manceñido, Tamsin A. Mather, Emanuela Mattioli, Kenneth G. Miller, Robert J. Newton, Kevin N. Page, József Pálfy, Gregory Pieńkowski, Richard J. Porter, Simon W. Poulton, Alberto C. Riccardi, James B. Riding, Ailsa Roper, Micha Ruhl, Ricardo L. Silva, Marisa S. Storm, Guillaume Suan, Dominika Szűcs, Nicolas Thibault, Alfred Uchman, James N. Stanley, Clemens V. Ullmann, Bas van de Schootbrugge, Madeleine L. Vickers, Sonja Wadas, Jessica H. Whiteside, Paul B. Wignall, Thomas Wonik, Weimu Xu, Christian Zeeden, and Ke Zhao
Sci. Dril., 32, 1–25, https://doi.org/10.5194/sd-32-1-2023, https://doi.org/10.5194/sd-32-1-2023, 2023
Short summary
Short summary
We present initial results from a 650 m long core of Late Triasssic to Early Jurassic (190–202 Myr) sedimentary strata from the Cheshire Basin, UK, which is shown to be an exceptional record of Earth evolution for the time of break-up of the supercontinent Pangaea. Further work will determine periodic changes in depositional environments caused by solar system dynamics and used to reconstruct orbital history.
Eva P. S. Eibl, Kristin S. Vogfjörd, Benedikt G. Ófeigsson, Matthew J. Roberts, Christopher J. Bean, Morgan T. Jones, Bergur H. Bergsson, Sebastian Heimann, and Thoralf Dietrich
Earth Surf. Dynam., 11, 933–959, https://doi.org/10.5194/esurf-11-933-2023, https://doi.org/10.5194/esurf-11-933-2023, 2023
Short summary
Short summary
Floods draining beneath an ice cap are hazardous events that generate six different short- or long-lasting types of seismic signals. We use these signals to see the collapse of the ice once the water has left the lake, the propagation of the flood front to the terminus, hydrothermal explosions and boiling in the bedrock beneath the drained lake, and increased water flow at rapids in the glacial river. We can thus track the flood and assess the associated hazards better in future flooding events.
Morgan T. Jones, Ella W. Stokke, Alan D. Rooney, Joost Frieling, Philip A. E. Pogge von Strandmann, David J. Wilson, Henrik H. Svensen, Sverre Planke, Thierry Adatte, Nicolas Thibault, Madeleine L. Vickers, Tamsin A. Mather, Christian Tegner, Valentin Zuchuat, and Bo P. Schultz
Clim. Past, 19, 1623–1652, https://doi.org/10.5194/cp-19-1623-2023, https://doi.org/10.5194/cp-19-1623-2023, 2023
Short summary
Short summary
There are periods in Earth’s history when huge volumes of magma are erupted at the Earth’s surface. The gases released from volcanic eruptions and from sediments heated by the magma are believed to have caused severe climate changes in the geological past. We use a variety of volcanic and climatic tracers to assess how the North Atlantic Igneous Province (56–54 Ma) affected the oceans and atmosphere during a period of extreme global warming.
Teuntje P. Hollaar, Stephen P. Hesselbo, Jean-François Deconinck, Magret Damaschke, Clemens V. Ullmann, Mengjie Jiang, and Claire M. Belcher
Clim. Past, 19, 979–997, https://doi.org/10.5194/cp-19-979-2023, https://doi.org/10.5194/cp-19-979-2023, 2023
Short summary
Short summary
Palaeoclimatological reconstructions aid our understanding of current and future climate change. In the Pliensbachian (Early Jurassic) a climatic cooling event occurred globally. We show that this cooling event has a significant impact on the depositional environment of the Cardigan Bay basin but that the 405 kyr eccentricity cycle remained the dominant control on terrestrial and marine depositional processes.
Jack Longman, Daniel Veres, Aritina Haliuc, Walter Finsinger, Vasile Ersek, Daniela Pascal, Tiberiu Sava, and Robert Begy
Clim. Past, 17, 2633–2652, https://doi.org/10.5194/cp-17-2633-2021, https://doi.org/10.5194/cp-17-2633-2021, 2021
Short summary
Short summary
Peatlands are some of the best environments for storing carbon; thus, comprehending how much carbon can be stored and how amounts have changed through time is important to understand carbon cycling. We analysed nine peatlands from central–eastern Europe to look at how carbon storage in mountain bogs has changed over the last 10 000 years. We conclude that human activity is the main driver of changes in storage levels over the past 4000 years; prior to this, climate was the primary driver.
Peter K. Bijl, Joost Frieling, Marlow Julius Cramwinckel, Christine Boschman, Appy Sluijs, and Francien Peterse
Clim. Past, 17, 2393–2425, https://doi.org/10.5194/cp-17-2393-2021, https://doi.org/10.5194/cp-17-2393-2021, 2021
Short summary
Short summary
Here, we use the latest insights for GDGT and dinocyst-based paleotemperature and paleoenvironmental reconstructions in late Cretaceous–early Oligocene sediments from ODP Site 1172 (East Tasman Plateau, Australia). We reconstruct strong river runoff during the Paleocene–early Eocene, a progressive decline thereafter with increased wet/dry seasonality in the northward-drifting hinterland. Our critical review leaves the anomalous warmth of the Eocene SW Pacific Ocean unexplained.
Ella W. Stokke, Morgan T. Jones, Lars Riber, Haflidi Haflidason, Ivar Midtkandal, Bo Pagh Schultz, and Henrik H. Svensen
Clim. Past, 17, 1989–2013, https://doi.org/10.5194/cp-17-1989-2021, https://doi.org/10.5194/cp-17-1989-2021, 2021
Short summary
Short summary
In this paper, we present new sedimentological, geochemical, and mineralogical data exploring the environmental response to climatic and volcanic impact during the Paleocene–Eocene Thermal Maximum (~55.9 Ma; PETM). Our data suggest a rise in continental weathering and a shift to anoxic–sulfidic conditions. This indicates a rapid environmental response to changes in the carbon cycle and temperatures and highlights the important role of shelf areas as carbon sinks driving the PETM recovery.
Nicolai Schleinkofer, David Evans, Max Wisshak, Janina Vanessa Büscher, Jens Fiebig, André Freiwald, Sven Härter, Horst R. Marschall, Silke Voigt, and Jacek Raddatz
Biogeosciences, 18, 4733–4753, https://doi.org/10.5194/bg-18-4733-2021, https://doi.org/10.5194/bg-18-4733-2021, 2021
Short summary
Short summary
We have measured the chemical composition of the carbonate shells of the parasitic foraminifera Hyrrokkin sarcophaga in order to test if it is influenced by the host organism (bivalve or coral). We find that both the chemical and isotopic composition is influenced by the host organism. For example strontium is enriched in foraminifera that grew on corals, whose skeleton is built from aragonite, which is naturally enriched in strontium compared to the bivalves' calcite shell.
Thomas Munier, Jean-François Deconinck, Pierre Pellenard, Stephen P. Hesselbo, James B. Riding, Clemens V. Ullmann, Cédric Bougeault, Mathilde Mercuzot, Anne-Lise Santoni, Émilia Huret, and Philippe Landrein
Clim. Past, 17, 1547–1566, https://doi.org/10.5194/cp-17-1547-2021, https://doi.org/10.5194/cp-17-1547-2021, 2021
Short summary
Short summary
Clay minerals are witnesses of alteration conditions in continental environments. Lacking high-resolution data on clay minerals, this work highlights wet and semi-arid cycles at mid-latitude in the upper Sinemurian. The higher proportion of kaolinite in the upper part of the obtusum zone and in the oxynotum zone indicates an increase in hydrolysis conditions in a warmer period confirmed by carbon isotopes.
Appy Sluijs, Joost Frieling, Gordon N. Inglis, Klaas G. J. Nierop, Francien Peterse, Francesca Sangiorgi, and Stefan Schouten
Clim. Past, 16, 2381–2400, https://doi.org/10.5194/cp-16-2381-2020, https://doi.org/10.5194/cp-16-2381-2020, 2020
Short summary
Short summary
We revisit 15-year-old reconstructions of sea surface temperatures in the Arctic Ocean for the late Paleocene and early Eocene epochs (∼ 57–53 million years ago) based on the distribution of fossil membrane lipids of archaea preserved in Arctic Ocean sediments. We find that improvements in the methods over the past 15 years do not lead to different results. However, data quality is now higher and potential biases better characterized. Results confirm remarkable Arctic warmth during this time.
Gordon N. Inglis, Fran Bragg, Natalie J. Burls, Marlow Julius Cramwinckel, David Evans, Gavin L. Foster, Matthew Huber, Daniel J. Lunt, Nicholas Siler, Sebastian Steinig, Jessica E. Tierney, Richard Wilkinson, Eleni Anagnostou, Agatha M. de Boer, Tom Dunkley Jones, Kirsty M. Edgar, Christopher J. Hollis, David K. Hutchinson, and Richard D. Pancost
Clim. Past, 16, 1953–1968, https://doi.org/10.5194/cp-16-1953-2020, https://doi.org/10.5194/cp-16-1953-2020, 2020
Short summary
Short summary
This paper presents estimates of global mean surface temperatures and climate sensitivity during the early Paleogene (∼57–48 Ma). We employ a multi-method experimental approach and show that i) global mean surface temperatures range between 27 and 32°C and that ii) estimates of
bulkequilibrium climate sensitivity (∼3 to 4.5°C) fall within the range predicted by the IPCC AR5 Report. This work improves our understanding of two key climate metrics during the early Paleogene.
