Articles | Volume 17, issue 6
https://doi.org/10.5194/cp-17-2481-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-17-2481-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Holocene vegetation transitions and their climatic drivers in MPI-ESM1.2
Anne Dallmeyer
CORRESPONDING AUTHOR
Max Planck Institute for Meteorology, Bundesstrasse 53, 20146 Hamburg, Germany
Martin Claussen
Max Planck Institute for Meteorology, Bundesstrasse 53, 20146 Hamburg, Germany
Centrum für Erdsystemforschung und Nachhaltigkeit (CEN),
Universität Hamburg, Bundesstrasse 55, 20146 Hamburg, Germany
Stephan J. Lorenz
Max Planck Institute for Meteorology, Bundesstrasse 53, 20146 Hamburg, Germany
Michael Sigl
Climate and Environmental Physics and Oeschger Centre for Climate
Change Research, University of Bern, Bern, Switzerland
Matthew Toohey
Department of Physics and Engineering Physics, University of
Saskatchewan, Saskatoon, Canada
Ulrike Herzschuh
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine
Research, Potsdam, Germany
Institute of Environmental Sciences and Geography, University of
Potsdam, Potsdam, Germany
Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
Related authors
Chenzhi Li, Anne Dallmeyer, Jian Ni, Manuel Chevalier, Matteo Willeit, Andrei A. Andreev, Xianyong Cao, Laura Schild, Birgit Heim, and Ulrike Herzschuh
EGUsphere, https://doi.org/10.5194/egusphere-2024-1862, https://doi.org/10.5194/egusphere-2024-1862, 2024
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
We present a global megabiome dynamics and distributions derived from pollen-based reconstructions over the last 21,000 years, which are suitable for the evaluation of Earth System Model-based paleo-megabiome simulations. We identified strong deviations between pollen- and model-derived megabiome distributions in the circum-Arctic areas and Tibetan Plateau during the Last Glacial Maximum and early deglaciation, as well as in North Africa and the Mediterranean regions during the Holocene.
Anne Dallmeyer, Anneli Poska, Laurent Marquer, Andrea Seim, and Marie-José Gaillard
Clim. Past, 19, 1531–1557, https://doi.org/10.5194/cp-19-1531-2023, https://doi.org/10.5194/cp-19-1531-2023, 2023
Short summary
Short summary
We compare past tree cover changes in Europe during the last 8000 years simulated with two dynamic global vegetation models and inferred from pollen data. The major model–data mismatch is related to the much earlier onset of anthropogenic deforestation in the data compared to the prescribed land use in the models. We show that land use, and not climate, is the main driver of the Holocene forest decline. The model–data agreement depends on the model tuning, challenging model–data comparisons.
Ulrike Herzschuh, Thomas Böhmer, Manuel Chevalier, Raphaël Hébert, Anne Dallmeyer, Chenzhi Li, Xianyong Cao, Odile Peyron, Larisa Nazarova, Elena Y. Novenko, Jungjae Park, Natalia A. Rudaya, Frank Schlütz, Lyudmila S. Shumilovskikh, Pavel E. Tarasov, Yongbo Wang, Ruilin Wen, Qinghai Xu, and Zhuo Zheng
Clim. Past, 19, 1481–1506, https://doi.org/10.5194/cp-19-1481-2023, https://doi.org/10.5194/cp-19-1481-2023, 2023
Short summary
Short summary
A mismatch between model- and proxy-based Holocene climate change may partially originate from the poor spatial coverage of climate reconstructions. Here we investigate quantitative reconstructions of mean annual temperature and annual precipitation from 1908 pollen records in the Northern Hemisphere. Trends show strong latitudinal patterns and differ between (sub-)continents. Our work contributes to a better understanding of the global mean.
Ulrike Herzschuh, Thomas Böhmer, Chenzhi Li, Manuel Chevalier, Raphaël Hébert, Anne Dallmeyer, Xianyong Cao, Nancy H. Bigelow, Larisa Nazarova, Elena Y. Novenko, Jungjae Park, Odile Peyron, Natalia A. Rudaya, Frank Schlütz, Lyudmila S. Shumilovskikh, Pavel E. Tarasov, Yongbo Wang, Ruilin Wen, Qinghai Xu, and Zhuo Zheng
Earth Syst. Sci. Data, 15, 2235–2258, https://doi.org/10.5194/essd-15-2235-2023, https://doi.org/10.5194/essd-15-2235-2023, 2023
Short summary
Short summary
Climate reconstruction from proxy data can help evaluate climate models. We present pollen-based reconstructions of mean July temperature, mean annual temperature, and annual precipitation from 2594 pollen records from the Northern Hemisphere, using three reconstruction methods (WA-PLS, WA-PLS_tailored, and MAT). Since no global or hemispheric synthesis of quantitative precipitation changes are available for the Holocene so far, this dataset will be of great value to the geoscientific community.
Manuel Chevalier, Anne Dallmeyer, Nils Weitzel, Chenzhi Li, Jean-Philippe Baudouin, Ulrike Herzschuh, Xianyong Cao, and Andreas Hense
Clim. Past, 19, 1043–1060, https://doi.org/10.5194/cp-19-1043-2023, https://doi.org/10.5194/cp-19-1043-2023, 2023
Short summary
Short summary
Data–data and data–model vegetation comparisons are commonly based on comparing single vegetation estimates. While this approach generates good results on average, reducing pollen assemblages to single single plant functional type (PFT) or biome estimates can oversimplify the vegetation signal. We propose using a multivariate metric, the Earth mover's distance (EMD), to include more details about the vegetation structure when performing such comparisons.
Anne Dallmeyer, Martin Claussen, Stephan J. Lorenz, and Timothy Shanahan
Clim. Past, 16, 117–140, https://doi.org/10.5194/cp-16-117-2020, https://doi.org/10.5194/cp-16-117-2020, 2020
Short summary
Short summary
We analyse the end of the African humid period (AHP) in a transient Holocene simulation performed with the comprehensive Earth system model MPI-ESM1.2. The model reproduces the time-transgressive end of the AHP evident in proxy data and indicates that changes in moisture can be attributed to the retreat of the summer monsoon and to changes in the extratropical troughs. The spatially varying impact of these systems imposes regionally different responses to the Holocene insolation change.
Anne Dallmeyer, Martin Claussen, and Victor Brovkin
Clim. Past, 15, 335–366, https://doi.org/10.5194/cp-15-335-2019, https://doi.org/10.5194/cp-15-335-2019, 2019
Short summary
Short summary
A simple but powerful method for the biomisation of plant functional type distributions is introduced and tested for six different dynamic global vegetation models based on pre-industrial and palaeo-simulations. The method facilitates the direct comparison between vegetation distributions simulated by different Earth system models and between model results and the pollen-based biome reconstructions. It is therefore a powerful tool for the evaluation of Earth system models.
Anne Dallmeyer, Martin Claussen, Jian Ni, Xianyong Cao, Yongbo Wang, Nils Fischer, Madlene Pfeiffer, Liya Jin, Vyacheslav Khon, Sebastian Wagner, Kerstin Haberkorn, and Ulrike Herzschuh
Clim. Past, 13, 107–134, https://doi.org/10.5194/cp-13-107-2017, https://doi.org/10.5194/cp-13-107-2017, 2017
Short summary
Short summary
The vegetation distribution in eastern Asia is supposed to be very sensitive to climate change. Since proxy records are scarce, hitherto a mechanistic understanding of the past spatio-temporal climate–vegetation relationship is lacking. To assess the Holocene vegetation change, we forced the diagnostic biome model BIOME4 with climate anomalies of different transient climate simulations.
Sujan Khanal, Matthew Toohey, Adam Bourassa, C. Thomas McElroy, Christopher Sioris, and Kaley A. Walker
EGUsphere, https://doi.org/10.5194/egusphere-2024-3286, https://doi.org/10.5194/egusphere-2024-3286, 2024
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
Measurements of stratospheric aerosol from the MAESTRO instrument are compared to other measurements to assess their scientific value. We find that medians of MAESTRO measurements binned by month and latitude show reasonable correlation with other data sets, with notable increases after volcanic eruptions, and that biases in the data can be alleviated through a simple correction technique. Used with care, MAESTRO aerosol measurements provide information that can complement other data sets.
Matthew Toohey, Yue Jia, Sujan Khanal, and Susann Tegtmeier
EGUsphere, https://doi.org/10.5194/egusphere-2024-2400, https://doi.org/10.5194/egusphere-2024-2400, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
The climate impact of volcanic eruptions depends in part on how long aerosols spend in the stratosphere. We develop a conceptual model for stratospheric aerosol lifetime in terms of production and decay timescales, as well as a lag between injection and decay. We find residence time depends strongly on injection height in the lower stratosphere. We show that the lifetime of stratospheric aerosol from the 1991 Pinatubo eruption is around 22 months, significantly longer than commonly reported.
Mateo Duque-Villegas, Martin Claussen, Thomas Kleinen, Jürgen Bader, and Christian H. Reick
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-61, https://doi.org/10.5194/cp-2024-61, 2024
Preprint under review for CP
Short summary
Short summary
We simulate the last glacial cycle with a comprehensive Earth system model and investigate vegetation change in North Africa during the last four African humid periods (AHPs). We find a common AHP pattern of vegetation change and relate it to climatic factors to discuss how vegetation might have evolved in much older AHPs. The relationship we found for past AHPs does not hold for projected changes in North Africa under strong greenhouse gas warming.
Pin-Hsin Hu, Christian H. Reick, Reiner Schnur, Axel Kleidon, and Martin Claussen
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-111, https://doi.org/10.5194/gmd-2024-111, 2024
Preprint under review for GMD
Short summary
Short summary
We introduce the new plant functional diversity model JeDi-BACH, a novel tool that integrates the Jena Diversity Model (JeDi) within the land component of the ICON Earth System Model. JeDi-BACH captures a richer set of plant trait variations based on environmental filtering and functional tradeoffs without a priori knowledge of the vegetation types. JeDi-BACH represents a significant advancement in modeling the complex interactions between plant functional diversity and climate.
