Articles | Volume 19, issue 3
https://doi.org/10.5194/cp-19-607-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-19-607-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A 1.5-million-year record of orbital and millennial climate variability in the North Atlantic
Godwin Laboratory for Palaeoclimate Research, Department of Earth
Sciences, University of Cambridge, Cambridge, CB2 3EQ, UK
Simon J. Crowhurst
Godwin Laboratory for Palaeoclimate Research, Department of Earth
Sciences, University of Cambridge, Cambridge, CB2 3EQ, UK
Lucas Lourens
Department of Earth Sciences, Faculty of Geosciences, Utrecht
University, Budapestlaan 4, 3584 CD Utrecht, the Netherlands
Vasiliki Margari
Environmental Change Research Centre, Department of Geography,
University College London, London, WC1E 6BT, UK
John Nicolson
Godwin Laboratory for Palaeoclimate Research, Department of Earth
Sciences, University of Cambridge, Cambridge, CB2 3EQ, UK
James E. Rolfe
Godwin Laboratory for Palaeoclimate Research, Department of Earth
Sciences, University of Cambridge, Cambridge, CB2 3EQ, UK
Luke C. Skinner
Godwin Laboratory for Palaeoclimate Research, Department of Earth
Sciences, University of Cambridge, Cambridge, CB2 3EQ, UK
Nicola C. Thomas
Godwin Laboratory for Palaeoclimate Research, Department of Earth
Sciences, University of Cambridge, Cambridge, CB2 3EQ, UK
Polychronis C. Tzedakis
Environmental Change Research Centre, Department of Geography,
University College London, London, WC1E 6BT, UK
Maryline J. Mleneck-Vautravers
Godwin Laboratory for Palaeoclimate Research, Department of Earth
Sciences, University of Cambridge, Cambridge, CB2 3EQ, UK
Eric W. Wolff
Godwin Laboratory for Palaeoclimate Research, Department of Earth
Sciences, University of Cambridge, Cambridge, CB2 3EQ, UK
Related authors
Julia Homann, Niklas Karbach, Stacy A. Carolin, Daniel H. James, David Hodell, Sebastian F. M. Breitenbach, Ola Kwiecien, Mark Brenner, Carlos Peraza Lope, and Thorsten Hoffmann
Biogeosciences, 20, 3249–3260, https://doi.org/10.5194/bg-20-3249-2023, https://doi.org/10.5194/bg-20-3249-2023, 2023
Short summary
Short summary
Cave stalagmites contain substances that can be used to reconstruct past changes in local and regional environmental conditions. We used two classes of biomarkers (polycyclic aromatic hydrocarbons and monosaccharide anhydrides) to detect the presence of fire and to also explore changes in fire regime (e.g. fire frequency, intensity, and fuel source). We tested our new method on a stalagmite from Mayapan, a large Maya city on the Yucatán Peninsula.
Rodrigo Martínez-Abarca, Michelle Abstein, Frederik Schenk, David Hodell, Philipp Hoelzmann, Mark Brenner, Steffen Kutterolf, Sergio Cohuo, Laura Macario-González, Mona Stockhecke, Jason Curtis, Flavio S. Anselmetti, Daniel Ariztegui, Thomas Guilderson, Alexander Correa-Metrio, Thorsten Bauersachs, Liseth Pérez, and Antje Schwalb
Clim. Past, 19, 1409–1434, https://doi.org/10.5194/cp-19-1409-2023, https://doi.org/10.5194/cp-19-1409-2023, 2023
Short summary
Short summary
Lake Petén Itzá, northern Guatemala, is one of the oldest lakes in the northern Neotropics. In this study, we analyzed geochemical and mineralogical data to decipher the hydrological response of the lake to climate and environmental changes between 59 and 15 cal ka BP. We also compare the response of Petén Itzá with other regional records to discern the possible climate forcings that influenced them. Short-term climate oscillations such as Greenland interstadials and stadials are also detected.
Eric W. Wolff, Hubertus Fischer, Tas van Ommen, and David A. Hodell
Clim. Past, 18, 1563–1577, https://doi.org/10.5194/cp-18-1563-2022, https://doi.org/10.5194/cp-18-1563-2022, 2022
Short summary
Short summary
Projects are underway to drill ice cores in Antarctica reaching 1.5 Myr back in time. Dating such cores will be challenging. One method is to match records from the new core against datasets from existing marine sediment cores. Here we explore the options for doing this and assess how well the ice and marine records match over the existing 800 000-year time period. We are able to recommend a strategy for using marine data to place an age scale on the new ice cores.
Anna Joy Drury, Diederik Liebrand, Thomas Westerhold, Helen M. Beddow, David A. Hodell, Nina Rohlfs, Roy H. Wilkens, Mitchell Lyle, David B. Bell, Dick Kroon, Heiko Pälike, and Lucas J. Lourens
Clim. Past, 17, 2091–2117, https://doi.org/10.5194/cp-17-2091-2021, https://doi.org/10.5194/cp-17-2091-2021, 2021
Short summary
Short summary
We use the first high-resolution southeast Atlantic carbonate record to see how climate dynamics evolved since 30 million years ago (Ma). During ~ 30–13 Ma, eccentricity (orbital circularity) paced carbonate deposition. After the mid-Miocene Climate Transition (~ 14 Ma), precession (Earth's tilt direction) increasingly drove carbonate variability. In the latest Miocene (~ 8 Ma), obliquity (Earth's tilt) pacing appeared, signalling increasing high-latitude influence.
Cinthya Nava-Fernandez, Adam Hartland, Fernando Gázquez, Ola Kwiecien, Norbert Marwan, Bethany Fox, John Hellstrom, Andrew Pearson, Brittany Ward, Amanda French, David A. Hodell, Adrian Immenhauser, and Sebastian F. M. Breitenbach
Hydrol. Earth Syst. Sci., 24, 3361–3380, https://doi.org/10.5194/hess-24-3361-2020, https://doi.org/10.5194/hess-24-3361-2020, 2020
Short summary
Short summary
Speleothems are powerful archives of past climate for understanding modern local hydrology and its relation to regional circulation patterns. We use a 3-year monitoring dataset to test the sensitivity of Waipuna Cave to seasonal changes and El Niño–Southern Oscillation (ENSO) dynamics. Drip water data suggest a fast response to rainfall events; its elemental composition reflects a seasonal cycle and ENSO variability. Waipuna Cave speleothems have a high potential for past ENSO reconstructions.
Alena Giesche, Michael Staubwasser, Cameron A. Petrie, and David A. Hodell
Clim. Past, 15, 73–90, https://doi.org/10.5194/cp-15-73-2019, https://doi.org/10.5194/cp-15-73-2019, 2019
Short summary
Short summary
A foraminifer oxygen isotope record from the northeastern Arabian Sea was used to reconstruct winter and summer monsoon strength from 5.4 to 3.0 ka. We found a 200-year period of strengthened winter monsoon (4.5–4.3 ka) that coincides with the earliest phase of the Mature Harappan period of the Indus Civilization, followed by weakened winter and summer monsoons by 4.1 ka. Aridity spanning both rainfall seasons at 4.1 ka may help to explain some of the observed archaeological shifts.
Anna Joy Drury, Thomas Westerhold, David Hodell, and Ursula Röhl
Clim. Past, 14, 321–338, https://doi.org/10.5194/cp-14-321-2018, https://doi.org/10.5194/cp-14-321-2018, 2018
Short summary
Short summary
North Atlantic Site 982 is key to our understanding of climate evolution over the past 12 million years. However, the stratigraphy and age model are unverified. We verify the composite splice using XRF core scanning data and establish a revised benthic foraminiferal stable isotope astrochronology from 8.0–4.5 million years ago. Our new stratigraphy accurately correlates the Atlantic and the Mediterranean and suggests a connection between late Miocene cooling and dynamic ice sheet expansion.
David A. Hodell and James E. T. Channell
Clim. Past, 12, 1805–1828, https://doi.org/10.5194/cp-12-1805-2016, https://doi.org/10.5194/cp-12-1805-2016, 2016
Short summary
Short summary
For the past 2.7 million years the Earth's climate has switched more than 50 times between a cold glacial and warm interglacial state. We found the trend towards larger ice sheets over the past 2.7 million years was accompanied by changes in the style, frequency, and intensity of shorter-term (millennial) variability. We suggest the interaction between millennial climate change and longer-term variations in the Earth's orbit may be important for explaining the patterns of Quaternary climate.
D. A. Hodell, L. Lourens, D. A. V. Stow, J. Hernández-Molina, C. A. Alvarez Zarikian, and the Shackleton Site Project Members
Sci. Dril., 16, 13–19, https://doi.org/10.5194/sd-16-13-2013, https://doi.org/10.5194/sd-16-13-2013, 2013
D. Liebrand, L. J. Lourens, D. A. Hodell, B. de Boer, R. S. W. van de Wal, and H. Pälike
Clim. Past, 7, 869–880, https://doi.org/10.5194/cp-7-869-2011, https://doi.org/10.5194/cp-7-869-2011, 2011
Helene Hoffmann, Jason Day, Rachael H. Rhodes, Mackenzie Grieman, Jack Humby, Isobel Rowell, Christoph Nehrbass-Ahles, Robert Mulvaney, Sally Gibson, and Eric Wolff
The Cryosphere, 18, 4993–5013, https://doi.org/10.5194/tc-18-4993-2024, https://doi.org/10.5194/tc-18-4993-2024, 2024
Short summary
Short summary
Ice cores are archives of past atmospheric conditions. In deep and old ice, the layers containing this information get thinned to the millimetre scale or below. We installed a setup for high-resolution (182 μm) chemical impurity measurements in ice cores using the laser ablation technique at the University of Cambridge. In a first application to the Skytrain ice core from Antarctica, we discuss the potential to detect fine-layered structures in ice up to an age of 26 000 years.
Ana-Cristina Mârza, Laurie Menviel, and Luke C. Skinner
Geochronology, 6, 503–519, https://doi.org/10.5194/gchron-6-503-2024, https://doi.org/10.5194/gchron-6-503-2024, 2024
Short summary
Short summary
Radiocarbon serves as a powerful dating tool, but the calibration of marine radiocarbon dates presents significant challenges because the whole surface ocean cannot be represented by a single calibration curve. Here we use climate model outputs and data to assess a novel method for developing regional marine calibration curves. Our results are encouraging and point to a way forward for solving the marine radiocarbon age calibration problem without relying on model simulations of the past.
Rachael H. Rhodes, Yvan Bollet-Quivogne, Piers Barnes, Mirko Severi, and Eric W. Wolff
Clim. Past, 20, 2031–2043, https://doi.org/10.5194/cp-20-2031-2024, https://doi.org/10.5194/cp-20-2031-2024, 2024
Short summary
Short summary
Some ionic components slowly move through glacier ice by diffusion, but the rate of this diffusion, its exact mechanism(s), and the factors that might influence it are poorly understood. In this study, we model how peaks in sulfate, deposited at Dome C on the Antarctic ice sheet after volcanic eruptions, change with depth and time. We find that the sulfate diffusion rate in ice is relatively fast in young ice near the surface, but the rate is markedly reduced over time.
Dorothea Elisabeth Moser, Elizabeth R. Thomas, Christoph Nehrbass-Ahles, Anja Eichler, and Eric Wolff
The Cryosphere, 18, 2691–2718, https://doi.org/10.5194/tc-18-2691-2024, https://doi.org/10.5194/tc-18-2691-2024, 2024
Short summary
Short summary
Increasing temperatures worldwide lead to more melting of glaciers and ice caps, even in the polar regions. This is why ice-core scientists need to prepare to analyse records affected by melting and refreezing. In this paper, we present a summary of how near-surface melt forms, what structural imprints it leaves in snow, how various signatures used for ice-core climate reconstruction are altered, and how we can still extract valuable insights from melt-affected ice cores.
Suning Hou, Leonie Toebrock, Mart van der Linden, Fleur Rothstegge, Martin Ziegler, Lucas J. Lourens, and Peter K. Bijl
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-33, https://doi.org/10.5194/cp-2024-33, 2024
Revised manuscript accepted for CP
Short summary
Short summary
Based on dinoflagellate cyst assemblage and sea surface temperature record west offshore Tasmania, we find a northward migration and freshening of the subtropical front, not at the M2 glacial maximum but at its deglaciation phase. This oceanographic change aligns well with the trends in pCO2. We propose that iceberg discharge from the M2 deglaciation freshened the subtropical front, which together with the other oceanographic changes, affected atmosphere-ocean CO2 exchange in the Southern Ocean.
Luke Skinner, Francois Primeau, Aurich Jeltsch-Thömmes, Fortunat Joos, Peter Köhler, and Edouard Bard
Clim. Past, 19, 2177–2202, https://doi.org/10.5194/cp-19-2177-2023, https://doi.org/10.5194/cp-19-2177-2023, 2023
Short summary
Short summary
Radiocarbon is best known as a dating tool, but it also allows us to track CO2 exchange between the ocean and atmosphere. Using decades of data and novel mapping methods, we have charted the ocean’s average radiocarbon ″age” since the last Ice Age. Combined with climate model simulations, these data quantify the ocean’s role in atmospheric CO2 rise since the last Ice Age while also revealing that Earth likely received far more cosmic radiation during the last Ice Age than hitherto believed.
Isobel Rowell, Carlos Martin, Robert Mulvaney, Helena Pryer, Dieter Tetzner, Emily Doyle, Hara Madhav Talasila, Jilu Li, and Eric Wolff
Clim. Past, 19, 1699–1714, https://doi.org/10.5194/cp-19-1699-2023, https://doi.org/10.5194/cp-19-1699-2023, 2023
Short summary
Short summary
We present an age scale for a new type of ice core from a vulnerable region in West Antarctic, which is lacking in longer-term (greater than a few centuries) ice core records. The Sherman Island core extends to greater than 1 kyr. We provide modelling evidence for the potential of a 10 kyr long core. We show that this new type of ice core can be robustly dated and that climate records from this core will be a significant addition to existing regional climate records.
