Articles | Volume 18, issue 1
https://doi.org/10.5194/cp-18-45-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-18-45-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
No evidence for tephra in Greenland from the historic eruption of Vesuvius in 79 CE: implications for geochronology and paleoclimatology
Archaeology & Palaeoecology, School of Natural and Built Environment, Queen's University Belfast, Belfast BT7 1NN, UK
Michael Sigl
Climate and Environmental Physics and Oeschger Centre for Climate Change Research, University of Bern, 3012 Bern, Switzerland
Hans F. Schwaiger
Alaska Volcano Observatory, U.S. Geological Survey, 4230 University Drive, Suite 100, Anchorage, AK 99508, USA
Emma L. Tomlinson
Department of Geology, Trinity College Dublin, Dublin 2, Ireland
Matthew Toohey
Institute of Space and Atmospheric Studies, University of Saskatchewan, Saskatoon, Canada
Joseph R. McConnell
Desert Research Institute, Nevada System of Higher Education, Reno, Nevada 89512, USA
Jonathan R. Pilcher
Archaeology & Palaeoecology, School of Natural and Built Environment, Queen's University Belfast, Belfast BT7 1NN, UK
Takeshi Hasegawa
Department of Earth Sciences, College of Science, Ibaraki University, 2-1-1 Bunkyo, Mito 310-8512, Japan
Claus Siebe
Department of Volcanology, Institute of Geophysics, National Autonomous University of Mexico, C.P. 04510, Coyoacán, Mexico
Related authors
Helen Mackay, Gill Plunkett, Britta J. L. Jensen, Thomas J. Aubry, Christophe Corona, Woon Mi Kim, Matthew Toohey, Michael Sigl, Markus Stoffel, Kevin J. Anchukaitis, Christoph Raible, Matthew S. M. Bolton, Joseph G. Manning, Timothy P. Newfield, Nicola Di Cosmo, Francis Ludlow, Conor Kostick, Zhen Yang, Lisa Coyle McClung, Matthew Amesbury, Alistair Monteath, Paul D. M. Hughes, Pete G. Langdon, Dan Charman, Robert Booth, Kimberley L. Davies, Antony Blundell, and Graeme T. Swindles
Clim. Past, 18, 1475–1508, https://doi.org/10.5194/cp-18-1475-2022, https://doi.org/10.5194/cp-18-1475-2022, 2022
Short summary
Short summary
We assess the climatic and societal impact of the 852/3 CE Alaska Mount Churchill eruption using environmental reconstructions, historical records and climate simulations. The eruption is associated with significant Northern Hemisphere summer cooling, despite having only a moderate sulfate-based climate forcing potential; however, evidence of a widespread societal response is lacking. We discuss the difficulties of confirming volcanic impacts of a single eruption even when it is precisely dated.
Peter M. Abbott, Gill Plunkett, Christophe Corona, Nathan J. Chellman, Joseph R. McConnell, John R. Pilcher, Markus Stoffel, and Michael Sigl
Clim. Past, 17, 565–585, https://doi.org/10.5194/cp-17-565-2021, https://doi.org/10.5194/cp-17-565-2021, 2021
Short summary
Short summary
Volcanic eruptions are a key source of climatic variability, and greater understanding of their past influence will increase the accuracy of future projections. We use volcanic ash from a 1477 CE Icelandic eruption in a Greenlandic ice core as a temporal fix point to constrain the timing of two eruptions in the 1450s CE and their climatic impact. Despite being the most explosive Icelandic eruption in the last 1200 years, the 1477 CE event had a limited impact on Northern Hemisphere climate.
Ewa M. Bednarz, Amy H. Butler, Xinyue Wang, Zhihong Zhuo, Wandi Yu, Georgiy Stenchikov, Matthew Toohey, and Yunqian Zhu
EGUsphere, https://doi.org/10.5194/egusphere-2025-1970, https://doi.org/10.5194/egusphere-2025-1970, 2025
Short summary
Short summary
Injection of sulfur and water vapour by the Hunga volcanic eruption significantly altered chemical composition and radiative budget of the stratosphere. Yet, whether the eruption could also affect surface climate, especially via indirect pathways, remains poorly understood. Here we investigate these effects using large ensembles of simulations with the CESM2(WACCM6) Earth system model.
Matthew Toohey, Yue Jia, Sujan Khanal, and Susann Tegtmeier
Atmos. Chem. Phys., 25, 3821–3839, https://doi.org/10.5194/acp-25-3821-2025, https://doi.org/10.5194/acp-25-3821-2025, 2025
Short summary
Short summary
The climate impact of volcanic eruptions depends in part on how long aerosols spend in the stratosphere. We develop a conceptual model for stratospheric aerosol lifetime in terms of production and decay timescales, as well as a lag between injection and decay. We find residence time depends strongly on injection height in the lower stratosphere. We show that the lifetime of stratospheric aerosol from the 1991 Pinatubo eruption is around 22 months, significantly longer than is commonly reported.
Roberto Bilbao, Thomas J. Aubry, Matthew Toohey, and Pablo Ortega
EGUsphere, https://doi.org/10.5194/egusphere-2025-609, https://doi.org/10.5194/egusphere-2025-609, 2025
Short summary
Short summary
Large volcanic eruptions are unpredictable and can have significant climatic impacts. If one occurs, operational decadal forecasts will become invalid and must be rerun including the volcanic forcing. By analyzing the climate response in EC-Earth3 retrospective predictions, we show that idealised forcings produced with two simple models could be used in operational decadal forecasts to account for the radiative impacts of the next major volcanic eruption.
Magali Verkerk, Thomas J. Aubry, Christopher Smith, Peter O. Hopcroft, Michael Sigl, Jessica E. Tierney, Kevin Anchukaitis, Matthew Osman, Anja Schmidt, and Matthew Toohey
EGUsphere, https://doi.org/10.5194/egusphere-2024-3635, https://doi.org/10.5194/egusphere-2024-3635, 2024
Short summary
Short summary
Large volcanic eruptions can trigger global cooling, affecting human societies. Using ice-core records and simple climate model to simulate volcanic effect over the last 8500 years, we show that volcanic eruptions cool climate by 0.12 °C on average. By comparing model results with temperature recorded by tree rings over the last 1000 years, we demonstrate that our models can predict the large-scale cooling caused by volcanic eruptions, and can be used in case of large eruption in the future.
Sujan Khanal, Matthew Toohey, Adam Bourassa, C. Thomas McElroy, Christopher Sioris, and Kaley A. Walker
EGUsphere, https://doi.org/10.5194/egusphere-2024-3286, https://doi.org/10.5194/egusphere-2024-3286, 2024
Short summary
Short summary
Measurements of stratospheric aerosol from the MAESTRO instrument are compared to other measurements to assess their scientific value. We find that medians of MAESTRO measurements binned by month and latitude show reasonable correlation with other data sets, with notable increases after volcanic eruptions, and that biases in the data can be alleviated through a simple correction technique. Used with care, MAESTRO aerosol measurements provide information that can complement other data sets.
Moritz Günther, Hauke Schmidt, Claudia Timmreck, and Matthew Toohey
Atmos. Chem. Phys., 24, 7203–7225, https://doi.org/10.5194/acp-24-7203-2024, https://doi.org/10.5194/acp-24-7203-2024, 2024
Short summary
Short summary
Stratospheric aerosol has been shown to cause pronounced cooling in the tropical Indian and western Pacific oceans. Using a climate model, we show that this arises from enhanced meridional energy export via the stratosphere. The aerosol causes stratospheric heating and thus an acceleration of the Brewer–Dobson circulation that accomplishes this transport. Our findings highlight the importance of circulation adjustments and surface perspectives on forcing for understanding temperature responses.
Zhihong Zhuo, Herman F. Fuglestvedt, Matthew Toohey, and Kirstin Krüger
Atmos. Chem. Phys., 24, 6233–6249, https://doi.org/10.5194/acp-24-6233-2024, https://doi.org/10.5194/acp-24-6233-2024, 2024
Short summary
Short summary
This work simulated volcanic eruptions with varied eruption source parameters under different initial conditions with a fully coupled Earth system model. We show that initial atmospheric conditions control the meridional distribution of volcanic volatiles and modulate volcanic forcing and subsequent climate and environmental impacts of tropical and Northern Hemisphere extratropical eruptions. This highlights the potential for predicting these impacts as early as the first post-eruption month.
Susanne Preunkert, Pascal Bohleber, Michel Legrand, Adrien Gilbert, Tobias Erhardt, Roland Purtschert, Lars Zipf, Astrid Waldner, Joseph R. McConnell, and Hubertus Fischer
The Cryosphere, 18, 2177–2194, https://doi.org/10.5194/tc-18-2177-2024, https://doi.org/10.5194/tc-18-2177-2024, 2024
Short summary
Short summary
Ice cores from high-elevation Alpine glaciers are an important tool to reconstruct the past atmosphere. However, since crevasses are common at these glacier sites, rigorous investigations of glaciological conditions upstream of drill sites are needed before interpreting such ice cores. On the basis of three ice cores extracted at Col du Dôme (4250 m a.s.l; French Alps), an overall picture of a dynamic crevasse formation is drawn, which disturbs the depth–age relation of two of the three cores.
Julie Christin Schindlbeck-Belo, Matthew Toohey, Marion Jegen, Steffen Kutterolf, and Kira Rehfeld
Earth Syst. Sci. Data, 16, 1063–1081, https://doi.org/10.5194/essd-16-1063-2024, https://doi.org/10.5194/essd-16-1063-2024, 2024
Short summary
Short summary
Volcanic forcing of climate resulting from major explosive eruptions is a dominant natural driver of past climate variability. To support model studies of the potential impacts of explosive volcanism on climate variability across timescales, we present an ensemble reconstruction of volcanic stratospheric sulfur injection over the last 140 000 years that is based primarily on tephra records.