Niels J. de Winter, Clemens V. Ullmann, Anne M. Sørensen, Nicolas Thibault, Steven Goderis, Stijn J. M. Van Malderen, Christophe Snoeck, Stijn Goolaerts, Frank Vanhaecke, and Philippe Claeys
Biogeosciences, 17, 2897–2922, https://doi.org/10.5194/bg-17-2897-2020, https://doi.org/10.5194/bg-17-2897-2020, 2020
Short summary
Short summary
In this study, we present a detailed investigation of the chemical composition of 12 specimens of very well preserved, 78-million-year-old oyster shells from southern Sweden. The chemical data show how the oysters grew, the environment in which they lived and how old they became and also provide valuable information about which chemical measurements we can use to learn more about ancient climate and environment from such shells. In turn, this can help improve climate reconstructions and models.
Alan T. Kennedy-Asser, Daniel J. Lunt, Paul J. Valdes, Jean-Baptiste Ladant, Joost Frieling, and Vittoria Lauretano
Clim. Past, 16, 555–573, https://doi.org/10.5194/cp-16-555-2020, https://doi.org/10.5194/cp-16-555-2020, 2020
Short summary
Short summary
Global cooling and a major expansion of ice over Antarctica occurred ~ 34 million years ago at the Eocene–Oligocene transition (EOT). A large secondary proxy dataset for high-latitude Southern Hemisphere temperature before, after and across the EOT is compiled and compared to simulations from two coupled climate models. Although there are inconsistencies between the models and data, the comparison shows amongst other things that changes in the Drake Passage were unlikely the cause of the EOT.
Christian Berndt, Sverre Planke, Damon Teagle, Ritske Huismans, Trond Torsvik, Joost Frieling, Morgan T. Jones, Dougal A. Jerram, Christian Tegner, Jan Inge Faleide, Helen Coxall, and Wei-Li Hong
Sci. Dril., 26, 69–85, https://doi.org/10.5194/sd-26-69-2019, https://doi.org/10.5194/sd-26-69-2019, 2019
Short summary
Short summary
The northeast Atlantic encompasses archetypal examples of volcanic rifted margins. Twenty-five years after the last ODP leg on these volcanic margins, the reasons for excess melting are still disputed with at least three competing hypotheses being discussed. We are proposing a new drilling campaign that will constrain the timing, rates of volcanism, and vertical movements of rifted margins.
Nicolai Schleinkofer, Jacek Raddatz, André Freiwald, David Evans, Lydia Beuck, Andres Rüggeberg, and Volker Liebetrau
Biogeosciences, 16, 3565–3582, https://doi.org/10.5194/bg-16-3565-2019, https://doi.org/10.5194/bg-16-3565-2019, 2019
Short summary
Short summary
In this study we tried to correlate Na / Ca ratios from cold-water corals with environmental parameters such as salinity, temperature and pH. We do not observe a correlation between Na / Ca ratios and seawater salinity, but we do observe a strong correlation with temperature. Na / Ca data from warm-water corals (Porites spp.) and bivalves (Mytilus edulis) support this correlation, indicating that similar controls on the incorporation of sodium exist in these aragonitic organisms.
Christopher J. Hollis, Tom Dunkley Jones, Eleni Anagnostou, Peter K. Bijl, Marlow Julius Cramwinckel, Ying Cui, Gerald R. Dickens, Kirsty M. Edgar, Yvette Eley, David Evans, Gavin L. Foster, Joost Frieling, Gordon N. Inglis, Elizabeth M. Kennedy, Reinhard Kozdon, Vittoria Lauretano, Caroline H. Lear, Kate Littler, Lucas Lourens, A. Nele Meckler, B. David A. Naafs, Heiko Pälike, Richard D. Pancost, Paul N. Pearson, Ursula Röhl, Dana L. Royer, Ulrich Salzmann, Brian A. Schubert, Hannu Seebeck, Appy Sluijs, Robert P. Speijer, Peter Stassen, Jessica Tierney, Aradhna Tripati, Bridget Wade, Thomas Westerhold, Caitlyn Witkowski, James C. Zachos, Yi Ge Zhang, Matthew Huber, and Daniel J. Lunt
Geosci. Model Dev., 12, 3149–3206, https://doi.org/10.5194/gmd-12-3149-2019, https://doi.org/10.5194/gmd-12-3149-2019, 2019
Short summary
Short summary
The Deep-Time Model Intercomparison Project (DeepMIP) is a model–data intercomparison of the early Eocene (around 55 million years ago), the last time that Earth's atmospheric CO2 concentrations exceeded 1000 ppm. Previously, we outlined the experimental design for climate model simulations. Here, we outline the methods used for compilation and analysis of climate proxy data. The resulting climate
atlaswill provide insights into the mechanisms that control past warm climate states.
Morgan T. Jones, Lawrence M. E. Percival, Ella W. Stokke, Joost Frieling, Tamsin A. Mather, Lars Riber, Brian A. Schubert, Bo Schultz, Christian Tegner, Sverre Planke, and Henrik H. Svensen
Clim. Past, 15, 217–236, https://doi.org/10.5194/cp-15-217-2019, https://doi.org/10.5194/cp-15-217-2019, 2019
Short summary
Short summary
Mercury anomalies in sedimentary rocks are used to assess whether there were periods of elevated volcanism in the geological record. We focus on five sites that cover the Palaeocene–Eocene Thermal Maximum, an extreme global warming event that occurred 55.8 million years ago. We find that sites close to the eruptions from the North Atlantic Igneous Province display significant mercury anomalies across this time interval, suggesting that magmatism played a role in the global warming event.
Joost Frieling, Emiel P. Huurdeman, Charlotte C. M. Rem, Timme H. Donders, Jörg Pross, Steven M. Bohaty, Guy R. Holdgate, Stephen J. Gallagher, Brian McGowran, and Peter K. Bijl
J. Micropalaeontol., 37, 317–339, https://doi.org/10.5194/jm-37-317-2018, https://doi.org/10.5194/jm-37-317-2018, 2018
Short summary
Short summary
The hothouse climate of the early Paleogene and the associated violent carbon cycle perturbations are of particular interest to understanding current and future global climate change. Using dinoflagellate cysts and stable carbon isotope analyses, we identify several significant events, e.g., the Paleocene–Eocene Thermal Maximum in sedimentary deposits from the Otway Basin, SE Australia. We anticipate that this study will facilitate detailed climate reconstructions west of the Tasmanian Gateway.
Joost Frieling, Gert-Jan Reichart, Jack J. Middelburg, Ursula Röhl, Thomas Westerhold, Steven M. Bohaty, and Appy Sluijs
Clim. Past, 14, 39–55, https://doi.org/10.5194/cp-14-39-2018, https://doi.org/10.5194/cp-14-39-2018, 2018
Short summary
Short summary
Past periods of rapid global warming such as the Paleocene–Eocene Thermal Maximum are used to study biotic response to climate change. We show that very high peak PETM temperatures in the tropical Atlantic (~ 37 ºC) caused heat stress in several marine plankton groups. However, only slightly cooler temperatures afterwards allowed highly diverse plankton communities to bloom. This shows that tropical plankton communities may be susceptible to extreme warming, but may also recover rapidly.
Martin Schobben, Sebastiaan van de Velde, Jana Gliwa, Lucyna Leda, Dieter Korn, Ulrich Struck, Clemens Vinzenz Ullmann, Vachik Hairapetian, Abbas Ghaderi, Christoph Korte, Robert J. Newton, Simon W. Poulton, and Paul B. Wignall
Clim. Past, 13, 1635–1659, https://doi.org/10.5194/cp-13-1635-2017, https://doi.org/10.5194/cp-13-1635-2017, 2017
Short summary
Short summary
Stratigraphic trends in the carbon isotope composition of calcium carbonate rock can be used as a stratigraphic tool. An important assumption when using these isotope chemical records is that they record a globally universal signal of marine water chemistry. We show that carbon isotope scatter on a confined centimetre stratigraphic scale appears to represent a signal of microbial activity. However, long-term carbon isotope trends are still compatible with a primary isotope imprint.
Michael J. Henehan, David Evans, Madison Shankle, Janet E. Burke, Gavin L. Foster, Eleni Anagnostou, Thomas B. Chalk, Joseph A. Stewart, Claudia H. S. Alt, Joseph Durrant, and Pincelli M. Hull
Biogeosciences, 14, 3287–3308, https://doi.org/10.5194/bg-14-3287-2017, https://doi.org/10.5194/bg-14-3287-2017, 2017
Short summary
Short summary
It is still unclear whether foraminifera (calcifying plankton that play an important role in cycling carbon) will have difficulty in making their shells in more acidic oceans, with different studies often reporting apparently conflicting results. We used live lab cultures, mathematical models, and fossil measurements to test this question, and found low pH does reduce calcification. However, we find this response is likely size-dependent, which may have obscured this response in other studies.
Daniel J. Lunt, Matthew Huber, Eleni Anagnostou, Michiel L. J. Baatsen, Rodrigo Caballero, Rob DeConto, Henk A. Dijkstra, Yannick Donnadieu, David Evans, Ran Feng, Gavin L. Foster, Ed Gasson, Anna S. von der Heydt, Chris J. Hollis, Gordon N. Inglis, Stephen M. Jones, Jeff Kiehl, Sandy Kirtland Turner, Robert L. Korty, Reinhardt Kozdon, Srinath Krishnan, Jean-Baptiste Ladant, Petra Langebroek, Caroline H. Lear, Allegra N. LeGrande, Kate Littler, Paul Markwick, Bette Otto-Bliesner, Paul Pearson, Christopher J. Poulsen, Ulrich Salzmann, Christine Shields, Kathryn Snell, Michael Stärz, James Super, Clay Tabor, Jessica E. Tierney, Gregory J. L. Tourte, Aradhna Tripati, Garland R. Upchurch, Bridget S. Wade, Scott L. Wing, Arne M. E. Winguth, Nicky M. Wright, James C. Zachos, and Richard E. Zeebe
Geosci. Model Dev., 10, 889–901, https://doi.org/10.5194/gmd-10-889-2017, https://doi.org/10.5194/gmd-10-889-2017, 2017
Short summary
Short summary
In this paper we describe the experimental design for a set of simulations which will be carried out by a range of climate models, all investigating the climate of the Eocene, about 50 million years ago. The intercomparison of model results is called 'DeepMIP', and we anticipate that we will contribute to the next IPCC report through an analysis of these simulations and the geological data to which we will compare them.