Julia Homann, Niklas Karbach, Stacy A. Carolin, Daniel H. James, David Hodell, Sebastian F. M. Breitenbach, Ola Kwiecien, Mark Brenner, Carlos Peraza Lope, and Thorsten Hoffmann
Biogeosciences, 20, 3249–3260, https://doi.org/10.5194/bg-20-3249-2023, https://doi.org/10.5194/bg-20-3249-2023, 2023
Short summary
Short summary
Cave stalagmites contain substances that can be used to reconstruct past changes in local and regional environmental conditions. We used two classes of biomarkers (polycyclic aromatic hydrocarbons and monosaccharide anhydrides) to detect the presence of fire and to also explore changes in fire regime (e.g. fire frequency, intensity, and fuel source). We tested our new method on a stalagmite from Mayapan, a large Maya city on the Yucatán Peninsula.
Rodrigo Martínez-Abarca, Michelle Abstein, Frederik Schenk, David Hodell, Philipp Hoelzmann, Mark Brenner, Steffen Kutterolf, Sergio Cohuo, Laura Macario-González, Mona Stockhecke, Jason Curtis, Flavio S. Anselmetti, Daniel Ariztegui, Thomas Guilderson, Alexander Correa-Metrio, Thorsten Bauersachs, Liseth Pérez, and Antje Schwalb
Clim. Past, 19, 1409–1434, https://doi.org/10.5194/cp-19-1409-2023, https://doi.org/10.5194/cp-19-1409-2023, 2023
Short summary
Short summary
Lake Petén Itzá, northern Guatemala, is one of the oldest lakes in the northern Neotropics. In this study, we analyzed geochemical and mineralogical data to decipher the hydrological response of the lake to climate and environmental changes between 59 and 15 cal ka BP. We also compare the response of Petén Itzá with other regional records to discern the possible climate forcings that influenced them. Short-term climate oscillations such as Greenland interstadials and stadials are also detected.
Robert Mulvaney, Eric W. Wolff, Mackenzie M. Grieman, Helene H. Hoffmann, Jack D. Humby, Christoph Nehrbass-Ahles, Rachael H. Rhodes, Isobel F. Rowell, Frédéric Parrenin, Loïc Schmidely, Hubertus Fischer, Thomas F. Stocker, Marcus Christl, Raimund Muscheler, Amaelle Landais, and Frédéric Prié
Clim. Past, 19, 851–864, https://doi.org/10.5194/cp-19-851-2023, https://doi.org/10.5194/cp-19-851-2023, 2023
Short summary
Short summary
We present an age scale for a new ice core drilled at Skytrain Ice Rise, an ice rise facing the Ronne Ice Shelf in Antarctica. Various measurements in the ice and air phases are used to match the ice core to other Antarctic cores that have already been dated, and a new age scale is constructed. The 651 m ice core includes ice that is confidently dated to 117 000–126 000 years ago, in the last interglacial. Older ice is found deeper down, but there are flow disturbances in the deeper ice.
Eric W. Wolff, Andrea Burke, Laura Crick, Emily A. Doyle, Helen M. Innes, Sue H. Mahony, James W. B. Rae, Mirko Severi, and R. Stephen J. Sparks
Clim. Past, 19, 23–33, https://doi.org/10.5194/cp-19-23-2023, https://doi.org/10.5194/cp-19-23-2023, 2023
Short summary
Short summary
Large volcanic eruptions leave an imprint of a spike of sulfate deposition that can be measured in ice cores. Here we use a method that logs the number and size of large eruptions recorded in an Antarctic core in a consistent way through the last 200 000 years. The rate of recorded eruptions is variable but shows no trends. In particular, there is no increase in recorded eruptions during deglaciation periods. This is consistent with most recorded eruptions being from lower latitudes.
Rick Hennekam, Katharine M. Grant, Eelco J. Rohling, Rik Tjallingii, David Heslop, Andrew P. Roberts, Lucas J. Lourens, and Gert-Jan Reichart
Clim. Past, 18, 2509–2521, https://doi.org/10.5194/cp-18-2509-2022, https://doi.org/10.5194/cp-18-2509-2022, 2022
Short summary
Short summary
The ratio of titanium to aluminum (Ti/Al) is an established way to reconstruct North African climate in eastern Mediterranean Sea sediments. We demonstrate here how to obtain reliable Ti/Al data using an efficient scanning method that allows rapid acquisition of long climate records at low expense. Using this method, we reconstruct a 3-million-year North African climate record. African environmental variability was paced predominantly by low-latitude insolation from 3–1.2 million years ago.
Takahito Mitsui, Polychronis C. Tzedakis, and Eric W. Wolff
Clim. Past, 18, 1983–1996, https://doi.org/10.5194/cp-18-1983-2022, https://doi.org/10.5194/cp-18-1983-2022, 2022
Short summary
Short summary
We provide simple quantitative models for the interglacial and glacial intensities over the last 800 000 years. Our results suggest that the memory of previous climate states and the time course of the insolation in both hemispheres are crucial for understanding interglacial and glacial intensities. In our model, the shift in interglacial intensities at the Mid-Brunhes Event (~430 ka) is ultimately attributed to the amplitude modulation of obliquity.
Helene M. Hoffmann, Mackenzie M. Grieman, Amy C. F. King, Jenna A. Epifanio, Kaden Martin, Diana Vladimirova, Helena V. Pryer, Emily Doyle, Axel Schmidt, Jack D. Humby, Isobel F. Rowell, Christoph Nehrbass-Ahles, Elizabeth R. Thomas, Robert Mulvaney, and Eric W. Wolff
Clim. Past, 18, 1831–1847, https://doi.org/10.5194/cp-18-1831-2022, https://doi.org/10.5194/cp-18-1831-2022, 2022
Short summary
Short summary
The WACSWAIN project (WArm Climate Stability of the West Antarctic ice sheet in the last INterglacial) investigates the fate of the West Antarctic Ice Sheet during the last warm period on Earth (115 000–130 000 years before present). Within this framework an ice core was recently drilled at Skytrain Ice Rise. In this study we present a stratigraphic chronology of that ice core based on absolute age markers and annual layer counting for the last 2000 years.
Eric W. Wolff, Hubertus Fischer, Tas van Ommen, and David A. Hodell
Clim. Past, 18, 1563–1577, https://doi.org/10.5194/cp-18-1563-2022, https://doi.org/10.5194/cp-18-1563-2022, 2022
Short summary
Short summary
Projects are underway to drill ice cores in Antarctica reaching 1.5 Myr back in time. Dating such cores will be challenging. One method is to match records from the new core against datasets from existing marine sediment cores. Here we explore the options for doing this and assess how well the ice and marine records match over the existing 800 000-year time period. We are able to recommend a strategy for using marine data to place an age scale on the new ice cores.
Henry Hooghiemstra, Gustavo Sarmiento Pérez, Vladimir Torres Torres, Juan-Carlos Berrío, Lucas Lourens, and Suzette G. A. Flantua
Sci. Dril., 30, 1–15, https://doi.org/10.5194/sd-30-1-2022, https://doi.org/10.5194/sd-30-1-2022, 2022
Short summary
Short summary
This is a brief overview of long continental fossil pollen records globally in relationship with marine records. Specifically, the Northern Andes is a key area in developing and testing hypotheses in the fields of ecology, paleobiogeography, and climate change in tropical regions. We review 60 years of deep drilling experience in this region that have led to landmark records. We also highlight the early development of long continental pollen records from unique, deep, sediment-filled basins.
Laura Crick, Andrea Burke, William Hutchison, Mika Kohno, Kathryn A. Moore, Joel Savarino, Emily A. Doyle, Sue Mahony, Sepp Kipfstuhl, James W. B. Rae, Robert C. J. Steele, R. Stephen J. Sparks, and Eric W. Wolff
Clim. Past, 17, 2119–2137, https://doi.org/10.5194/cp-17-2119-2021, https://doi.org/10.5194/cp-17-2119-2021, 2021
Short summary
Short summary
The ~ 74 ka eruption of Toba was one of the largest eruptions of the last 100 ka. We have measured the sulfur isotopic composition for 11 Toba eruption candidates in two Antarctic ice cores. Sulfur isotopes allow us to distinguish between large eruptions that have erupted material into the stratosphere and smaller ones that reach lower altitudes. Using this we have identified the events most likely to be Toba and place the eruption on the transition into a cold period in the Northern Hemisphere.
Anna Joy Drury, Diederik Liebrand, Thomas Westerhold, Helen M. Beddow, David A. Hodell, Nina Rohlfs, Roy H. Wilkens, Mitchell Lyle, David B. Bell, Dick Kroon, Heiko Pälike, and Lucas J. Lourens
Clim. Past, 17, 2091–2117, https://doi.org/10.5194/cp-17-2091-2021, https://doi.org/10.5194/cp-17-2091-2021, 2021
Short summary
Short summary
We use the first high-resolution southeast Atlantic carbonate record to see how climate dynamics evolved since 30 million years ago (Ma). During ~ 30–13 Ma, eccentricity (orbital circularity) paced carbonate deposition. After the mid-Miocene Climate Transition (~ 14 Ma), precession (Earth's tilt direction) increasingly drove carbonate variability. In the latest Miocene (~ 8 Ma), obliquity (Earth's tilt) pacing appeared, signalling increasing high-latitude influence.
Bas de Boer, Marit Peters, and Lucas J. Lourens
Clim. Past, 17, 331–344, https://doi.org/10.5194/cp-17-331-2021, https://doi.org/10.5194/cp-17-331-2021, 2021
Bette L. Otto-Bliesner, Esther C. Brady, Anni Zhao, Chris M. Brierley, Yarrow Axford, Emilie Capron, Aline Govin, Jeremy S. Hoffman, Elizabeth Isaacs, Masa Kageyama, Paolo Scussolini, Polychronis C. Tzedakis, Charles J. R. Williams, Eric Wolff, Ayako Abe-Ouchi, Pascale Braconnot, Silvana Ramos Buarque, Jian Cao, Anne de Vernal, Maria Vittoria Guarino, Chuncheng Guo, Allegra N. LeGrande, Gerrit Lohmann, Katrin J. Meissner, Laurie Menviel, Polina A. Morozova, Kerim H. Nisancioglu, Ryouta O'ishi, David Salas y Mélia, Xiaoxu Shi, Marie Sicard, Louise Sime, Christian Stepanek, Robert Tomas, Evgeny Volodin, Nicholas K. H. Yeung, Qiong Zhang, Zhongshi Zhang, and Weipeng Zheng
Clim. Past, 17, 63–94, https://doi.org/10.5194/cp-17-63-2021, https://doi.org/10.5194/cp-17-63-2021, 2021
Short summary
Short summary
The CMIP6–PMIP4 Tier 1 lig127k experiment was designed to address the climate responses to strong orbital forcing. We present a multi-model ensemble of 17 climate models, most of which have also completed the CMIP6 DECK experiments and are thus important for assessing future projections. The lig127ksimulations show strong summer warming over the NH continents. More than half of the models simulate a retreat of the Arctic minimum summer ice edge similar to the average for 2000–2018.
Cinthya Nava-Fernandez, Adam Hartland, Fernando Gázquez, Ola Kwiecien, Norbert Marwan, Bethany Fox, John Hellstrom, Andrew Pearson, Brittany Ward, Amanda French, David A. Hodell, Adrian Immenhauser, and Sebastian F. M. Breitenbach
Hydrol. Earth Syst. Sci., 24, 3361–3380, https://doi.org/10.5194/hess-24-3361-2020, https://doi.org/10.5194/hess-24-3361-2020, 2020
Short summary
Short summary
Speleothems are powerful archives of past climate for understanding modern local hydrology and its relation to regional circulation patterns. We use a 3-year monitoring dataset to test the sensitivity of Waipuna Cave to seasonal changes and El Niño–Southern Oscillation (ENSO) dynamics. Drip water data suggest a fast response to rainfall events; its elemental composition reflects a seasonal cycle and ENSO variability. Waipuna Cave speleothems have a high potential for past ENSO reconstructions.
Emily Dearing Crampton-Flood, Lars J. Noorbergen, Damian Smits, R. Christine Boschman, Timme H. Donders, Dirk K. Munsterman, Johan ten Veen, Francien Peterse, Lucas Lourens, and Jaap S. Sinninghe Damsté
Clim. Past, 16, 523–541, https://doi.org/10.5194/cp-16-523-2020, https://doi.org/10.5194/cp-16-523-2020, 2020
Short summary
Short summary
The mid-Pliocene warm period (mPWP; 3.3–3.0 million years ago) is thought to be the last geological interval with similar atmospheric carbon dioxide concentrations as the present day. Further, the mPWP was 2–3 °C warmer than present, making it a good analogue for estimating the effects of future climate change. Here, we construct a new precise age model for the North Sea during the mPWP, and provide a detailed reconstruction of terrestrial and marine climate using a multi-proxy approach.
Markus M. Frey, Sarah J. Norris, Ian M. Brooks, Philip S. Anderson, Kouichi Nishimura, Xin Yang, Anna E. Jones, Michelle G. Nerentorp Mastromonaco, David H. Jones, and Eric W. Wolff
Atmos. Chem. Phys., 20, 2549–2578, https://doi.org/10.5194/acp-20-2549-2020, https://doi.org/10.5194/acp-20-2549-2020, 2020
Short summary
Short summary
A winter sea ice expedition to Antarctica provided the first direct observations of sea salt aerosol (SSA) production during snow storms above sea ice, thereby validating a model hypothesis to account for winter time SSA maxima in Antarctica not explained otherwise. Defining SSA sources is important given the critical roles that aerosol plays for climate, for air quality and as a potential ice core proxy for sea ice conditions in the past.