Amelie Stieg, Boris K. Biskaborn, Ulrike Herzschuh, Andreas Marent, Jens Strauss, Dorothee Wilhelms–Dick, Luidmila A. Pestryakova, and Hanno Meyer
EGUsphere, https://doi.org/10.5194/egusphere-2024-2470, https://doi.org/10.5194/egusphere-2024-2470, 2024
Short summary
Short summary
Globally, lake ecosystems have undergone significant shifts since the 1950s due to human activities. This study offers a unique 220-year sediment record from a remote Siberian boreal lake, revealing the impacts of climate warming and pollution. Multi-proxy analyses, including diatom taxonomy, silicon isotopes, carbon and nitrogen proxies, reveal complex biogeochemical interactions, highlighting the need for further research to mitigate anthropogenic effects on these vital water resources.
Nora Farina Specht, Martin Claussen, and Thomas Kleinen
Clim. Past, 20, 1595–1613, https://doi.org/10.5194/cp-20-1595-2024, https://doi.org/10.5194/cp-20-1595-2024, 2024
Short summary
Short summary
We close the terrestrial water cycle across the Sahara and Sahel by integrating a new endorheic-lake model into a climate model. A factor analysis of mid-Holocene simulations shows that both dynamic lakes and dynamic vegetation individually contribute to a precipitation increase over northern Africa that is collectively greater than that caused by the interaction between lake and vegetation dynamics. Thus, the lake–vegetation interaction causes a relative drying response across the entire Sahel.
Chenzhi Li, Anne Dallmeyer, Jian Ni, Manuel Chevalier, Matteo Willeit, Andrei A. Andreev, Xianyong Cao, Laura Schild, Birgit Heim, and Ulrike Herzschuh
EGUsphere, https://doi.org/10.5194/egusphere-2024-1862, https://doi.org/10.5194/egusphere-2024-1862, 2024
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
We present a global megabiome dynamics and distributions derived from pollen-based reconstructions over the last 21,000 years, which are suitable for the evaluation of Earth System Model-based paleo-megabiome simulations. We identified strong deviations between pollen- and model-derived megabiome distributions in the circum-Arctic areas and Tibetan Plateau during the Last Glacial Maximum and early deglaciation, as well as in North Africa and the Mediterranean regions during the Holocene.
Moritz Günther, Hauke Schmidt, Claudia Timmreck, and Matthew Toohey
Atmos. Chem. Phys., 24, 7203–7225, https://doi.org/10.5194/acp-24-7203-2024, https://doi.org/10.5194/acp-24-7203-2024, 2024
Short summary
Short summary
Stratospheric aerosol has been shown to cause pronounced cooling in the tropical Indian and western Pacific oceans. Using a climate model, we show that this arises from enhanced meridional energy export via the stratosphere. The aerosol causes stratospheric heating and thus an acceleration of the Brewer–Dobson circulation that accomplishes this transport. Our findings highlight the importance of circulation adjustments and surface perspectives on forcing for understanding temperature responses.
Zhihong Zhuo, Herman F. Fuglestvedt, Matthew Toohey, and Kirstin Krüger
Atmos. Chem. Phys., 24, 6233–6249, https://doi.org/10.5194/acp-24-6233-2024, https://doi.org/10.5194/acp-24-6233-2024, 2024
Short summary
Short summary
This work simulated volcanic eruptions with varied eruption source parameters under different initial conditions with a fully coupled Earth system model. We show that initial atmospheric conditions control the meridional distribution of volcanic volatiles and modulate volcanic forcing and subsequent climate and environmental impacts of tropical and Northern Hemisphere extratropical eruptions. This highlights the potential for predicting these impacts as early as the first post-eruption month.
Félix García-Pereira, Jesús Fidel González-Rouco, Camilo Melo-Aguilar, Norman Julius Steinert, Elena García-Bustamante, Philip de Vrese, Johann Jungclaus, Stephan Lorenz, Stefan Hagemann, Francisco José Cuesta-Valero, Almudena García-García, and Hugo Beltrami
Earth Syst. Dynam., 15, 547–564, https://doi.org/10.5194/esd-15-547-2024, https://doi.org/10.5194/esd-15-547-2024, 2024
Short summary
Short summary
According to climate model estimates, the land stored 2 % of the system's heat excess in the last decades, while observational studies show it was around 6 %. This difference stems from these models using land components that are too shallow to constrain land heat uptake. Deepening the land component does not affect the surface temperature. This result can be used to derive land heat uptake estimates from different sources, which are much closer to previous observational reports.
Amelie Stieg, Boris K. Biskaborn, Ulrike Herzschuh, Jens Strauss, Luidmila Pestryakova, and Hanno Meyer
Clim. Past, 20, 909–933, https://doi.org/10.5194/cp-20-909-2024, https://doi.org/10.5194/cp-20-909-2024, 2024
Short summary
Short summary
Siberia is impacted by recent climate warming and experiences extreme hydroclimate events. We present a 220-year-long sub-decadal stable oxygen isotope record of diatoms from Lake Khamra. Our analysis identifies winter precipitation as the key process impacting the isotope variability. Two possible hydroclimatic anomalies were found to coincide with significant changes in lake internal conditions and increased wildfire activity in the region.
Laura Schild, Peter Ewald, Chenzhi Li, Raphaël Hébert, Thomas Laepple, and Ulrike Herzschuh
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-486, https://doi.org/10.5194/essd-2023-486, 2024
Revised manuscript under review for ESSD
Short summary
Short summary
This study reconstructed past vegetation and forest cover from a global data set of pollen counts from sediment and peat cores. A model was applied to correct for differences in pollen production between different plants and modern remote-sensing forest cover was used to adjust the necessary correction factors and improve the reconstruction even further. Accurate data on past vegetation is invaluable for the investigation of vegetation-climate dynamics and the validation of vegetation models.
Julie Christin Schindlbeck-Belo, Matthew Toohey, Marion Jegen, Steffen Kutterolf, and Kira Rehfeld
Earth Syst. Sci. Data, 16, 1063–1081, https://doi.org/10.5194/essd-16-1063-2024, https://doi.org/10.5194/essd-16-1063-2024, 2024
Short summary
Short summary
Volcanic forcing of climate resulting from major explosive eruptions is a dominant natural driver of past climate variability. To support model studies of the potential impacts of explosive volcanism on climate variability across timescales, we present an ensemble reconstruction of volcanic stratospheric sulfur injection over the last 140 000 years that is based primarily on tephra records.
Philip Meister, Anne Alexandre, Hannah Bailey, Philip Barker, Boris K. Biskaborn, Ellie Broadman, Rosine Cartier, Bernhard Chapligin, Martine Couapel, Jonathan R. Dean, Bernhard Diekmann, Poppy Harding, Andrew C. G. Henderson, Armand Hernandez, Ulrike Herzschuh, Svetlana S. Kostrova, Jack Lacey, Melanie J. Leng, Andreas Lücke, Anson W. Mackay, Eniko Katalin Magyari, Biljana Narancic, Cécile Porchier, Gunhild Rosqvist, Aldo Shemesh, Corinne Sonzogni, George E. A. Swann, Florence Sylvestre, and Hanno Meyer
Clim. Past, 20, 363–392, https://doi.org/10.5194/cp-20-363-2024, https://doi.org/10.5194/cp-20-363-2024, 2024
Short summary
Short summary
This paper presents the first comprehensive compilation of diatom oxygen isotope records in lake sediments (δ18OBSi), supported by lake basin parameters. We infer the spatial and temporal coverage of δ18OBSi records and discuss common hemispheric trends on centennial and millennial timescales. Key results are common patterns for hydrologically open lakes in Northern Hemisphere extratropical regions during the Holocene corresponding to known climatic epochs, i.e. the Holocene Thermal Maximum.
Anne Dallmeyer, Anneli Poska, Laurent Marquer, Andrea Seim, and Marie-José Gaillard
Clim. Past, 19, 1531–1557, https://doi.org/10.5194/cp-19-1531-2023, https://doi.org/10.5194/cp-19-1531-2023, 2023
Short summary
Short summary
We compare past tree cover changes in Europe during the last 8000 years simulated with two dynamic global vegetation models and inferred from pollen data. The major model–data mismatch is related to the much earlier onset of anthropogenic deforestation in the data compared to the prescribed land use in the models. We show that land use, and not climate, is the main driver of the Holocene forest decline. The model–data agreement depends on the model tuning, challenging model–data comparisons.
Ulrike Herzschuh, Thomas Böhmer, Manuel Chevalier, Raphaël Hébert, Anne Dallmeyer, Chenzhi Li, Xianyong Cao, Odile Peyron, Larisa Nazarova, Elena Y. Novenko, Jungjae Park, Natalia A. Rudaya, Frank Schlütz, Lyudmila S. Shumilovskikh, Pavel E. Tarasov, Yongbo Wang, Ruilin Wen, Qinghai Xu, and Zhuo Zheng
Clim. Past, 19, 1481–1506, https://doi.org/10.5194/cp-19-1481-2023, https://doi.org/10.5194/cp-19-1481-2023, 2023
Short summary
Short summary
A mismatch between model- and proxy-based Holocene climate change may partially originate from the poor spatial coverage of climate reconstructions. Here we investigate quantitative reconstructions of mean annual temperature and annual precipitation from 1908 pollen records in the Northern Hemisphere. Trends show strong latitudinal patterns and differ between (sub-)continents. Our work contributes to a better understanding of the global mean.
Elizabeth R. Thomas, Diana O. Vladimirova, Dieter R. Tetzner, B. Daniel Emanuelsson, Nathan Chellman, Daniel A. Dixon, Hugues Goosse, Mackenzie M. Grieman, Amy C. F. King, Michael Sigl, Danielle G. Udy, Tessa R. Vance, Dominic A. Winski, V. Holly L. Winton, Nancy A. N. Bertler, Akira Hori, Chavarukonam M. Laluraj, Joseph R. McConnell, Yuko Motizuki, Kazuya Takahashi, Hideaki Motoyama, Yoichi Nakai, Franciéle Schwanck, Jefferson Cardia Simões, Filipe Gaudie Ley Lindau, Mirko Severi, Rita Traversi, Sarah Wauthy, Cunde Xiao, Jiao Yang, Ellen Mosely-Thompson, Tamara V. Khodzher, Ludmila P. Golobokova, and Alexey A. Ekaykin
Earth Syst. Sci. Data, 15, 2517–2532, https://doi.org/10.5194/essd-15-2517-2023, https://doi.org/10.5194/essd-15-2517-2023, 2023
Short summary
Short summary
The concentration of sodium and sulfate measured in Antarctic ice cores is related to changes in both sea ice and winds. Here we have compiled a database of sodium and sulfate records from 105 ice core sites in Antarctica. The records span all, or part, of the past 2000 years. The records will improve our understanding of how winds and sea ice have changed in the past and how they have influenced the climate of Antarctica over the past 2000 years.