Xavier Faïn, David M. Etheridge, Kévin Fourteau, Patricia Martinerie, Cathy M. Trudinger, Rachael H. Rhodes, Nathan J. Chellman, Ray L. Langenfelds, Joseph R. McConnell, Mark A. J. Curran, Edward J. Brook, Thomas Blunier, Grégory Teste, Roberto Grilli, Anthony Lemoine, William T. Sturges, Boris Vannière, Johannes Freitag, and Jérôme Chappellaz
Clim. Past, 19, 2287–2311, https://doi.org/10.5194/cp-19-2287-2023, https://doi.org/10.5194/cp-19-2287-2023, 2023
Short summary
Short summary
We report on a 3000-year record of carbon monoxide (CO) levels in the Southern Hemisphere's high latitudes by combining ice core and firn air measurements with modern direct atmospheric samples. Antarctica [CO] remained stable (–835 to 1500 CE), decreased during the Little Ice Age, and peaked around 1985 CE. Such evolution reflects stable biomass burning CO emissions before industrialization, followed by growth from CO anthropogenic sources, which decline after 1985 due to improved combustion.
Elizabeth R. Thomas, Diana O. Vladimirova, Dieter R. Tetzner, B. Daniel Emanuelsson, Nathan Chellman, Daniel A. Dixon, Hugues Goosse, Mackenzie M. Grieman, Amy C. F. King, Michael Sigl, Danielle G. Udy, Tessa R. Vance, Dominic A. Winski, V. Holly L. Winton, Nancy A. N. Bertler, Akira Hori, Chavarukonam M. Laluraj, Joseph R. McConnell, Yuko Motizuki, Kazuya Takahashi, Hideaki Motoyama, Yoichi Nakai, Franciéle Schwanck, Jefferson Cardia Simões, Filipe Gaudie Ley Lindau, Mirko Severi, Rita Traversi, Sarah Wauthy, Cunde Xiao, Jiao Yang, Ellen Mosely-Thompson, Tamara V. Khodzher, Ludmila P. Golobokova, and Alexey A. Ekaykin
Earth Syst. Sci. Data, 15, 2517–2532, https://doi.org/10.5194/essd-15-2517-2023, https://doi.org/10.5194/essd-15-2517-2023, 2023
Short summary
Short summary
The concentration of sodium and sulfate measured in Antarctic ice cores is related to changes in both sea ice and winds. Here we have compiled a database of sodium and sulfate records from 105 ice core sites in Antarctica. The records span all, or part, of the past 2000 years. The records will improve our understanding of how winds and sea ice have changed in the past and how they have influenced the climate of Antarctica over the past 2000 years.
Aymeric P. M. Servettaz, Anaïs J. Orsi, Mark A. J. Curran, Andrew D. Moy, Amaelle Landais, Joseph R. McConnell, Trevor J. Popp, Emmanuel Le Meur, Xavier Faïn, and Jérôme Chappellaz
Clim. Past, 19, 1125–1152, https://doi.org/10.5194/cp-19-1125-2023, https://doi.org/10.5194/cp-19-1125-2023, 2023
Short summary
Short summary
The temperature of the past 2000 years is still poorly known in vast parts of the East Antarctic plateau. In this study, we present temperature reconstructions based on water and gas stable isotopes from the Aurora Basin North ice core. Spatial and temporal significance of each proxy differs, and we can identify some cold periods in the snow temperature up to 2°C cooler in the 1000–1400 CE period, which could not be determined with water isotopes only.
Lucie J. Lücke, Andrew P. Schurer, Matthew Toohey, Lauren R. Marshall, and Gabriele C. Hegerl
Clim. Past, 19, 959–978, https://doi.org/10.5194/cp-19-959-2023, https://doi.org/10.5194/cp-19-959-2023, 2023
Short summary
Short summary
Evidence from tree rings and ice cores provides incomplete information about past volcanic eruptions and the Sun's activity. We model past climate with varying solar and volcanic scenarios and compare it to reconstructed temperature. We confirm that the Sun's influence was small and that uncertain volcanic activity can strongly influence temperature shortly after the eruption. On long timescales, independent data sources closely agree, increasing our confidence in understanding of past climate.
Michael N. Dyonisius, Vasilii V. Petrenko, Andrew M. Smith, Benjamin Hmiel, Peter D. Neff, Bin Yang, Quan Hua, Jochen Schmitt, Sarah A. Shackleton, Christo Buizert, Philip F. Place, James A. Menking, Ross Beaudette, Christina Harth, Michael Kalk, Heidi A. Roop, Bernhard Bereiter, Casey Armanetti, Isaac Vimont, Sylvia Englund Michel, Edward J. Brook, Jeffrey P. Severinghaus, Ray F. Weiss, and Joseph R. McConnell
The Cryosphere, 17, 843–863, https://doi.org/10.5194/tc-17-843-2023, https://doi.org/10.5194/tc-17-843-2023, 2023
Short summary
Short summary
Cosmic rays that enter the atmosphere produce secondary particles which react with surface minerals to produce radioactive nuclides. These nuclides are often used to constrain Earth's surface processes. However, the production rates from muons are not well constrained. We measured 14C in ice with a well-known exposure history to constrain the production rates from muons. 14C production in ice is analogous to quartz, but we obtain different production rates compared to commonly used estimates.
Michael Sigl, Matthew Toohey, Joseph R. McConnell, Jihong Cole-Dai, and Mirko Severi
Earth Syst. Sci. Data, 14, 3167–3196, https://doi.org/10.5194/essd-14-3167-2022, https://doi.org/10.5194/essd-14-3167-2022, 2022
Short summary
Short summary
Volcanism is a key driver of climate. Based on ice cores from Greenland and Antarctica, we reconstruct its climate impact potential over the Holocene. By aligning records on a well-dated chronology from Antarctica, we resolve long-standing inconsistencies in the dating of past volcanic eruptions. We reconstruct 850 eruptions (which, in total, injected 7410 Tg of sulfur in the stratosphere) and estimate how they changed the opacity of the atmosphere, a prerequisite for climate model simulations.
Helen Mackay, Gill Plunkett, Britta J. L. Jensen, Thomas J. Aubry, Christophe Corona, Woon Mi Kim, Matthew Toohey, Michael Sigl, Markus Stoffel, Kevin J. Anchukaitis, Christoph Raible, Matthew S. M. Bolton, Joseph G. Manning, Timothy P. Newfield, Nicola Di Cosmo, Francis Ludlow, Conor Kostick, Zhen Yang, Lisa Coyle McClung, Matthew Amesbury, Alistair Monteath, Paul D. M. Hughes, Pete G. Langdon, Dan Charman, Robert Booth, Kimberley L. Davies, Antony Blundell, and Graeme T. Swindles
Clim. Past, 18, 1475–1508, https://doi.org/10.5194/cp-18-1475-2022, https://doi.org/10.5194/cp-18-1475-2022, 2022
Short summary
Short summary
We assess the climatic and societal impact of the 852/3 CE Alaska Mount Churchill eruption using environmental reconstructions, historical records and climate simulations. The eruption is associated with significant Northern Hemisphere summer cooling, despite having only a moderate sulfate-based climate forcing potential; however, evidence of a widespread societal response is lacking. We discuss the difficulties of confirming volcanic impacts of a single eruption even when it is precisely dated.
Markus Stoffel, Christophe Corona, Francis Ludlow, Michael Sigl, Heli Huhtamaa, Emmanuel Garnier, Samuli Helama, Sébastien Guillet, Arlene Crampsie, Katrin Kleemann, Chantal Camenisch, Joseph McConnell, and Chaochao Gao
Clim. Past, 18, 1083–1108, https://doi.org/10.5194/cp-18-1083-2022, https://doi.org/10.5194/cp-18-1083-2022, 2022
Short summary
Short summary
The mid-17th century saw several volcanic eruptions, deteriorating climate, political instability, and famine in Europe, China, and Japan. We analyze impacts of the eruptions on climate but also study their socio-political context. We show that an unambiguous distinction of volcanic cooling or wetting from natural climate variability is not straightforward. It also shows that political instability, poor harvest, and famine cannot only be attributed to volcanic climatic impacts.
Xavier Faïn, Rachael H. Rhodes, Philip Place, Vasilii V. Petrenko, Kévin Fourteau, Nathan Chellman, Edward Crosier, Joseph R. McConnell, Edward J. Brook, Thomas Blunier, Michel Legrand, and Jérôme Chappellaz
Clim. Past, 18, 631–647, https://doi.org/10.5194/cp-18-631-2022, https://doi.org/10.5194/cp-18-631-2022, 2022
Short summary
Short summary
Carbon monoxide (CO) is a regulated pollutant and one of the key components determining the oxidizing capacity of the atmosphere. In this study, we analyzed five ice cores from Greenland at high resolution for CO concentrations by coupling laser spectrometry with continuous melting. By combining these new datasets, we produced an upper-bound estimate of past atmospheric CO abundance since preindustrial times for the Northern Hemisphere high latitudes, covering the period from 1700 to 1957 CE.
Davide Zanchettin, Claudia Timmreck, Myriam Khodri, Anja Schmidt, Matthew Toohey, Manabu Abe, Slimane Bekki, Jason Cole, Shih-Wei Fang, Wuhu Feng, Gabriele Hegerl, Ben Johnson, Nicolas Lebas, Allegra N. LeGrande, Graham W. Mann, Lauren Marshall, Landon Rieger, Alan Robock, Sara Rubinetti, Kostas Tsigaridis, and Helen Weierbach
Geosci. Model Dev., 15, 2265–2292, https://doi.org/10.5194/gmd-15-2265-2022, https://doi.org/10.5194/gmd-15-2265-2022, 2022
Short summary
Short summary
This paper provides metadata and first analyses of the volc-pinatubo-full experiment of CMIP6-VolMIP. Results from six Earth system models reveal significant differences in radiative flux anomalies that trace back to different implementations of volcanic forcing. Surface responses are in contrast overall consistent across models, reflecting the large spread due to internal variability. A second phase of VolMIP shall consider both aspects toward improved protocol for volc-pinatubo-full.