Laurie Menviel, Emilie Capron, Aline Govin, Andrea Dutton, Lev Tarasov, Ayako Abe-Ouchi, Russell N. Drysdale, Philip L. Gibbard, Lauren Gregoire, Feng He, Ruza F. Ivanovic, Masa Kageyama, Kenji Kawamura, Amaelle Landais, Bette L. Otto-Bliesner, Ikumi Oyabu, Polychronis C. Tzedakis, Eric Wolff, and Xu Zhang
Geosci. Model Dev., 12, 3649–3685, https://doi.org/10.5194/gmd-12-3649-2019, https://doi.org/10.5194/gmd-12-3649-2019, 2019
Short summary
Short summary
As part of the Past Global Changes (PAGES) working group on Quaternary Interglacials, we propose a protocol to perform transient simulations of the penultimate deglaciation for the Paleoclimate Modelling Intercomparison Project (PMIP4). This design includes time-varying changes in orbital forcing, greenhouse gas concentrations, continental ice sheets as well as freshwater input from the disintegration of continental ice sheets. Key paleo-records for model-data comparison are also included.
Christopher J. Hollis, Tom Dunkley Jones, Eleni Anagnostou, Peter K. Bijl, Marlow Julius Cramwinckel, Ying Cui, Gerald R. Dickens, Kirsty M. Edgar, Yvette Eley, David Evans, Gavin L. Foster, Joost Frieling, Gordon N. Inglis, Elizabeth M. Kennedy, Reinhard Kozdon, Vittoria Lauretano, Caroline H. Lear, Kate Littler, Lucas Lourens, A. Nele Meckler, B. David A. Naafs, Heiko Pälike, Richard D. Pancost, Paul N. Pearson, Ursula Röhl, Dana L. Royer, Ulrich Salzmann, Brian A. Schubert, Hannu Seebeck, Appy Sluijs, Robert P. Speijer, Peter Stassen, Jessica Tierney, Aradhna Tripati, Bridget Wade, Thomas Westerhold, Caitlyn Witkowski, James C. Zachos, Yi Ge Zhang, Matthew Huber, and Daniel J. Lunt
Geosci. Model Dev., 12, 3149–3206, https://doi.org/10.5194/gmd-12-3149-2019, https://doi.org/10.5194/gmd-12-3149-2019, 2019
Short summary
Short summary
The Deep-Time Model Intercomparison Project (DeepMIP) is a model–data intercomparison of the early Eocene (around 55 million years ago), the last time that Earth's atmospheric CO2 concentrations exceeded 1000 ppm. Previously, we outlined the experimental design for climate model simulations. Here, we outline the methods used for compilation and analysis of climate proxy data. The resulting climate
atlaswill provide insights into the mechanisms that control past warm climate states.
Xin Yang, Markus M. Frey, Rachael H. Rhodes, Sarah J. Norris, Ian M. Brooks, Philip S. Anderson, Kouichi Nishimura, Anna E. Jones, and Eric W. Wolff
Atmos. Chem. Phys., 19, 8407–8424, https://doi.org/10.5194/acp-19-8407-2019, https://doi.org/10.5194/acp-19-8407-2019, 2019
Short summary
Short summary
This is a comprehensive model–data comparison aiming to evaluate the proposed mechanism of sea salt aerosol (SSA) production from blowing snow on sea ice. Some key parameters such as snow salinity and blowing-snow size distribution were constrained by data collected in the Weddell Sea. The good agreement between modelled SSA and the cruise data strongly indicates that sea ice surface is a large SSA source in polar regions, a process which has not been considered in current climate models.
Alena Giesche, Michael Staubwasser, Cameron A. Petrie, and David A. Hodell
Clim. Past, 15, 73–90, https://doi.org/10.5194/cp-15-73-2019, https://doi.org/10.5194/cp-15-73-2019, 2019
Short summary
Short summary
A foraminifer oxygen isotope record from the northeastern Arabian Sea was used to reconstruct winter and summer monsoon strength from 5.4 to 3.0 ka. We found a 200-year period of strengthened winter monsoon (4.5–4.3 ka) that coincides with the earliest phase of the Mature Harappan period of the Indus Civilization, followed by weakened winter and summer monsoons by 4.1 ka. Aridity spanning both rainfall seasons at 4.1 ka may help to explain some of the observed archaeological shifts.
Laurie Menviel, Emilie Capron, Aline Govin, Andrea Dutton, Lev Tarasov, Ayako Abe-Ouchi, Russell Drysdale, Philip Gibbard, Lauren Gregoire, Feng He, Ruza Ivanovic, Masa Kageyama, Kenji Kawamura, Amaelle Landais, Bette L. Otto-Bliesner, Ikumi Oyabu, Polychronis Tzedakis, Eric Wolff, and Xu Zhang
Clim. Past Discuss., https://doi.org/10.5194/cp-2018-106, https://doi.org/10.5194/cp-2018-106, 2018
Preprint withdrawn
Short summary
Short summary
The penultimate deglaciation (~ 138–128 ka), which represents the transition into the Last Interglacial period, provides a framework to investigate the climate and environmental response to large changes in boundary conditions. Here, as part of the PAGES-PMIP working group on Quaternary Interglacials, we propose a protocol to perform transient simulations of the penultimate deglaciation as well as a selection of paleo records for upcoming model-data comparisons.
Timme H. Donders, Niels A. G. M. van Helmond, Roel Verreussel, Dirk Munsterman, Johan ten Veen, Robert P. Speijer, Johan W. H. Weijers, Francesca Sangiorgi, Francien Peterse, Gert-Jan Reichart, Jaap S. Sinninghe Damsté, Lucas Lourens, Gesa Kuhlmann, and Henk Brinkhuis
Clim. Past, 14, 397–411, https://doi.org/10.5194/cp-14-397-2018, https://doi.org/10.5194/cp-14-397-2018, 2018
Short summary
Short summary
The buildup and melting of ice during the early glaciations in the Northern Hemisphere, around 2.5 million years ago, were far shorter in duration than during the last million years. Based on molecular compounds and microfossils from sediments dating back to the early glaciations we show that the temperature on land and in the sea changed simultaneously and was a major factor in the ice buildup in the Northern Hemisphere. These data provide key insights into the dynamics of early glaciations.
Anna Joy Drury, Thomas Westerhold, David Hodell, and Ursula Röhl
Clim. Past, 14, 321–338, https://doi.org/10.5194/cp-14-321-2018, https://doi.org/10.5194/cp-14-321-2018, 2018
Short summary
Short summary
North Atlantic Site 982 is key to our understanding of climate evolution over the past 12 million years. However, the stratigraphy and age model are unverified. We verify the composite splice using XRF core scanning data and establish a revised benthic foraminiferal stable isotope astrochronology from 8.0–4.5 million years ago. Our new stratigraphy accurately correlates the Atlantic and the Mediterranean and suggests a connection between late Miocene cooling and dynamic ice sheet expansion.
Helen M. Beddow, Diederik Liebrand, Douglas S. Wilson, Frits J. Hilgen, Appy Sluijs, Bridget S. Wade, and Lucas J. Lourens
Clim. Past, 14, 255–270, https://doi.org/10.5194/cp-14-255-2018, https://doi.org/10.5194/cp-14-255-2018, 2018
Short summary
Short summary
We present two astronomy-based timescales for climate records from the Pacific Ocean. These records range from 24 to 22 million years ago, a time period when Earth was warmer than today and the only land ice was located on Antarctica. We use tectonic plate-pair spreading rates to test the two timescales, which shows that the carbonate record yields the best timescale. In turn, this implies that Earth’s climate system and carbon cycle responded slowly to changes in incoming solar radiation.
Michel Legrand, Susanne Preunkert, Eric Wolff, Rolf Weller, Bruno Jourdain, and Dietmar Wagenbach
Atmos. Chem. Phys., 17, 14039–14054, https://doi.org/10.5194/acp-17-14039-2017, https://doi.org/10.5194/acp-17-14039-2017, 2017
Short summary
Short summary
Multiple year-round records of bulk and size-segregated composition of sea-salt aerosol and acidic gases (HCl and HNO3) were obtained at inland Antarctica. Both acidic sulfur particles and nitric acid are involved in the observed sea-salt dechlorination in spring/summer. The observed sulfate to sodium mass ratio of sea-salt aerosol in winter (0.16 ± 0.05) suggests on average a similar contribution of sea-ice and open-ocean emissions to the sea-salt load over inland Antarctica at that season.
Lennert B. Stap, Roderik S. W. van de Wal, Bas de Boer, Richard Bintanja, and Lucas J. Lourens
Clim. Past, 13, 1243–1257, https://doi.org/10.5194/cp-13-1243-2017, https://doi.org/10.5194/cp-13-1243-2017, 2017
Short summary
Short summary
We show the results of transient simulations with a coupled climate–ice sheet model over the past 38 million years. The CO2 forcing of the model is inversely obtained from a benthic δ18O stack. These simulations enable us to study the influence of ice sheet variability on climate change on long timescales. We find that ice sheet–climate interaction strongly enhances Earth system sensitivity and polar amplification.
María Fernanda Sánchez Goñi, Stéphanie Desprat, Anne-Laure Daniau, Frank C. Bassinot, Josué M. Polanco-Martínez, Sandy P. Harrison, Judy R. M. Allen, R. Scott Anderson, Hermann Behling, Raymonde Bonnefille, Francesc Burjachs, José S. Carrión, Rachid Cheddadi, James S. Clark, Nathalie Combourieu-Nebout, Colin. J. Courtney Mustaphi, Georg H. Debusk, Lydie M. Dupont, Jemma M. Finch, William J. Fletcher, Marco Giardini, Catalina González, William D. Gosling, Laurie D. Grigg, Eric C. Grimm, Ryoma Hayashi, Karin Helmens, Linda E. Heusser, Trevor Hill, Geoffrey Hope, Brian Huntley, Yaeko Igarashi, Tomohisa Irino, Bonnie Jacobs, Gonzalo Jiménez-Moreno, Sayuri Kawai, A. Peter Kershaw, Fujio Kumon, Ian T. Lawson, Marie-Pierre Ledru, Anne-Marie Lézine, Ping Mei Liew, Donatella Magri, Robert Marchant, Vasiliki Margari, Francis E. Mayle, G. Merna McKenzie, Patrick Moss, Stefanie Müller, Ulrich C. Müller, Filipa Naughton, Rewi M. Newnham, Tadamichi Oba, Ramón Pérez-Obiol, Roberta Pini, Cesare Ravazzi, Katy H. Roucoux, Stephen M. Rucina, Louis Scott, Hikaru Takahara, Polichronis C. Tzedakis, Dunia H. Urrego, Bas van Geel, B. Guido Valencia, Marcus J. Vandergoes, Annie Vincens, Cathy L. Whitlock, Debra A. Willard, and Masanobu Yamamoto
Earth Syst. Sci. Data, 9, 679–695, https://doi.org/10.5194/essd-9-679-2017, https://doi.org/10.5194/essd-9-679-2017, 2017
Short summary
Short summary
The ACER (Abrupt Climate Changes and Environmental Responses) global database includes 93 pollen records from the last glacial period (73–15 ka) plotted against a common chronology; 32 also provide charcoal records. The database allows for the reconstruction of the regional expression, vegetation and fire of past abrupt climate changes that are comparable to those expected in the 21st century. This work is a major contribution to understanding the processes behind rapid climate change.
Stefanie Kaboth, Patrick Grunert, and Lucas Lourens
Clim. Past, 13, 1023–1035, https://doi.org/10.5194/cp-13-1023-2017, https://doi.org/10.5194/cp-13-1023-2017, 2017
Short summary
Short summary
This study is devoted to reconstructing Mediterranean Outflow Water (MOW) variability and the interplay between the Mediterranean and North Atlantic climate systems during the Early Pleistocene. We find indication that the increasing production of MOW aligns with the intensification of the North Atlantic overturning circulation, highlighting the potential of MOW to modulate the North Atlantic salt budget. Our results are based on new stable isotope and grain-size data from IODP 339 Site U1389.
Rachael H. Rhodes, Xin Yang, Eric W. Wolff, Joseph R. McConnell, and Markus M. Frey
Atmos. Chem. Phys., 17, 9417–9433, https://doi.org/10.5194/acp-17-9417-2017, https://doi.org/10.5194/acp-17-9417-2017, 2017
Short summary
Short summary
Sea salt aerosol comes from the open ocean or the sea ice surface. In the polar regions, this opens up the possibility of reconstructing sea ice history using sea salt recorded in ice cores. We use a chemical transport model to demonstrate that the sea ice source of aerosol is important in the Arctic. For the first time, we simulate realistic Greenland ice core sea salt in a process-based model. The importance of the sea ice source increases from south to north across the Greenland ice sheet.
Michel Legrand, Joseph McConnell, Hubertus Fischer, Eric W. Wolff, Susanne Preunkert, Monica Arienzo, Nathan Chellman, Daiana Leuenberger, Olivia Maselli, Philip Place, Michael Sigl, Simon Schüpbach, and Mike Flannigan
Clim. Past, 12, 2033–2059, https://doi.org/10.5194/cp-12-2033-2016, https://doi.org/10.5194/cp-12-2033-2016, 2016
Short summary
Short summary
Here, we review previous attempts made to reconstruct past forest fire using chemical signals recorded in Greenland ice. We showed that the Greenland ice records of ammonium, found to be a good fire proxy, consistently indicate changing fire activity in Canada in response to past climatic conditions that occurred since the last 15 000 years, including the Little Ice Age and the last large climatic transition.