Clemens Vinzenz Ullmann and Philip A. E. Pogge von Strandmann
Biogeosciences, 14, 89–97, https://doi.org/10.5194/bg-14-89-2017, https://doi.org/10.5194/bg-14-89-2017, 2017
Short summary
Short summary
This study documents how much control growth rate has on the chemical composition of fossil shell material. Using a series of chemical analyses of the fossil hard part of a belemnite, an extinct marine predator, a clear connection between the rate of calcite formation and its magnesium and strontium contents was found. These findings provide further insight into biomineralization processes and help better understand chemical signatures of fossils as proxies for palaeoenvironmental conditions.
David Evans, Bridget S. Wade, Michael Henehan, Jonathan Erez, and Wolfgang Müller
Clim. Past, 12, 819–835, https://doi.org/10.5194/cp-12-819-2016, https://doi.org/10.5194/cp-12-819-2016, 2016
Short summary
Short summary
We show that seawater pH exerts a substantial control on planktic foraminifera Mg / Ca, a widely applied palaeothermometer. As a result, temperature reconstructions based on this proxy are likely inaccurate over climatic events associated with a significant change in pH. We examine the implications of our findings for hydrological and temperature shifts over the Paleocene-Eocene Thermal Maximum and for the degree of surface ocean precursor cooling before the Eocene-Oligocene transition.
Related subject area
Subject: Proxy Use-Development-Validation | Archive: Marine Archives | Timescale: Cenozoic
A clumped isotope calibration of coccoliths at well-constrained culture temperatures for marine temperature reconstructions
Can we reliably reconstruct the mid-Pliocene Warm Period with sparse data and uncertain models?
Southern Ocean control on atmospheric CO2 changes across late-Pliocene Marine Isotope Stage M2
Assessing environmental change associated with early Eocene hyperthermals in the Atlantic Coastal Plain, USA
Technical note: A new online tool for δ18O–temperature conversions
A 15-million-year surface- and subsurface-integrated TEX86 temperature record from the eastern equatorial Atlantic
Sclerochronological evidence of pronounced seasonality from the late Pliocene of the southern North Sea basin and its implications
Pliocene evolution of the tropical Atlantic thermocline depth
Maastrichtian–Rupelian paleoclimates in the southwest Pacific – a critical re-evaluation of biomarker paleothermometry and dinoflagellate cyst paleoecology at Ocean Drilling Program Site 1172
Southern Ocean bottom-water cooling and ice sheet expansion during the middle Miocene climate transition
Rapid and sustained environmental responses to global warming: the Paleocene–Eocene Thermal Maximum in the eastern North Sea
Atmospheric carbon dioxide variations across the middle Miocene climate transition
OPTiMAL: a new machine learning approach for GDGT-based palaeothermometry
Technical note: A new automated radiolarian image acquisition, stacking, processing, segmentation and identification workflow
Late Paleocene–early Eocene Arctic Ocean sea surface temperatures: reassessing biomarker paleothermometry at Lomonosov Ridge
Surface-circulation change in the southwest Pacific Ocean across the Middle Eocene Climatic Optimum: inferences from dinoflagellate cysts and biomarker paleothermometry
A new age model for the Pliocene of the southern North Sea basin: a multi-proxy climate reconstruction
Joint inversion of proxy system models to reconstruct paleoenvironmental time series from heterogeneous data
Mercury anomalies across the Palaeocene–Eocene Thermal Maximum
Reinforcing the North Atlantic backbone: revision and extension of the composite splice at ODP Site 982
Highly variable Pliocene sea surface conditions in the Norwegian Sea
The PRISM4 (mid-Piacenzian) paleoenvironmental reconstruction
Revisiting carbonate chemistry controls on planktic foraminifera Mg / Ca: implications for sea surface temperature and hydrology shifts over the Paleocene–Eocene Thermal Maximum and Eocene–Oligocene transition
The Paleocene–Eocene Thermal Maximum at DSDP Site 277, Campbell Plateau, southern Pacific Ocean
The bivalve Glycymeris planicostalis as a high-resolution paleoclimate archive for the Rupelian (Early Oligocene) of central Europe
Pliocene diatom and sponge spicule oxygen isotope ratios from the Bering Sea: isotopic offsets and future directions
Re-evaluation of the age model for North Atlantic Ocean Site 982 – arguments for a return to the original chronology
Exploring the controls on element ratios in middle Eocene samples of the benthic foraminifera Oridorsalis umbonatus
Application of Fourier Transform Infrared Spectroscopy (FTIR) for assessing biogenic silica sample purity in geochemical analyses and palaeoenvironmental research
Alexander J. Clark, Ismael Torres-Romero, Madalina Jaggi, Stefano M. Bernasconi, and Heather M. Stoll
Clim. Past, 20, 2081–2101, https://doi.org/10.5194/cp-20-2081-2024, https://doi.org/10.5194/cp-20-2081-2024, 2024
Short summary
Short summary
Coccoliths are abundant in sediments across the world’s oceans, yet it is difficult to apply traditional carbon or oxygen isotope methodologies for temperature reconstructions. We show that our coccolith clumped isotope temperature calibration with well-constrained temperatures systematically differs from inorganic carbonate calibrations. We suggest the use of our well-constrained calibration for future coccolith carbonate temperature reconstructions.
James D. Annan, Julia C. Hargreaves, Thorsten Mauritsen, Erin McClymont, and Sze Ling Ho
Clim. Past, 20, 1989–1999, https://doi.org/10.5194/cp-20-1989-2024, https://doi.org/10.5194/cp-20-1989-2024, 2024
Short summary
Short summary
We have created a new global surface temperature reconstruction of the climate of the mid-Pliocene Warm Period, representing the period roughly 3.2 million years before the present day. We estimate that the globally averaged mean temperature was around 3.9 °C warmer than it was in pre-industrial times, but there is significant uncertainty in this value.
Suning Hou, Leonie Toebrock, Mart van der Linden, Fleur Rothstegge, Martin Ziegler, Lucas J. Lourens, and Peter K. Bijl
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-33, https://doi.org/10.5194/cp-2024-33, 2024
Revised manuscript accepted for CP
Short summary
Short summary
Based on dinoflagellate cyst assemblage and sea surface temperature record west offshore Tasmania, we find a northward migration and freshening of the subtropical front, not at the M2 glacial maximum but at its deglaciation phase. This oceanographic change aligns well with the trends in pCO2. We propose that iceberg discharge from the M2 deglaciation freshened the subtropical front, which together with the other oceanographic changes, affected atmosphere-ocean CO2 exchange in the Southern Ocean.
William Rush, Jean Self-Trail, Yang Zhang, Appy Sluijs, Henk Brinkhuis, James Zachos, James G. Ogg, and Marci Robinson
Clim. Past, 19, 1677–1698, https://doi.org/10.5194/cp-19-1677-2023, https://doi.org/10.5194/cp-19-1677-2023, 2023
Short summary
Short summary
The Eocene contains several brief warming periods referred to as hyperthermals. Studying these events and how they varied between locations can help provide insight into our future warmer world. This study provides a characterization of two of these events in the mid-Atlantic region of the USA. The records of climate that we measured demonstrate significant changes during this time period, but the type and timing of these changes highlight the complexity of climatic changes.
Daniel E. Gaskell and Pincelli M. Hull
Clim. Past, 19, 1265–1274, https://doi.org/10.5194/cp-19-1265-2023, https://doi.org/10.5194/cp-19-1265-2023, 2023
Short summary
Short summary
One of the most common ways of reconstructing temperatures in the geologic past is by analyzing oxygen isotope ratios in fossil shells. However, converting these data to temperatures can be a technically complicated task. Here, we present a new online tool that automates this task.
Carolien M. H. van der Weijst, Koen J. van der Laan, Francien Peterse, Gert-Jan Reichart, Francesca Sangiorgi, Stefan Schouten, Tjerk J. T. Veenstra, and Appy Sluijs
Clim. Past, 18, 1947–1962, https://doi.org/10.5194/cp-18-1947-2022, https://doi.org/10.5194/cp-18-1947-2022, 2022
Short summary
Short summary
The TEX86 proxy is often used by paleoceanographers to reconstruct past sea-surface temperatures. However, the origin of the TEX86 signal in marine sediments has been debated since the proxy was first proposed. In our paper, we show that TEX86 carries a mixed sea-surface and subsurface temperature signal and should be calibrated accordingly. Using our 15-million-year record, we subsequently show how a TEX86 subsurface temperature record can be used to inform us on past sea-surface temperatures.
Andrew L. A. Johnson, Annemarie M. Valentine, Bernd R. Schöne, Melanie J. Leng, and Stijn Goolaerts
Clim. Past, 18, 1203–1229, https://doi.org/10.5194/cp-18-1203-2022, https://doi.org/10.5194/cp-18-1203-2022, 2022
Short summary
Short summary
Determining seasonal temperatures demands proxies that record the highest and lowest temperatures over the annual cycle. Many record neither, but oxygen isotope profiles from shells in principle record both. Oxygen isotope data from late Pliocene bivalve molluscs of the southern North Sea basin show that the seasonal temperature range was at times much higher than previously estimated and higher than now. This suggests reduced oceanic heat supply, in contrast to some previous interpretations.