Jiamei Lin, Anders Svensson, Christine S. Hvidberg, Johannes Lohmann, Steffen Kristiansen, Dorthe Dahl-Jensen, Jørgen Peder Steffensen, Sune Olander Rasmussen, Eliza Cook, Helle Astrid Kjær, Bo M. Vinther, Hubertus Fischer, Thomas Stocker, Michael Sigl, Matthias Bigler, Mirko Severi, Rita Traversi, and Robert Mulvaney
Clim. Past, 18, 485–506, https://doi.org/10.5194/cp-18-485-2022, https://doi.org/10.5194/cp-18-485-2022, 2022
Short summary
Short summary
We employ acidity records from Greenland and Antarctic ice cores to estimate the emission strength, frequency and climatic forcing for large volcanic eruptions from the last half of the last glacial period. A total of 25 volcanic eruptions are found to be larger than any eruption in the last 2500 years, and we identify more eruptions than obtained from geological evidence. Towards the end of the glacial period, there is a notable increase in volcanic activity observed for Greenland.
Anne Dallmeyer, Martin Claussen, Stephan J. Lorenz, Michael Sigl, Matthew Toohey, and Ulrike Herzschuh
Clim. Past, 17, 2481–2513, https://doi.org/10.5194/cp-17-2481-2021, https://doi.org/10.5194/cp-17-2481-2021, 2021
Short summary
Short summary
Using the comprehensive Earth system model, MPI-ESM1.2, we explore the global Holocene vegetation changes and interpret them in terms of the Holocene climate change. The model results reveal that most of the Holocene vegetation transitions seen outside the high northern latitudes can be attributed to modifications in the intensity of the global summer monsoons.
Woon Mi Kim, Richard Blender, Michael Sigl, Martina Messmer, and Christoph C. Raible
Clim. Past, 17, 2031–2053, https://doi.org/10.5194/cp-17-2031-2021, https://doi.org/10.5194/cp-17-2031-2021, 2021
Short summary
Short summary
To understand the natural characteristics and future changes of the global extreme daily precipitation, it is necessary to explore the long-term characteristics of extreme daily precipitation. Here, we used climate simulations to analyze the characteristics and long-term changes of extreme precipitation during the past 3351 years. Our findings indicate that extreme precipitation in the past is associated with internal climate variability and regional surface temperatures.
Claudia Timmreck, Matthew Toohey, Davide Zanchettin, Stefan Brönnimann, Elin Lundstad, and Rob Wilson
Clim. Past, 17, 1455–1482, https://doi.org/10.5194/cp-17-1455-2021, https://doi.org/10.5194/cp-17-1455-2021, 2021
Short summary
Short summary
The 1809 eruption is one of the most recent unidentified volcanic eruptions with a global climate impact. We demonstrate that climate model simulations of the 1809 eruption show generally good agreement with many large-scale temperature reconstructions and early instrumental records for a range of radiative forcing estimates. In terms of explaining the spatially heterogeneous and temporally delayed Northern Hemisphere cooling suggested by tree-ring networks, the investigation remains open.
Michaela I. Hegglin, Susann Tegtmeier, John Anderson, Adam E. Bourassa, Samuel Brohede, Doug Degenstein, Lucien Froidevaux, Bernd Funke, John Gille, Yasuko Kasai, Erkki T. Kyrölä, Jerry Lumpe, Donal Murtagh, Jessica L. Neu, Kristell Pérot, Ellis E. Remsberg, Alexei Rozanov, Matthew Toohey, Joachim Urban, Thomas von Clarmann, Kaley A. Walker, Hsiang-Jui Wang, Carlo Arosio, Robert Damadeo, Ryan A. Fuller, Gretchen Lingenfelser, Christopher McLinden, Diane Pendlebury, Chris Roth, Niall J. Ryan, Christopher Sioris, Lesley Smith, and Katja Weigel
Earth Syst. Sci. Data, 13, 1855–1903, https://doi.org/10.5194/essd-13-1855-2021, https://doi.org/10.5194/essd-13-1855-2021, 2021
Short summary
Short summary
An overview of the SPARC Data Initiative is presented, to date the most comprehensive assessment of stratospheric composition measurements spanning 1979–2018. Measurements of 26 chemical constituents obtained from an international suite of space-based limb sounders were compiled into vertically resolved, zonal monthly mean time series. The quality and consistency of these gridded datasets are then evaluated using a climatological validation approach and a range of diagnostics.
Peter M. Abbott, Gill Plunkett, Christophe Corona, Nathan J. Chellman, Joseph R. McConnell, John R. Pilcher, Markus Stoffel, and Michael Sigl
Clim. Past, 17, 565–585, https://doi.org/10.5194/cp-17-565-2021, https://doi.org/10.5194/cp-17-565-2021, 2021
Short summary
Short summary
Volcanic eruptions are a key source of climatic variability, and greater understanding of their past influence will increase the accuracy of future projections. We use volcanic ash from a 1477 CE Icelandic eruption in a Greenlandic ice core as a temporal fix point to constrain the timing of two eruptions in the 1450s CE and their climatic impact. Despite being the most explosive Icelandic eruption in the last 1200 years, the 1477 CE event had a limited impact on Northern Hemisphere climate.
Margot Clyne, Jean-Francois Lamarque, Michael J. Mills, Myriam Khodri, William Ball, Slimane Bekki, Sandip S. Dhomse, Nicolas Lebas, Graham Mann, Lauren Marshall, Ulrike Niemeier, Virginie Poulain, Alan Robock, Eugene Rozanov, Anja Schmidt, Andrea Stenke, Timofei Sukhodolov, Claudia Timmreck, Matthew Toohey, Fiona Tummon, Davide Zanchettin, Yunqian Zhu, and Owen B. Toon
Atmos. Chem. Phys., 21, 3317–3343, https://doi.org/10.5194/acp-21-3317-2021, https://doi.org/10.5194/acp-21-3317-2021, 2021
Short summary
Short summary
This study finds how and why five state-of-the-art global climate models with interactive stratospheric aerosols differ when simulating the aftermath of large volcanic injections as part of the Model Intercomparison Project on the climatic response to Volcanic forcing (VolMIP). We identify and explain the consequences of significant disparities in the underlying physics and chemistry currently in some of the models, which are problems likely not unique to the models participating in this study.
James W. Kirchner, Sarah E. Godsey, Madeline Solomon, Randall Osterhuber, Joseph R. McConnell, and Daniele Penna
Hydrol. Earth Syst. Sci., 24, 5095–5123, https://doi.org/10.5194/hess-24-5095-2020, https://doi.org/10.5194/hess-24-5095-2020, 2020
Short summary
Short summary
Streams and groundwaters often show daily cycles in response to snowmelt and evapotranspiration. These typically have a roughly 6 h time lag, which is often interpreted as a travel-time lag. Here we show that it is instead primarily a phase lag that arises because aquifers integrate their inputs over time. We further show how these cycles shift seasonally, mirroring the springtime retreat of snow cover to higher elevations and the seasonal advance and retreat of photosynthetic activity.
Dimitri Osmont, Sandra Brugger, Anina Gilgen, Helga Weber, Michael Sigl, Robin L. Modini, Christoph Schwörer, Willy Tinner, Stefan Wunderle, and Margit Schwikowski
The Cryosphere, 14, 3731–3745, https://doi.org/10.5194/tc-14-3731-2020, https://doi.org/10.5194/tc-14-3731-2020, 2020
Short summary
Short summary
In this interdisciplinary case study, we were able to link biomass burning emissions from the June 2017 wildfires in Portugal to their deposition in the snowpack at Jungfraujoch, Swiss Alps. We analysed black carbon and charcoal in the snowpack, calculated backward trajectories, and monitored the fire evolution by remote sensing. Such case studies help to understand the representativity of biomass burning records in ice cores and how biomass burning tracers are archived in the snowpack.
Cited articles
Abbott, P. M., Plunkett, G., Corona, C., Chellman, N. J., McConnell, J. R., Pilcher, J. R., Stoffel, M., and Sigl, M.: Cryptotephra from the Icelandic Veiðivötn 1477 CE eruption in a Greenland ice core: confirming the dating of volcanic events in the 1450s CE and assessing the eruption's climatic impact, Clim. Past, 17, 565–585, https://doi.org/10.5194/cp-17-565-2021, 2021.
Abram, N. J., McGregor, H. V., Tierney, J. E., Evans, M. N., McKay, N. P., Kaufman, D. S., and PAGES 2k Consortium:
Early onset of industrial-era warming across the oceans and continents,
Nature,
536, 411–418, https://doi.org/10.1038/nature19082, 2016.
Adolphi, F. and Muscheler, R.: Synchronizing the Greenland ice core and radiocarbon timescales over the Holocene – Bayesian wiggle-matching of cosmogenic radionuclide records, Clim. Past, 12, 15–30, https://doi.org/10.5194/cp-12-15-2016, 2016.
Albert, P. G., Smith, V. C., Suzuki, T., McLean, D., Tomlinson, E. L., Miyabuchi, Y., Kitaba, I., Mark, D. F., Moriwaki, H., Members, S. P., and Nakagawa, T.:
Geochemical characterisation of the Late Quaternary widespread Japanese tephrostratigraphic markers and correlations to the Lake Suigetsu sedimentary archive (SG06 core),
Quat. Geochronol.,
52, 103–131, https://doi.org/10.1016/j.quageo.2019.01.005, 2019.
Andreastuti, S. D.:
Stratigraphy and geochemistry of Merapi Volcano, Central Java, Indonesia: implication for assessment of volcanic hazards,
PhD thesis,
University of Auckland, Auckland, 1999.
Arana-Salinas, L., Siebe, C., and Macías, J. L.:
Dynamics of the ca. 4965 yr 14C BP “Ochre Pumice” Plinian eruption of Popocatépetl volcano, México,
J. Volcanol. Geoth. Res.,
192, 212–231, https://doi.org/10.1016/j.jvolgeores.2010.02.022, 2010.
