Articles | Volume 18, issue 10
https://doi.org/10.5194/cp-18-2303-2022
https://doi.org/10.5194/cp-18-2303-2022
Research article
 | 
18 Oct 2022
Research article |  | 18 Oct 2022

Comparison of the green-to-desert Sahara transitions between the Holocene and the last interglacial

Huan Li, Hans Renssen, and Didier M. Roche

Related authors

Comparison of calibration methods of a PICO basal ice shelf melt module implemented in the GRISLI v2.0 ice sheet model
Maxence Menthon, Pepijn Bakker, Aurélien Quiquet, Didier M. Roche, and Ronja Reese
EGUsphere, https://doi.org/10.5194/egusphere-2025-777,https://doi.org/10.5194/egusphere-2025-777, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
A stretched polar vortex increased mid-latitude climate variability during the Last Glacial Maximum
Yurui Zhang, Hans Renssen, Heikki Seppä, Zhen Li, and Xingrui Li
Clim. Past, 21, 67–77, https://doi.org/10.5194/cp-21-67-2025,https://doi.org/10.5194/cp-21-67-2025, 2025
Short summary
Using a multi-layer snow model for transient paleo-studies: surface mass balance evolution during the Last Interglacial
Thi-Khanh-Dieu Hoang, Aurélien Quiquet, Christophe Dumas, Andreas Born, and Didier M. Roche
Clim. Past, 21, 27–51, https://doi.org/10.5194/cp-21-27-2025,https://doi.org/10.5194/cp-21-27-2025, 2025
Short summary
Investigating similarities and differences of the penultimate and last glacial terminations with a coupled ice sheet–climate model
Aurélien Quiquet and Didier M. Roche
Clim. Past, 20, 1365–1385, https://doi.org/10.5194/cp-20-1365-2024,https://doi.org/10.5194/cp-20-1365-2024, 2024
Short summary
Modelling water isotopologues (1H2H16O, 1H217O) in the coupled numerical climate model iLOVECLIM (version 1.1.5)
Thomas Extier, Thibaut Caley, and Didier M. Roche
Geosci. Model Dev., 17, 2117–2139, https://doi.org/10.5194/gmd-17-2117-2024,https://doi.org/10.5194/gmd-17-2117-2024, 2024
Short summary

Related subject area

Subject: Climate Modelling | Archive: Modelling only | Timescale: Holocene
Insights into the Australian mid-Holocene climate using downscaled climate models
Andrew L. Lowry and Hamish A. McGowan
Clim. Past, 20, 2309–2325, https://doi.org/10.5194/cp-20-2309-2024,https://doi.org/10.5194/cp-20-2309-2024, 2024
Short summary
Characterization of the mean and extreme Mediterranean cyclones and their variability during the period 1500 BCE to 1850 CE
Onno Doensen, Martina Messmer, Christoph C. Raible, and Woon Mi Kim
EGUsphere, https://doi.org/10.5194/egusphere-2024-2731,https://doi.org/10.5194/egusphere-2024-2731, 2024
Short summary
Modelling Mediterranean ocean biogeochemistry of the Last Glacial Maximum
Katharina D. Six, Uwe Mikolajewicz, and Gerhard Schmiedl
Clim. Past, 20, 1785–1816, https://doi.org/10.5194/cp-20-1785-2024,https://doi.org/10.5194/cp-20-1785-2024, 2024
Short summary
Mid-Holocene climate at mid-latitudes: assessing the impact of Saharan greening
Marco Gaetani, Gabriele Messori, Francesco S. R. Pausata, Shivangi Tiwari, M. Carmen Alvarez Castro, and Qiong Zhang
Clim. Past, 20, 1735–1759, https://doi.org/10.5194/cp-20-1735-2024,https://doi.org/10.5194/cp-20-1735-2024, 2024
Short summary
Dynamic interaction between lakes, climate, and vegetation across northern Africa during the mid-Holocene
Nora Farina Specht, Martin Claussen, and Thomas Kleinen
Clim. Past, 20, 1595–1613, https://doi.org/10.5194/cp-20-1595-2024,https://doi.org/10.5194/cp-20-1595-2024, 2024
Short summary

Cited articles

Amaral, P. G. C., Vincens, A., Guiot, J., Buchet, G., Deschamps, P., Doumnang, J.-C., and Sylvestre, F.: Palynological evidence for gradual vegetation and climate changes during the African Humid Period termination at 13 N from a Mega-Lake Chad sedimentary sequence, Clim. Past, 9, 223–241, https://doi.org/10.5194/cp-9-223-2013, 2013. 
Bakker, P., Stone, E. J., Charbit, S., Gröger, M., Krebs-Kanzow, U., Ritz, S. P., Varma, V., Khon, V., Lunt, D. J., Mikolajewicz, U., Prange, M., Renssen, H., Schneider, B., and Schulz, M.: Last interglacial temperature evolution – a model inter-comparison, Clim. Past, 9, 605–619, https://doi.org/10.5194/cp-9-605-2013, 2013. 
Bathiany, S., Claussen, M., and Fraedrich, K.: Implications of climate variability for the detection of multiple equilibria and for rapid transitions in the atmosphere-vegetation system, Clim. Dynam., 38, 1775–1790, 2012. 
Download
Short summary
In past warm periods, the Sahara region was covered by vegetation. In this paper we study transitions from this green state to the desert state we find today. For this purpose, we have used a global climate model coupled to a vegetation model to perform transient simulations. We analyzed the model results to assess the effect of vegetation shifts on the abruptness of the transition. We find that the vegetation feedback was more efficient during the last interglacial than during the Holocene.
Share