Carolien M. H. van der Weijst, Josse Winkelhorst, Wesley de Nooijer, Anna von der Heydt, Gert-Jan Reichart, Francesca Sangiorgi, and Appy Sluijs
Clim. Past, 18, 961–973, https://doi.org/10.5194/cp-18-961-2022, https://doi.org/10.5194/cp-18-961-2022, 2022
Short summary
Short summary
A hypothesized link between Pliocene (5.3–2.5 million years ago) global climate and tropical thermocline depth is currently only backed up by data from the Pacific Ocean. In our paper, we present temperature, salinity, and thermocline records from the tropical Atlantic Ocean. Surprisingly, the Pliocene thermocline evolution was remarkably different in the Atlantic and Pacific. We need to reevaluate the mechanisms that drive thermocline depth, and how these are tied to global climate change.
Peter K. Bijl, Joost Frieling, Marlow Julius Cramwinckel, Christine Boschman, Appy Sluijs, and Francien Peterse
Clim. Past, 17, 2393–2425, https://doi.org/10.5194/cp-17-2393-2021, https://doi.org/10.5194/cp-17-2393-2021, 2021
Short summary
Short summary
Here, we use the latest insights for GDGT and dinocyst-based paleotemperature and paleoenvironmental reconstructions in late Cretaceous–early Oligocene sediments from ODP Site 1172 (East Tasman Plateau, Australia). We reconstruct strong river runoff during the Paleocene–early Eocene, a progressive decline thereafter with increased wet/dry seasonality in the northward-drifting hinterland. Our critical review leaves the anomalous warmth of the Eocene SW Pacific Ocean unexplained.
Thomas J. Leutert, Sevasti Modestou, Stefano M. Bernasconi, and A. Nele Meckler
Clim. Past, 17, 2255–2271, https://doi.org/10.5194/cp-17-2255-2021, https://doi.org/10.5194/cp-17-2255-2021, 2021
Short summary
Short summary
The Miocene climatic optimum associated with high atmospheric CO2 levels (~17–14 Ma) was followed by a period of dramatic climate change. We present a clumped isotope-based bottom-water temperature record from the Southern Ocean covering this key climate transition. Our record reveals warm conditions and a substantial cooling preceding the main ice volume increase, possibly caused by thresholds involved in ice growth and/or regional effects at our study site.
Ella W. Stokke, Morgan T. Jones, Lars Riber, Haflidi Haflidason, Ivar Midtkandal, Bo Pagh Schultz, and Henrik H. Svensen
Clim. Past, 17, 1989–2013, https://doi.org/10.5194/cp-17-1989-2021, https://doi.org/10.5194/cp-17-1989-2021, 2021
Short summary
Short summary
In this paper, we present new sedimentological, geochemical, and mineralogical data exploring the environmental response to climatic and volcanic impact during the Paleocene–Eocene Thermal Maximum (~55.9 Ma; PETM). Our data suggest a rise in continental weathering and a shift to anoxic–sulfidic conditions. This indicates a rapid environmental response to changes in the carbon cycle and temperatures and highlights the important role of shelf areas as carbon sinks driving the PETM recovery.
Markus Raitzsch, Jelle Bijma, Torsten Bickert, Michael Schulz, Ann Holbourn, and Michal Kučera
Clim. Past, 17, 703–719, https://doi.org/10.5194/cp-17-703-2021, https://doi.org/10.5194/cp-17-703-2021, 2021
Short summary
Short summary
At approximately 14 Ma, the East Antarctic Ice Sheet expanded to almost its current extent, but the role of CO2 in this major climate transition is not entirely known. We show that atmospheric CO2 might have varied on 400 kyr cycles linked to the eccentricity of the Earth’s orbit. The resulting change in weathering and ocean carbon cycle affected atmospheric CO2 in a way that CO2 rose after Antarctica glaciated, helping to stabilize the climate system on its way to the “ice-house” world.
Tom Dunkley Jones, Yvette L. Eley, William Thomson, Sarah E. Greene, Ilya Mandel, Kirsty Edgar, and James A. Bendle
Clim. Past, 16, 2599–2617, https://doi.org/10.5194/cp-16-2599-2020, https://doi.org/10.5194/cp-16-2599-2020, 2020
Short summary
Short summary
We explore the utiliity of the composition of fossil lipid biomarkers, which are commonly preserved in ancient marine sediments, in providing estimates of past ocean temperatures. The group of lipids concerned show compositional changes across the modern oceans that are correlated, to some extent, with local surface ocean temperatures. Here we present new machine learning approaches to improve our understanding of this temperature sensitivity and its application to reconstructing past climates.
Martin Tetard, Ross Marchant, Giuseppe Cortese, Yves Gally, Thibault de Garidel-Thoron, and Luc Beaufort
Clim. Past, 16, 2415–2429, https://doi.org/10.5194/cp-16-2415-2020, https://doi.org/10.5194/cp-16-2415-2020, 2020
Short summary
Short summary
Radiolarians are marine micro-organisms that produce a siliceous shell that is preserved in the fossil record and can be used to reconstruct past climate variability. However, their study is only possible after a time-consuming manual selection of their shells from the sediment followed by their individual identification. Thus, we develop a new fully automated workflow consisting of microscopic radiolarian image acquisition, image processing and identification using artificial intelligence.
Appy Sluijs, Joost Frieling, Gordon N. Inglis, Klaas G. J. Nierop, Francien Peterse, Francesca Sangiorgi, and Stefan Schouten
Clim. Past, 16, 2381–2400, https://doi.org/10.5194/cp-16-2381-2020, https://doi.org/10.5194/cp-16-2381-2020, 2020
Short summary
Short summary
We revisit 15-year-old reconstructions of sea surface temperatures in the Arctic Ocean for the late Paleocene and early Eocene epochs (∼ 57–53 million years ago) based on the distribution of fossil membrane lipids of archaea preserved in Arctic Ocean sediments. We find that improvements in the methods over the past 15 years do not lead to different results. However, data quality is now higher and potential biases better characterized. Results confirm remarkable Arctic warmth during this time.
Marlow Julius Cramwinckel, Lineke Woelders, Emiel P. Huurdeman, Francien Peterse, Stephen J. Gallagher, Jörg Pross, Catherine E. Burgess, Gert-Jan Reichart, Appy Sluijs, and Peter K. Bijl
Clim. Past, 16, 1667–1689, https://doi.org/10.5194/cp-16-1667-2020, https://doi.org/10.5194/cp-16-1667-2020, 2020
Short summary
Short summary
Phases of past transient warming can be used as a test bed to study the environmental response to climate change independent of tectonic change. Using fossil plankton and organic molecules, here we reconstruct surface ocean temperature and circulation in and around the Tasman Gateway during a warming phase 40 million years ago termed the Middle Eocene Climatic Optimum. We find that plankton assemblages track ocean circulation patterns, with superimposed variability being related to temperature.
Emily Dearing Crampton-Flood, Lars J. Noorbergen, Damian Smits, R. Christine Boschman, Timme H. Donders, Dirk K. Munsterman, Johan ten Veen, Francien Peterse, Lucas Lourens, and Jaap S. Sinninghe Damsté
Clim. Past, 16, 523–541, https://doi.org/10.5194/cp-16-523-2020, https://doi.org/10.5194/cp-16-523-2020, 2020
Short summary
Short summary
The mid-Pliocene warm period (mPWP; 3.3–3.0 million years ago) is thought to be the last geological interval with similar atmospheric carbon dioxide concentrations as the present day. Further, the mPWP was 2–3 °C warmer than present, making it a good analogue for estimating the effects of future climate change. Here, we construct a new precise age model for the North Sea during the mPWP, and provide a detailed reconstruction of terrestrial and marine climate using a multi-proxy approach.
Gabriel J. Bowen, Brenden Fischer-Femal, Gert-Jan Reichart, Appy Sluijs, and Caroline H. Lear
Clim. Past, 16, 65–78, https://doi.org/10.5194/cp-16-65-2020, https://doi.org/10.5194/cp-16-65-2020, 2020
Short summary
Short summary
Past climate conditions are reconstructed using indirect and incomplete geological, biological, and geochemical proxy data. We propose that such reconstructions are best obtained by statistical inversion of hierarchical models that represent how multi–proxy observations and calibration data are produced by variation of environmental conditions in time and/or space. These methods extract new information from traditional proxies and provide robust, comprehensive estimates of uncertainty.
Morgan T. Jones, Lawrence M. E. Percival, Ella W. Stokke, Joost Frieling, Tamsin A. Mather, Lars Riber, Brian A. Schubert, Bo Schultz, Christian Tegner, Sverre Planke, and Henrik H. Svensen
Clim. Past, 15, 217–236, https://doi.org/10.5194/cp-15-217-2019, https://doi.org/10.5194/cp-15-217-2019, 2019
Short summary
Short summary
Mercury anomalies in sedimentary rocks are used to assess whether there were periods of elevated volcanism in the geological record. We focus on five sites that cover the Palaeocene–Eocene Thermal Maximum, an extreme global warming event that occurred 55.8 million years ago. We find that sites close to the eruptions from the North Atlantic Igneous Province display significant mercury anomalies across this time interval, suggesting that magmatism played a role in the global warming event.