Aubry, T. J., Toohey, M., Marshall, L., Schmidt, A., and Jellinek, A. M.:
A new volcanic stratospheric sulfate aerosol forcing emulator (EVA_H): comparison with interactive stratospheric aerosol models,
J. Geophys. Res.-Atmos.,
125, D031303, https://doi.org/10.1029/2019JD031303, 2020.
Baillie, M. G. L.:
Extreme environmental events and the linking of the tree-ring and ice-core records,
in: Tree Rings, Environment, and Humanity,
edited by: Dean, J. S., Meko, D. M., and Swetnam, T. W.,
Radiocarbon, Department of Geosciences, The University of Arizona, Tucson, 703–711, 1996.
Baillie, M. G. L.:
Proposed re-dating of the European ice core chronology by seven years prior to the 7th century AD,
Geophys. Res. Lett.,
35, L15813, https://doi.org/10.1029/2008GL034755, 2008.
Baillie, M. G. L. and McAneney, J.: Tree ring effects and ice core acidities clarify the volcanic record of the first millennium, Clim. Past, 11, 105–114, https://doi.org/10.5194/cp-11-105-2015, 2015.
Baggenstos, D., Severinghaus, J. P., Mulvaney, R., McConnell, J. R., Sigl, M., Maselli, O., Petit, J. R., Grente, B., and Steig, E. J.:
A horizontal ice core from Taylor Glacier, its implications for Antarctic climate history, and an improved Taylor Dome ice core time scale,
Paleoceanography and Paleoclimatology,
33, 778–794, https://doi.org/10.1029/2017PA003297, 2018.
Barbante, C., Kehrwald, N. M., Marianelli, P., Vinther, B. M., Steffensen, J. P., Cozzi, G., Hammer, C. U., Clausen, H. B., and Siggaard-Andersen, M.-L.: Greenland ice core evidence of the 79 AD Vesuvius eruption, Clim. Past, 9, 1221–1232, https://doi.org/10.5194/cp-9-1221-2013, 2013.
Barber, K. E., Langdon, P., and Blundell, A.:
Dating the Glen Garry tephra: a widespread late-Holocene marker horizon in the peatlands of northern Britain,
Holocene,
18, 31–43, https://doi.org/10.1177/0959683607085594, 2008.
Begét, J., Stihler, S. D., and Stone, D. B.:
A 500-year-long record of tephra falls from Redoubt Volcano and other volcanoes in upper Cook Inlet, Alaska,
J. Volcanol. Geoth. Res.,
62, 55–67, https://doi.org/10.1016/0377-0273(94)90028-0, 1994.
Belousov A. and Belousova M.:
Chikurachki volcano (Kurile islands, Russia): the unique volcano with frequent basaltic Plinian eruptions,
3rd Biennial Workshop on subduction processes emphasizing the Kurile–Kamchatkan–Aleutian Arcs, Fairbanks, Alaska, 9–15 June 2002,
available at: http://www.kscnet.ru/ivs/lavdi/staff/belousov/chik-poster.pdf (last access: 2 June 2018), 2002.
Brown, S. K., Crosweller, H. S., Sparks, R. S. J., Cottrell, E., Deligne, N. I., Guerrero, N. O., Hobbs, L., Kiyosugi, K., Loughlin, S. C., Siebert, L., and Takarada, S.:
Characterisation of the Quaternary eruption record: analysis of the Large Magnitude Explosive Volcanic Eruptions (LaMEVE) database,
J. Appl. Volcanol.,
3, 5, https://doi.org/10.1186/2191-5040-3-5, 2014.
Buizert, C., Sigl, M., Severi, M., Markle, B. R., Wettstein, J. J., McConnell, J. R., Pedro, J. B., Sodemann, H., Goto-Azuma, K., Kawamura, K., Fujita, S., Motoyama, H., Hirabayashi, M., Uemura, R., Stenni, B., Parrenin, F., He, F., Fudge, T. J., and Steig, E. J.:
Abrupt ice-age shifts in southern westerly winds and Antarctic climate forced from the north,
Nature,
563, 681–685, https://doi.org/10.1038/s41586-018-0727-5, 2018.
Büntgen, U., Myglan, V. S., Ljungqvist, F. C., McCormick, M., Di Cosmo, N., Sigl, M., Jungclaus, J., Wagner, S., Krusic, P. J., Esper, J., Kaplan, J. O., de Vaan, M. A. C., Luterbacher, J., Wacker, L., Tegel, W., and Kirdyanov, A. V.:
Cooling and societal change during the Late Antique Little Ice Age from 536 to around 660 AD,
Nat. Geosci.,
9, 231–236, https://doi.org/10.1038/ngeo2652, 2016.
Büntgen, U., Arseneault, D., Boucher, É., Churakova, O. V., Gennaretti, F., Crivellaro, A., Hughes, M. K., Kirdyanov, A. V., Klippel, L., Krusic, P. J., Linderholm, H. W., Ljungqvist, F. C., Ludescher, J., McCormick, M., Myglan, V. S., Nicolussi, K., Piermattei, A., Oppenheimer, C., Reinig, F., Sigl, M., Vaganov, E. A., and Esper, J.:
Prominent role of volcanism in Common Era climate variability and human history,
Dendrochronologia,
64, 125757, https://doi.org/10.1016/j.dendro.2020.125757, 2020.
Burden, R. E., Phillips, J. C., and Hincks, T. K.:
Estimating volcanic plume heights from depositional clast size,
J. Geophys. Res.-Sol. Ea.,
116, B11206, https://doi.org/10.1029/2011JB008548, 2011.
Carey, S. and Sparks, R. S. J.:
Quantitative models of the fallout and dispersal of tephra from volcanic eruption columns,
B. Volcanol.,
48, 109–125, https://doi.org/10.1007/BF01046546, 1986.
Cassidy, M., Taylor, R. N., Palmer, M. R., Cooper, R. J., Stenlake, C., and Trofimovs, J.:
Tracking the magmatic evolution of island arc volcanism: Insights from a high-precision Pb isotope record of Montserrat, Lesser Antilles,
Geochem. Geophy. Geosy.,
13, Q05003, https://doi.org/10.1029/2012GC004064, 2012.
Child, J. K., Begét, J. E., and Werner, A.:
Three Holocene tephras identified in lacustrine sediment cores from the Wonder Lake area, Denali National Park and Preserve, Alaska, USA,
Arctic Alpine Res.,
30, 89–95, 1998.
Clausen, H. B., Hammer, C. U., Hvidberg, C. S., DahlJensen, D., Steffensen, J. P., Kipfstuhl, J., and Legrand, M.:
A comparison of the volcanic records over the past 4000 years from the Greenland Ice Core Project and Dye 3 Greenland Ice Cores,
J. Geophys. Res.-Oceans,
102, 26707–26723, https://doi.org/10.1029/97JC00587, 1997.
Cole-Dai, J., Ferris, D. G., Kennedy, J. A., Sigl, M., McConnell, J. R., Fudge, T. J., Geng, L., Maselli, O. J., Taylor, K. C., and Souney, J. M.:
Comprehensive record of volcanic eruptions in the Holocene (11,000 years) from the WAIS Divide, Antarctica ice core,
J. Geophys. Res.-Atmos.,
126, e2020JD032855, https://doi.org/10.1029/2020JD032855, 2021.
Coulter, S. E., Pilcher, J. R., Plunkett, G., Baillie, M., Hall, V. A., Steffensen, J. P., Vinther, B. M., Clausen, H. B., and Johnsen, S. J.:
Holocene tephras highlight complexity of volcanic signals in Greenland ice cores,
J. Geophys. Res.,
117, D21303, https://doi.org/10.1029/2012JD017698, 2012.
Crowley, T. J.:
Causes of climate change over the past 1000 years,
Science,
289, 270–277, https://doi.org/10.1126/science.289.5477.270, 2000.
Davies, L. J., Jensen, B. J., Froese, D. G., and Wallace, K. L.:
Late Pleistocene and Holocene tephrostratigraphy of interior Alaska and Yukon: Key beds and chronologies over the past 30,000 years,
Quaternary Sci. Rev.,
146, 28–53, https://doi.org/10.1016/j.quascirev.2016.05.026, 2016.
de Leeuw, J., Schmidt, A., Witham, C. S., Theys, N., Taylor, I. A., Grainger, R. G., Pope, R. J., Haywood, J., Osborne, M., and Kristiansen, N. I.: The 2019 Raikoke volcanic eruption – Part 1: Dispersion model simulations and satellite retrievals of volcanic sulfur dioxide, Atmos. Chem. Phys., 21, 10851–10879, https://doi.org/10.5194/acp-21-10851-2021, 2021.
Dunbar, N. W., Iverson, N. A., Van Eaton, A. R., Sigl, M., Alloway, B. V., Kurbatov, A. V., Mastin, L. G., McConnell, J. R., and Wilson, C. J. N.:
New Zealand supereruption provides time marker for the Last Glacial Maximum in Antarctica,
Sci. Rep.-UK,
7, 12238, https://doi.org/10.1038/s41598-017-11758-0, 2017.
DeVitre, C. L., Gazel, E., Allison, C. M., Soto, G., Madrigal, P., Alvarado, G. E., and Lücke, O. H.:
Multi-stage chaotic magma mixing at Turrialba volcano,
J. Volcanol. Geoth. Res.,
381, 330–346, https://doi.org/10.1016/j.jvolgeores.2019.06.011, 2019.
Di Piazza, A., Rizzo, A. L., Barberi, F., Carapezza, M. L., De Astis, G., Romano, C., and Sortino, F.:
Geochemistry of the mantle source and magma feeding system beneath Turrialba volcano, Costa Rica,
Lithos,
232, 319–335, https://doi.org/10.1016/j.lithos.2015.07.012, 2015.