Ulrike Herzschuh, Thomas Böhmer, Chenzhi Li, Manuel Chevalier, Raphaël Hébert, Anne Dallmeyer, Xianyong Cao, Nancy H. Bigelow, Larisa Nazarova, Elena Y. Novenko, Jungjae Park, Odile Peyron, Natalia A. Rudaya, Frank Schlütz, Lyudmila S. Shumilovskikh, Pavel E. Tarasov, Yongbo Wang, Ruilin Wen, Qinghai Xu, and Zhuo Zheng
Earth Syst. Sci. Data, 15, 2235–2258, https://doi.org/10.5194/essd-15-2235-2023, https://doi.org/10.5194/essd-15-2235-2023, 2023
Short summary
Short summary
Climate reconstruction from proxy data can help evaluate climate models. We present pollen-based reconstructions of mean July temperature, mean annual temperature, and annual precipitation from 2594 pollen records from the Northern Hemisphere, using three reconstruction methods (WA-PLS, WA-PLS_tailored, and MAT). Since no global or hemispheric synthesis of quantitative precipitation changes are available for the Holocene so far, this dataset will be of great value to the geoscientific community.
Manuel Chevalier, Anne Dallmeyer, Nils Weitzel, Chenzhi Li, Jean-Philippe Baudouin, Ulrike Herzschuh, Xianyong Cao, and Andreas Hense
Clim. Past, 19, 1043–1060, https://doi.org/10.5194/cp-19-1043-2023, https://doi.org/10.5194/cp-19-1043-2023, 2023
Short summary
Short summary
Data–data and data–model vegetation comparisons are commonly based on comparing single vegetation estimates. While this approach generates good results on average, reducing pollen assemblages to single single plant functional type (PFT) or biome estimates can oversimplify the vegetation signal. We propose using a multivariate metric, the Earth mover's distance (EMD), to include more details about the vegetation structure when performing such comparisons.
Lucie J. Lücke, Andrew P. Schurer, Matthew Toohey, Lauren R. Marshall, and Gabriele C. Hegerl
Clim. Past, 19, 959–978, https://doi.org/10.5194/cp-19-959-2023, https://doi.org/10.5194/cp-19-959-2023, 2023
Short summary
Short summary
Evidence from tree rings and ice cores provides incomplete information about past volcanic eruptions and the Sun's activity. We model past climate with varying solar and volcanic scenarios and compare it to reconstructed temperature. We confirm that the Sun's influence was small and that uncertain volcanic activity can strongly influence temperature shortly after the eruption. On long timescales, independent data sources closely agree, increasing our confidence in understanding of past climate.
Boris K. Biskaborn, Amy Forster, Gregor Pfalz, Lyudmila A. Pestryakova, Kathleen Stoof-Leichsenring, Jens Strauss, Tim Kröger, and Ulrike Herzschuh
Biogeosciences, 20, 1691–1712, https://doi.org/10.5194/bg-20-1691-2023, https://doi.org/10.5194/bg-20-1691-2023, 2023
Short summary
Short summary
Lake sediment from the Russian Arctic was studied for microalgae and organic matter chemistry dated back to the last glacial 28 000 years. Species and chemistry responded to environmental changes such as the Younger Dryas cold event and the Holocene thermal maximum. Organic carbon accumulation correlated with rates of microalgae deposition only during warm episodes but not during the cold glacial.
Leonore Jungandreas, Cathy Hohenegger, and Martin Claussen
Clim. Past, 19, 637–664, https://doi.org/10.5194/cp-19-637-2023, https://doi.org/10.5194/cp-19-637-2023, 2023
Short summary
Short summary
Increasing the vegetation cover over mid-Holcocene North Africa expands the West African monsoon ∼ 4–5° further north. This northward shift of monsoonal precipitation is caused by interactions of the land surface with large-scale monsoon circulation and the coupling of soil moisture to precipitation. We highlight the importance of considering not only how soil moisture influences precipitation but also how different precipitation characteristics alter the soil hydrology via runoff generation.
Simeon Lisovski, Alexandra Runge, Iuliia Shevtsova, Nele Landgraf, Anne Morgenstern, Ronald Reagan Okoth, Matthias Fuchs, Nikolay Lashchinskiy, Carl Stadie, Alison Beamish, Ulrike Herzschuh, Guido Grosse, and Birgit Heim
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-36, https://doi.org/10.5194/essd-2023-36, 2023
Preprint under review for ESSD
Short summary
Short summary
The Lena Delta is the largest river delta in the Arctic, and represents a biodiversity hotspot. Here, we describe multiple field datasets and a detailed habitat classification map for the Lena Delta. We present context and methods of these openly available datasets and show how they can improve our understanding of the rapidly changing Arctic tundra system.
Furong Li, Marie-José Gaillard, Xianyong Cao, Ulrike Herzschuh, Shinya Sugita, Jian Ni, Yan Zhao, Chengbang An, Xiaozhong Huang, Yu Li, Hongyan Liu, Aizhi Sun, and Yifeng Yao
Earth Syst. Sci. Data, 15, 95–112, https://doi.org/10.5194/essd-15-95-2023, https://doi.org/10.5194/essd-15-95-2023, 2023
Short summary
Short summary
The objective of this study is present the first gridded and temporally continuous quantitative plant-cover reconstruction for temperate and northern subtropical China over the last 12 millennia. The reconstructions are based on 94 pollen records and include estimates for 27 plant taxa, 10 plant functional types, and 3 land-cover types. The dataset is suitable for palaeoclimate modelling and the evaluation of simulated past vegetation cover and anthropogenic land-cover change from models.
Timon Miesner, Ulrike Herzschuh, Luidmila A. Pestryakova, Mareike Wieczorek, Evgenii S. Zakharov, Alexei I. Kolmogorov, Paraskovya V. Davydova, and Stefan Kruse
Earth Syst. Sci. Data, 14, 5695–5716, https://doi.org/10.5194/essd-14-5695-2022, https://doi.org/10.5194/essd-14-5695-2022, 2022
Short summary
Short summary
We present data which were collected on expeditions to the northeast of the Russian Federation. One table describes the 226 locations we visited during those expeditions, and the other describes 40 289 trees which we recorded at these locations. We found out that important information on the forest cannot be predicted precisely from satellites. Thus, for anyone interested in distant forests, it is important to go to there and take measurements or use data (as presented here).
Femke van Geffen, Birgit Heim, Frederic Brieger, Rongwei Geng, Iuliia A. Shevtsova, Luise Schulte, Simone M. Stuenzi, Nadine Bernhardt, Elena I. Troeva, Luidmila A. Pestryakova, Evgenii S. Zakharov, Bringfried Pflug, Ulrike Herzschuh, and Stefan Kruse
Earth Syst. Sci. Data, 14, 4967–4994, https://doi.org/10.5194/essd-14-4967-2022, https://doi.org/10.5194/essd-14-4967-2022, 2022
Short summary
Short summary
SiDroForest is an attempt to remedy data scarcity regarding vegetation data in the circumpolar region, whilst providing adjusted and labeled data for machine learning and upscaling practices. SiDroForest contains four datasets that include SfM point clouds, individually labeled trees, synthetic tree crowns and labeled Sentinel-2 patches that provide insights into the vegetation composition and forest structure of two important vegetation transition zones in Siberia, Russia.
Mateo Duque-Villegas, Martin Claussen, Victor Brovkin, and Thomas Kleinen
Clim. Past, 18, 1897–1914, https://doi.org/10.5194/cp-18-1897-2022, https://doi.org/10.5194/cp-18-1897-2022, 2022
Short summary
Short summary
Using an Earth system model of intermediate complexity, we quantify contributions of the Earth's orbit, greenhouse gases (GHGs) and ice sheets to the strength of Saharan greening during late Quaternary African humid periods (AHPs). Orbital forcing is found as the dominant factor, having a critical threshold and accounting for most of the changes in the vegetation response. However, results suggest that GHGs may influence the orbital threshold and thus may play a pivotal role for future AHPs.
Ulrike Herzschuh, Chenzhi Li, Thomas Böhmer, Alexander K. Postl, Birgit Heim, Andrei A. Andreev, Xianyong Cao, Mareike Wieczorek, and Jian Ni
Earth Syst. Sci. Data, 14, 3213–3227, https://doi.org/10.5194/essd-14-3213-2022, https://doi.org/10.5194/essd-14-3213-2022, 2022
Short summary
Short summary
Pollen preserved in environmental archives such as lake sediments and bogs are extensively used for reconstructions of past vegetation and climate. Here we present LegacyPollen 1.0, a dataset of 2831 fossil pollen records from all over the globe that were collected from publicly available databases. We harmonized the names of the pollen taxa so that all datasets can be jointly investigated. LegacyPollen 1.0 is available as an open-access dataset.
Evelien van Dijk, Johann Jungclaus, Stephan Lorenz, Claudia Timmreck, and Kirstin Krüger
Clim. Past, 18, 1601–1623, https://doi.org/10.5194/cp-18-1601-2022, https://doi.org/10.5194/cp-18-1601-2022, 2022
Short summary
Short summary
A double volcanic eruption in 536 and 540 CE caused one of the coldest decades during the last 2000 years. We analyzed new climate model simulations from that period and found a cooling of up to 2°C and a sea-ice extent up to 200 km further south. Complex interactions between sea ice and ocean circulation lead to a reduction in the northward ocean heat transport, which makes the sea ice extend further south; this in turn leads to a surface cooling up to 20 years after the eruptions.