Anna Joy Drury, Thomas Westerhold, David Hodell, and Ursula Röhl
Clim. Past, 14, 321–338, https://doi.org/10.5194/cp-14-321-2018, https://doi.org/10.5194/cp-14-321-2018, 2018
Short summary
Short summary
North Atlantic Site 982 is key to our understanding of climate evolution over the past 12 million years. However, the stratigraphy and age model are unverified. We verify the composite splice using XRF core scanning data and establish a revised benthic foraminiferal stable isotope astrochronology from 8.0–4.5 million years ago. Our new stratigraphy accurately correlates the Atlantic and the Mediterranean and suggests a connection between late Miocene cooling and dynamic ice sheet expansion.
Paul E. Bachem, Bjørg Risebrobakken, Stijn De Schepper, and Erin L. McClymont
Clim. Past, 13, 1153–1168, https://doi.org/10.5194/cp-13-1153-2017, https://doi.org/10.5194/cp-13-1153-2017, 2017
Short summary
Short summary
We present a high-resolution multi-proxy study of the Norwegian Sea, covering the 5.33 to 3.14 Ma time window within the Pliocene. We show that large-scale climate transitions took place during this warmer than modern time, most likely in response to ocean gateway transformations. Strong warming at 4.0 Ma in the Norwegian Sea, when regions closer to Greenland cooled, indicate that increased northward ocean heat transport may be compatible with expanding glaciation and Arctic sea ice growth.
Harry Dowsett, Aisling Dolan, David Rowley, Robert Moucha, Alessandro M. Forte, Jerry X. Mitrovica, Matthew Pound, Ulrich Salzmann, Marci Robinson, Mark Chandler, Kevin Foley, and Alan Haywood
Clim. Past, 12, 1519–1538, https://doi.org/10.5194/cp-12-1519-2016, https://doi.org/10.5194/cp-12-1519-2016, 2016
Short summary
Short summary
Past intervals in Earth history provide unique windows into conditions much different than those observed today. We investigated the paleoenvironments of a past warm interval (~ 3 million years ago). Our reconstruction includes data sets for surface temperature, vegetation, soils, lakes, ice sheets, topography, and bathymetry. These data are being used along with global climate models to expand our understanding of the climate system and to help us prepare for future changes.
David Evans, Bridget S. Wade, Michael Henehan, Jonathan Erez, and Wolfgang Müller
Clim. Past, 12, 819–835, https://doi.org/10.5194/cp-12-819-2016, https://doi.org/10.5194/cp-12-819-2016, 2016
Short summary
Short summary
We show that seawater pH exerts a substantial control on planktic foraminifera Mg / Ca, a widely applied palaeothermometer. As a result, temperature reconstructions based on this proxy are likely inaccurate over climatic events associated with a significant change in pH. We examine the implications of our findings for hydrological and temperature shifts over the Paleocene-Eocene Thermal Maximum and for the degree of surface ocean precursor cooling before the Eocene-Oligocene transition.
C. J. Hollis, B. R. Hines, K. Littler, V. Villasante-Marcos, D. K. Kulhanek, C. P. Strong, J. C. Zachos, S. M. Eggins, L. Northcote, and A. Phillips
Clim. Past, 11, 1009–1025, https://doi.org/10.5194/cp-11-1009-2015, https://doi.org/10.5194/cp-11-1009-2015, 2015
Short summary
Short summary
Re-examination of a Deep Sea Drilling Project sediment core (DSDP Site 277) from the western Campbell Plateau has identified the initial phase of the Paleocene-Eocene Thermal Maximum (PETM) within nannofossil chalk, the first record of the PETM in an oceanic setting in the southern Pacific Ocean (paleolatitude of ~65°S). Geochemical proxies indicate that intermediate and surface waters warmed by ~6° at the onset of the PETM prior to the full development of the negative δ13C excursion.
E. O. Walliser, B. R. Schöne, T. Tütken, J. Zirkel, K. I. Grimm, and J. Pross
Clim. Past, 11, 653–668, https://doi.org/10.5194/cp-11-653-2015, https://doi.org/10.5194/cp-11-653-2015, 2015
A. M. Snelling, G. E. A. Swann, J. Pike, and M. J. Leng
Clim. Past, 10, 1837–1842, https://doi.org/10.5194/cp-10-1837-2014, https://doi.org/10.5194/cp-10-1837-2014, 2014
K. T. Lawrence, I. Bailey, and M. E. Raymo
Clim. Past, 9, 2391–2397, https://doi.org/10.5194/cp-9-2391-2013, https://doi.org/10.5194/cp-9-2391-2013, 2013
C. F. Dawber and A. K. Tripati
Clim. Past, 8, 1957–1971, https://doi.org/10.5194/cp-8-1957-2012, https://doi.org/10.5194/cp-8-1957-2012, 2012
G. E. A. Swann and S. V. Patwardhan
Clim. Past, 7, 65–74, https://doi.org/10.5194/cp-7-65-2011, https://doi.org/10.5194/cp-7-65-2011, 2011
Cited articles
Alley, N. F., Hore, S. B., and Frakes, L. A.: Glaciations at high-latitude Southern Australia during the Early Cretaceous, Aust. J. Earth Sci., 67, 1045–1095, https://doi.org/10.1080/08120099.2019.1590457, 2020
Berndt, C., Planke, S., Alvestad, E., Tsikalas, F., and Rasmussen, T.: Seismic volcanostratigraphy of the Norwegian Margin: constraints on tectonomagmatic break-up processes, J. Geol. Soc. London, 158, 413–426, https://doi.org/10.1144/jgs.158.3.413, 2001.
Berndt, C., Planke, S., Alvarez Zarikian, C. A., Frieling, J., Jones, M. T., Millett, J. M., Brinkhuis, H., Bünz, S., Svensen, H. S., Longman, J., Scherer, R. P., Karstens, J., Manton, B., Nelissen, M., Reed, B., Faleide, J. I., Huismans, R. S., Agarwal, A., Andrews, G. D. M., Betlem, P., Bhattacharya, J., Chatterjee, S., Christopoulou, M., Clementi, V. J., Ferré, E. C., Filina, I. Y., Guo, P., Harper, D. T., Lambart, S., Mohn, G., Nakaoka, R., Tegner, C., Varela, N., Wang, M., Xu, W., and Yager, S. L.: Shallow-water hydrothermal venting linked to the Paleocene Eocene Thermal Maximum, Nat. Geosci., 16, 803–809, https://doi.org/10.1038/s41561-023-01246-8, 2023.
Boch, R., Dietzel, M., Reichl, P., Leis, A., Baldermann, A., Mittermayr, F., and Pölt, P.: Rapid ikaite (CaCO3 ⋅ 6H2O) crystallization in a man-made river bed: hydrogeochemical monitoring of a rarely documented mineral formation, Appl. Geochem., 63, 366–379, https://doi.org/10.1016/j.apgeochem.2015.10.003, 2015.
Buchardt, B., Israelson, C., Seaman, P., and Stockmann, G.: Ikaite tufa towers in Ikka Fjord, southwest Greenland: their formation by mixing of seawater and alkaline spring water, J. Sediment. Res., 71, 176–189, https://doi.org/10.1306/042800710176, 2001.
Council, T. C. and Bennett, P. C.: Geochemistry of ikaite formation at Mono Lake, California: implications for the origin of tufa mounds, Geology, 21, 971–974, https://doi.org/10.1130/0091-7613(1993)021<0971:GOIFAM>2.3.CO;2, 1993.
Counts, J. W., Vickers, M. L., Stokes, M. R., Spivey, W., Gardner, K. F., Self-Trail, J. M., Gooley, J. T., McAleer, R., Jubb, A. M., Houseknecht, D. W., Lease, R. O., Griffis, N. P., Vickers, M., Sliwinska, K., Tompkins, G. D., and Hudson, A. M.: Insights into glendonite formation from the upper Oligocene Sagavanirktok Formation, North Slope, Alaska, J. Sediment. Res., accepted, https://doi.org/10.2110/jsr.2023.060, 2023.
Cui, Y., Diefendorf, A. F., Kump, L. R., Jiang, S., and Freeman, K. H.: Synchronous marine and terrestrial carbon cycle perturbation in the high arctic during the PETM, Paleoceanogr. Paleoclimatol., 36, e2020PA003942, https://doi.org/10.1029/2020PA003942, 2021.
Daëron, M., Drysdale, R.N., Peral, M., Huyghe, D., Blamart, D., Coplen, T. B., Lartaud, F., and Zanchetta, G.: Most Earth-surface calcites precipitate out of isotopic equilibrium, Nat. Commun., 10, 429, https://doi.org/10.1038/s41467-019-08336-5, 2019.
De Lurio, J. L. and Frakes, L. A.: Glendonites as a paleoenvironmental tool: implications for early Cretaceous high latitude climates in Australia, Geochim. Cosmochim. Ac., 63, 1039–1048, https://doi.org/10.1016/S0016-7037(99)00019-8, 1999.
De Winter, N. J., Müller, I. A., Kocken, I. J., Thibault, N., Ullmann, C. V., Farnsworth, A., Lunt, D. J., Claeys, P., and Ziegler, M.: Absolute seasonal temperature estimates from clumped isotopes in bivalve shells suggest warm and variable greenhouse climate, Commun. Earth Environ., 2, 121, https://doi.org/10.1038/s43247-021-00193-9, 2021.
Dieckmann, G. S., Nehrke, G., Papadimitriou, S., Göttlicher, J., Steininger, R., Kennedy, H., Wolf-Gladrow, D., and Thomas, D. N.: Calcium carbonate as ikaite crystals in Antarctic sea ice, Geophys. Res. Lett., 35, L08501, https://doi.org/10.1029/2008GL033540, 2008.