Emma J. Stone, Emilie Capron, Daniel J. Lunt, Antony J. Payne, Joy S. Singarayer, Paul J. Valdes, and Eric W. Wolff
Clim. Past, 12, 1919–1932, https://doi.org/10.5194/cp-12-1919-2016, https://doi.org/10.5194/cp-12-1919-2016, 2016
Short summary
Short summary
Climate models forced only with greenhouse gas concentrations and orbital parameters representative of the early Last Interglacial are unable to reproduce the observed colder-than-present temperatures in the North Atlantic and the warmer-than-present temperatures in the Southern Hemisphere. Using a climate model forced also with a freshwater amount derived from data representing melting from the remnant Northern Hemisphere ice sheets accounts for this response via the bipolar seesaw mechanism.
David A. Hodell and James E. T. Channell
Clim. Past, 12, 1805–1828, https://doi.org/10.5194/cp-12-1805-2016, https://doi.org/10.5194/cp-12-1805-2016, 2016
Short summary
Short summary
For the past 2.7 million years the Earth's climate has switched more than 50 times between a cold glacial and warm interglacial state. We found the trend towards larger ice sheets over the past 2.7 million years was accompanied by changes in the style, frequency, and intensity of shorter-term (millennial) variability. We suggest the interaction between millennial climate change and longer-term variations in the Earth's orbit may be important for explaining the patterns of Quaternary climate.
Hemmo A. Abels, Vittoria Lauretano, Anna E. van Yperen, Tarek Hopman, James C. Zachos, Lucas J. Lourens, Philip D. Gingerich, and Gabriel J. Bowen
Clim. Past, 12, 1151–1163, https://doi.org/10.5194/cp-12-1151-2016, https://doi.org/10.5194/cp-12-1151-2016, 2016
Short summary
Short summary
Ancient greenhouse warming episodes are studied in river floodplain sediments in the western interior of the USA. Paleohydrological changes of four smaller warming episodes are revealed to be the opposite of those of the largest, most-studied event. Carbon cycle tracers are used to ascertain whether the largest event was a similar event but proportional to the smaller ones or whether this event was distinct in size as well as in carbon sourcing, a question the current work cannot answer.
Ikumi Oyabu, Yoshinori Iizuka, Eric Wolff, and Margareta Hansson
Clim. Past Discuss., https://doi.org/10.5194/cp-2016-42, https://doi.org/10.5194/cp-2016-42, 2016
Manuscript not accepted for further review
Short summary
Short summary
This study presented the chemical compositions of non-volatile particles around the last termination in the Dome C ice core by using the sublimation-EDS method. The major soluble salt particles are CaSO4, Na2SO4, and NaCl, and time-series changes in the composition of these salts are similar to those for the Dome Fuji ice core. However, some differences occurred. The sulfatization rate of NaCl at Dome C is higher than that at Dome Fuji.
B. A. A. Hoogakker, R. S. Smith, J. S. Singarayer, R. Marchant, I. C. Prentice, J. R. M. Allen, R. S. Anderson, S. A. Bhagwat, H. Behling, O. Borisova, M. Bush, A. Correa-Metrio, A. de Vernal, J. M. Finch, B. Fréchette, S. Lozano-Garcia, W. D. Gosling, W. Granoszewski, E. C. Grimm, E. Grüger, J. Hanselman, S. P. Harrison, T. R. Hill, B. Huntley, G. Jiménez-Moreno, P. Kershaw, M.-P. Ledru, D. Magri, M. McKenzie, U. Müller, T. Nakagawa, E. Novenko, D. Penny, L. Sadori, L. Scott, J. Stevenson, P. J. Valdes, M. Vandergoes, A. Velichko, C. Whitlock, and C. Tzedakis
Clim. Past, 12, 51–73, https://doi.org/10.5194/cp-12-51-2016, https://doi.org/10.5194/cp-12-51-2016, 2016
Short summary
Short summary
In this paper we use two climate models to test how Earth’s vegetation responded to changes in climate over the last 120 000 years, looking at warm interglacial climates like today, cold ice-age glacial climates, and intermediate climates. The models agree well with observations from pollen, showing smaller forested areas and larger desert areas during cold periods. Forests store most terrestrial carbon; the terrestrial carbon lost during cold climates was most likely relocated to the oceans.
S. Fujita, F. Parrenin, M. Severi, H. Motoyama, and E. W. Wolff
Clim. Past, 11, 1395–1416, https://doi.org/10.5194/cp-11-1395-2015, https://doi.org/10.5194/cp-11-1395-2015, 2015
J. H. C. Bosmans, F. J. Hilgen, E. Tuenter, and L. J. Lourens
Clim. Past, 11, 1335–1346, https://doi.org/10.5194/cp-11-1335-2015, https://doi.org/10.5194/cp-11-1335-2015, 2015
Short summary
Short summary
Our study shows that the influence of obliquity (the tilt of Earth's rotational axis) can be explained through changes in the insolation gradient across the tropics. This explanation is fundamentally different from high-latitude mechanisms that were previously often inferred to explain obliquity signals in low-latitude paleoclimate records, for instance glacial fluctuations. Our study is based on state-of-the-art climate model experiments.
V. Lauretano, K. Littler, M. Polling, J. C. Zachos, and L. J. Lourens
Clim. Past, 11, 1313–1324, https://doi.org/10.5194/cp-11-1313-2015, https://doi.org/10.5194/cp-11-1313-2015, 2015
Short summary
Short summary
Several episodes of global warming took place during greenhouse conditions in the early Eocene and are recorded in deep-sea sediments. The stable carbon and oxygen isotope records are used to investigate the magnitude of six of these events describing their effects on the global carbon cycle and the associated temperature response. Findings indicate that these events share a common nature and hint to the presence of multiple sources of carbon release.
B. S. Slotnick, V. Lauretano, J. Backman, G. R. Dickens, A. Sluijs, and L. Lourens
Clim. Past, 11, 473–493, https://doi.org/10.5194/cp-11-473-2015, https://doi.org/10.5194/cp-11-473-2015, 2015
F. Parrenin, S. Fujita, A. Abe-Ouchi, K. Kawamura, V. Masson-Delmotte, H. Motoyama, F. Saito, M. Severi, B. Stenni, R. Uemura, and E. Wolff
Clim. Past Discuss., https://doi.org/10.5194/cpd-11-377-2015, https://doi.org/10.5194/cpd-11-377-2015, 2015
Revised manuscript has not been submitted
L. B. Stap, R. S. W. van de Wal, B. de Boer, R. Bintanja, and L. J. Lourens
Clim. Past, 10, 2135–2152, https://doi.org/10.5194/cp-10-2135-2014, https://doi.org/10.5194/cp-10-2135-2014, 2014
A. E. Jones, N. Brough, P. S. Anderson, and E. W. Wolff
Atmos. Chem. Phys., 14, 11843–11851, https://doi.org/10.5194/acp-14-11843-2014, https://doi.org/10.5194/acp-14-11843-2014, 2014
Short summary
Short summary
We report observations of nitric acid and peroxynitric acid, in coastal Antarctica during winter. During winter, it is dark 24h per day, so there is no influence of sunlight on atmospheric composition. We show that observed variability in concentrations is highly correlated with changes in temperature. We derive enthalpies of adsorption and show they are consistent with those derived in laboratory studies. The Antarctic, during winter, is an ideal natural laboratory to study air-snow exchange.
A. M. Foley, D. Dalmonech, A. D. Friend, F. Aires, A. T. Archibald, P. Bartlein, L. Bopp, J. Chappellaz, P. Cox, N. R. Edwards, G. Feulner, P. Friedlingstein, S. P. Harrison, P. O. Hopcroft, C. D. Jones, J. Kolassa, J. G. Levine, I. C. Prentice, J. Pyle, N. Vázquez Riveiros, E. W. Wolff, and S. Zaehle
Biogeosciences, 10, 8305–8328, https://doi.org/10.5194/bg-10-8305-2013, https://doi.org/10.5194/bg-10-8305-2013, 2013
H. Fischer, J. Severinghaus, E. Brook, E. Wolff, M. Albert, O. Alemany, R. Arthern, C. Bentley, D. Blankenship, J. Chappellaz, T. Creyts, D. Dahl-Jensen, M. Dinn, M. Frezzotti, S. Fujita, H. Gallee, R. Hindmarsh, D. Hudspeth, G. Jugie, K. Kawamura, V. Lipenkov, H. Miller, R. Mulvaney, F. Parrenin, F. Pattyn, C. Ritz, J. Schwander, D. Steinhage, T. van Ommen, and F. Wilhelms
Clim. Past, 9, 2489–2505, https://doi.org/10.5194/cp-9-2489-2013, https://doi.org/10.5194/cp-9-2489-2013, 2013
D. A. Hodell, L. Lourens, D. A. V. Stow, J. Hernández-Molina, C. A. Alvarez Zarikian, and the Shackleton Site Project Members
Sci. Dril., 16, 13–19, https://doi.org/10.5194/sd-16-13-2013, https://doi.org/10.5194/sd-16-13-2013, 2013
L. Bazin, A. Landais, B. Lemieux-Dudon, H. Toyé Mahamadou Kele, D. Veres, F. Parrenin, P. Martinerie, C. Ritz, E. Capron, V. Lipenkov, M.-F. Loutre, D. Raynaud, B. Vinther, A. Svensson, S. O. Rasmussen, M. Severi, T. Blunier, M. Leuenberger, H. Fischer, V. Masson-Delmotte, J. Chappellaz, and E. Wolff
Clim. Past, 9, 1715–1731, https://doi.org/10.5194/cp-9-1715-2013, https://doi.org/10.5194/cp-9-1715-2013, 2013
D. Veres, L. Bazin, A. Landais, H. Toyé Mahamadou Kele, B. Lemieux-Dudon, F. Parrenin, P. Martinerie, E. Blayo, T. Blunier, E. Capron, J. Chappellaz, S. O. Rasmussen, M. Severi, A. Svensson, B. Vinther, and E. W. Wolff
Clim. Past, 9, 1733–1748, https://doi.org/10.5194/cp-9-1733-2013, https://doi.org/10.5194/cp-9-1733-2013, 2013
M. M. Frey, N. Brough, J. L. France, P. S. Anderson, O. Traulle, M. D. King, A. E. Jones, E. W. Wolff, and J. Savarino
Atmos. Chem. Phys., 13, 3045–3062, https://doi.org/10.5194/acp-13-3045-2013, https://doi.org/10.5194/acp-13-3045-2013, 2013
A. E. Jones, E. W. Wolff, N. Brough, S. J.-B. Bauguitte, R. Weller, M. Yela, M. Navarro-Comas, H. A. Ochoa, and N. Theys
Atmos. Chem. Phys., 13, 1457–1467, https://doi.org/10.5194/acp-13-1457-2013, https://doi.org/10.5194/acp-13-1457-2013, 2013
R. S. W. van de Wal, B. de Boer, L. J. Lourens, P. Köhler, and R. Bintanja
Clim. Past, 7, 1459–1469, https://doi.org/10.5194/cp-7-1459-2011, https://doi.org/10.5194/cp-7-1459-2011, 2011
D. Liebrand, L. J. Lourens, D. A. Hodell, B. de Boer, R. S. W. van de Wal, and H. Pälike
Clim. Past, 7, 869–880, https://doi.org/10.5194/cp-7-869-2011, https://doi.org/10.5194/cp-7-869-2011, 2011
Related subject area
Subject: Feedback and Forcing | Archive: Marine Archives | Timescale: Millenial/D-O
Abrupt climate changes and the astronomical theory: are they related?
Mode transitions in Northern Hemisphere glaciation: co-evolution of millennial and orbital variability in Quaternary climate
Denis-Didier Rousseau, Witold Bagniewski, and Michael Ghil
Clim. Past, 18, 249–271, https://doi.org/10.5194/cp-18-249-2022, https://doi.org/10.5194/cp-18-249-2022, 2022
Short summary
Short summary
The study of abrupt climate changes is a relatively new field of research that addresses paleoclimate variations that occur in intervals of tens to hundreds of years. Such timescales are much shorter than the tens to hundreds of thousands of years that the astronomical theory of climate addresses. We revisit several high-resolution proxy records of the past 3.2 Myr and show that the abrupt climate changes are nevertheless affected by the orbitally induced insolation changes.
David A. Hodell and James E. T. Channell
Clim. Past, 12, 1805–1828, https://doi.org/10.5194/cp-12-1805-2016, https://doi.org/10.5194/cp-12-1805-2016, 2016
Short summary
Short summary
For the past 2.7 million years the Earth's climate has switched more than 50 times between a cold glacial and warm interglacial state. We found the trend towards larger ice sheets over the past 2.7 million years was accompanied by changes in the style, frequency, and intensity of shorter-term (millennial) variability. We suggest the interaction between millennial climate change and longer-term variations in the Earth's orbit may be important for explaining the patterns of Quaternary climate.
Cited articles
Ahn, J. and Brook, E. J.: Siple Dome ice reveals two modes of millennial
CO2 change during the last ice age, Nat. Commun., 5, 3723,
https://doi.org/10.1038/ncomms4723, 2014.
Ahn, S., Khider, D., Lisiecki, L. E., and Lawrence, C. E.: A probabilistic
Pliocene-Pleistocene stack of benthic δ18O using a profile
hidden Markov model, Dynam. Stat. Clim. Syst., 2, 1–16, https://doi.org/10.1093/climsys/dzx002, 2017.
Alley, R. B.: Wally was right: Predictive ability of the North Atlantic
“Conveyor Belt” hypothesis for abrupt climate change, Annu. Rev. Earth
Planet. Sci., 35, 241–272, https://doi.org/10.1146/annurev.earth.35.081006.131524, 2007.
Alonso-Garcia, M., Sierro, F., Kucera, M., Flores, J., Cacho, I., and
Andersen, N.: Ocean circulation, ice sheet growth and inter- hemispheric
coupling of millennial climate variability during the mid-Pleistocene (ca
800–400 ka), Quaternay Sci. Rev., 30, 3234–3247, https://doi.org/10.1016/j.quascirev.2011.08.005, 2011.