Michael Sigl, Matthew Toohey, Joseph R. McConnell, Jihong Cole-Dai, and Mirko Severi
Earth Syst. Sci. Data, 14, 3167–3196, https://doi.org/10.5194/essd-14-3167-2022, https://doi.org/10.5194/essd-14-3167-2022, 2022
Short summary
Short summary
Volcanism is a key driver of climate. Based on ice cores from Greenland and Antarctica, we reconstruct its climate impact potential over the Holocene. By aligning records on a well-dated chronology from Antarctica, we resolve long-standing inconsistencies in the dating of past volcanic eruptions. We reconstruct 850 eruptions (which, in total, injected 7410 Tg of sulfur in the stratosphere) and estimate how they changed the opacity of the atmosphere, a prerequisite for climate model simulations.
Helen Mackay, Gill Plunkett, Britta J. L. Jensen, Thomas J. Aubry, Christophe Corona, Woon Mi Kim, Matthew Toohey, Michael Sigl, Markus Stoffel, Kevin J. Anchukaitis, Christoph Raible, Matthew S. M. Bolton, Joseph G. Manning, Timothy P. Newfield, Nicola Di Cosmo, Francis Ludlow, Conor Kostick, Zhen Yang, Lisa Coyle McClung, Matthew Amesbury, Alistair Monteath, Paul D. M. Hughes, Pete G. Langdon, Dan Charman, Robert Booth, Kimberley L. Davies, Antony Blundell, and Graeme T. Swindles
Clim. Past, 18, 1475–1508, https://doi.org/10.5194/cp-18-1475-2022, https://doi.org/10.5194/cp-18-1475-2022, 2022
Short summary
Short summary
We assess the climatic and societal impact of the 852/3 CE Alaska Mount Churchill eruption using environmental reconstructions, historical records and climate simulations. The eruption is associated with significant Northern Hemisphere summer cooling, despite having only a moderate sulfate-based climate forcing potential; however, evidence of a widespread societal response is lacking. We discuss the difficulties of confirming volcanic impacts of a single eruption even when it is precisely dated.
Ramesh Glückler, Rongwei Geng, Lennart Grimm, Izabella Baisheva, Ulrike Herzschuh, Kathleen R. Stoof-Leichsenring, Stefan Kruse, Andrei Andreev, Luidmila Pestryakova, and Elisabeth Dietze
EGUsphere, https://doi.org/10.5194/egusphere-2022-395, https://doi.org/10.5194/egusphere-2022-395, 2022
Preprint archived
Short summary
Short summary
Despite rapidly intensifying wildfire seasons in Siberian boreal forests, little is known about long-term relationships between changes in vegetation and shifts in wildfire activity. Using lake sediment proxies, we reconstruct such environmental changes over the past 10,800 years in Central Yakutia. We find that a more open forest may facilitate increased amounts of vegetation burning. The present-day dense larch forest might yet be mediating the current climate-driven wildfire intensification.
Markus Stoffel, Christophe Corona, Francis Ludlow, Michael Sigl, Heli Huhtamaa, Emmanuel Garnier, Samuli Helama, Sébastien Guillet, Arlene Crampsie, Katrin Kleemann, Chantal Camenisch, Joseph McConnell, and Chaochao Gao
Clim. Past, 18, 1083–1108, https://doi.org/10.5194/cp-18-1083-2022, https://doi.org/10.5194/cp-18-1083-2022, 2022
Short summary
Short summary
The mid-17th century saw several volcanic eruptions, deteriorating climate, political instability, and famine in Europe, China, and Japan. We analyze impacts of the eruptions on climate but also study their socio-political context. We show that an unambiguous distinction of volcanic cooling or wetting from natural climate variability is not straightforward. It also shows that political instability, poor harvest, and famine cannot only be attributed to volcanic climatic impacts.
Nora Farina Specht, Martin Claussen, and Thomas Kleinen
Clim. Past, 18, 1035–1046, https://doi.org/10.5194/cp-18-1035-2022, https://doi.org/10.5194/cp-18-1035-2022, 2022
Short summary
Short summary
Palaeoenvironmental records only provide a fragmentary picture of the lake and wetland extent in North Africa during the mid-Holocene. Therefore, we investigate the possible range of mid-Holocene precipitation changes caused by an estimated small and maximum lake extent and a maximum wetland extent. Results show a particularly strong monsoon precipitation response to lakes and wetlands over the Western Sahara and an increased monsoon precipitation when replacing lakes with vegetated wetlands.
Chenzhi Li, Alexander K. Postl, Thomas Böhmer, Xianyong Cao, Andrew M. Dolman, and Ulrike Herzschuh
Earth Syst. Sci. Data, 14, 1331–1343, https://doi.org/10.5194/essd-14-1331-2022, https://doi.org/10.5194/essd-14-1331-2022, 2022
Short summary
Short summary
Here we present a global chronology framework of 2831 palynological records, including globally harmonized chronologies covering up to 273 000 years. A comparison with the original chronologies reveals a major improvement according to our assessment. Our chronology framework and revised chronologies will interest a broad geoscientific community, as it provides the opportunity to make use in synthesis studies of, for example, pollen-based vegetation and climate change.
Stefan Kruse, Simone M. Stuenzi, Julia Boike, Moritz Langer, Josias Gloy, and Ulrike Herzschuh
Geosci. Model Dev., 15, 2395–2422, https://doi.org/10.5194/gmd-15-2395-2022, https://doi.org/10.5194/gmd-15-2395-2022, 2022
Short summary
Short summary
We coupled established models for boreal forest (LAVESI) and permafrost dynamics (CryoGrid) in Siberia to investigate interactions of the diverse vegetation layer with permafrost soils. Our tests showed improved active layer depth estimations and newly included species growth according to their species-specific limits. We conclude that the new model system can be applied to simulate boreal forest dynamics and transitions under global warming and disturbances, expanding our knowledge.
Davide Zanchettin, Claudia Timmreck, Myriam Khodri, Anja Schmidt, Matthew Toohey, Manabu Abe, Slimane Bekki, Jason Cole, Shih-Wei Fang, Wuhu Feng, Gabriele Hegerl, Ben Johnson, Nicolas Lebas, Allegra N. LeGrande, Graham W. Mann, Lauren Marshall, Landon Rieger, Alan Robock, Sara Rubinetti, Kostas Tsigaridis, and Helen Weierbach
Geosci. Model Dev., 15, 2265–2292, https://doi.org/10.5194/gmd-15-2265-2022, https://doi.org/10.5194/gmd-15-2265-2022, 2022
Short summary
Short summary
This paper provides metadata and first analyses of the volc-pinatubo-full experiment of CMIP6-VolMIP. Results from six Earth system models reveal significant differences in radiative flux anomalies that trace back to different implementations of volcanic forcing. Surface responses are in contrast overall consistent across models, reflecting the large spread due to internal variability. A second phase of VolMIP shall consider both aspects toward improved protocol for volc-pinatubo-full.
Jiamei Lin, Anders Svensson, Christine S. Hvidberg, Johannes Lohmann, Steffen Kristiansen, Dorthe Dahl-Jensen, Jørgen Peder Steffensen, Sune Olander Rasmussen, Eliza Cook, Helle Astrid Kjær, Bo M. Vinther, Hubertus Fischer, Thomas Stocker, Michael Sigl, Matthias Bigler, Mirko Severi, Rita Traversi, and Robert Mulvaney
Clim. Past, 18, 485–506, https://doi.org/10.5194/cp-18-485-2022, https://doi.org/10.5194/cp-18-485-2022, 2022
Short summary
Short summary
We employ acidity records from Greenland and Antarctic ice cores to estimate the emission strength, frequency and climatic forcing for large volcanic eruptions from the last half of the last glacial period. A total of 25 volcanic eruptions are found to be larger than any eruption in the last 2500 years, and we identify more eruptions than obtained from geological evidence. Towards the end of the glacial period, there is a notable increase in volcanic activity observed for Greenland.
Jooyeop Lee, Martin Claussen, Jeongwon Kim, Je-Woo Hong, In-Sun Song, and Jinkyu Hong
Clim. Past, 18, 313–326, https://doi.org/10.5194/cp-18-313-2022, https://doi.org/10.5194/cp-18-313-2022, 2022
Short summary
Short summary
It is still a challenge to simulate the so–called Green Sahara (GS), which was a wet and vegetative Sahara region in the mid–Holocene, using current climate models. Our analysis shows that Holocene greening is simulated better if the amount of soil nitrogen and soil texture is properly modified for the humid and vegetative GS period. Future climate simulation needs to consider consequent changes in soil nitrogen and texture with changes in vegetation cover for proper climate simulations.
Gill Plunkett, Michael Sigl, Hans F. Schwaiger, Emma L. Tomlinson, Matthew Toohey, Joseph R. McConnell, Jonathan R. Pilcher, Takeshi Hasegawa, and Claus Siebe
Clim. Past, 18, 45–65, https://doi.org/10.5194/cp-18-45-2022, https://doi.org/10.5194/cp-18-45-2022, 2022
Short summary
Short summary
We report the identification of volcanic ash associated with a sulfate layer in Greenland ice cores previously thought to have been from the Vesuvius 79 CE eruption and which had been used to confirm the precise dating of the Greenland ice-core chronology. We find that the tephra was probably produced by an eruption in Alaska. We show the importance of verifying sources of volcanic signals in ice cores through ash analysis to avoid errors in dating ice cores and interpreting volcanic impacts.
Woon Mi Kim, Richard Blender, Michael Sigl, Martina Messmer, and Christoph C. Raible
Clim. Past, 17, 2031–2053, https://doi.org/10.5194/cp-17-2031-2021, https://doi.org/10.5194/cp-17-2031-2021, 2021
Short summary
Short summary
To understand the natural characteristics and future changes of the global extreme daily precipitation, it is necessary to explore the long-term characteristics of extreme daily precipitation. Here, we used climate simulations to analyze the characteristics and long-term changes of extreme precipitation during the past 3351 years. Our findings indicate that extreme precipitation in the past is associated with internal climate variability and regional surface temperatures.