DuFrane, S. A., Turner, S., Dosseto, A., and Van Soest, M.:
Reappraisal of fluid and sediment contributions to Lesser Antilles magmas,
Chem. Geol.,
265, 272–278, https://doi.org/10.1016/j.chemgeo.2009.03.030, 2009.
Dugmore, A. J., Newton, A. J., Larsen, G., and Cook, G. T.:
Tephrochronology, environmental change and the Norse settlement of Iceland,
Environ. Archaeol.,
5, 21–34, https://doi.org/10.1179/env.2000.5.1.21, 2000.
Foit, F. F., Gavin, D. G., and Hu, F. S.:
The tephra stratigraphy of two lakes in south-central British Columbia, Canada and its implications for mid-late Holocene volcanic activity at Glacier Peak and Mount St. Helens, Washington, USA,
Can. J. Earth Sci.,
41, 1401–1410, https://doi.org/10.1139/e04-081, 2004.
Gao, C., Oman, L., Robock, A., and Stenchikov, G. L.:
Atmospheric volcanic loading derived from bipolar ice cores accounting for the spatial distribution of volcanic deposition,
J. Geophys. Res.,
112, D09109, https://doi.org/10.1029/2006JD007461, 2007.
Gao, C. C., Ludlow, F., Matthews, J. A., Stine, A., Robock, A., Pan, Y., Breen, R., Nolan, B., and Sigl, M.: Volcanic climate impacts can act as ultimate and proximate causes of Chinese dynastic collapse, Commun. Earth Environ., 2, 234, https://doi.org/10.1038/s43247-021-00284-7, 2021
Garrison, J. M., Davidson, J. P., Hall, M., and Mothes, P.:
Geochemistry and petrology of the most recent deposits from Cotopaxi Volcano, Northern Volcanic Zone, Ecuador,
J. Petrol.,
52, 1641–1678, https://doi.org/10.1093/petrology/egr023, 2011.
George, R., Turner, S., Hawkesworth, C., Morris, J., Nye, C., Ryan, J., and Zheng, S. H.:
Melting processes and fluid and sediment transport rates along the Alaska–Aleutian arc from an integrated U-Th-Ra-Be isotope study,
J. Geophys. Res.-Sol. Ea.,
108, B52252, https://doi.org/10.1029/2002JB001916, 2003.
Gjerløw, E., Haflidason, H., and Pedersen, R. B.:
Holocene explosive volcanism of the Jan Mayen (island) volcanic province, North-Atlantic,
J. Volcanol. Geoth. Res.,
321, 31–43, https://doi.org/10.1016/j.jvolgeores.2016.04.025, 2016.
Global Volcanism Program:
Volcanoes of the World, v. 4.8.4,
edited by: Venzke, E.,
https://doi.org/10.5479/si.GVP.VOTW4-2013,
Smithsonian Institution, 2013.
Gudmundsdóttir, E. R., Larsen, G., and Eiriksson, J.:
Tephra stratigraphy on the North Icelandic shelf: extending tephrochronology into marine sediments off North Iceland,
Boreas,
41, 719–734, https://doi.org/10.1111/j.1502-3885.2012.00258.x, 2012.
Gudmundsdóttir, E. R., Larsen, G., Björck, S., Ingólfsson, Ó., and Striberger, J.:
A new high-resolution Holocene tephra stratigraphy in eastern Iceland: Improving the Icelandic and North Atlantic tephrochronology,
Quaternary Sci. Rev.,
150, 234–249, https://doi.org/10.1016/j.quascirev.2016.08.011, 2016.
Hammer, C. U., Clausen, H. B., and Dansgaard, W.:
Greenland ice sheet evidence of post-glacial volcanism and its climatic impact,
Nature,
288, 230–235, https://doi.org/10.1038/288230a0, 1980.
Hammer, C. U., Kurat, G., Hoppe, P., Grum, W., and Clausen, H. B.:
Thera eruption date 1645 BC confirmed by new ice core data?,
in: The Synchronisation of Civilisations in the Eastern Mediterranean in the Second Millennium B.C..
Proceedings of the SCIEM 2000 – EuroConference Haindorf, May 2001, Vienna,
edited by: Bietak, M.,
Verlag der Osterreichischen Akademie der Wissenschaften, Band XXIX, 87–93, 2003.
Hasegawa T., Nakagawa M., Yoshimoto M., Ishizuka Y., Hirose W., Seki S., Ponomareva V., and Rybin A.:
Tephrostratigraphy and petrological study of Chikurachki and Fuss volcanoes, western Paramushir Island, northern Kurile Islands: Evaluation of Holocene eruptive activity and temporal change of magma system,
Quatern. Int.,
246, 278–297, https://doi.org/10.1016/j.quaint.2011.06.047, 2011.
Helama, S., Stoffel, M., Hall, R. J., Jones, P. D., Arppe, L., Matskovsky, V. V., Timonen, M., Nojd, P., Mielikainen, K., and Oinonen, M.:
Recurrent transitions to Little Ice Age-like climatic regimes over the Holocene,
Clim. Dynam.,
56, 3817–3833, https://doi.org/10.1007/s00382-021-05669-0, 2021.
Howe, T. M., Lindsay, J. M., Shane, P., Schmitt, A. K., and Stockli, D. F.:
Re-evaluation of the Roseau Tuff eruptive sequence and other ignimbrites in Dominica, Lesser Antilles,
J. Quaternary Sci.,
29, 531–546, https://doi.org/10.1002/jqs.2723, 2014.
Howe, T. M., Lindsay, J. M., and Shane, P.:
Evolution of young andesitic–dacitic magmatic systems beneath Dominica, Lesser Antilles,
J. Volcanol. Geoth. Res.,
297, 69–88. https://doi.org/10.1016/j.jvolgeores.2015.02.009, 2015.
Jensen, B. J. L., Pyne-O'Donnell, S., Plunkett, G., Froese, D. G., Hughes, P. D. M., Sigl, M., McConnell, J. R., Amesbury, M. J., Blackwell, P. G., van den Bogaard, C., Buck, C. E., Charman, D. J., Clague, J. J., Hall, V. A., Koch, J., Mackay, H., Mallon, G., McColl, L., and Pilcher, J. R.:
Transatlantic distribution of the Alaskan White River Ash,
Geology,
42, 875–878, https://doi.org/10.1130/G35945.1, 2014.
Kaufman, D. S., Jensen, B. J. L., Reyes, A. V., Schiff, C. J., Froese, D. G., and Pearce, N. J. G.:
Late Quaternary tephrostratigraphy, Ahklun Mountains, SW Alaska,
J. Quaternary Sci.,
27, 344–359, https://doi.org/10.1002/jqs.1552, 2012.
Konecky, B. L., McKay, N. P., Churakova (Sidorova), O. V., Comas-Bru, L., Dassié, E. P., DeLong, K. L., Falster, G. M., Fischer, M. J., Jones, M. D., Jonkers, L., Kaufman, D. S., Leduc, G., Managave, S. R., Martrat, B., Opel, T., Orsi, A. J., Partin, J. W., Sayani, H. R., Thomas, E. K., Thompson, D. M., Tyler, J. J., Abram, N. J., Atwood, A. R., Cartapanis, O., Conroy, J. L., Curran, M. A., Dee, S. G., Deininger, M., Divine, D. V., Kern, Z., Porter, T. J., Stevenson, S. L., von Gunten, L., and Iso2k Project Members: The Iso2k database: a global compilation of paleo-δ18O and δ2H records to aid understanding of Common Era climate, Earth Syst. Sci. Data, 12, 2261–2288, https://doi.org/10.5194/essd-12-2261-2020, 2020.
Kutterolf, S., Freundt, A., Perez, W., Mörz, T., Schacht, U., Wehrmann, H., and Schmincke, H. U.:
Pacific offshore record of plinian arc volcanism in Central America: 1. Along-arc correlations,
Geochem. Geophy. Geosy.,
9, Q02S01, https://doi.org/10.1029/2007GC001631, 2008.
Kyle, P. R., Ponomareva, V. V. and, Rourke Schluep, R.:
Geochemical characterization of marker tephra layers from major Holocene eruptions in Kamchatka, Russia,
Int. Geol. Rev.,
53, 1059–1097, https://doi.org/10.1080/00206810903442162, 2011.
Labanieh, S., Chauvel, C., Germa, A., and Quidelleur, X.: Martinique: a clear case for sediment melting and slab dehydration as a function of distance to the trench. J. Petrol., 53, 2441–2464, https://doi.org/10.1093/petrology/egs055, 2012.
Larsen, G., Newton, A. J., Dugmore, A. J., and Vilmundardóttir, E. G.:
Geochemistry, dispersal, volumes and chronology of Holocene silicic tephra layers from the Katla volcanic system, Iceland,
J. Quaternary Sci.,
16, 119–132, https://doi.org/10.1002/jqs.587, 2001.
Le Bas, M. J., Le Maitre, R. W., Streckeisen, A., and Zanettin, B.:
A chemical classification of volcanic rocks on the total alkali–silica diagram,
J. Petrol.,
27, 745–750, https://doi.org/10.1093/petrology/27.3.745, 1986.
Legros, F.:
Tephra stratigraphy of Misti volcano, Peru,
J. S. Am. Earth Sci.,
14, 15–29, https://doi.org/10.1016/S0895-9811(00)00062-6, 2001.
Macías, J. L., Espíndola, J. M., Garcia-Palomo, A., Scott, K. M., Hughes, S., and Mora, J. C.:
Late Holocene Peléan-style eruption at Tacaná volcano, Mexico and Guatemala: Past, present, and future hazards,
Geol. Soc. Am. Bull.,
112, 1234–1249, https://doi.org/10.1130/0016-7606(2000)112<1234:LHPEAT>2.0.CO;2, 2000.
Manning, J. G., Ludlow, F., Stine, A. R., Boos, W. R., Sigl, M., and Marlon, J. R.:
Volcanic suppression of Nile summer flooding triggers revolt and constrains interstate conflict in ancient Egypt,
Nat. Commun.,
8, 900, https://doi.org/10.1038/s41467-017-00957-y, 2017.