Anderson, R. F., Ali, S., Bradtmiller, L. I., Nielsen, S. H. H., Fleisher,
M. Q., Anderson, B. E., and Burckle, H.: Wind-driven upwelling in the
Southern Ocean and the deglacial rise in atmospheric CO2, Science, 323, 1443–1448, https://doi.org/10.1126/science.1167441, 2009.
Baggenstos, D., Häberli, M., and Schmitt, J.: Earth's radiative imbalance from the Last Glacial Maximum to the present, P. Natl. Acad. Sci. USA, 116, 14881–14886, https://doi.org/10.1073/pnas.1905447116, 2019.
Bailey, I., Bolton, C. T., DeConto, R. M., Pollard, D., Schiebel, R., and Wilson, P. A.: A low threshold for North Atlantic ice rafting from “low‐slung slippery” late Pliocene ice sheets, Paleoceanography, 25, PA1212,
https://doi.org/10.1029/2009PA001736, 2010.
Bajo, P., Drysdale, R. N., Woodhead, J. D., Hellstrom, J. C., Hodell, D. A.,
Ferretti, P., Voelker, A. H. L., Zanchetta, G., Rodrigues, T., Wolff, E. W.,
Tyler, J., Frisia, S., Spotl, C., and Fallick, A. E.: Persistent influence
of obliquity on ice age terminations since the Middle Pleistocene
transition, Science, 367, 1235–1239, https://doi.org/10.1126/science.aaw1114, 2020.
Bard, E., Rostek, F., Turon, J.-L., and Gendreau, S.: Hydrological impact of
Heinrich events in the subtropical Northeast Atlantic, Science, 289, 1321–1324, https://doi.org/10.1126/science.289.5483.1321, 2000.
Barker, S. and Knorr, G.: Millennial scale feedbacks determine the shape and
rapidity of glacial termination, Nat. Commun., 12, 2273, https://doi.org/10.1038/s41467-021-22388-6, 2021.
Barker, S., Knorr, G., Edwards, R., Parrenin, F., Putnam, A., Skinner, L.,
Wolff, E., and Ziegler, M.: 800,000 years of abrupt climate variability,
Science, 334, 347–351, https://doi.org/10.1126/science.1203580, 2011.
Barker, S., Chen, J., Gong, X., Jonkers, L., Knorr, G., and Thornalley, D.:
Icebergs not the trigger for North Atlantic cold events, Nature, 520, 333–336, https://doi.org/10.1038/nature14330, 2015.
Barker, S., Zhang, X., Jonkers, L., Lordsmith, S., Conn, S., and Knorr, G.:
Strengthening Atlantic inflow across the mid- Pleistocene Transition,
Paleoceanogr. Paleoclimatol., 36, e2020PA004200, https://doi.org/10.1029/2020PA004200, 2021.
Barker, S., Starr, A., van der Lubbe, J., Doughty, A., Knorr, G., Conn,S.,
Lordsmith, S., Owen, L., Nederbragt, A., Hemming, S., Hall, I., Levay, L.,
Berke, M. A., Brentegani, L., Caley, T., Cartagena-Sierra, A., Charles, C. D., Coenen, J. J., Crespin, J. G., Franzese, A. M., Gruetzner, J., Han, X., Hines, S. K. V., Espejo, F. J. J., Just, J., Koutsodendris, A., Kubota, K., Lathika, N., Norris, R. D., dos Santos, T. P., Robinson, R., Rolison, J. M., Simon, M. H., Tangunan, D., Yamane, M., and Zhang, H.: Persistent influence of precession on northern ice sheet variability since the early Pleistocene, Science, 376, 961–967, https://doi.org/10.1126/science.abm4033, 2022.
Batchelor, C. L., Margold, M., Krapp, M., Murton, D. K., Dalton, A. S.,
Gibbard, P. L., Stokes, C. R., Murton, J. B., and Manica, A.: The configuration of Northern Hemisphere ice sheets through the Quaternary, Nat.
Commun., 10, 3713, https://doi.org/10.1038/s41467-019-11601-2, 2019.
Bauska, T. K., Marcott, S. A., and Brook, E. J.: Abrupt changes in the global carbon cycle during the last glacial period, Nat. Geosci., 14, 91–96, https://doi.org/10.1038/s41561-020-00680-2, 2021.
Bender, M., Sowers, T., Dickson, M.-L., Orchardo, J., Grootes, P., Mayewski,
P. A., and Meese, D. A.: Climate correlations between Greenland and Antarctica during the past 100,000 years, Nature, 372, 663–666,
https://doi.org/10.1038/372663a0, 1994.
Benzi, R., Parisi, G., Sutera, A., and Vulpiani, A.: Stochastic resonance in
climatic change, Tellus, 34, 10–16, https://doi.org/10.1111/j.2153-3490.1982.tb01787.x, 1982.
Berends, C. J., Köhler, P., Lourens, L. J., and van de Wal, R. S. W.: On
the cause of the mid-Pleistocene transition, Rev. Geophys., 59, e2020RG000727, https://doi.org/10.1029/2020RG000727, 2021.
Berger, A., Loutre, M.-F., and Yin, Q.: Total irradiation during any time
interval of the year using elliptic integrals, Quaternary Sci. Rev., 29,
1968–1982, https://doi.org/10.1016/j.quascirev.2010.05.007, 2010.
Berger, A., Loutre, M. F., and Melice, J. L.: Equatorial insolation: from
precession harmonics to eccentricity frequencies, Clim. Past, 2, 131–136,
https://doi.org/10.5194/cp-2-131-2006, 2006.
Billups, K. and Scheinwald, A.: Origin of millennial-scale climate signals in the subtropical North Atlantic, Paleoceanogr. Paleoclimatol., 29, 612–627, https://doi.org/10.1002/2014PA002641, 2014.
Birner, B., Hodell, D. A., Tzedakis, P. C., and Skinner, L. C.: Similar
millennial climate variability on the Iberian margin during two early Pleistocene glacials and MIS 3, Paleoceanogr. Paleoclimatol., 31, 203–217,
https://doi.org/10.1002/2015PA002868, 2016.
Blunier, T. and Brook, E. J.: Timing of millennial-scale climate change in
Antarctica and Greenland during the Last Glacial Period, Science, 291,
109–112, https://doi.org/10.1126/science.291.5501.109, 2001.
Bolton, C. T., Wilson, P. A., Bailey, I., Friedrich, O., Beer, C. J., Becker, J., Baranwal, S., and Schiebel, R.: Millennial‐scale climate variability in the subpolar North Atlantic Ocean during the late Pliocene, Paleoceanography, 25, PA4218, https://doi.org/10.1029/2010PA001951, 2010.
Bond, G., Heinrich, H., Broecker, W., Labeyrie, L., McManus, J., Andrews,
J., Huon, S., Jantschik, R., Clasen, S., Simet, C., Tedesco, K., Klas, M.,
Bonani, G., and Ivy, S.: Evidence for massive discharges of icebergs into
the North Atlantic ocean during the last glacial period, Nature, 360, 245–249, https://doi.org/10.1038/360245a0, 1992.
Bond, G., Broecker, W., Johnsen, S., McManus, J., Labeyrie, L., Jouzel, J.,
and Bonani, G.: Correlations between climate records from North Atlantic
sediments and Greenland ice, Nature, 365, 143–147, https://doi.org/10.1038/365143a0,
1993.
Broecker, W., Bond, G., Klas, M., Clark, E., and McManus, J.: Origin of the
northern Atlantic's Heinrich events, Clim. Dynam., 6, 265–273,
https://doi.org/10.1007/BF00193540, 1992.
Broecker, W. S. and van Donk, J.: Insolation changes, ice volumes, and the
18O record in deep-sea cores, Rev. Geophys., 8, 169–198, https://doi.org/10.1029/RG008i001p00169, 1970.
Broecker, W. S., Bond, G., Klas, M., Bonani, G., and Wolfli, W.: A salt
oscillator in the glacial Atlantic? 1. The concept, Paleoceanogr. Paleoclimatol., 5, 469–477, https://doi.org/10.1029/PA005i004p00469, 1990.
Brown, N. and Galbraith, E. D.: Hosed vs. unhosed: interruptions of the
Atlantic Meridional Overturning Circulation in a global coupled model, with
and without freshwater forcing, Clim. Past, 12, 1663–1679,
https://doi.org/10.5194/cp-12-1663-2016, 2016.
Buizert, C. and Schmittner, A.: Southern Ocean control of glacial AMOC
stability and Dansgaard–Oeschger interstadial duration, Paleoceanogr. Paleoclimatol., 30, 1595–1612, https://doi.org/10.1002/2015PA002795, 2015.
Burns, S. J., Welsh, L. K., Scroxton, N., Cheng, H., and Edwards, R. L.:
Millennial and orbital scale variability of the South American Monsoon during the penultimate glacial period, Sci. Rep., 9, 1234, https://doi.org/10.1038/s41598-018-37854-3, 2019.
Chalk, T. B., Hain, M. P., Foster, G. L., Rohling, E. J., Sexton, P. F.,
Badger, M. P. S., Cherry, S. G., Hasenfratz, A. P., Haug, G. H., Jaccard, S.
L., Martínez-García, A., Palike, H., Pancost, R. D., and Wilson, P. A.: Causes of ice age intensification across the Mid-Pleistocene Transition,
P. Natl. Acad. Sci. USA, 114, 13114–13119, https://doi.org/10.1073/pnas.1702143114,
2017.
Channell, J., Hodell, D., Romero, O., Hillaire-Marcel, C., de Vernal, A.,
Stoner, J., Mazaud, A., and Rohl, U.: A 750-kyr detrital-layer stratigraphy
for the North Atlantic (IODP Sites U1302–U1303, Orphan Knoll, Labrador
Sea), Earth Planet. Sc. Lett., 317–318, 218–230,
https://doi.org/10.1016/j.epsl.2011.11.029, 2012.
Channell, J., Hodell, D., Crowhurst, S., Skinner, L., and Muscheler, R.:
Relative paleointensity (RPI) in the latest Pleistocene (10–45 ka) and
implications for deglacial atmospheric radiocarbon, Quaternay Sci. Rev., 191,
57–72, https://doi.org/10.1016/j.quascirev.2018.05.007, 2018.
Clark, P. U., Archer, D., Pollard, D., Blum, J. D., Rial, J. A., Brovkin,
V., Mix, A. C., Pisias, N. G., and Roy, M.: The middle Pleistocene
transition: characteristics, mechanisms, and implications for long-term
changes in atmospheric pCO2, Quaternary Sci. Rev., 25, 3150–3184, https://doi.org/10.1016/j.quascirev.2006.07.008, 2006.
Dansgaard, W., Clausen, H. B., Gundestrup, N., Hammer, C. U., Johnsen, S. F., Kristinsdottir, P. M., and Reeh, N.: A new Greenland deep ice core, Science, 218, 1273–1277, https://doi.org/10.1126/science.218.4579.1273, 1982.
DeBoer, A. M. and Nof, D.: The Bering Strait's grip on the northern hemisphere climate, Deep-Sea Res. Pt. I, 51, 1347–1366, https://doi.org/10.1016/j.dsr.2004.05.003, 2004.
de Verdiere, A. C.: A simple model of millennial oscillations of the
thermohaline circulation, J. Phys. Oceanogr., 37, 1142–1155,
https://doi.org/10.1175/JPO3056.1, 2007.
Dokken, T. M., Nisancioglu, K. H., Li, C., Battisti, D. S., and Kissel, C.:
Dansgaard–Oeschger cycles: Interactions between ocean and sea ice intrinsic
to the Nordic seas, Paleoceanogr. Paleoclimatol., 28, 491–502, https://doi.org/10.1002/palo.20042, 2013.
Duplessy, J.-C., Labeyrie, L., and Waelbroeck, C.: Constraints on the ocean
oxygen isotopic enrichment between the Last Glacial Maximum and the Holocene: Paleoceanographic implications, Quaternary Sci. Rev., 21, 315–330, https://doi.org/10.1016/S0277-3791(01)00107-X, 2002.
Dyez, K. A., Hönisch, B., and Schmidt, G. A.: Early Pleistocene
obliquity-scale pCO2 variability at 1.5 million years ago, Paleoceanogr. Paleoclimatol., 33, 1270–1291, https://doi.org/10.1029/2018PA003349, 2018.
Elderfield, H., Ferretti, P., Greaves, M., Crowhurst, S., McCave, I. N.,
Hodell, D., and Piotrowski, A. M.: Evolution of ocean temperature and ice
volume through the Mid-Pleistocene Climate Transition, Science, 337, 704–709, https://doi.org/10.1126/science.1221294 2012.
EPICA Community Members: One-to-one hemispheric coupling of millennial polar climate variability during the last glacial, Nature, 444, 195–198, https://doi.org/10.1038/nature05301, 2006.
Ferretti, P., Crowhurst, S. J., Naafs, B. D. A., and Barbante, C.: The Marine Isotope Stage 19 in the mid-latitude North Atlantic Ocean: astronomical signature and intra-interglacial variability, Quaternary Sci. Rev., 108, 95–110, https://doi.org/10.1016/j.quascirev.2014.10.024, 2015.
Friedrich, T., Timmermann, A., Menviel, L., Elison Timm, O., Mouchet, A.,
and Roche, D. M.: The mechanism behind internally generated centennial-to-millennial scale climate variability in an earth system model
of intermediate complexity, Geosci. Model Dev., 3, 377–389,
https://doi.org/10.5194/gmd-3-377-2010, 2010.