Stuart A. Vyse, Ulrike Herzschuh, Gregor Pfalz, Lyudmila A. Pestryakova, Bernhard Diekmann, Norbert Nowaczyk, and Boris K. Biskaborn
Biogeosciences, 18, 4791–4816, https://doi.org/10.5194/bg-18-4791-2021, https://doi.org/10.5194/bg-18-4791-2021, 2021
Short summary
Short summary
Lakes act as important stores of organic carbon and inorganic sediment material. This study provides a first investigation into carbon and sediment accumulation and storage within an Arctic glacial lake from Far East Russia. It shows that major shifts are related to palaeoclimate variation that affects the development of the lake and its surrounding catchment. Spatial differences to other lake systems from other regions may reflect variability in processes controlled by latitude and altitude.
Leonore Jungandreas, Cathy Hohenegger, and Martin Claussen
Clim. Past, 17, 1665–1684, https://doi.org/10.5194/cp-17-1665-2021, https://doi.org/10.5194/cp-17-1665-2021, 2021
Short summary
Short summary
We investigate the impact of explicitly resolving convection on the mid-Holocene West African Monsoon rain belt by employing the ICON climate model in high resolution. While the spatial distribution and intensity of the precipitation are improved by this technique, the monsoon extents further north and the mean summer rainfall is higher in the simulation with parameterized convection.
Ramesh Glückler, Ulrike Herzschuh, Stefan Kruse, Andrei Andreev, Stuart Andrew Vyse, Bettina Winkler, Boris K. Biskaborn, Luidmila Pestryakova, and Elisabeth Dietze
Biogeosciences, 18, 4185–4209, https://doi.org/10.5194/bg-18-4185-2021, https://doi.org/10.5194/bg-18-4185-2021, 2021
Short summary
Short summary
Data about past fire activity are very sparse in Siberia. This study presents a first high-resolution record of charcoal particles from lake sediments in boreal eastern Siberia. It indicates that current levels of charcoal accumulation are not unprecedented. While a recent increase in reconstructed fire frequency coincides with rising temperatures and increasing human activity, vegetation composition does not seem to be a major driver behind changes in the fire regime in the past two millennia.
Claudia Timmreck, Matthew Toohey, Davide Zanchettin, Stefan Brönnimann, Elin Lundstad, and Rob Wilson
Clim. Past, 17, 1455–1482, https://doi.org/10.5194/cp-17-1455-2021, https://doi.org/10.5194/cp-17-1455-2021, 2021
Short summary
Short summary
The 1809 eruption is one of the most recent unidentified volcanic eruptions with a global climate impact. We demonstrate that climate model simulations of the 1809 eruption show generally good agreement with many large-scale temperature reconstructions and early instrumental records for a range of radiative forcing estimates. In terms of explaining the spatially heterogeneous and temporally delayed Northern Hemisphere cooling suggested by tree-ring networks, the investigation remains open.
Lydia Stolpmann, Caroline Coch, Anne Morgenstern, Julia Boike, Michael Fritz, Ulrike Herzschuh, Kathleen Stoof-Leichsenring, Yury Dvornikov, Birgit Heim, Josefine Lenz, Amy Larsen, Katey Walter Anthony, Benjamin Jones, Karen Frey, and Guido Grosse
Biogeosciences, 18, 3917–3936, https://doi.org/10.5194/bg-18-3917-2021, https://doi.org/10.5194/bg-18-3917-2021, 2021
Short summary
Short summary
Our new database summarizes DOC concentrations of 2167 water samples from 1833 lakes in permafrost regions across the Arctic to provide insights into linkages between DOC and environment. We found increasing lake DOC concentration with decreasing permafrost extent and higher DOC concentrations in boreal permafrost sites compared to tundra sites. Our study shows that DOC concentration depends on the environmental properties of a lake, especially permafrost extent, ecoregion, and vegetation.
Iuliia Shevtsova, Ulrike Herzschuh, Birgit Heim, Luise Schulte, Simone Stünzi, Luidmila A. Pestryakova, Evgeniy S. Zakharov, and Stefan Kruse
Biogeosciences, 18, 3343–3366, https://doi.org/10.5194/bg-18-3343-2021, https://doi.org/10.5194/bg-18-3343-2021, 2021
Short summary
Short summary
In the light of climate changes in subarctic regions, notable general increase in above-ground biomass for the past 15 years (2000 to 2017) was estimated along a tundra–taiga gradient of central Chukotka (Russian Far East). The greatest increase occurred in the northern taiga in the areas of larch closed-canopy forest expansion with Cajander larch as a main contributor. For the estimations, we used field data (taxa-separated plant biomass, 2018) and upscaled it based on Landsat satellite data.
Michaela I. Hegglin, Susann Tegtmeier, John Anderson, Adam E. Bourassa, Samuel Brohede, Doug Degenstein, Lucien Froidevaux, Bernd Funke, John Gille, Yasuko Kasai, Erkki T. Kyrölä, Jerry Lumpe, Donal Murtagh, Jessica L. Neu, Kristell Pérot, Ellis E. Remsberg, Alexei Rozanov, Matthew Toohey, Joachim Urban, Thomas von Clarmann, Kaley A. Walker, Hsiang-Jui Wang, Carlo Arosio, Robert Damadeo, Ryan A. Fuller, Gretchen Lingenfelser, Christopher McLinden, Diane Pendlebury, Chris Roth, Niall J. Ryan, Christopher Sioris, Lesley Smith, and Katja Weigel
Earth Syst. Sci. Data, 13, 1855–1903, https://doi.org/10.5194/essd-13-1855-2021, https://doi.org/10.5194/essd-13-1855-2021, 2021
Short summary
Short summary
An overview of the SPARC Data Initiative is presented, to date the most comprehensive assessment of stratospheric composition measurements spanning 1979–2018. Measurements of 26 chemical constituents obtained from an international suite of space-based limb sounders were compiled into vertically resolved, zonal monthly mean time series. The quality and consistency of these gridded datasets are then evaluated using a climatological validation approach and a range of diagnostics.
Peter M. Abbott, Gill Plunkett, Christophe Corona, Nathan J. Chellman, Joseph R. McConnell, John R. Pilcher, Markus Stoffel, and Michael Sigl
Clim. Past, 17, 565–585, https://doi.org/10.5194/cp-17-565-2021, https://doi.org/10.5194/cp-17-565-2021, 2021
Short summary
Short summary
Volcanic eruptions are a key source of climatic variability, and greater understanding of their past influence will increase the accuracy of future projections. We use volcanic ash from a 1477 CE Icelandic eruption in a Greenlandic ice core as a temporal fix point to constrain the timing of two eruptions in the 1450s CE and their climatic impact. Despite being the most explosive Icelandic eruption in the last 1200 years, the 1477 CE event had a limited impact on Northern Hemisphere climate.
Margot Clyne, Jean-Francois Lamarque, Michael J. Mills, Myriam Khodri, William Ball, Slimane Bekki, Sandip S. Dhomse, Nicolas Lebas, Graham Mann, Lauren Marshall, Ulrike Niemeier, Virginie Poulain, Alan Robock, Eugene Rozanov, Anja Schmidt, Andrea Stenke, Timofei Sukhodolov, Claudia Timmreck, Matthew Toohey, Fiona Tummon, Davide Zanchettin, Yunqian Zhu, and Owen B. Toon
Atmos. Chem. Phys., 21, 3317–3343, https://doi.org/10.5194/acp-21-3317-2021, https://doi.org/10.5194/acp-21-3317-2021, 2021
Short summary
Short summary
This study finds how and why five state-of-the-art global climate models with interactive stratospheric aerosols differ when simulating the aftermath of large volcanic injections as part of the Model Intercomparison Project on the climatic response to Volcanic forcing (VolMIP). We identify and explain the consequences of significant disparities in the underlying physics and chemistry currently in some of the models, which are problems likely not unique to the models participating in this study.
Simone Maria Stuenzi, Julia Boike, William Cable, Ulrike Herzschuh, Stefan Kruse, Luidmila A. Pestryakova, Thomas Schneider von Deimling, Sebastian Westermann, Evgenii S. Zakharov, and Moritz Langer
Biogeosciences, 18, 343–365, https://doi.org/10.5194/bg-18-343-2021, https://doi.org/10.5194/bg-18-343-2021, 2021
Short summary
Short summary
Boreal forests in eastern Siberia are an essential component of global climate patterns. We use a physically based model and field measurements to study the interactions between forests, permanently frozen ground and the atmosphere. We find that forests exert a strong control on the thermal state of permafrost through changing snow cover dynamics and altering the surface energy balance, through absorbing most of the incoming solar radiation and suppressing below-canopy turbulent fluxes.
Mareike Wieczorek and Ulrike Herzschuh
Earth Syst. Sci. Data, 12, 3515–3528, https://doi.org/10.5194/essd-12-3515-2020, https://doi.org/10.5194/essd-12-3515-2020, 2020
Short summary
Short summary
Relative pollen productivity (RPP) estimates are used to estimate vegetation cover from pollen records. This study provides (i) a compilation of northern hemispheric RPP studies, allowing researchers to identify suitable sets for their study region and to identify data gaps for future research, and (ii) taxonomically harmonized, unified RPP sets for China, Europe, North America, and the whole Northern Hemisphere, generated from the available studies.
Dimitri Osmont, Sandra Brugger, Anina Gilgen, Helga Weber, Michael Sigl, Robin L. Modini, Christoph Schwörer, Willy Tinner, Stefan Wunderle, and Margit Schwikowski
The Cryosphere, 14, 3731–3745, https://doi.org/10.5194/tc-14-3731-2020, https://doi.org/10.5194/tc-14-3731-2020, 2020
Short summary
Short summary
In this interdisciplinary case study, we were able to link biomass burning emissions from the June 2017 wildfires in Portugal to their deposition in the snowpack at Jungfraujoch, Swiss Alps. We analysed black carbon and charcoal in the snowpack, calculated backward trajectories, and monitored the fire evolution by remote sensing. Such case studies help to understand the representativity of biomass burning records in ice cores and how biomass burning tracers are archived in the snowpack.