Dunkley Jones, T., Lunt, D. J., Schmidt, D. N., Ridgwell, A., Sluijs, A., Valdes, P. J., and Maslin, M.: Climate model and proxy data constraints on ocean warming across the Paleocene–Eocene Thermal Maximum, Earth-Sci. Rev., 125, 123–145, https://doi.org/10.1016/j.earscirev.2013.07.004, 2013.
Durrant, S. F.: Feasibility of improvement in analytical performance in laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS) by addition of nitrogen to the argon plasma, Fresen. J. Anal. Chem., 349, 768–771, https://doi.org/10.1007/BF00325655, 1994.
Evans, D. and Müller, W.: Automated Extraction of a Five-Year LA-ICP-MS Trace Element Data Set of Ten Common Glass and Carbonate Reference Materials: Long-Term Data Quality, Optimisation and Laser Cell Homogeneity, Geostand. Geoanal. Res., 42, 159–188, https://doi.org/10.1111/ggr.12204, 2018.
Evans, D., Sagoo, N., Renema, W., Cotton, L. J., Müller, W., Todd, J. A., Saraswati, P. K., Stassen, P., Ziegler, M., Pearson, P. N., and Valdes, P. J.: Eocene greenhouse climate revealed by coupled clumped isotope- thermometry, P. Natl. Acad. Sci. USA, 115, 1174–1179, https://doi.org/10.1073/pnas.1714744115, 2018.
Frank, T. D., Thomas, S. G., and Fielding, C. R.: On using carbon and oxygen isotope data from glendonites as paleoenvironmental proxies: a case study from the Permian system of eastern Australia, J. Sediment. Res., 78, 713–723, https://doi.org/10.2110/jsr.2008.081, 2008.
Frieling, J., Iakovleva, A. I., Reichart, G. J., Aleksandrova, G. N., Gnibidenko, Z. N., Schouten, S., and Sluijs, A.: Paleocene–Eocene warming and biotic response in the epicontinental West Siberian Sea, Geology, 42, 767–770, https://doi.org/10.1130/G35724.1, 2014.
Frieling, J., Svensen, H. H., Planke, S., Cramwinckel, M. J., Selnes, H., and Sluijs, A.: Thermogenic methane release as a cause for the long duration of the PETM, P. Natl. Acad. Sci. USA, 113, 12059–12064, https://doi.org/10.1073/pnas.1603348113, 2016.
Garbe-Schönberg, D. and Müller, S.: Nano-particulate pressed powder tablets for LA-ICP-MS, J. Anal. Atom. Spectrom., 29, 990–1000, https://doi.org/10.1039/C4JA00007B, 2014.
Gates-Rector, S. and Blanton, T.: The powder diffraction file: a quality materials characterization database, Powder Diffr., 34, 352–360, https://doi.org/10.1017/S0885715619000812, 2019.
Gislason, S. R. and Oelkers, E. H.: Chapter 5: Silicate rock weathering and the global carbon cycle, in: Frontiers in Geochemistry: Contribution of Geochemistry to the Study of the Earth, edited by: Harmon, R. S. and Parker, A., Blackwell Publishing Ltd., 84–103, https://doi.org/10.1002/9781444329957.ch5, 2011.
Greinert, J. and Derkachev, A.: Glendonites and methane-derived Mg-calcites in the Sea of Okhotsk, Eastern Siberia: implications of a venting-related ikaite/glendonite formation, Mar. Geol., 204, 129–144, https://doi.org/10.1016/S0025-3227(03)00354-2, 2004.
Grasby, S. E., McCune, G. E., Beauchamp, B., and Galloway, J. M.: Lower Cretaceous cold snaps led to widespread glendonite occurrences in the Sverdrup Basin, Canadian High Arctic, Geol. Soc. Am. Bull., 129, 771–787, https://doi.org/10.1130/B31600.1, 2017.
Heinrich, C. A., Pettke, T., Halter, W. E., Aigner-Torres, M., Audétat, A., Günther, D., Hattendorf, B., Bleiner, D., Guillong, M., and Horn, I.: Quantitative multi-element analysis of minerals, fluid and melt inclusions by laser-ablation inductively-coupled-plasma mass-spectrometry, Geochim. Cosmochim. Ac., 67, 3473–3497, https://doi.org/10.1016/S0016-7037(03)00084-X, 2003.
Hembury, D. J., Palmer, M. R., Fones, G. R., Mills, R. A., Marsh, R., and Jones, M. T.: Uptake of dissolved oxygen during marine diagenesis of fresh volcanic material, Geochim. Cosmochim. Ac., 84, 353–368, https://doi.org/10.1016/j.gca.2012.01.017, 2012.
Hendry, M. J., Solomon, D. K., Person, M., Wassenaar, L. I., Gardner, W. P., Clark, I. D., Mayer, K. U., Kunimaru, T., Nakata, K., and Hasegawa, T.: Can argillaceous formations isolate nuclear waste? Insights from isotopic, noble gas, and geochemical profiles, Geofluids, 15, 381–386, https://doi.org/10.1111/GFL.12132, 2015.
Henkes, G. A., Passey, B. H., Grossman, E. L., Shenton, B. J., Pérez-Huerta, A., and Yancey, T. E.: Temperature limits for preservation of primary calcite clumped isotope paleotemperatures, Geochim. Cosmochim. Ac., 139, 362–382, https://doi.org/10.1016/j.gca.2014.04.040, 2014.
Hiruta, A. and Matsumoto, R.: Geochemical comparison of ikaite and methane-derived authigenic carbonates recovered from Echigo Bank in the Sea of Japan, Mar. Geol., 443, 106672, https://doi.org/10.1016/j.margeo.2021.106672, 2022.
Hovikoski, J., Fyhn, M. B. W., Nøhr-Hansen, H., Hopper, J. R., Andrews, S., Barham, M., Nielsen, L. H., Bjerager, M., Bojesen-Koefoed, J., Lode, S., Sheldon, E., Uchman, A., Skorstengaard, P. R., and Alsen, P.: Paleocene-Eocene volcanic segmentation of the Norwegian-Greenland seaway reorganized high-latitude ocean circulation, Commun. Earth Environ., 2, 172, https://doi.org/10.1038/s43247-021-00249-w, 2021.
Huggett, J. M., Schultz, B. P., Shearman, D. J., and Smith, A. J.: The petrology of ikaite pseudomorphs and their diagenesis, P. Geologist. Assoc., 116, 207–220, https://doi.org/10.1016/S0016-7878(05)80042-2, 2005.
Jia, G., Wang, X., Guo, W., and Dong, L.: Seasonal distribution of archaeal lipids in surface water and its constraint on their sources and the TEX86 temperature proxy in sediments of the South China Sea, J. Geophys. Res.-Biogeo., 122, 592–606, https://doi.org/10.1002/2016JG003732, 2017.
Jochum, K. P., Weis, U., Stoll, B., Kuzmin, D., Yang, Q., Raczek, I., Jacob, D. E., Stracke, A., Birbaum, K., Frick, D. A., Günther, D., and Enzweiler, J.: Determination of Reference Values for NIST SRM 610–617 Glasses Following ISO Guidelines, Geostand. Geoanal. Res., 35, 397–429, https://doi.org/10.1111/j.1751-908X.2011.00120.x, 2011.
Jochum, K. P., Garbe-Schönberg, D., Veter, M., Stoll, B., Weis, U., Weber, M., Lugli, F., Jentzen, A., Schiebel, R., Wassenburg, J. A., Jacob, D. E., and Haug, G. H.: Nano-Powdered Calcium Carbonate Reference Materials: Significant Progress for Microanalysis?, Geostand. Geoanal. Res., 43, 595–609, https://doi.org/10.1111/ggr.12292, 2019.
Jones, M. T. and Gislason, S. R.: Rapid releases of metal salts and nutrients following the deposition of volcanic ash into aqueous environments, Geochim. Cosmochim. Ac., 72, 3661–3680, https://doi.org/10.1016/j.gca.2008.05.030, 2008.
Jones, M. T., Jerram, D. A., Svensen, H. H., and Grove, C.: The effects of large igneous provinces on the global carbon and sulphur cycles, Palaeogeogr. Palaeocl., 441, 4–21, https://doi.org/10.1016/j.palaeo.2015.06.042, 2016.
Jones, M. T., Pearce, C. R., Jeandel, C., Gislason, S. R., Eiriksdottir, E. S., Mavromatis, V., and Oelkers, E. H.: Riverine particulate material dissolution as a significant flux of strontium to the oceans, Earth Planet. Sc. Lett., 355, 51–59, https://doi.org/10.1016/j.epsl.2012.08.040, 2012.
Jones, M. T., Percival, L. M. E., Stokke, E. W., Frieling, J., Mather, T. A., Riber, L., Schubert, B. A., Schultz, B., Tegner, C., Planke, S., and Svensen, H. H.: Mercury anomalies across the Palaeocene–Eocene Thermal Maximum, Clim. Past, 15, 217–236, https://doi.org/10.5194/cp-15-217-2019, 2019.
Jones, M. T., Stokke, E. W., Rooney, A. D., Frieling, J., Pogge von Strandmann, P. A. E., Wilson, D. J., Svensen, H. H., Planke, S., Adatte, T., Thibault, N., Vickers, M. L., Mather, T. A., Tegner, C., Zuchuat, V., and Schultz, B. P.: Tracing North Atlantic volcanism and seaway connectivity across the Paleocene–Eocene Thermal Maximum (PETM), Clim. Past, 19, 1623–1652, https://doi.org/10.5194/cp-19-1623-2023, 2023.
Kemper, E.: Das Klima der Kreide-Zeit, Geologisches Jahrbuch, Hannover, Reihe A, 96, 5–185, 1987.