Marshall, L., Johnson, J. S., Mann, G. W., Lee, L., Dhomse, S. S., Regayre, L., Yoshioka, M., Carslaw, K. S., and Schmidt, A.:
Exploring how eruption source parameters affect volcanic radiative forcing using statistical emulation,
J. Geophys. Res.-Atmos.,
124, 964–985, https://doi.org/10.1029/2018JD028675, 2019.
Martel, C. and Poussineau, S.:
Diversity of eruptive styles inferred from the microlites of Mt Pelée andesite (Martinique, Lesser Antilles),
J. Volcanol. Geoth. Res.,
166, 233–254, https://doi.org/10.1016/j.jvolgeores.2007.08.003, 2007.
Mastin, L. G., Van Eaton, A. R., and Schwaiger, H. F.:
A probabilistic assessment of tephra-fall hazards at Hanford, Washington, from a future eruption of Mount St. Helens,
U. S. Geological Survey Open-File Report 2020–1133, 54 pp., U.S. Geological Survey, Vancouver, https://doi.org/10.3133/ofr20201133,
2020.
Mayewski, P. A.: GISP2 Ions: Deep (D) Core, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.55537, 1999.
McConnell, J. R., Lamorey, G. W., Lambert, S. W., and Taylor, K. C.:
Continuous ice-core chemical analyses using Inductively coupled plasma mass spectrometry,
Environ. Sci. Technol.,
36, 7–11, https://doi.org/10.1021/es011088z, 2002.
McConnell, J. R., Burke, A., Dunbar, N. W., Köhler, P., Thomas, J. L., Arienzo, M. M., Chellman, N. J., Maselli, O. J., Sigl, M., Adkins, J. F., and Baggenstos, D.:
Synchronous volcanic eruptions and abrupt climate change ∼ 17.7 ka plausibly linked by stratospheric ozone depletion,
P. Natl. Acad. Sci. USA,
114, 10035–10040, https://doi.org/10.1073/pnas.1705595114, 2017.
McConnell, J. R., Wilson, A. I., Stohl, A., Arienzo, M. M., Chellman, N. J., Eckhardt, S., Thompson, E. M., Pollard, A. M., and Steffensen, J. P.:
Lead pollution recorded in Greenland ice indicates European emissions tracked plagues, wars, and imperial expansion during antiquity,
P. Natl. Acad. Sci. USA,
115, 5726–5731, https://doi.org/10.1073/pnas.1721818115, 2018.
McConnell, J. R., Chellman, N. J., Wilson, A. I., Stohl, A., Arienzo, M. M., Eckhardt, S., Fritzsche, D., Kipfstuhl, S., Opel, T., Place, P. F., and Steffensen, J. P.:
Pervasive Arctic lead pollution suggests substantial growth in Medieval silver production modulated by plague, climate and conflict,
P. Natl. Acad. Sci. USA,
116, 14910–14915, https://doi.org/10.1073/pnas.1904515116, 2019.
McConnell, J. R., Sigl, M., Plunkett, G., Burke, A., Kim, W. M., Raible, C. C., Wilson, A. I., Manning, J. G., Ludlow, F. M., Chellman, N. J., Innes, H. M., Yang, Z., Larsen, J. F., Schaefer, J. R., Kipfstuhl, S., Mojtabavi, S., Wilhelms, F., Opel, T., Meyer, H., and Steffensen, J. P.:
Extreme climate after massive eruption of Alaska's Okmok volcano in 43 BCE and effects on the late Roman Republic and Ptolemaic Kingdom,
P. Natl. Acad. Sci. USA,
117, 15443–15449, https://doi.org/10.1073/pnas.2002722117, 2020.
McKay, N. P. and Kaufman, D. S.:
An extended Arctic proxy temperature database for the past 2,000 years,
Sci. Data,
1, 140026, https://doi.org/10.1038/sdata.2014.26, 2014.
Mojtabavi, S., Wilhelms, F., Cook, E., Davies, S. M., Sinnl, G., Skov Jensen, M., Dahl-Jensen, D., Svensson, A., Vinther, B. M., Kipfstuhl, S., Jones, G., Karlsson, N. B., Faria, S. H., Gkinis, V., Kjær, H. A., Erhardt, T., Berben, S. M. P., Nisancioglu, K. H., Koldtoft, I., and Rasmussen, S. O.: A first chronology for the East Greenland Ice-core Project (EGRIP) over the Holocene and last glacial termination, Clim. Past, 16, 2359–2380, https://doi.org/10.5194/cp-16-2359-2020, 2020.
Mora, J. C., Gardner, J. E., Macías, J. L., Meriggi, L., and Santo, A. P.:
Magmatic controls on eruption dynamics of the 1950 yr BP eruption of San Antonio Volcano, Tacaná Volcanic Complex, Mexico–Guatemala,
J. Volcanol. Geoth. Res.,
262, 134–152, https://doi.org/10.1016/j.jvolgeores.2013.06.002, 2013.
Németh, K., Cronin, S. J., Stewart, R. B., and Charley, D.:
Intra-and extra-caldera volcaniclastic facies and geomorphic characteristics of a frequently active mafic island–arc volcano, Ambrym Island, Vanuatu,
Sediment. Geol.,
220, 256–270, https://doi.org/10.1016/j.sedgeo.2009.04.019, 2009.
Neukom, R., Steiger, N., Gomez-Navarro, J. J., Wang, J. H., and Werner, J. P.:
No evidence for globally coherent warm and cold periods over the preindustrial Common Era,
Nature,
571, 550–554, https://doi.org/10.1038/s41586-019-1401-2, 2019.
Newnham, R. M., Lowe, D. J., and Wigley, G. N. A.:
Late Holocene palynology and palaeovegetation of tephra-bearing mires at Papamoa and Waihi Beach, western Bay of Plenty, North Island, New Zealand,
J. Roy. Soc. New Zeal.,
25, 283–300, https://doi.org/10.1080/03014223.1995.9517490, 1995.
Nye, C. J., Harbin, M. L., Miller, T. P., Swanson, S. E., and Neal, C. A.:
Whole-rock major- and trace-element chemistry of 1992 ejecta from Crater Peak, Mount Spurr volcano, Alaska,
in: The 1992 Eruptions of Crater Peak Vent, Mount Spurr Volcano, Alaska,
edited by: Keith, T. E. C.,
U. S. Geological Survey Bulletin 2139, U.S. Geological Survey, Denver, 119–128, 1995.
Oppenheimer, C., Orchard, A., Stoffel, M., Newfield, T. P., Guillet, S., Corona, C., Sigl, M., Di Cosmo, N., and Büntgen, U.:
The Eldgjá eruption: timing, long-range impacts and influence on the Christianisation of Iceland,
Climatic Change,
147, 369–381, https://doi.org/10.1007/s10584-018-2171-9, 2018.
Óladóttir, B. A., Larsen, G., and Sigmarsson, O.:
Holocene volcanic activity at Grímsvötn, Bárdarbunga and Kverkfjöll subglacial centres beneath Vatnajökull, Iceland,
Bull. Volcanol.,
73, 1187–1208, https://doi.org/10.1007/s00445-011-0461-4, 2011.
PAGES 2k Consortium:
Continental-scale temperature variability during the past two millennia,
Nat. Geosci.,
6, 339–346, https://doi.org/10.1038/ngeo1797, 2013.
PAGES 2k Consortium:
A global multiproxy database for temperature reconstructions of the Common Era,
Sci. Data,
4, https://doi.org/10.1038/sdata.2017.88, 2017.
PAGES 2k Consortium:
Consistent multidecadal variability in global temperature reconstructions and simulations over the Common Era,
Nat. Geosci.,
12, 643–649, https://doi.org/10.1038/s41561-019-0400-0, 2019.
Panfil, M. S., Gardner, T. W., and Hirth, K. G.:
Late Holocene stratigraphy of the Tetimpa archaeological sites, northeast flank of Popocatéetl volcano, central Mexico,
GSA Bull.,
111, 204–218, https://doi.org/10.1130/0016-7606(1999)111<0204:LHSOTT>2.3.CO;2, 1999.
Pearce, J. A.:
Role of the sub-continental lithosphere in magma genesis at active continental margins,
in: Continental Basalts and Mantle Xenoliths,
edited by: Hawkesworth, C. J. and Norry, M. J.,
Shiva Publications, Nantwich, 230–249, 1983.
Plunkett, G. and Pilcher, J. R.: Defining the potential source region of volcanic ash in northwest Europe during the Mid-to Late Holocene, Earth-Science Rev., 179, 20–37, https://doi.org/10.1016/j.earscirev.2018.02.006, 2018.
Plunkett, G., Coulter, S. E., Ponomareva, V. V., Blaauw, M., Klimaschewski, A., and Hammarlund, D.:
Distal tephrochronology in volcanic regions: Challenges and insights from Kamchatkan lake sediments,
Global Planet. Change,
134, 26–40, https://doi.org/10.1016/j.gloplacha.2015.04.006, 2015.
Plunkett, G., Pearce, N. J., McConnell, J., Pilcher, J., Sigl, M., and Zhao, H.:
Trace element analysis of Late Holocene tephras from Greenland ice cores,
Quaternary Newsletter,
143, 10–21, 2017.
Plunkett, G., Sigl, M., Pilcher, J. R., McConnell, J. R., Chellman, N., Steffensen, J. P., and Büntgen, U.:
Smoking guns and volcanic ash: the importance of sparse tephras in Greenland ice cores,
Polar Res.,
39, 3511, https://doi.org/10.33265/polar.v39.3511, 2020.