Basil A. S. Davis, Manuel Chevalier, Philipp Sommer, Vachel A. Carter, Walter Finsinger, Achille Mauri, Leanne N. Phelps, Marco Zanon, Roman Abegglen, Christine M. Åkesson, Francisca Alba-Sánchez, R. Scott Anderson, Tatiana G. Antipina, Juliana R. Atanassova, Ruth Beer, Nina I. Belyanina, Tatiana A. Blyakharchuk, Olga K. Borisova, Elissaveta Bozilova, Galina Bukreeva, M. Jane Bunting, Eleonora Clò, Daniele Colombaroli, Nathalie Combourieu-Nebout, Stéphanie Desprat, Federico Di Rita, Morteza Djamali, Kevin J. Edwards, Patricia L. Fall, Angelica Feurdean, William Fletcher, Assunta Florenzano, Giulia Furlanetto, Emna Gaceur, Arsenii T. Galimov, Mariusz Gałka, Iria García-Moreiras, Thomas Giesecke, Roxana Grindean, Maria A. Guido, Irina G. Gvozdeva, Ulrike Herzschuh, Kari L. Hjelle, Sergey Ivanov, Susanne Jahns, Vlasta Jankovska, Gonzalo Jiménez-Moreno, Monika Karpińska-Kołaczek, Ikuko Kitaba, Piotr Kołaczek, Elena G. Lapteva, Małgorzata Latałowa, Vincent Lebreton, Suzanne Leroy, Michelle Leydet, Darya A. Lopatina, José Antonio López-Sáez, André F. Lotter, Donatella Magri, Elena Marinova, Isabelle Matthias, Anastasia Mavridou, Anna Maria Mercuri, Jose Manuel Mesa-Fernández, Yuri A. Mikishin, Krystyna Milecka, Carlo Montanari, César Morales-Molino, Almut Mrotzek, Castor Muñoz Sobrino, Olga D. Naidina, Takeshi Nakagawa, Anne Birgitte Nielsen, Elena Y. Novenko, Sampson Panajiotidis, Nata K. Panova, Maria Papadopoulou, Heather S. Pardoe, Anna Pędziszewska, Tatiana I. Petrenko, María J. Ramos-Román, Cesare Ravazzi, Manfred Rösch, Natalia Ryabogina, Silvia Sabariego Ruiz, J. Sakari Salonen, Tatyana V. Sapelko, James E. Schofield, Heikki Seppä, Lyudmila Shumilovskikh, Normunds Stivrins, Philipp Stojakowits, Helena Svobodova Svitavska, Joanna Święta-Musznicka, Ioan Tantau, Willy Tinner, Kazimierz Tobolski, Spassimir Tonkov, Margarita Tsakiridou, Verushka Valsecchi, Oksana G. Zanina, and Marcelina Zimny
Earth Syst. Sci. Data, 12, 2423–2445, https://doi.org/10.5194/essd-12-2423-2020, https://doi.org/10.5194/essd-12-2423-2020, 2020
Short summary
Short summary
The Eurasian Modern Pollen Database (EMPD) contains pollen counts and associated metadata for 8134 modern pollen samples from across the Eurasian region. The EMPD is part of, and complementary to, the European Pollen Database (EPD) which contains data on fossil pollen found in Late Quaternary sedimentary archives. The purpose of the EMPD is to provide calibration datasets and other data to support palaeoecological research on past climates and vegetation cover over the Quaternary period.
Heike H. Zimmermann, Kathleen R. Stoof-Leichsenring, Stefan Kruse, Juliane Müller, Ruediger Stein, Ralf Tiedemann, and Ulrike Herzschuh
Ocean Sci., 16, 1017–1032, https://doi.org/10.5194/os-16-1017-2020, https://doi.org/10.5194/os-16-1017-2020, 2020
Short summary
Short summary
This study targets high-resolution, diatom-specific sedimentary ancient DNA using a DNA metabarcoding approach. Diatom DNA has been preserved with substantial taxonomic richness in the eastern Fram Strait over the past 30 000 years with taxonomic composition being dominated by cold-water and sea-ice-associated diatoms. Taxonomic reorganisations took place after the Last Glacial Maximum and after the Younger Dryas. Peak proportions of pennate diatoms might indicate past sea-ice presence.
Anders Svensson, Dorthe Dahl-Jensen, Jørgen Peder Steffensen, Thomas Blunier, Sune O. Rasmussen, Bo M. Vinther, Paul Vallelonga, Emilie Capron, Vasileios Gkinis, Eliza Cook, Helle Astrid Kjær, Raimund Muscheler, Sepp Kipfstuhl, Frank Wilhelms, Thomas F. Stocker, Hubertus Fischer, Florian Adolphi, Tobias Erhardt, Michael Sigl, Amaelle Landais, Frédéric Parrenin, Christo Buizert, Joseph R. McConnell, Mirko Severi, Robert Mulvaney, and Matthias Bigler
Clim. Past, 16, 1565–1580, https://doi.org/10.5194/cp-16-1565-2020, https://doi.org/10.5194/cp-16-1565-2020, 2020
Short summary
Short summary
We identify signatures of large bipolar volcanic eruptions in Greenland and Antarctic ice cores during the last glacial period, which allows for a precise temporal alignment of the ice cores. Thereby the exact timing of unexplained, abrupt climatic changes occurring during the last glacial period can be determined in a global context. The study thus provides a step towards a full understanding of elements of the climate system that may also play an important role in the future.
Elisabeth Dietze, Kai Mangelsdorf, Andrei Andreev, Cornelia Karger, Laura T. Schreuder, Ellen C. Hopmans, Oliver Rach, Dirk Sachse, Volker Wennrich, and Ulrike Herzschuh
Clim. Past, 16, 799–818, https://doi.org/10.5194/cp-16-799-2020, https://doi.org/10.5194/cp-16-799-2020, 2020
Short summary
Short summary
Long-term climate change impacts on fire, vegetation and permafrost in the Arctic are uncertain. Here, we show the high potential of organic compounds from low-temperature biomass burning to serve as proxies for surface fires in lake deposits. During warm periods of the last 430 000 years, surface fires are closely linked to the larch taiga forest with its moss–lichen ground vegetation that isolates the permafrost. They have reduced in warm–wet, spruce–dominated and cool–dry steppe environments.
Xianyong Cao, Fang Tian, Andrei Andreev, Patricia M. Anderson, Anatoly V. Lozhkin, Elena Bezrukova, Jian Ni, Natalia Rudaya, Astrid Stobbe, Mareike Wieczorek, and Ulrike Herzschuh
Earth Syst. Sci. Data, 12, 119–135, https://doi.org/10.5194/essd-12-119-2020, https://doi.org/10.5194/essd-12-119-2020, 2020
Short summary
Short summary
Pollen percentages in spectra cannot be utilized to indicate past plant abundance directly because of the different pollen productivities among plants. In this paper, we applied relative pollen productivity estimates (PPEs) to calibrate plant abundances during the last 40 kyr using pollen counts from 203 pollen spectra in northern Asia. Results indicate the vegetation are generally stable during the Holocene and that climate change is the primary factor.
Anne Dallmeyer, Martin Claussen, Stephan J. Lorenz, and Timothy Shanahan
Clim. Past, 16, 117–140, https://doi.org/10.5194/cp-16-117-2020, https://doi.org/10.5194/cp-16-117-2020, 2020
Short summary
Short summary
We analyse the end of the African humid period (AHP) in a transient Holocene simulation performed with the comprehensive Earth system model MPI-ESM1.2. The model reproduces the time-transgressive end of the AHP evident in proxy data and indicates that changes in moisture can be attributed to the retreat of the summer monsoon and to changes in the extratropical troughs. The spatially varying impact of these systems imposes regionally different responses to the Holocene insolation change.
Dominic A. Winski, Tyler J. Fudge, David G. Ferris, Erich C. Osterberg, John M. Fegyveresi, Jihong Cole-Dai, Zayta Thundercloud, Thomas S. Cox, Karl J. Kreutz, Nikolas Ortman, Christo Buizert, Jenna Epifanio, Edward J. Brook, Ross Beaudette, Jeffrey Severinghaus, Todd Sowers, Eric J. Steig, Emma C. Kahle, Tyler R. Jones, Valerie Morris, Murat Aydin, Melinda R. Nicewonger, Kimberly A. Casey, Richard B. Alley, Edwin D. Waddington, Nels A. Iverson, Nelia W. Dunbar, Ryan C. Bay, Joseph M. Souney, Michael Sigl, and Joseph R. McConnell
Clim. Past, 15, 1793–1808, https://doi.org/10.5194/cp-15-1793-2019, https://doi.org/10.5194/cp-15-1793-2019, 2019
Short summary
Short summary
A deep ice core was recently drilled at the South Pole to understand past variations in the Earth's climate. To understand the information contained within the ice, we present the relationship between the depth and age of the ice in the South Pole Ice Core. We found that the oldest ice in our record is from 54 302 ± 519 years ago. Our results show that, on average, 7.4 cm of snow falls at the South Pole each year.
Xianyong Cao, Fang Tian, Furong Li, Marie-José Gaillard, Natalia Rudaya, Qinghai Xu, and Ulrike Herzschuh
Clim. Past, 15, 1503–1536, https://doi.org/10.5194/cp-15-1503-2019, https://doi.org/10.5194/cp-15-1503-2019, 2019
Short summary
Short summary
The high-quality pollen records (collected from lakes and peat bogs) of the last 40 ka cal BP form north Asia are homogenized and the plant abundance signals are calibrated by the modern relative pollen productivity estimates. Calibrated plant abundances for each site are generally consistent with in situ modern vegetation, and vegetation changes within the regions are characterized by minor changes in the abundance of major taxa rather than by invasions of new taxa during the last 40 ka cal BP.
Victor Brovkin, Stephan Lorenz, Thomas Raddatz, Tatiana Ilyina, Irene Stemmler, Matthew Toohey, and Martin Claussen
Biogeosciences, 16, 2543–2555, https://doi.org/10.5194/bg-16-2543-2019, https://doi.org/10.5194/bg-16-2543-2019, 2019
Short summary
Short summary
Mechanisms of atmospheric CO2 growth by 20 ppm from 6000 BCE to the pre-industrial period are still uncertain. We apply the Earth system model MPI-ESM-LR for two transient simulations of the climate–carbon cycle. An additional process, e.g. carbonate accumulation on shelves, is required for consistency with ice-core CO2 data. Our simulations support the hypothesis that the ocean was a source of CO2 until the late Holocene when anthropogenic CO2 sources started to affect atmospheric CO2.