King, C.: A Revised Correlation of Tertiary Rocks in the British Isles and Adjacent Areas of NW Europe, edited by: Gale, A. S. and Barry, T. L., Geol. Soc. London, Special Report No. 27, 724 pp., 2016.
Larsen, L. M., Fitton, J. G., and Pedersen, A. K.: Paleogene volcanic ash layers in the Danish Basin: compositions and source areas in the North Atlantic Igneous Province, Lithos, 71, 47–80, https://doi.org/10.1016/j.lithos.2003.07.001, 2003.
Longman, J., Gernon, T. M., Palmer, M. R., Jones, M. T., Stokke, E. W., and Svensen, H. H.: Marine diagenesis of tephra aided the Palaeocene-Eocene Thermal Maximum termination, Earth Planet. Sc. Lett., 571, 117101, https://doi.org/10.1016/j.epsl.2021.117101, 2021.
Meckler, A. N., Sexton, P. F., Piasecki, A. M., Leutert, T. J., Marquardt, J., Ziegler, M., Agterhuis, T., Lourens, L. J., Rae, J. W. B., Barnet, J., Tripati, A., and Bernasconi, S. M.: Cenozoic evolution of deep ocean temperature from clumped isotope thermometry, Science, 377, 86–90, https://doi.org/10.1126/science.abk0604, 2022.
Merkel, A. and Munnecke, A.: Glendonite-bearing concretions from the upper Pliensbachian (Lower Jurassic) of South Germany: indicators for a massive cooling in the European epicontinental sea, Facies, 69, 10, https://doi.org/10.1007/s10347-023-00667-6, 2023.
Mikhailova, K. Y., Rogov, M. A., Ershova, V. B., Vasileva, K. Y., Pokrovsky, B. G., and Baraboshkin, E. Y.: New data on stratigraphy and distributions of glendonites from the carolinefjellet formation (Middle Aptian–Lower Albian, Cretaceous), Western Spitsbergen, Stratigr. Geol. Correl., 29, 21–35, https://doi.org/10.1134/S0869593821010056, 2021.
Morales, C., Rogov, M., Wierzbowski, H., Ershova, V., Suan, G., Adatte, T., Föllmi, K. B., Tegelaar, E., Reichart, G. J., De Lange, G. J., and Middelburg, J. J.: Glendonites track methane seepage in Mesozoic polar seas, Geology, 45, 503–506, https://doi.org/10.1130/G38967.1 2017.
Murphy, B. H., Farley, K. A., and Zachos, J. C.: An extraterrestrial 3He-based timescale for the Paleocene–Eocene thermal maximum (PETM) from Walvis Ridge, IODP Site 1266, Geochim. Cosmochim. Ac., 74, 5098–5108, https://doi.org/10.1016/j.gca.2010.03.039, 2010.
Murray, N. A., McManus, J., Palmer, M. R., Haley, B., and Manners, H.: Diagenesis in tephra-rich sediments from the Lesser Antilles Volcanic Arc: Pore fluid constraints, Geochim. Cosmochim. Ac., 228, 119–135, https://doi.org/10.1016/j.gca.2018.02.039, 2018.
Norris, R. D., Wilson, P. A., Blum, P., Fehr, A., Agnini, C., Bornemann, A., Boulila, S., Bown, P. R., Cournede, C., Friedrich, O., and Ghosh, A. K.: Expedition 342 summary, Proc. IODP, https://doi.org/10.2204/iodp.proc.342.101.2014, 2014.
Olsson, J., Stipp, S. L. S., Dalby, K. N., and Gislason, S. R.: Rapid release of metal salts and nutrients from the 2011 Grímsvötn, Iceland volcanic ash, Geochim. Cosmochim. Ac., 123, 134–149, https://doi.org/10.1016/j.gca.2013.09.009, 2013.
Olsson, J., Stipp, S. L. S., Makovicky, E., and Gislason, S. R.: Metal scavenging by calcium carbonate at the Eyjafjallajökull volcano: A carbon capture and storage analogue, Chem. Geol., 384, 135–148, https://doi.org/10.1016/j.chemgeo.2014.06.025, 2014.
Parkhurst, D. L. and Appelo, C. A. J.: Description of input and examples for PHREEQC version 3 – A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations: U.S. Geological Survey Techniques and Methods, Book 6, Chap. A43, 497 pp., https://doi.org/10.3133/tm6A43, 2013.
Pearce, N. J. G., Perkins, W. T., Westgate, J. A., Gorton, M. P., Jackson, S. E., Neal, C. R., and Chenery, S. P.: A Compilation of New and Published Major and Trace Element Data for NIST SRM 610 and NIST SRM 612 Glass Reference Materials, Geostandard. Newslett., 21, 115–144, https://doi.org/10.1111/j.1751-908X.1997.tb00538.x, 1997.
Planke, S., Berndt, C., and Alvarez Zarikian, C. A.: and the Expedition 396 scientists. Expedition 396 Summary, in: Mid-Norwegian Margin Magmatism and Paleoclimate Implications, edited by: Planke, S., Berndt, C., Alvarez Zarikian, C. A., and the Expedition 396 Scientists, Proceedings of the International Ocean Discovery Program, https://doi.org/10.14379/iodp.proc.396.101.2023, 2023a.
Planke, S., Berndt, C., Alvarez Zarikian, C. A., and the Expedition 396 scientists: Sites U1567 and U1568, in: Mid-Norwegian Margin Magmatism and Paleoclimate Implications, edited by: Planke, S., Berndt, C., Alvarez Zarikian, C. A., and the Expedition 396 Scientists, Proceedings of the International Ocean Discovery Program, https://doi.org/10.14379/iodp.proc.396.105.2023, 2023b.
Planke, S., Berndt, C., Alvarez Zarikian, C. A., and the Expedition 396 scientists: Sites U1569 and U1570, in: Mid-Norwegian Margin Magmatism and Paleoclimate Implications, edited by: Planke, S., Berndt, C., Alvarez Zarikian, C. A., and the Expedition 396 Scientists, Proceedings of the International Ocean Discovery Program, https://doi.org/10.14379/iodp.proc.396.106.2023, 2023c.
Planke, S., Berndt, C., Alvarez Zarikian, C. A., and the Expedition 396 scientists: Expedition 396 Methods, in: Mid-Norwegian Margin Magmatism and Paleoclimate Implications, edited by: Planke, S., Berndt, C., Alvarez Zarikian, C. A., and the Expedition 396 Scientists, Proceedings of the International Ocean Discovery Program, https://doi.org/10.14379/iodp.proc.396.102.2023, 2023d.
Purgstaller, B., Dietzel, M., Baldermann, A., and Mavromatis, V.: Control of temperature and aqueous Mg2+ / Ca2+ ratio on the (trans-) formation of ikaite, Geochim. Cosmochim. Ac., 217, 128–143, https://doi.org/10.1016/j.gca.2017.08.016, 2017.
Qu, Y., Teichert, B. M. A., Birgel, D., Goedert, J. L., and Peckmann, J.: The prominent role of bacterial sulfate reduction in the formation of glendonite: a case study from Paleogene marine strata of western Washington State, Facies, 63, 1–16, https://doi.org/10.1007/s10347-017-0492-1, 2017.
Rickaby, R., Shaw, S., Bennitt, G., Kennedy, H., Zabel, M., and Lennie, A.: Potential of ikaite to record the evolution of oceanic δ18O, Geology, 34, 497–500, https://doi.org/10.1130/G22413.1, 2006.
Robock, A.: Volcanic eruptions and climate, Rev. Geophys., 38, 191–219, https://doi.org/10.1029/1998RG000054, 2000.
Rogov, M. A., Ershova, V. B., Shchepetova, E. V., Zakharov, V. A., Pokrovsky, B. G., and Khudoley, A. K.: Earliest Cretaceous (late Berriasian) glendonites from Northeast Siberia revise the timing of initiation of transient Early Cretaceous cooling in the high latitudes, Cretaceous Res., 71, 102–112, https://doi.org/10.1016/j.cretres.2016.11.011, 2017.
Rogov, M., Ershova, V., Vereshchagin, O., Vasileva, K., Mikhailova, K., and Krylov, A.: Database of global glendonite and ikaite records throughout the Phanerozoic, Earth Syst. Sci. Data, 13, 343–356, https://doi.org/10.5194/essd-13-343-2021, 2021.
Röhl, U., Westerhold, T., Bralower, T. J., and Zachos, J. C.: On the duration of the Paleocene-Eocene thermal maximum (PETM), Geochem. Geophys. Geosy., 8, 12, https://doi.org/10.1029/2007GC001784, 2007.
Rush, W., Self-Trail, J., Zhang, Y., Sluijs, A., Brinkhuis, H., Zachos, J., Ogg, J. G., and Robinson, M.: Assessing environmental change associated with early Eocene hyperthermals in the Atlantic Coastal Plain, USA, Clim. Past, 19, 1677–1698, https://doi.org/10.5194/cp-19-1677-2023, 2023.
Scheller, E. L., Grotzinger, J., and Ingalls, M.: Guttulatic calcite: A carbonate microtexture that reveals frigid formation conditions, Geology, 50, 48–53, https://doi.org/10.1130/G49312.1, 2022.
Schmidt, A., Skeffington, R. A., Thordarson, T., Self, S., Forster, P. M., Rap, A., Ridgwell, A., Fowler, D., Wilson, M., Mann, G. W., and Wignall, P. B.: Selective environmental stress from sulphur emitted by continental flood basalt eruptions, Nat. Geosci., 9, 77–82, https://doi.org/10.1038/ngeo2588, 2016.