Plunkett, G., Sigl, M., Schwaiger, H.F, Tomlinson, E. Toohey, M., McConnell, J. R., Pilcher, J. R., Hasegawa, T., and Siebe, C.:
Ash3d simulation outputs of ash deposition from hypothetical eruptions of Aniakchak (Alaska), Chikurachki (Kurile Islands) and Popocatépetl (Mexico),
Zenodo [data set],
https://doi.org/10.5281/zenodo.5526186, 2021.
Ponomareva, V. V., Portnyagin, M., Pevzner, M., Blaauw, M., Kyle, P., and Derkachev, A.:
Tephra from andesitic Shiveluch volcano, Kamchatka, NW Pacific: chronology of explosive eruptions and geochemical fingerprinting of volcanic glass,
Int. J. Earth Sci.,
104, 1459–1482, https://doi.org/10.1007/s00531-015-1156-4, 2015.
Ponomareva, V., Portnyagin, M., Pendea, I. F., Zelenin, E., Bourgeois, J., Pinegina, T., and Kozhurin, A.:
A full Holocene tephrochronology for the Kamchatsky Peninsula region: Applications from Kamchatka to North America,
Quaternary Sci. Rev.,
168, 101–122, https://doi.org/10.1016/j.quascirev.2017.04.031, 2017.
Preece, S. J., McGimsey, R. G., Westgate, J. A., Pearce, N. J. G., Hart, W. K., and Perkins, W. T.:
Chemical complexity and source of the White River Ash, Alaska and Yukon,
Geosphere,
10, 1020–1042, https://doi.org/10.1130/GES00953.1, 2014.
Rasmussen, S. O., Abbott, P. M., Blunier, T., Bourne, A. J., Brook, E., Buchardt, S. L., Buizert, C., Chappellaz, J., Clausen, H. B., Cook, E., Dahl-Jensen, D., Davies, S. M., Guillevic, M., Kipfstuhl, S., Laepple, T., Seierstad, I. K., Severinghaus, J. P., Steffensen, J. P., Stowasser, C., Svensson, A., Vallelonga, P., Vinther, B. M., Wilhelms, F., and Winstrup, M.: A first chronology for the North Greenland Eemian Ice Drilling (NEEM) ice core, Clim. Past, 9, 2713–2730, https://doi.org/10.5194/cp-9-2713-2013, 2013.
Rasmussen, S. O., Bigler, M., Blockley, S. P., Blunier, T., Buchardt, S. L., Clausen, H. B., Cvijanovic, I., Dahl-Jensen, D., Johnsen, S. J., Fischer, H., Gkinis, V., Guillevic, M., Hoek, W. Z., Lowe, J. J., Pedro, J. B., Popp, T., Seierstad, I. K., Steffensen, J. P., Svensson, A. M., Vallelonga, P., Vinther, B. M., Walker, M. J. C., Wheatley, J. J., and Winstrup, M.:
A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event stratigraphy,
Quaternary Sci. Rev.,
106, 14–28, https://doi.org/10.1016/j.quascirev.2014.09.007, 2014.
Reuther, J., Potter, B., Coffman, S., Smith, H., and Bigelow, N.:
2020 Revisiting the Timing of the Northern Lobe of the White River Ash Volcanic Event in Eastern Alaska and Western Yukon,
Radiocarbon,
62, 169–188, https://doi.org/10.1017/RDC.2019.110, 2020.
Riehle, J. R.:
A reconnaissance of the major Holocene tephra deposits in the upper Cook Inlet region, Alaska,
J. Volcanol. Geoth. Res.,
26, 37–74, https://doi.org/10.1016/0377-0273(85)90046-0, 1985.
Robin, C., Eissen, J. P. and Monzier, M.:
Giant tuff cone and 12-km-wide associated caldera at Ambrym Volcano (Vanuatu, New Hebrides Arc),
J. Volcanol. Geoth. Res.,
55, 225–238, https://doi.org/10.1016/0377-0273(93)90039-T, 1993.
Rougier, J., Sparks, S. R., and Cashman, K. V.:
Global recording rates for large eruptions,
J. Appl. Volcanol.,
5, 11, https://doi.org/10.1186/s13617-016-0051-4, 2016.
Samaniego, P., Robin, C., Chazot, G., Bourdon, E., and Cotten, J.:
Evolving metasomatic agent in the Northern Andean subduction zone, deduced from magma composition of the long-lived Pichincha volcanic complex (Ecuador),
Contrib. Mineral. Petr.,
160, 239–260, https://doi.org/10.1007/s00410-009-0475-5, 2010.
Santacroce, R., Cioni, R., Marianelli, P., Sbrana, A., Sulpizio, R., Zanchetta, G., Donahue, D. J., and Joron, J. L.:
Age and whole rock–glass compositions of proximal pyroclastics from the major explosive eruptions of Somma-Vesuvius: A review as a tool for distal tephrostratigraphy,
J. Volcanol. Geoth. Res.,
177, 1–18, https://doi.org/10.1016/j.jvolgeores.2008.06.009, 2008.
Schurer, A. P., Hegerl, G. C., Mann, M. E., Tett, S. F. B., and Phipps, S. J.:
Separating forced from chaotic climate variability over the past millennium,
J. Climate,
26, 6954–6973, https://doi.org/10.1175/JCLI-D-12-00826.1, 2013.
Schwaiger, H., Denlinger, R., and Mastin, L. G.:
Ash3d: a finite-volume, conservative numerical model for ash transport and tephra deposition,
J. Geophys. Res.,
117, B04204, https://doi.org/10.1029/2011JB008968, 2012.
Siebe, C. and Macías, J. L.:
Volcanic hazards in the Mexico City metropolitan area from eruptions at Popocatépetl, Nevado de Toluca, and Jocotitlán stratovolcanoes and monogenetic scoria cones in the Sierra Chichinautzin Volcanic Field,
Geological Society of America Special Paper 402, Penrose Conference Series, Geological Society of America, Boulder, 253–329, https://doi.org/10.1130/2004.VHITMC.PFG,
2004.
Siebe, C., Abrams, M., Macías, J. L., and Obenholzner, J.:
Repeated volcanic disasters in Prehispanic time at Popocatépetl, central Mexico: Past key to the future?,
Geology,
24, 399–402, https://doi.org/10.1130/0091-7613(1996)024<0399:RVDIPT>2.3.CO;2, 1996.
Siebe, C., Salinas, S., Arana-Salinas, L., Macías, J. L., Gardner, J., and Bonasia, R.:
The ∼ 23,500 y 14C BP White Pumice Plinian eruption and associated debris avalanche and Tochimilco lava flow of Popocatépetl volcano, México,
J. Volcanol. Geoth. Res.,
333, 66–95, https://doi.org/10.1016/j.jvolgeores.2017.01.011, 2017.
Siebert, L., Simkin, T., and Kimberly, P.:
Volcanoes of the World. third edn.,
University of California Press, Berkeley, 2011.
Seierstad, I. K., Abbott, P. M., Bigler, M., Blunier, T., Bourne, A. J., Brook, E., Buchardt, S. L., Buizert, C., Clausen, H. B., Cook, E., Dahl-Jensen, D., Davies, S. M., Guillevic, M., Johnsen, S. J., Pedersen, D. S., Popp, T. J., Rasmussen, S. O., Severinghaus, J. P., Svensson, A., and Vinther, B. M.:
Consistently dated records from the Greenland GRIP, GISP2 and NGRIP ice cores for the past 104 ka reveal regional millennial-scale δ18O gradients with possible Heinrich event imprint,
Quaternary Sci. Rev.,
106, 29–46, https://doi.org/10.1016/j.quascirev.2014.10.032, 2014.
Sigl, M.: Volcanic synchronization GISP2 versus NEEM(2011-S1) on the NS1-2011 timescale, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.900750, 2019.
Sigl, M., McConnell, J. R., Layman, L., Maselli, O., McGwire, K., Pasteris, D., Dahl-Jensen, D., Steffensen, J. P., Vinther, B., Edwards, R., and Mulvaney, R.:
A new bipolar ice core record of volcanism from WAIS Divide and NEEM and implications for climate forcing of the last 2000 years,
J. Geophys. Res.-Atmos.,
118, 1151–1169, https://doi.org/10.1029/2012JD018603, 2013.
Sigl, M., Winstrup, M., McConnell, J. R., Welten, K. C., Plunkett, G., Ludlow, F., Büntgen, U., Caffee, M., Chellman, N., Dahl-Jensen, D., Fischer, H., Kipfstuhl, S., Kostick, C., Maselli, O. J., Mekhaldi, F., Mulvaney, R., Muscheler, R., Pasteris, D. R., Pilcher, J. R., Salzer, M., Schüpbach, S., Steffensen, J. P., Vinther, B. M., and Woodruff, T. E.:
Timing and climate forcing of volcanic eruptions for the past 2,500 years,
Nature,
523, 543–549, https://doi.org/10.1038/nature14565, 2015.
Sigl, M., Fudge, T. J., Winstrup, M., Cole-Dai, J., Ferris, D., McConnell, J. R., Taylor, K. C., Welten, K. C., Woodruff, T. E., Adolphi, F., Bisiaux, M., Brook, E. J., Buizert, C., Caffee, M. W., Dunbar, N. W., Edwards, R., Geng, L., Iverson, N., Koffman, B., Layman, L., Maselli, O. J., McGwire, K., Muscheler, R., Nishiizumi, K., Pasteris, D. R., Rhodes, R. H., and Sowers, T. A.: The WAIS Divide deep ice core WD2014 chronology – Part 2: Annual-layer counting (0–31 ka BP), Clim. Past, 12, 769–786, https://doi.org/10.5194/cp-12-769-2016, 2016.
Smith, V. C., Costa, A., Aguirre-Díaz, G., Pedrazzi, D., Scifo, A., Plunkett, G., Poret, M., Tournigand, P.-Y., Miles, D., Dee, M. W., McConnell, J. R., Sunyé-Puchol, Dávila Harris, P., Sigl, M., Pilcher, J. R., Chellman, N., and Gutiérrez, E.:
The magnitude and impact of the 431 CE Tierra Blanca Joven eruption of Ilopango, El Salvador,
P. Natl. Acad. Sci. USA,
117, 26061–26068, https://doi.org/10.1073/pnas.2003008117, 2020.