Stefan Kruse, Alexander Gerdes, Nadja J. Kath, Laura S. Epp, Kathleen R. Stoof-Leichsenring, Luidmila A. Pestryakova, and Ulrike Herzschuh
Biogeosciences, 16, 1211–1224, https://doi.org/10.5194/bg-16-1211-2019, https://doi.org/10.5194/bg-16-1211-2019, 2019
Short summary
Short summary
How fast might the arctic treeline in northern central Siberia migrate northwards under current global warming? To answer this, we newly parameterized dispersal processes in the individual-based and spatially explicit model LAVESI-WIND based on parentage analysis. Simulation results show that northernmost open forest stands are migrating at an unexpectedly slow rate into tundra. We conclude that the treeline currently lags behind the strong warming and will remain slow in the upcoming decades.
Anne Dallmeyer, Martin Claussen, and Victor Brovkin
Clim. Past, 15, 335–366, https://doi.org/10.5194/cp-15-335-2019, https://doi.org/10.5194/cp-15-335-2019, 2019
Short summary
Short summary
A simple but powerful method for the biomisation of plant functional type distributions is introduced and tested for six different dynamic global vegetation models based on pre-industrial and palaeo-simulations. The method facilitates the direct comparison between vegetation distributions simulated by different Earth system models and between model results and the pollen-based biome reconstructions. It is therefore a powerful tool for the evaluation of Earth system models.
Stefan Kruse, Alexander Gerdes, Nadja J. Kath, and Ulrike Herzschuh
Geosci. Model Dev., 11, 4451–4467, https://doi.org/10.5194/gmd-11-4451-2018, https://doi.org/10.5194/gmd-11-4451-2018, 2018
Short summary
Short summary
It is of major interest to estimate feedbacks of arctic ecosystems to global warming in the upcoming decades. However, the speed of this response is driven by the potential of species to migrate and the timing and spatial scale for this is rather uncertain. To close this knowledge gap, we updated a very detailed vegetation model by including seed and pollen dispersal driven by wind speed and direction. The new model can substantially help in unveiling the important drivers of migration dynamics.
Uwe Mikolajewicz, Florian Ziemen, Guido Cioni, Martin Claussen, Klaus Fraedrich, Marvin Heidkamp, Cathy Hohenegger, Diego Jimenez de la Cuesta, Marie-Luise Kapsch, Alexander Lemburg, Thorsten Mauritsen, Katharina Meraner, Niklas Röber, Hauke Schmidt, Katharina D. Six, Irene Stemmler, Talia Tamarin-Brodsky, Alexander Winkler, Xiuhua Zhu, and Bjorn Stevens
Earth Syst. Dynam., 9, 1191–1215, https://doi.org/10.5194/esd-9-1191-2018, https://doi.org/10.5194/esd-9-1191-2018, 2018
Short summary
Short summary
Model experiments show that changing the sense of Earth's rotation has relatively little impact on the globally and zonally averaged energy budgets but leads to large shifts in continental climates and patterns of precipitation. The retrograde world is greener as the desert area shrinks. Deep water formation shifts from the North Atlantic to the North Pacific with subsequent changes in ocean overturning. Over large areas of the Indian Ocean, cyanobacteria dominate over bulk phytoplankton.
Sabine Egerer, Martin Claussen, and Christian Reick
Clim. Past, 14, 1051–1066, https://doi.org/10.5194/cp-14-1051-2018, https://doi.org/10.5194/cp-14-1051-2018, 2018
Short summary
Short summary
We find a rapid increase in simulated dust deposition between 6 and
4 ka BP that is fairly consistent with an abrupt change in dust deposition that was observed in marine sediment records at around 5 ka BP. This rapid change is caused by a rapid increase in simulated dust emissions in the western Sahara due to a fast decline in vegetation cover and a locally strong reduction of lake area. Our study identifies spatial and temporal heterogeneity in the transition of the North African landscape.
Claudia Timmreck, Graham W. Mann, Valentina Aquila, Rene Hommel, Lindsay A. Lee, Anja Schmidt, Christoph Brühl, Simon Carn, Mian Chin, Sandip S. Dhomse, Thomas Diehl, Jason M. English, Michael J. Mills, Ryan Neely, Jianxiong Sheng, Matthew Toohey, and Debra Weisenstein
Geosci. Model Dev., 11, 2581–2608, https://doi.org/10.5194/gmd-11-2581-2018, https://doi.org/10.5194/gmd-11-2581-2018, 2018
Short summary
Short summary
The paper describes the experimental design of the Interactive Stratospheric Aerosol Model Intercomparison Project (ISA-MIP). ISA-MIP will improve understanding of stratospheric aerosol processes, chemistry, and dynamics and constrain climate impacts of background aerosol variability and small and large volcanic eruptions. It will help to asses the stratospheric aerosol contribution to the early 21st century global warming hiatus period and the effects from hypothetical geoengineering schemes.
Sirisha Kalidindi, Christian H. Reick, Thomas Raddatz, and Martin Claussen
Earth Syst. Dynam., 9, 739–756, https://doi.org/10.5194/esd-9-739-2018, https://doi.org/10.5194/esd-9-739-2018, 2018
Short summary
Short summary
Using climate simulations, we investigate the role of water recycling in shaping the climate of low-obliquity Earth-like terra-planets. By such a mechanism feeding water back from the extra-tropics to the tropics, the planet can assume two drastically different climate states differing by more than 35 K in global temperature. We describe the bifurcation between the two states occurring upon changes in surface albedo and argue that the bistability hints at a wider habitable zone for such planets.
Markus Adloff, Christian H. Reick, and Martin Claussen
Earth Syst. Dynam., 9, 413–425, https://doi.org/10.5194/esd-9-413-2018, https://doi.org/10.5194/esd-9-413-2018, 2018
Short summary
Short summary
Computer simulations show that during an ice age a strong atmospheric CO2 increase would have resulted in stronger carbon uptake of the continents than today. Causes are the larger potential of glacial vegetation to increase its photosynthetic efficiency under increasing CO2 and the smaller amount of carbon in extratropical soils during an ice age that can be released under greenhouse warming. Hence, for different climates the Earth system is differently sensitive to carbon cycle perturbations.
Vivienne P. Groner, Thomas Raddatz, Christian H. Reick, and Martin Claussen
Biogeosciences, 15, 1947–1968, https://doi.org/10.5194/bg-15-1947-2018, https://doi.org/10.5194/bg-15-1947-2018, 2018
Short summary
Short summary
We show that plant functional diversity significantly affects climate–vegetation interaction and the climate–vegetation system stability in response to external forcing using a series of coupled land–atmosphere simulation. Our findings raise the question of how realistically Earth system models can actually represent climate–vegetation interaction, considering the incomplete representation of plant functional diversity in the current generation of land surface models.
Johann H. Jungclaus, Edouard Bard, Mélanie Baroni, Pascale Braconnot, Jian Cao, Louise P. Chini, Tania Egorova, Michael Evans, J. Fidel González-Rouco, Hugues Goosse, George C. Hurtt, Fortunat Joos, Jed O. Kaplan, Myriam Khodri, Kees Klein Goldewijk, Natalie Krivova, Allegra N. LeGrande, Stephan J. Lorenz, Jürg Luterbacher, Wenmin Man, Amanda C. Maycock, Malte Meinshausen, Anders Moberg, Raimund Muscheler, Christoph Nehrbass-Ahles, Bette I. Otto-Bliesner, Steven J. Phipps, Julia Pongratz, Eugene Rozanov, Gavin A. Schmidt, Hauke Schmidt, Werner Schmutz, Andrew Schurer, Alexander I. Shapiro, Michael Sigl, Jason E. Smerdon, Sami K. Solanki, Claudia Timmreck, Matthew Toohey, Ilya G. Usoskin, Sebastian Wagner, Chi-Ju Wu, Kok Leng Yeo, Davide Zanchettin, Qiong Zhang, and Eduardo Zorita
Geosci. Model Dev., 10, 4005–4033, https://doi.org/10.5194/gmd-10-4005-2017, https://doi.org/10.5194/gmd-10-4005-2017, 2017
Short summary
Short summary
Climate model simulations covering the last millennium provide context for the evolution of the modern climate and for the expected changes during the coming centuries. They can help identify plausible mechanisms underlying palaeoclimatic reconstructions. Here, we describe the forcing boundary conditions and the experimental protocol for simulations covering the pre-industrial millennium. We describe the PMIP4 past1000 simulations as contributions to CMIP6 and additional sensitivity experiments.
Matthew Toohey and Michael Sigl
Earth Syst. Sci. Data, 9, 809–831, https://doi.org/10.5194/essd-9-809-2017, https://doi.org/10.5194/essd-9-809-2017, 2017
Short summary
Short summary
Based on ice core sulfate records from Greenland and Antarctica, the eVolv2k database provides volcanic stratospheric sulfur injection estimates from 500 BCE to 1900 CE along with reconstructed aerosol optical properties needed for climate model simulations. The eVolv2k database constitutes a significant update to prior ice-core-based volcanic forcing reconstructions for climate models, improving the accuracy of volcanic forcing, especially before 1250 CE, and extending the record by 1000 years.
Alina Fiehn, Birgit Quack, Helmke Hepach, Steffen Fuhlbrügge, Susann Tegtmeier, Matthew Toohey, Elliot Atlas, and Kirstin Krüger
Atmos. Chem. Phys., 17, 6723–6741, https://doi.org/10.5194/acp-17-6723-2017, https://doi.org/10.5194/acp-17-6723-2017, 2017
Short summary
Short summary
Halogenated very short-lived substances (VSLSs) are naturally produced in the ocean and emitted to the atmosphere. In the stratosphere, these compounds can have a significant influence on the ozone layer and climate. During a research cruise in the west Indian Ocean, we found an important source region of halogenated VSLSs during the Asian summer monsoon. Modeling the transport from the ocean to the stratosphere we found two main pathways, one over the Indian Ocean and one over northern India.
Romy Zibulski, Felix Wesener, Heinz Wilkes, Birgit Plessen, Luidmila A. Pestryakova, and Ulrike Herzschuh
Biogeosciences, 14, 1617–1630, https://doi.org/10.5194/bg-14-1617-2017, https://doi.org/10.5194/bg-14-1617-2017, 2017
Short summary
Short summary
We investigated variations of isotopic and biochemical parameters in arctic mosses. We were able to differentiate habitat groups of mosses (classified by moisture gradient) by elemental content and isotopic ratios (δ13C, δ15N). Some species showed intraspecific variability in their isotopic composition along the moisture gradient. Furthermore n-alkanes showed interesting patterns for species identification.