Galaasen, E., Ninnemann, U., Kessler, A., Irvalí, N., Rosenthal, Y.,
Tjiputra, J., Bouttes, N., Roche, D., Kleiven, K. H., and Hodell, D.:
Interglacial instability of North Atlantic Deep Water ventilation, Science,
367, 1485–1489, https://doi.org/10.1126/science.aay6381, 2020.
Galaasen, E. V., Ninnemann, U. S., Irvalı, N., Kleiven, H. K. F., Rosenthal, Y., Kissel, C., and Hodell, D. A.: Rapid reductions in North
Atlantic Deep Water during the peak of the last interglacial period, Science, 343, 1129–1132, https://doi.org/10.1126/science.1248667, 2014.
Galbraith, E. D. and de Lavergne, C.: Response of a comprehensive climate
model to a broad range of external forcings: relevance for deep ocean ventilation and the development of late Cenozoic ice ages, Clim. Dynam., 52,
653–679, 2018.
Ganopolski, A. and Rahmstorf, S.: Rapid changes of glacial climate simulated
in a coupled climate model, Nature, 409, 153–158, https://doi.org/10.1038/35051500, 2001.
Gebbie, G.: Tracer transport timescales and the observed Atlantic-Pacific
lag in the timing of the Last Termination, Paleoceanogr. Paleoclimatol., 27, PA3225, https://doi.org/10.1029/2011PA002273, 2012.
Gildor, H. and Tziperman, E.: A sea ice climate switch mechanism for the 100-kyr glacial cycles, J. Geophys. Res., 106, 9117–9133, https://doi.org/10.1029/1999JC000120, 2001.
Gottschalk, J., Skinner, L. C., Jaccard, S. L., Menviel, L., Nehrbass-Ahles, C., and Waelbroeck, C.: Southern Ocean link between changes in atmospheric CO2 levels and northern-hemisphere climate anomalies during the last two glacial periods, Quaternary Sci. Rev., 230, 106067,
https://doi.org/10.1016/j.quascirev.2019.106067, 2020.
Grützner, J. and Higgins, S. M.: Threshold behavior of millennial scale variability in deep water hydrography inferred from a 1.1 Ma long record of sediment provenance at the southern Gardar Drift, Paleoceanogr. Paleoclimatol., 25, PA4204, https://doi.org/10.1029/2009PA001873, 2010.
Haeberli, M., Baggenstos, D., Schmitt, J., Grimmer, M., Michel, A., Kellerhals, T., and Fischer, H.: Snapshots of mean ocean temperature over
the last 700 000 years using noble gases in the EPICA Dome C ice core, Clim.
Past, 17, 843–867, https://doi.org/10.5194/cp-17-843-2021, 2021.
Hagelberg, T. K., Bond, G., and deMenocal, P.: Milankovitch band forcing of
sub-Milankovitch climate variability during the Pleistocene, Paleoceanogr. Paleoclimatol., 9, 545–558, https://doi.org/10.1029/94PA00443, 1994.
Heinrich, H.: Origin and consequences of cyclic ice rafting in the Northeast
Atlantic Ocean during the past 130,000 years, Quatern. Res., 29, 142–152,
https://doi.org/10.1016/0033-5894(88)90057-9, 1988.
Hemming, S. R.: Heinrich events: Massive late Pleistocene detritus layers of
the North Atlantic and their global climate imprint, Rev. Geophys., 42, RG1005, https://doi.org/10.1029/2003RG000128, 2004.
Henry, L. G., McManus, J. F., Curry, W. B., Roberts, N. L., Piotrowski, A.
M., and Keigwin, L. D.: North Atlantic ocean circulation and abrupt climate
change during the last glaciation, Science, 353, 470–474, https://doi.org/10.1126/science.aaf5529, 2016.
Higgins, J. A., Kurbatov, A. V., Spaulding, N. E., Brook, E., Introne, D. S., Chimiak, L. M., Yan, Y., Mayewski, P. A., and Bender, M. L.: Atmospheric
composition 1 million years ago from blue ice in the Allan Hills, Antarctica, P. Natl. Acad. Sci. USA, 112, 6887–6891, https://doi.org/10.1073/pnas.1420232112, 2015.
Hinnov, L. A., Schulz, M., and Yiou, P.: Interhemispheric space–time attributes of the Dansgaard–Oeschger oscillations between 100 and 0 ka,
Quaternary Sci. Rev., 21, 1213–1228, https://doi.org/10.1016/S0277-3791(01)00140-8,
2002.
Hodell, D., Crowhurst, S., Skinner, L., Tzedakis, P. C., Margari, V., Channell, J. E., Kamenov, G., Maclachlan, S., and Rothwell, G.: Response of
Iberian Margin sediments to orbital and suborbital forcing over the past
420 ka, Paleoceanogr. Paleoclimatol., 28, 185–199, https://doi.org/10.1002/palo.20017, 2013.
Hodell, D., Lourens, L., Crowhurst, S., Konijnendijk, T., Tjallingii, R.,
Jimenez-Espejo, F., Skinner, L., Tzedakis, P., Abrantes, F., Acton, G. D.,
Alvarez Zarikian, C. A., Bahr, A., Balestra, B., Barranco, E. L., Carrara, G., Ducassou, E., Flood, R. D., Flores, J.-A., Furota, S., Grimalt, J., Grunert, P., Hernandez-Molina, J., Kim, J. K., Krissek, L. A., Kuroda, J.,
Li, B., Lofi, J., Margari, V., Martrat, B., Miller, M. D., Nanayama, F.,
Nishida, N., Richter, C., Rodrigues, T., Rodríguez-Tovar, F. J., Roque, A. C. F., Sanchez Goni, M. F., Sierro Sanchez, F. J., Singh, A. D., Sloss, C.
R., Stow, D. A., Takashimizu, Y., Tzanova, A., Voelker, A., Xuan, C., and
Williams, T.: A reference time scale for Site U1385 (Shackleton Site) on the
SW Iberian Margin, Global Planet. Change, 133, 49–64,
https://doi.org/10.1016/j.gloplacha.2015.07.002, 2015.
Hodell, D., Crowhurst, S., Lourens, L., Margari, V., Nicolson, J., Rolfe, J. E., Skinner, L. C., Thomas, N., Tzedakis, P. C., Mleneck-Vautravers, M. J., and Wolff, E. W.: Benthic and planktonic oxygen and carbon isotopes and XRF data at IODP Site U1385 and core MD01-2444 from 0 to 1.5 Ma, PANGAEA [data set], https://doi.pangaea.de/10.1594/PANGAEA.951401, 2022.
Hodell, D. A. and Channell, J. E. T.: Mode transitions in Northern Hemisphere glaciation: co-evolution of millennial and orbital variability in Quaternary climate, Clim. Past, 12, 1805–1828, https://doi.org/10.5194/cp-12-1805-2016, 2016.
Hodell, D. A., Channell, J. E. T., Curtis, J. H., Romero, O. E., and Rohl,
U.: Onset of “Hudson Strait” Heinrich events in the eastern North Atlantic at the end of the middle Pleistocene transition (640 ka)?, Paleoceanogr. Paleoclimatol., 23, PA4218, https://doi.org/10.1029/2008PA001591, 2008.
Hodell, D. A., Minth, E. K., Curtis, J. H., McCave, I. N., Hall, I. R., Channell, J. E., and Xuan, C.: Surface and deep-water hydrography on Gardar
Drift (Iceland Basin) during the last interglacial period, Earth Planet.
Sc. Lett., 288, 10–19, https://doi.org/10.1016/j.epsl.2009.08.040, 2009.
Hodell, D. A., Abrantes, F., Alvarez Zarikian, C. A., and the Expedition 397 Scientists: Expedition 397 Preliminary Report: Iberian Margin Paleoclimate, International Ocean Discovery Program, https://doi.org/10.14379/iodp.pr.397.2023, 2023.
Hönisch, B., Ridgwell, A., Schmidt, D. N., Thomas, E., Gibbs, S. J., Sluijs, A., Zeebe, R., Kump, L., Martindale, R. C., Greene, S. E., Kiessling, W., Ries, J., Zachos, J. C., Royer, D. L., Barker, S., Marchitto, T. M., Moyer, R., Pelejero, C., Ziveri, P., Foster, G. L., and Williams, B.: The geological record of ocean acidification, Science, 335, 1058–1063,
https://doi.org/10.1126/science.1208277, 2012.
Hoogakker, B., Elderfield, H., Oliver, K., and Crowhurst, S.: Benthic
foraminiferal oxygen isotope offsets over the last glacial-interglacial
cycle, Paleoceanogr. Paleoclimatol., 25, PA4229, https://doi.org/10.1029/2009PA001870, 2010.
Hu, A., Meehl, G. A., Han, W., Abe-Ouchi, A., Morrill, C., Okazaki, Y., and
Chikamoto, M. O.: The Pacific-Atlantic seesaw and the Bering Strait, Geophys. Res. Lett., 39, L03702, https://doi.org/10.1029/2011GL050567, 2012a.
Hu, A., Meehl, G. A., Han, W., Timmermann, A., Otto-Bliesner, B., Liu, Z.,
Washington, W. M., Large, W., Abe-Ouchi, A., Kimoto, M., Lambeck, K., and
Wu, B.: Role of the Bering Strait on the hysteresis of the ocean conveyor
belt circulation and glacial climate stability, P. Natl. Acad. Sci. USA, 109,
6417–6422, https://doi.org/10.1073/pnas.1116014109, 2012b.
Huybers, P. and Curry, W.: Links between annual, Milankovitch and continuum
temperature variability, Nature, 441, 329–332, https://doi.org/10.1038/nature04745, 2006.
Huybers, P. and Wunsch, C.: A depth-derived Pleistocene age model: Uncertainty estimates, sedimentation variability, and nonlinear climate change, Paleoceanogr. Paleoclimatol., 19, PA1028, https://doi.org/10.1029/2002PA000857, 2004.
Jansen, M. F.: Glacial ocean circulation and stratification explained by reduced atmospheric temperature, P. Natl. Acad. Sci. USA, 114, 45–50, https://doi.org/10.1073/pnas.1610438113, 2016.
Jouzel, J., Masson-Delmotte, V., Cattani, O., Dreyfus, G., Falourd, S.,
Hoffmann, G., Minster, B., Nouet, J., Barnola, J. M., Chappellaz, J., Fischer, H., Gallet, J. C., Johnsen, S., Leuenberger, M., Loulergue, L.,
Luethi, D., Oerter, H., Parrenin, F., Raisbeck, G., Raynaud, D., Schilt, A.,
Schwander, J., Selmo, E., Souchez, R., Spahni, R., Stauffer, B., Steffensen,
J. P., Stenni, B., Stocker, T. F., Tison, J. L., Werner, M., and Wolff, E.
W.: Orbital and millennial Antarctic climate variability over the past
800,000 years, Science, 317, 793–796, https://doi.org/10.1126/science.1141038, 2007.
Kawamura, K., Abe-Ouchi, A., Motoyama, H., Ageta, Y., Aoki, S., Azuma, N.,
Fujii, Y., Fujita, K., Fujita, S., Fukui, K., Fu- rukawa, T., Furusaki, A.,
Goto-Azuma, K., Greve, R., Hirabayashi, M., Hondoh, T., Hori, A., Horikawa,
S., Horiuchi, K., Igarashi, M., Iizuka, Y., Kameda, T., Kanda, H., Kohno,
M., Kuramoto, T., Matsushi, Y., Miyahara, M., Miyake, T., Miyamoto, A.,
Nagashima, Y., Nakayama, Y., Nakazawa, T., Nakazawa, F., Nishio, F., Obinata, I., Ohgaito, R., Oka, A., Okuno, J., Okuyama, J., Oyabu, I., Parrenin, F., Pattyn, F., Saito, F., Saito, T., Saito, T., Sakurai, T., Sasa, K., Seddik, H., Shibata, Y., Shinbori, K., Suzuki, K., Suzuki, T., Takahashi, A., Takahashi, K., Takahashi, S., Takata, M., Tanaka, Y., Uemura, R., Watanabe, G., Watanabe, O., Yamasaki, T., Yokoyama, K., Yoshimori, M., and Yoshimoto, T.: State dependence of climatic instability over the past 720,000 years from Antarctic ice cores and climate modeling, Sci. Adv., 3, e1600446, https://doi.org/10.1126/sciadv.1600446, 2017.
Kleppin, H., Jochum, M., Otto-Bliesner, B., Shields, C. A., and Yeager, S.:
Stochastic atmospheric forcing as a cause of Greenland climate transitions,
J. Climate, 28, 7741–7763, https://doi.org/10.1175/JCLI-D-14-00728.1, 2015.
Konijnendijk, T. Y. M., Ziegler, M., and Lourens, L. J.: On the timing and forcing mechanisms of late Pleistocene glacial terminations: Insights from a new high-resolution benthic stable oxygen isotope record of the eastern
Mediterranean, Quaternary Sci. Rev., 129, 308–320, https://doi.org/10.1016/j.quascirev.2015.10.005, 2015.
Larrasoana, J., Roberts, A., Rohling, E., Winklhofer, M., and Wehausen, R.:
Three million years of monsoon variability over the northern Sahara, Clim.
Dynam., 21, 689–698, https://doi.org/10.1007/s00382-003-0355-z, 2003.
Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A. C. M., and Levrard, B.: A long-term numerical solution for the insolation quantities of the Earth, Astron. Astrophys., 428, 261–285, https://doi.org/10.1051/0004-6361:20041335, 2004.
Li, C., Battisti, D. S., Schrag, D. P., and Tziperman, E.: Abrupt climate
shifts in Greenland due to displacements of the sea ice edge, Geophys. Res.
Lett., 32, L19702, https://doi.org/10.1029/2005GL023492, 2005.
Li, C., Battisti, D. S., and Bitz, C. M.: Can North Atlantic sea ice anomalies account for Dansgaard–Oeschger climate signals?, J. Climate, 23,
5457–5475, https://doi.org/10.1175/2010JCLI3409.1, 2010.