Schoon, P. L., Heilmann-Clausen, C., Schultz, B. P., Damasté, J. S. S., and Schouten, S.: Warming and environmental changes in the eastern North Sea Basin during the Palaeocene–Eocene Thermal Maximum as revealed by biomarker lipids, Org. Geochem. 78, 79–88, https://doi.org/10.1016/j.orggeochem.2014.11.003, 2015.
Schultz, B., Thibault, N., and Huggett, J.: The minerals ikaite and its pseudomorph glendonite: Historical perspective and legacies of Douglas Shearman and Alec K. Smith, P. Geologist. Assoc., 133, 176–192, https://doi.org/10.1016/j.pgeola.2022.02.003, 2022.
Schultz, B. P., Huggett, J. M., Kennedy, G. L., Burger, P., Friis, H., Jensen, A. M., Kanstrup, M., Bernasconi, S. M., Thibault, N., Ullmann, C. V., and Vickers, M. L.: Petrography and geochemical analysis of Arctic ikaite pseudomorphs from Utqiaġvik (Barrow), Alaska, Norw. J. Geol., 103, 202303, https://doi.org/10.17850/njg103-1-3, 2023a.
Schultz, B. P., Huggett, J., Ullmann, C. V., Kassens, H., and Kölling, M.: Links between Ikaite Morphology, Recrystallised Ikaite Petrography and Glendonite Pseudomorphs Determined from Polar and Deep-Sea Ikaite, Minerals, 13, 841, https://doi.org/10.3390/min13070841, 2023b.
Sluijs, A., Frieling, J., Inglis, G. N., Nierop, K. G. J., Peterse, F., Sangiorgi, F., and Schouten, S.: Late Paleocene–early Eocene Arctic Ocean sea surface temperatures: reassessing biomarker paleothermometry at Lomonosov Ridge, Clim. Past, 16, 2381–2400, https://doi.org/10.5194/cp-16-2381-2020, 2020.
Spielhagen, R. F. and Tripati, A.: Evidence from Svalbard for near-freezing temperatures and climate oscillations in the Arctic during the Paleocene and Eocene, Palaeogeogr. Palaeocl., 278, 48–56, https://doi.org/10.1016/j.palaeo.2009.04.012, 2009.
Stockmann, G., Tollefsen, E., Skelton, A., Brüchert, V., Balic-Zunic, T., Langhof, J., Skogby, H., and Karlsson, A.: Control of a calcite inhibitor (phosphate) and temperature on ikaite precipitation in Ikka Fjord, southwest Greenland, Appl. Geochem., 89, 11–22, https://doi.org/10.1016/j.apgeochem.2017.11.005, 2018.
Stockmann, G. J., Seaman, P., Balic-Zunic, T., Peternell, M., Sturkell, E., Liljebladh, B., and Gyllencreutz, R.: Mineral Changes to the Tufa Columns of Ikka Fjord, SW Greenland, Minerals, 12, 1430, https://doi.org/10.3390/min12111430, 2022.
Stokke, E. W., Jones, M. T., Tierney, J. E., Svensen, H. H., and Whiteside, J. H.: Temperature changes across the Paleocene-Eocene Thermal Maximum – a new high-resolution TEX86 temperature record from the Eastern North Sea Basin, Earth Planet. Sc. Lett., 544, 116388, https://doi.org/10.1016/j.epsl.2020.116388, 2020a.
Stokke, E. W., Liu, E. J., and Jones, M. T.: Evidence of explosive hydromagmatic eruptions during the emplacement of the North Atlantic Igneous Province, Volcanica, 3, 227–250, https://doi.org/10.30909/vol.03.02.227250, 2020b.
Suess, E., Balzer, W., Hesse, K. F., Müller, P. J., Ungerer, C. T., and Wefer, G.: Calcium carbonate hexahydrate from organic-rich sediments of the Antarctic shelf: precursors of glendonites, Science, 216, 1128–1131, https://doi.org/10.1126/science.216.4550.1128, 1982.
Svensen, H., Planke, S., Malthe-Sørenssen, A., Jamtveit, B., Myklebust, R., Rasmussen Eidem, T., and Rey, S. S.: Release of methane from a volcanic basin as a mechanism for initial Eocene global warming, Nature, 429, 542–545, https://doi.org/10.1038/nature02566, 2004.
Teichert, B. M. A. and Luppold, F. W.: Glendonites from an Early Jurassic methane seep – Climate or methane indicators?, Palaeogeogr. Palaeoclim., 390, 81–93, https://doi.org/10.1016/j.palaeo.2013.03.001, 2013.
Tollefsen, E., Balic-Zunic, T., Mörth, C. M., Brüchert, V., Lee, C. C., and Skelton, A.: Ikaite nucleation at 35 ∘C challenges the use of glendonite as a paleotemperature indicator, Sci. Rep.-UK, 10, 8141, https://doi.org/10.1038/s41598-020-64751-5, 2020.
Torres, M. E., Marsaglia, K. M., Martin, J. B., and Murray, R. W.: Sediment diagenesis in western Pacific basins, Geoph. Monog. Series, 88, 241–258, 1995.
Udoh, E. C., Li, L., Chen, M., Dan, S. F., Chen, L., Zhang, J., Jia, G., and He, J.: Distribution characteristics of terrestrial and marine lipid biomarkers in surface sediment and their implication for the provenance and palaeoceanographic application in the northern South China Sea, Mar. Geol., 452, 106899, https://doi.org/10.1016/j.margeo.2022.106899, 2022.
Ullmann, C. V., Boyle, R., Duarte, L. V., Hesselbo, S. P., Kasemann, S. A., Klein, T., Lenton, T. M., Piazza, V., and Aberhan, M.: Warm afterglow from the Toarcian Oceanic Anoxic Event drives the success of deep-adapted brachiopods, Sci. Rep.-UK, 10, 6549, https://doi.org/10.1038/s41598-020-63487-6, 2020.
Vickers, M., Watkinson, M., Price, G. D., and Jerrett, R.: An improved model for the ikaite-glendonite transformation: evidence from the Lower Cretaceous of Spitsbergen, Svalbard, Norw. J. Geol., 98, 1–15 https://doi.org/10.17850/njg98-1-01, 2018.
Vickers, M. L., Price, G. D., Jerrett, R. M., Sutton, P., Watkinson, M. P., and FitzPatrick, M.: The duration and magnitude of Cretaceous cool events: Evidence from the northern high latitudes, Geol. Soc. Am. Bull., 131, 1979–1994, https://doi.org/10.1130/B35074.1, 2019.
Vickers, M. L., Lengger, S. K., Bernasconi, S. M., Thibault, N., Schultz, B. P., Fernandez, A., Ullmann, C. V., McCormack, P., Bjerrum, C. J., Rasmussen, J. A., and Hougård, I. W.: Cold spells in the Nordic Seas during the early Eocene Greenhouse, Nat. Commun., 11, 4713, https://doi.org/10.1038/s41467-020-18558-7, 2020.
Vickers, M. L., Vickers, M., Rickaby, R. E., Wu, H., Bernasconi, S. M., Ullmann, C. V., Bohrmann, G., Spielhagen, R. F., Kassens, H., Schultz, B. P., and Alwmark, C.: The ikaite to calcite transformation: Implications for palaeoclimate studies, Geochim. Cosmochim. Ac., 334, 201–216, https://doi.org/10.1016/j.gca.2022.08.001, 2022.
Vickers, M. L., Jones, M. T., Longman, J., Evans, D., Ullmann, C. V., Stokke, E. W., Vickers, M., Frieling, J., Harper, D. T., and Clementi, V. J.: Dataset accompanying manuscript “Paleocene-Eocene age glendonites from the Norwegian Margin – Indicators of cold snaps in the hothouse?”, Zenodo [data set], https://doi.org/10.5281/zenodo.10405891, 2023.
Westerhold, T., Marwan, N., Drury, A. J., Liebrand, D., Agnini, C., Anagnostou, E., Barnet, J. S., Bohaty, S. M., De Vleeschouwer, D., Florindo, F., and Frederichs, T.: An astronomically dated record of Earth's climate and its predictability over the last 66 million years, Science, 369, 1383–1387, https://doi.org/10.1126/science.aba6853, 2020.
Whiticar, M. J., Suess, E., Wefer, G., and Müller, P. J.: Calcium carbonate hexahydrate (ikaite): History of mineral formation as recorded by stable isotopes, Minerals, 12, 1627, https://doi.org/10.3390/min12121627, 2022.
Zachos, J. C., Dickens, G. R., and Zeebe, R. E.: An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics, Nature, 451, 279–283, https://doi.org/10.1038/nature06588, 2008.
Zacke, A., Voigt, S., Joachimski, M. M., Gale, A. S., Ward, D. J., and Tütken, T.: Surface-water freshening and high-latitude river discharge in the Eocene North Sea, J. Geol. Soc. London, 166, 969–980, https://doi.org/10.1144/0016-76492008-068, 2009.
Zhou, X., Lu, Z., Rickaby, R. E., Domack, E. W., Wellner, J. S., and Kennedy, H. A.: Ikaite abundance controlled by porewater phosphorus level: Potential links to dust and productivity, J. Geol., 123, 269–281, https://doi.org/10.1086/681918, 2015.
Short summary
The discovery of cold-water glendonite pseudomorphs in sediments deposited during the hottest part of the Cenozoic poses an apparent climate paradox. This study examines their occurrence, association with volcanic sediments, and speculates on the timing and extent of cooling, fitting this with current understanding of global climate during this period. We propose that volcanic activity was key to both physical and chemical conditions that enabled the formation of glendonites in these sediments.
The discovery of cold-water glendonite pseudomorphs in sediments deposited during the hottest...