Steig, E. J., Ding, Q. H., White, J. W. C., Kuttel, M., Rupper, S. B., Neumann, T. A., Neff, P. D., Gallant, A. J. E., Mayewski, P. A., Taylor, K. C., Hoffmann, G., Dixon, D. A., Schoenemann, S. W., Markle, B. R., Fudge, T. J., Schneider, D. P., Schauer, A. J., Teel, R. P., Vaughn, B. H., Burgener, L., Williams, J., and Korotkikh, E.:
Recent climate and ice-sheet changes in West Antarctica compared with the past 2,000 years,
Nat Geosci,
6, 372–375, https://doi.org/10.1038/ngeo1778, 2013.
Steiger, N. J., Smerdon, J. E., Cook, E. R., and Cook, B. I.:
Data Descriptor: A reconstruction of global hydroclimate and dynamical variables over the Common Era,
Sci. Data,
5, 180086 https://doi.org/10.1038/sdata.2018.86, 2018.
Stevenson, J. A., Loughlin, S. C., Font, A., Fuller, G. W., MacLeod, A., Oliver, I. W., Jackson, B., Horwell, C. J., Thordardson, T., and Dawson, I.:
UK monitoring and deposition of tephra from the May 2011 eruption of Grímsvötn, Iceland,
J. Appl. Volcanol.,
2, 3, https://doi.org/10.1186/2191-5040-2-3, 2013.
Stevenson, J. A., Millington, S. C., Beckett, F. M., Swindles, G. T., and Thordarson, T.: Big grains go far: understanding the discrepancy between tephrochronology and satellite infrared measurements of volcanic ash, Atmos. Meas. Tech., 8, 2069–2091, https://doi.org/10.5194/amt-8-2069-2015, 2015.
Stothers, R. B.:
Major optical depth perturbations to the stratosphere from volcanic eruptions: Pyrheliometric period, 1881–1960,
J. Geophys. Res.,
101, 3901–3920, https://doi.org/10.1029/95JD03237, 1996.
Sun, C., Plunkett, G., Liu, J., Zhao, H., Sigl, M., McConnell, J. R., Pilcher, J. R., Vinther, B., Steffensen, J. P., and Hall, V.:
Ash from Changbaishan Millennium eruption recorded in Greenland ice: Implications for determining the eruption's timing and impact,
Geophys. Res. Lett.,
41, 694–701, https://doi.org/10.1002/2013GL058642, 2014.
Sun, S. S. and McDonough, W. F.:
Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes,
Geol. Soc London, Special Publications, 42, 313–345, https://doi.org/10.1144/GSL.SP.1989.042.01.19, 1989.
Tardif, R., Hakim, G. J., Perkins, W. A., Horlick, K. A., Erb, M. P., Emile-Geay, J., Anderson, D. M., Steig, E. J., and Noone, D.: Last Millennium Reanalysis with an expanded proxy database and seasonal proxy modeling, Clim. Past, 15, 1251–1273, https://doi.org/10.5194/cp-15-1251-2019, 2019.
Tejedor, E., Steiger, N. J., Smerdon, J. E., Serrano-Notivoli, R., and Vuille, M.:
Global hydroclimatic response to tropical volcanic eruptions over the last millennium,
P. Natl. Acad. Sci. USA,
118, e2019145118, https://doi.org/10.1073/pnas.2019145118, 2021.
Tomlinson, E. L., Smith, V. C., Albert, P. G., Aydar, E., Civetta, L., Cioni, R., Çubukçu, E., Gertisser, R., Isaia, R., Menzies, M. A., and Orsi, G.:
The major and trace element glass compositions of the productive Mediterranean volcanic sources: tools for correlating distal tephra layers in and around Europe,
Quaternary Sci. Rev.,
118, 48–66, https://doi.org/10.1016/j.quascirev.2014.10.028, 2015.
Toohey, M., Krüger, K., Sigl, M., Stordal, F., and Svensen, H.:
Climatic and societal impacts of a volcanic double event at the dawn of the Middle Ages,
Climatic Change,
136, 401–412, https://doi.org/10.1007/s10584-016-1648-7, 2016.
Toohey, M. and Sigl, M.: Volcanic stratospheric sulfur injections and aerosol optical depth from 500 BCE to 1900 CE, Earth Syst. Sci. Data, 9, 809–831, https://doi.org/10.5194/essd-9-809-2017, 2017.
Toohey, M., Krüger, K., Schmidt, H., Timmreck, C., Sigl, M., Stoffel, M., and Wilson, R.:
Disproportionately strong climate forcing from extratropical explosive volcanic eruptions,
Nat. Geosci.,
12, 100–107, https://doi.org/10.1038/s41561-018-0286-2, 2019.
Toothill, J., Williams, C. A., Macdonald, R., Turner, S. P., Rogers, N. W., Hawkesworth, C. J., Jerram, D. A., Ottley, C. J., and Tindle, A. G.:
A complex petrogenesis for an arc magmatic suite, St Kitts, Lesser Antilles,
J. Petrol.,
48, 3–42, https://doi.org/10.1093/petrology/egl052, 2007.
US Geological Survey: USGS Official Source Code Archive, US Geological Survey [code], available at: https://code.usgs.gov, last access: 17 January 2022.
Vinther, B. M., Clausen, H. B., Johnsen, S. J., Rasmussen, S. O., Andersen, K. K., Buchardt, S. L., Dahl-Jensen, D., Seierstad, I. K., Siggaard-Andersen, M.-L., Steffensen, J. P., Svensson, A., Olsen, J., and Heinemeier, J.:
A synchronized dating of three Greenland ice cores throughout the Holocene,
J. Geophys. Res.,
111, D13102, https://doi.org/10.1029/2005JD006921, 2006.
Vinther, B. M., Clausen, H. B., Fisher, D. A., Koerner, R. M., Johnsen, S. J., Andersen, K. K., Dahl-Jensen, D., Rasmussen, S. O., Steffensen, J. P., and Svensson, A. M.:
Synchronizing ice cores from the Renland and Agassiz ice caps to the Greenland ice core chronology,
J. Geophys. Res.-Atmos.,
113, D08115, https://doi.org/10.1029/2007JD009143, 2008.
Wastegård, S., Johansson, H., and Pacheco, J. M.:
New major element analyses of proximal tephras from the Azores and suggested correlations with cryptotephras in North-West Europe,
J. Quaternary Sci.,
35, 114–121, https://doi.org/10.1002/jqs.3155, 2020.
Watt, S. F., Pyle, D. M., Naranjo, J. A., Rosqvist, G., Mella, M., Mather, T. A., and Moreno, H.:
Holocene tephrochronology of the Hualaihue region (Andean southern volcanic zone, ∼ 42 S), southern Chile,
Quatern. Int.,
246, 324–343, https://doi.org/10.1016/j.quaint.2011.05.029, 2011.
Westgate J. A. and Gorton M. P.:
Correlation techniques in tephra studies,
in: Tephra Studies,
edited by: Self, S. and Sparks, R. S. J.,
NATO Advanced Study Institutes Series, Series C – Mathematical and Physical Sciences, vol 75,
Springer, Dordrecht, 73–94, https://doi.org/10.1007/978-94-009-8537-7_5, 1981.
Wilson, L. and Huang, T. C.:
The influence of shape on the atmospheric settling velocity of volcanic ash particles,
Earth Planet. Sc. Lett.,
44, 311–324, https://doi.org/10.1016/0012-821X(79)90179-1, 1979.
Winski, D. A., Fudge, T. J., Ferris, D. G., Osterberg, E. C., Fegyveresi, J. M., Cole-Dai, J., Thundercloud, Z., Cox, T. S., Kreutz, K. J., Ortman, N., Buizert, C., Epifanio, J., Brook, E. J., Beaudette, R., Severinghaus, J., Sowers, T., Steig, E. J., Kahle, E. C., Jones, T. R., Morris, V., Aydin, M., Nicewonger, M. R., Casey, K. A., Alley, R. B., Waddington, E. D., Iverson, N. A., Dunbar, N. W., Bay, R. C., Souney, J. M., Sigl, M., and McConnell, J. R.: The SP19 chronology for the South Pole Ice Core – Part 1: volcanic matching and annual layer counting, Clim. Past, 15, 1793–1808, https://doi.org/10.5194/cp-15-1793-2019, 2019.
Zhu, F., Emile-Geay, J., Hakim, G. J., King, J., and Anchukaitis, K. J.:
Resolving the differences in the simulated and reconstructed temperature response to volcanism,
Geophys. Res. Lett.,
47, e2019GL086908, https://doi.org/10.1029/2019GL086908, 2020.
Zielinski, G. A.:
Stratospheric loading and optical depth estimates of explosive volcanism over the last 2100 years derived from the Greenland Ice Sheet Project 2 ice core,
J. Geophys. Res.-Atmos.,
100, 20937–20955, https://doi.org/10.1029/95JD01751, 1995.
Zielinski, G. A., Mayewski, P. A., Meeker, L. D., Whitlow, S., Twickler, M. S., Morrison, M., Meese, D. A., Gow, A. J., and Alley, R. B.:
Record of volcanism since 7000 B.C. from the GISP2 Greenland ice core and implications for the volcano–climate system,
Science,
264, 948–952, https://doi.org/10.1126/science.264.5161.948, 1994.
Short summary
We report the identification of volcanic ash associated with a sulfate layer in Greenland ice cores previously thought to have been from the Vesuvius 79 CE eruption and which had been used to confirm the precise dating of the Greenland ice-core chronology. We find that the tephra was probably produced by an eruption in Alaska. We show the importance of verifying sources of volcanic signals in ice cores through ash analysis to avoid errors in dating ice cores and interpreting volcanic impacts.
We report the identification of volcanic ash associated with a sulfate layer in Greenland ice...