Li, M., Hinnov, L., and Kump, L.: Acycle: Time-series analysis software for
paleoclimate research and education, Comput. Geosci., 127, 12–22, https://doi.org/10.1016/j.cageo.2019.02.011, 2019.
Liautaud, P. R., Hodell, D. A., and Huybers, P. J.: Detection of significant
climatic precession variability in early Pleistocene glacial cycles, Earth
Planet. Sc. Lett., 536, 116137, https://doi.org/10.1016/j.epsl.2020.116137, 2020.
Liebrand, D. and de Bakker, A. T. M.: Bispectra of climate cycles show how
ice ages are fuelled, Clim. Past, 15, 1959–1983, https://doi.org/10.5194/cp-15-1959-2019, 2019.
Lisiecki, L. E. and Raymo, M. E.: A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records, Paleoceanogr. Paleoclimatol., 20, PA1003, https://doi.org/10.1029/2004PA001071, 2005.
Liu, J., Mao, J., Huang, B., and Liu, P.: Chaos and reverse transitions in
stochastic resonance, Phys. Lett. A, 382, 3071–3078, https://doi.org/10.1016/j.physleta.2018.08.016, 2018.
Loulergue, L., Schilt, A., Spahni, R., Masson-Delmotte, V., Blunier, T., Lemieux, B., Barnola, J.-M., Raynaud, D., Stocker, T. F., and Chappellaz,
J.: Orbital and millennial-scale features of atmospheric CH4 over the past 800,000 years, Nature, 453, 383–386, https://doi.org/10.1038/nature06950, 2008.
Lourens, L. J., Becker, J., Bintanja, R., Hilgen, F. J., Tuenter, E., van de
Wal, R. S., and Ziegler, M.: Linear and non-linear response of late Neogene
glacial cycles to obliquity forcing and implications for the Milankovitch
theory, Quaternary Sci. Rev., 29, 352–365, https://doi.org/10.1016/j.quascirev.2009.10.018, 2010.
Lüthi, D., Le Floch, M., Bereiter, B., Blunier, T., Barnola, J.-M., Siegenthaler, U., Raynaud, D., Jouzel, J., Fischer, H., Kawamura, K., and
Stocker, T. F.: High-resolution carbon dioxide concentration record
650,000–800,000 years before present, Nature, 453, 379–382, https://doi.org/10.1038/nature06949, 2008.
Lynch-Stieglitz, J.: The Atlantic meridional overturning circulation and
abrupt climate change, Annu. Rev. Mar. Sci., 9, 83–104,
https://doi.org/10.1146/annurev-marine-010816-060415, 2017.
Mangerud, J.: The discovery of the Younger Dryas, and comments on the current meaning and usage of the term, Boreas, 50, 1–5, https://doi.org/10.1111/bor.12481, 2021.
Mantsis, D. F., Clement, A. C., Broccoli, A. J., and Erb, M. P.: Climate
feedbacks in response to changes in obliquity, J. Climate, 24, 2830–2845,
https://doi.org/10.1175/2010JCLI3986.1, 2011.
Marcott, S. A., Bauska, T. K., Buizert, C., Steig, E. J., Rosen, J. L., Cuffey, K. M., Fudge, T. J., Severinghaus, J. P., Ahn, J., Kalk, M. L.,
McConnell, J. R., Sowers, T., Taylor, K. C., White, J. W. C., and Brook, E.
J.: Centennial-scale changes in the global carbon cycle during the last
deglaciation, Nature, 514, 616–619, https://doi.org/10.1038/nature13799, 2014.
Margari, V., Skinner, L. C., Tzedakis, P. C., Ganopolski, A., Vautravers,
M., and Shackleton, N. J.: The nature of millennial-scale climate variability during the past two glacial periods, Nat. Geosci., 3, 127–131,
https://doi.org/10.1038/ngeo740, 2010.
Margari, V., Skinner, L., Hodell, D., Martrat, B., Toucanne, S., Gibbard, P., Lunkka, J., and Tzedakis, C.: Land-ocean changes on orbital and millennial time scales and the penultimate glaciation, Geology, 42, 183–186, https://doi.org/10.1130/G35070.1, 2014.
Margari, V., Skinner, L. C., Menviel, L., Capron, E., Rhodes, R. H.,
Mleneck-Vautravers, M. J., Ezat, M. M., Martrat, B., Grimalt, J. O., Hodell,
D. A., and Tzedakis, P. C.: Fast and slow components of interstadial warming
in the North Atlantic during the last glacial, Commun. Earth Environ., 1, 6,
https://doi.org/10.1038/s43247-020-0006-x, 2020.
Marshall, S. J. and Koutnik, M. R.: Ice Sheet Action Versus Reaction:
Distinguishing between Heinrich Events and Dansgaard–Oeschger Cycles in the
North Atlantic, Paleoceanogr. Paleoclimatol., 21, 1–13, 2006.
Martínez-Botí, M. A., Foster, G. L., Chalk, T. B., Rohling, E. J.,
Sexton, P. F., Lunt, D. J., Pancost, R. D., Badger, M. P. S., and Schmidt, D. N.: Plio-Pleistocene climate sensitivity evaluated using high-resolution
CO2 records, Nature, 518, 49–54, https://doi.org/10.1038/nature14145, 2015.
Martrat, B., Grimalt, J. O., Shackleton, N. J., de Abreu, L., Hutterli, M. A., and Stocker, T. F.: Four climate cycles of recurring deep and surface water destabilizations on the Iberian Margin, Science, 317, 502–507,
https://doi.org/10.1126/science.1139994, 2007.
McIntyre, K., Delaney, M. L., and Ravelo, A. C.: Millennial-scale climate
change and oceanic processes in the Late Pliocene and Early Pleistocene,
Paleoceanogr. Paleoclimatol., 16, 535–543, https://doi.org/10.1029/2000PA000526, 2001.
McManus, J. F., Oppo, D. W., and Cullen, J. L.: A 0.5-million-year record of
millennial-scale climate variability in the North Atlantic, Science, 283,
971–975, https://doi.org/10.1126/science.283.5404.971, 1999.
McManus, J. F., Francois, R., Gherardi, J. M., Keigwin, L. D., and Brown-Leger, S.: Collapse and rapid resumption of Atlantic meridional
circulation linked to deglacial climate changes, Nature, 428, 834–837,
https://doi.org/10.1038/nature02494, 2004.
Menviel, L., Timmermann, A., Friedrich, T., and England, M. H.: Hindcasting the continuum of Dansgaard–Oeschger variability: mechanisms, patterns and timing, Clim. Past, 10, 63–77, https://doi.org/10.5194/cp-10-63-2014, 2014.
Menviel, L. C., Skinner, L. C., Tarasov, L., and Tzedakis, P. C.: An
ice–climate oscillatory framework for Dansgaard–Oeschger cycles, Nat. Rev.
Earth Environ., 1, 677–693, https://doi.org/10.1038/s43017-020-00106-y, 2020.
Mukhin, D., Gavrilov, A., Loskutov, E., Kurths. J., and Feigin, A.: Bayesian
data analysis for revealing causes of the Middle Pleistocene Transition, Sci. Rep., 9, 7328, https://doi.org/10.1038/s41598-019-43867-3, 2019.
Nehrbass-Ahles, C., Shin, J., Schmitt, J., Bereiter, B., Joos, F., Schilt,
A., Schmidely, L., Silva, L., Teste, G., Grilli, R., Chappellaz, J., Hodell,
D., Fischer, H., and Stocker, T. F.: Abrupt CO2 release to the
atmosphere under glacial and early interglacial climate conditions, Science,
369, 1000–1005, https://doi.org/10.1126/science.aay8178, 2020.
Niu, L., Lohmann, G., and Gowan, E. J.: Climate noise influences ice sheet
mean state, Geophys. Res. Lett., 46, 9690–9699, https://doi.org/10.1029/2019GL083717, 2019.
NGRIP – North Greenland Ice Core Project – Members: High-resolution record of Northern Hemisphere climate extending into the last interglacial period, Nature, 431, 147–151, https://doi.org/10.1038/nature02805, 2004.
Oliveira, D., Desprat, S., Rodrigues, T., Naughton, F., Hodell, D., Trigo,
R., Rufino, M., Lopes, C., Abrantes, F., and Sanchez Goni, M.: The complexity of millennial-scale variability in southwestern Europe during MIS 11, Quatern. Res., 86, 373–387, https://doi.org/10.1016/j.yqres.2016.09.002, 2016.
Oliveira, D., Sanchez Goni, M. F., Naughton, F., Polanco-Martínez, J.,
Jimenez-Espejo, F. J., Grimalt, J. O., Martrat, B., Voelker, A. H., Trigo,
R., Hodell, D., Abrantes, F., and Desprat, S.: Unexpected weak seasonal climate in the western Mediterranean region during MIS 31, a high-insolation
forced interglacial, Quaternary Sci. Rev., 161, 1–17,
https://doi.org/10.1016/j.quascirev.2017.02.013, 2017.
O'Neill, G. R. and Broccoli, A. J.: Orbital influences on conditions
favorable for glacial inception, Geophys. Res. Lett., 48, e2021GL094290, https://doi.org/10.1029/2021GL094290, 2021.
Oppo, D. W., McManus, J. F., and Cullen, J. L.: Abrupt climate events 500,000 to 340,000 years ago: Evidence from subpolar North Atlantic sediments, Science, 279, 1335–1338, https://doi.org/10.1126/science.279.5355.1335, 1998.
Pailler, D. and Bard, E.: High frequency palaeoceanographic changes during the past 140 000 yr recorded by the organic matter in sediments of the
Iberian Margin, Palaeogeogr. Palaeoclimatol. Palaeoecol., 181, 431–452, https://doi.org/10.1016/S0031-0182(01)00444-8, 2002.
Pälike, H., Moore, T., Backman, J., Raffi, I., Lanci, L., Parés, J. M., and Janecek, T.: Integrated stratigraphic correlation and improved composite depth scales for ODP Sites 1218 and 1219, in: Proc. ODP, Sci. Results 199, edited by: Wilson, P. A., Lyle, M., and Firth, J. V., Ocean Drilling Program, College Station, TX, 1–41, https://doi.org/10.2973/odp.proc.sr.199.213.2005, 2005.
Pena, L. D. and Goldstein, S. L.: Thermohaline circulation crisis and impacts during the mid-Pleistocene transition, Science, 345, 318–322,
https://doi.org/10.1126/science.1249770, 2014.
Petersen, S.V., Schrag, D. P., and Clark, P. U.: A new mechanism for
Dansgaard–Oeschger cycles, Paleoceanogr. Paleoclimatol., 28, 24–30,
https://doi.org/10.1029/2012PA002364, 2013.
Pol, K., Masson-Delmotte, V., Johnsen, S., Bigler, M., Cattani, O., Durand,
G., Falourd, S., Jouzel, J., Minster, B., Parrenin, F., Ritz, C., Steen-Larsen, H., and Stenni, B.: New MIS 19 EPICA Dome C high resolution
deuterium data: Hints for a problematic preservation of climate variability
at sub-millennial scale in the “oldest ice”, Earth Planet. Sc. Lett., 298, 95–103, https://doi.org/10.1016/J.EPSL.2010.07.030, 2010.
Poppelmeier, F., Scheen, J., Jeltsch-Thommes, A., and Stocker, T. F.: Simulated stability of the Atlantic Meridional Overturning Circulation during the Last Glacial Maximum, Clim. Past, 17, 615–632, https://doi.org/10.5194/cp-17-615-2021, 2021.
Primeau, F. and Deleersnijder, E.: On the time to tracer equilibrium in the
global ocean, Ocean Sci., 5, 13–28, https://doi.org/10.5194/os-5-13-2009, 2009.
Rahmstorf, S., Crucifix, M., Ganopolski, A., Goosse, H., Kamenkovich, I.,
Knutti, R., Lohmann, G., Marsh, R., Mysak, L., Wang, Z., and Weaver, A.:
Thermohaline circulation hysteresis: A model intercomparison, Geophys. Res. Lett., 322, L23605, https://doi.org/10.1029/2005GL023655, 2005.
Railsback, L., Gibbard, P., Head, M., Voarintsoa, N. R., and Toucanne, S.:
An optimized scheme of lettered marine isotope substages for the last 1.0 million years, and the climatostratigraphic nature of isotope stages and
substages, Quaternary Sci. Rev., 111, 94–106, https://doi.org/10.1016/j.quascirev.2015.01.012, 2015.
Raymo, M., Ganley, K., Carter, S., Oppo, D., and McManus, J.: Millenial-scale instability during the early Pleistocene epoch, Nature, 392, 699–702, https://doi.org/10.1038/33658, 1998.
Raymo, M. E.: The timing of major climate terminations, Paleoceanogr. Paleoclimatol., 12, 577–585, https://doi.org/10.1029/97PA01169, 1997.
Raymo, M. E. and Nisancioglu, K. H.: The 41 kyr world: Milankovitch's other
unsolved mystery, Paleoceanogr. Paleoclimatol., 18, 1011, https://doi.org/10.1029/2002PA000791, 2003.
Raymo, M. E., Oppo, D. W., and Curry, W.: The Mid-Pleistocene climate
transition: A deep sea carbon isotopic perspective, Paleoceanogr. Paleoclimatol., 12, 546–559, https://doi.org/10.1029/97PA01019, 1997.
Rodrigues, T., Alonso-García, M., Hodell, D., Rufino, M., Naughton, F., Grimalt, J., Voelker, A., and Abrantes, F.: A 1-Ma record of sea surface temperature and extreme cooling events in the North Atlantic: A perspective from the Iberian Margin, Quaternary Sci. Rev., 172, 118–130,
https://doi.org/10.1016/j.quascirev.2017.07.004, 2017.
Sakai, K. and Peltier, W. R.: A dynamical systems model of the
Dansgaard–Oeschger oscillation and the origin of the Bond Cycle, J. Climate,
12, 2238–2255, https://doi.org/10.1175/1520-0442(1999)012<2238:ADSMOT>2.0.CO;2, 1999.
Sanchez Goni, M., Rodrigues, T., Hodell, D., Polanco-Martínez, J.,
Alonso-García, M., Hernandez-Almeida, I., Desprat, S., and Ferretti, P.:
Tropically-driven climate shifts in southwestern Europe during MIS 19, a low
eccentricity interglacial, Earth Planet. Sc. Lett., 448, 81–93,
https://doi.org/10.1016/j.epsl.2016.05.018, 2016.
Sevellec, F. and Fedorov, A. V.: Unstable AMOC during glacial intervals and
millennial variability: The role of mean sea ice extent, Earth Planet. Sc.
Lett., 429, 60–68, https://doi.org/10.1016/j.epsl.2015.07.022, 2015.
Shackleton, N., Fairbanks, R., chien Chiu, T., and Parrenin, F.: Absolute
calibration of the Greenland time scale: implications for Antarctic time
scales and for 14C, Quaternary Sci. Rev., 23, 1513–1522,
https://doi.org/10.1016/j.quascirev.2004.03.006, 2004.
Shackleton, N. J., Berger, A., and Peltier, W. R.: An Alternative Astronomical Calibration of the Lower Pleistocene Timescale Based on ODP Site 677, T. Roy. Soc. Edinburgh: Earth Sci., 81, 251–261, 1990.
Shackleton, N. J., Hall, M. A., and Vincent, E.: Phase relationships between
millennial-scale events 64,000–24,000 years ago, Paleoceanogr. Paleoclimatol., 15, 565–569, https://doi.org/10.1029/2000PA000513, 2000.
Shin, J., Nehrbass-Ahles, C., Grilli, R., Chowdhry Beeman, J., Parrenin, F.,
Teste, G., Landais, A., Schmidely, L., Silva, L., Schmitt, J., Bereiter, B.,
Stocker, T. F., Fischer, H., and Chappellaz, J.: Millennial-scale atmospheric CO2 variations during the Marine Isotope Stage 6 period
(190–135 ka), Clim. Past, 16, 2203–2219, https://doi.org/10.5194/cp-16-2203-2020, 2020.
Siddall, M., Rohling, E. J., Thompson, W. G., and Waelbroeck, C.: Marine
isotope stage 3 sea level fluctuations: Data synthesis and new outlook, Rev.
Geophys., 46, RG4003, https://doi.org/10.1029/2007RG000226, 2008.
Sima, A., Paul, A., and Schulz, M.: The Younger Dryas – An intrinsic feature
of late Pleistocene climate change at millennial timescales, Earth Planet.
Sc. Lett., 222, 741–750, https://doi.org/10.1016/j.epsl.2004.03.026, 2004.
Skinner, L. and McCave, I.: Analysis and modeling of gravity and piston coring based on soil mechanics, Mar. Geol., 199, 181–204,
https://doi.org/10.1016/S0025-3227(03)00127-0, 2003.
Skinner, L. and Shackleton, N.: An Atlantic lead over Pacific deep-water
change across Termination I: implications for the application of the marine
isotope stage stratigraphy, Quaternary Sci. Rev., 24, 571–580, https://doi.org/10.1016/j.quascirev.2004.11.008, 2005.
Skinner, L. and Shackleton, N.: Deconstructing Terminations I and II: Revisiting the glacioeustatic paradigm based on deep-water temperature
estimates, Quaternary Sci. Rev., 25, 3312–3321, https://doi.org/10.1016/j.quascirev.2006.07.005, 2006.
Skinner, L., Menviel, L., Broadfield, L., Gottschalk, J., and Greaves, M.: Southern Ocean convection amplified past Antarctic warming and atmospheric CO2 rise during Heinrich Stadial 4, Commun. Earth Environ., 1, 23, https://doi.org/10.1038/s43247-020-00024-3, 2020.
Skinner, L. C. and Elderfield, H.: Rapid fluctuations in the deep North Atlantic heat budget during the last glacial period, Paleoceanography, 22, PA1205, https://doi.org/10.1029/2006PA001338, 2007.
Skinner, L. C., Shackleton, N. J., and Elderfield, H.: Millennial-scale
variability of deep- water temperature and 18Odw indicating deep-water source variations in the Northeast Atlantic, 0–34 cal. ka BP, Geochem. Geophy. Geosys., 4, 1098, https://doi.org/10.1029/2003GC000585, 2003.
Skinner, L. C., Elderfield, H., and Hall, M.: Phasing of millennial climate
events and northeast Atlantic Deep-Water temperature change since 50 Ka BP,
Geophysical Monography Series, AGU – American Geophysical Union, 197–208, https://doi.org/10.1029/173GM14, 2007.
Skinner, L. C., Fallon, S., Waelbroeck, C., Michel, E., and Barker, S.:
Ventilation of the deep Southern Ocean and deglacial CO2 rise, Science, 328, 1147–1151, https://doi.org/10.1126/science.1183627, 2010.
Stocker, T. F.: The Seesaw Effect, Science, 282, 61–62,
https://doi.org/10.1126/science.282.5386.61, 1998.
Stocker, T. F. and Johnsen, S. J.: A minimum thermodynamic model for the
bipolar seesaw, Paleoceanogr. Paleoclimatol., 18, 1087, https://doi.org/10.1029/2003PA000920, 2003.
Sun, Y., McManus, J. F., Clemens, S. C., Zhang, X., Vogel, H., Hodell, D. A., Guo, F., Wang, T., Liu, X., and An, Z.: Persistent orbital influence on
millennial climate variability through the Pleistocene, Nat. Geosci., 14,
812–818, https://doi.org/10.1038/s41561-021-00794-1, 2021.
Thomas, N. C., Bradbury, H. J., and Hodell, D. A.: Changes in North Atlantic
deep-water oxygenation across the Middle Pleistocene Transition, Science, 377, 654–659, https://doi.org/10.1126/science.abj7761, 2022.
Timmermann, A., Gildor, H., Schulz, M., and Tziperman, E.: Coherent resonant
millennial-scale climate oscillations triggered by massive meltwater pulses,
J. Climate, 16, 2569–2585, https://doi.org/10.1175/1520-0442, 2003.
Tuenter, E., Weber, S. L., Hilgen, F. J., and Lourens, L. J.: Sea-ice feedbacks on the climatic response to precession and obliquity forcing, Geophys. Res. Lett., 32, L24704, https://doi.org/10.1029/2005GL024122, 2005.
Tzedakis, P., Margari, V., and Hodell, D.: Coupled ocean–land millennial-scale changes 1.26 million years ago, recorded at Site U1385 off
Portugal, Global Planet. Change, 135, 83–88, https://doi.org/10.1016/j.gloplacha.2015.10.008, 2015.
Tzedakis, P. C., Wolff, E. W., Skinner, L. C., Brovkin, V., Hodell, D. A., McManus, J. F., and Raynaud, D.: Can we predict the duration of an interglacial?, Clim. Past, 8, 1473–1485, https://doi.org/10.5194/cp-8-1473-2012, 2012.
Tzedakis, P. C., Drysdale, R. N., Margari, V., Skinner, L. C., Menviel, L.,
Rhodes, R. H., Taschetto, A. S., Hodell, D. A., Crowhurst, S. J., Hellstrom,
J. C., Fallick, A. E., Grimalt, J. O., McManus, J. F., Martrat, B., Mokeddem, Z., Parrenin, F., Regattieri, E., Roe, K., and Zanchetta, G.: Enhanced climate instability in the North Atlantic and southern Europe during the Last Interglacial, Nat. Commun., 9, 4235, https://doi.org/10.1038/s41467-018-06683-3, 2018.
Vautravers, M. J. and Shackleton, N. J.: Centennial-scale surface hydrology
off Portugal during marine isotope stage 3: Insights from planktonic
foraminiferal fauna variability, Paleoceanogr. Paleoclimatol., 21, PA3004, https://doi.org/10.1029/2005PA001144, 2006.
Verbitsky, M. Y., Crucifix, M., and Volobuev, D. M.: ESD Ideas: Propagation of high-frequency forcing to ice age dynamics, Earth Syst. Dynam., 10, 257–260, https://doi.org/10.5194/esd-10-257-2019, 2019.
Veres, D., Bazin, L., Landais, A., Toyé Mahamadou Kele, H., Lemieux-Dudon, B., Parrenin, F., Martinerie, P., Blayo, E., Blunier, T., Capron, E., Chappellaz, J., Rasmussen, S. O., Severi, M., Svensson, A., Vinther, B., and Wolff, E. W.: The Antarctic ice core chronology (AICC2012): an optimized multi-parameter and multi-site dating approach for the last 120 thousand years, Clim. Past, 9, 1733–1748, https://doi.org/10.5194/cp-9-1733-2013, 2013.
Vettoretti, G. and Peltier, W. R.: Sensitivity of glacial inception to orbital and greenhouse gas climate forcing, Quaternary Sci. Rev., 23, 499–519, https://doi.org/10.1016/j.quascirev.2003.08.008, 2004.
Vettoretti, G., Ditlevsen, P., Jochum, M., and Rasmussen, S. O.: Atmospheric
CO2 control of spontaneous millennial-scale ice age climate oscillations, Nat. Geosci., 15, 300–306, https://doi.org/10.1038/s41561-022-00920-7, 2022.
Vimeux, F., Masson, V., Jouzel, J., Stievenard, M., and Petit, J. R.:
Glacial–interglacial changes in ocean surface conditions in the Southern
Hemisphere, Nature, 398, 410–413, https://doi.org/10.1038/18860, 1999.
Waelbroeck, C., Skinner, L. C., Labeyrie, L., Duplessy, J.-C., Michel, E.,
Vazquez Riveiros, N., Gherardi, J.-M., and Dewilde, F.: The timing of deglacial circulation changes in the Atlantic, Paleoceanogr. Paleoclimatol., 26, PA3213, https://doi.org/10.1029/2010PA002007, 2011.
WAIS Divide Project Members: Precise interpolar phasing of abrupt climate
change during the last ice age, Nature, 520, 661–665, https://doi.org/10.1038/nature14401, 2015.
Weirauch, D., Billups, K., and Martin, P.: Evolution of millennial-scale
climate variability during the mid-Pleistocene, Paleoceanogr. Paleoclimatol., 23, PA3216, https://doi.org/10.1029/2007PA001584, 2008.
Winton, M. and Sarachik, E. S.: Thermohaline oscillations induced by strong
steady salinity forcing of ocean general circulation models, J. Phys. Oceanogr., 23, 1389–1410, https://doi.org/10.1175/1520-0485(1993)023<1389:TOIBSS>2.0.CO;2, 1993.
Wolff, E. W., Fischer, H., and Rothlisberger, R.: Glacial terminations as
southern warmings without northern control, Nat. Geosci., 2, 206–209,
https://doi.org/10.1038/ngeo442, 2009.
Wolff, E. W., Fischer, H., van Ommen, T., and Hodell, D. A.: Stratigraphic templates for ice core records of the past 1.5 Myr, Clim. Past, 18, 1563–1577, https://doi.org/10.5194/cp-18-1563-2022, 2022.
Yan, Y., Bender, M. L., Brook, E. J., Clifford, H. M., Kemeny, P. C., Kurbatov, A. V., Mackay, S., Mayewski, P. A., Ng, J., Severinghaus, J. P.,
and Higgins, J. A.: Two-million-year-old snapshots of atmospheric gases from
Antarctic ice, Nature, 574, 663–666, https://doi.org/10.1038/s41586-019-1692-3, 2019.
Yin, Q. Z., Wu, Z. P., Berger, A., Goosse, H., and Hodell, D.: Insolation
triggered abrupt weakening of Atlantic circulation at the end of interglacials, Science, 373, 1035–1040, https://doi.org/10.1126/science.abg1737, 2021.
Zhang, X., Lohmann, G., Knorr, G., and Purcell, C.: Abrupt glacial climate
shifts controlled by ice sheet changes, Nature, 512, 290–294, https://doi.org/10.1038/nature13592, 2014.
Zhang, X., Knorr, G., Lohmann, G., and Barker, S.: Abrupt North Atlantic
circulation changes in response to gradual CO2 forcing in a glacial climate state, Nat. Geosci., 10, 518–523, https://doi.org/10.1038/ngeo2974, 2017.
Zhang, X., Barker, S., Knorr, G., Lohmann, G., Drysdale, R., Sun, Y., Hodell, D., and Chen, F.: Direct astronomical influence on abrupt climate variability, Nat. Geosci., 14, 819–826, https://doi.org/10.1038/s41561-021-00846-6, 2021.
Zitellini, N., Gracia, E., Matias, L., Terrinha, P., Abreu, M., DeAlteriis,
G., Henriet, J., Danobeitia, J., Masson, D., Mulder, T., Ramella, R., Somoza, L., and Diez, S.: The quest for the Africa–Eurasia plate boundary west of the Strait of Gibraltar, Earth Planet. Sc. Lett., 280, 13–50,
https://doi.org/10.1016/j.epsl.2008.12.005, 2009.
Short summary
We produced a 1.5-million-year-long history of climate change at International Ocean Discovery Program Site U1385 of the Iberian margin, a well-known location for rapidly accumulating sediments on the seafloor. Our record demonstrates that longer-term orbital changes in Earth's climate were persistently overprinted by abrupt millennial-to-centennial climate variability. The occurrence of abrupt climate change is modulated by the slower variations in Earth's orbit and climate background state.
We produced a 1.5-million-year-long history of climate change at International Ocean Discovery...