Anne Dallmeyer, Martin Claussen, Jian Ni, Xianyong Cao, Yongbo Wang, Nils Fischer, Madlene Pfeiffer, Liya Jin, Vyacheslav Khon, Sebastian Wagner, Kerstin Haberkorn, and Ulrike Herzschuh
Clim. Past, 13, 107–134, https://doi.org/10.5194/cp-13-107-2017, https://doi.org/10.5194/cp-13-107-2017, 2017
Short summary
Short summary
The vegetation distribution in eastern Asia is supposed to be very sensitive to climate change. Since proxy records are scarce, hitherto a mechanistic understanding of the past spatio-temporal climate–vegetation relationship is lacking. To assess the Holocene vegetation change, we forced the diagnostic biome model BIOME4 with climate anomalies of different transient climate simulations.
Heike Hildegard Zimmermann, Elena Raschke, Laura Saskia Epp, Kathleen Rosmarie Stoof-Leichsenring, Georg Schwamborn, Lutz Schirrmeister, Pier Paul Overduin, and Ulrike Herzschuh
Biogeosciences, 14, 575–596, https://doi.org/10.5194/bg-14-575-2017, https://doi.org/10.5194/bg-14-575-2017, 2017
Short summary
Short summary
Organic matter stored in permafrost will start decomposing due to climate warming. To better understand its composition in ice-rich Yedoma, we analyzed ancient sedimentary DNA, pollen and non-pollen palynomorphs throughout an 18.9 m long permafrost core. The combination of both proxies allow an interpretation both of regional floristic changes and of the local environmental conditions at the time of deposition.
Matthew Toohey, Bjorn Stevens, Hauke Schmidt, and Claudia Timmreck
Geosci. Model Dev., 9, 4049–4070, https://doi.org/10.5194/gmd-9-4049-2016, https://doi.org/10.5194/gmd-9-4049-2016, 2016
Short summary
Short summary
Stratospheric sulfate aerosols from volcanic eruptions have a significant impact on the Earth's climate. The Easy Volcanic Aerosol (EVA) volcanic forcing generator provides a tool whereby the optical properties of volcanic aerosols can be included in climate model simulations in a self-consistent, complete, and flexible manner. EVA is based on satellite observations of the 1991 Pinatubo eruption but can be applied to any real or hypothetical eruption of interest.
Davide Zanchettin, Myriam Khodri, Claudia Timmreck, Matthew Toohey, Anja Schmidt, Edwin P. Gerber, Gabriele Hegerl, Alan Robock, Francesco S. R. Pausata, William T. Ball, Susanne E. Bauer, Slimane Bekki, Sandip S. Dhomse, Allegra N. LeGrande, Graham W. Mann, Lauren Marshall, Michael Mills, Marion Marchand, Ulrike Niemeier, Virginie Poulain, Eugene Rozanov, Angelo Rubino, Andrea Stenke, Kostas Tsigaridis, and Fiona Tummon
Geosci. Model Dev., 9, 2701–2719, https://doi.org/10.5194/gmd-9-2701-2016, https://doi.org/10.5194/gmd-9-2701-2016, 2016
Short summary
Short summary
Simulating volcanically-forced climate variability is a challenging task for climate models. The Model Intercomparison Project on the climatic response to volcanic forcing (VolMIP) – an endorsed contribution to CMIP6 – defines a protocol for idealized volcanic-perturbation experiments to improve comparability of results across different climate models. This paper illustrates the design of VolMIP's experiments and describes the aerosol forcing input datasets to be used.
Alexander Lemburg, Martin Claussen, and Felix Ament
Clim. Past Discuss., https://doi.org/10.5194/cp-2016-68, https://doi.org/10.5194/cp-2016-68, 2016
Manuscript not accepted for further review
Short summary
Short summary
The deforestation of Easter Island several hundred years ago might have influenced its local near-surface climate. With a series of numerical model experiments we investigate the impact of deforestation on precipitation and near-surface climate. We find that a deforested Easter Island appears to be significantly less resistant to drought than a forested island and thus, deforestation has probably exacerbated the effects of past climate drought spells on Easter Island's socio-ecological systems.
Ulrike Port, Martin Claussen, and Victor Brovkin
Earth Syst. Dynam., 7, 535–547, https://doi.org/10.5194/esd-7-535-2016, https://doi.org/10.5194/esd-7-535-2016, 2016
Sabine Egerer, Martin Claussen, Christian Reick, and Tanja Stanelle
Clim. Past, 12, 1009–1027, https://doi.org/10.5194/cp-12-1009-2016, https://doi.org/10.5194/cp-12-1009-2016, 2016
Short summary
Short summary
We demonstrate for the first time the direct link between dust accumulation in marine sediment cores and Saharan land surface by simulating the mid-Holocene and pre-industrial dust cycle as a function of Saharan land surface cover and atmosphere-ocean conditions using the coupled atmosphere-aerosol model ECHAM6-HAM2.1. Mid-Holocene surface characteristics, including vegetation cover and lake surface area, are derived from proxy data and simulations.
Liv Heinecke, Steffen Mischke, Karsten Adler, Anja Barth, Boris K. Biskaborn, Birgit Plessen, Ingmar Nitze, Gerhard Kuhn, Ilhomjon Rajabov, and Ulrike Herzschuh
Clim. Past Discuss., https://doi.org/10.5194/cp-2016-34, https://doi.org/10.5194/cp-2016-34, 2016
Revised manuscript not accepted
Short summary
Short summary
The climate history of the Pamir Mountains (Tajikistan) during the last ~29 kyr was investigated using sediments from Lake Karakul as environmental archive. The inferred lake level was highest from the Late Glacial to the early Holocene and lake changes were mainly coupled to climate change. We conclude that the joint influence of Westerlies and Indian Monsoon during the early Holocene caused comparatively moist conditions, while dominating Westerlies yielded dry conditions since 6.7 cal kyr BP.
T. Brücher, M. Claussen, and T. Raddatz
Earth Syst. Dynam., 6, 769–780, https://doi.org/10.5194/esd-6-769-2015, https://doi.org/10.5194/esd-6-769-2015, 2015
Short summary
Short summary
A major link between climate and humans in northern Africa, and the Sahel in particular, is land use. We assess possible feedbacks between the type of land use and harvest intensity and climate by analysing a series of idealized GCM experiments using the MPI-ESM. Our study suggests marginal feedback between land use changes and climate changes triggered by strong greenhouse gas emissions.
U. Port and M. Claussen
Clim. Past, 11, 1563–1574, https://doi.org/10.5194/cp-11-1563-2015, https://doi.org/10.5194/cp-11-1563-2015, 2015
V. P. Groner, M. Claussen, and C. Reick
Clim. Past, 11, 1361–1374, https://doi.org/10.5194/cp-11-1361-2015, https://doi.org/10.5194/cp-11-1361-2015, 2015
M. Fritz, T. Opel, G. Tanski, U. Herzschuh, H. Meyer, A. Eulenburg, and H. Lantuit
The Cryosphere, 9, 737–752, https://doi.org/10.5194/tc-9-737-2015, https://doi.org/10.5194/tc-9-737-2015, 2015
Short summary
Short summary
Ground ice in permafrost has not, until now, been considered to be a source of dissolved organic carbon (DOC), dissolved inorganic carbon (DIC) and other elements that are important for ecosystems and carbon cycling.
Ice wedges in the Arctic Yedoma region hold 45.2 Tg DOC (Tg = 10^12g), 33.6 Tg DIC and a freshwater reservoir of 4200 km³.
Leaching of terrestrial organic matter is the most relevant process of DOC sequestration into ground ice.
J. Strauss, L. Schirrmeister, K. Mangelsdorf, L. Eichhorn, S. Wetterich, and U. Herzschuh
Biogeosciences, 12, 2227–2245, https://doi.org/10.5194/bg-12-2227-2015, https://doi.org/10.5194/bg-12-2227-2015, 2015
Short summary
Short summary
Climatic warming is affecting permafrost, including decomposition of organic matter (OM). However, quantitative data for the quality of OM and its availability for decomposition is limited. We analyzed the quality of OM in late Pleistocene (Yedoma) and Holocene (thermokarst) deposits. A lack of depth trends reveals a constant quality of OM showing that permafrost acts like a freezer, preserving OM quality. This OM will be susceptible to decomposition under climatic warming.
B. Aichner, S. J. Feakins, J. E. Lee, U. Herzschuh, and X. Liu
Clim. Past, 11, 619–633, https://doi.org/10.5194/cp-11-619-2015, https://doi.org/10.5194/cp-11-619-2015, 2015
U. Port, M. Claussen, and V. Brovkin
Clim. Past Discuss., https://doi.org/10.5194/cpd-11-997-2015, https://doi.org/10.5194/cpd-11-997-2015, 2015
Revised manuscript not accepted
A. Dallmeyer, M. Claussen, N. Fischer, K. Haberkorn, S. Wagner, M. Pfeiffer, L. Jin, V. Khon, Y. Wang, and U. Herzschuh
Clim. Past, 11, 305–326, https://doi.org/10.5194/cp-11-305-2015, https://doi.org/10.5194/cp-11-305-2015, 2015
M. Toohey, K. Krüger, M. Bittner, C. Timmreck, and H. Schmidt
Atmos. Chem. Phys., 14, 13063–13079, https://doi.org/10.5194/acp-14-13063-2014, https://doi.org/10.5194/acp-14-13063-2014, 2014
Short summary
Short summary
Earth system model simulations are used to investigate the impact of volcanic aerosol forcing on stratospheric dynamics, e.g. the Northern Hemisphere (NH) polar vortex. We find that mechanisms linking aerosol heating and high-latitude dynamics are not as direct as often assumed; high-latitude effects result from changes in stratospheric circulation and related vertical motions. The simulated responses also show evidence of being sensitive to the structure of the volcanic forcing used.
A. A. Andreev, P. E. Tarasov, V. Wennrich, E. Raschke, U. Herzschuh, N. R. Nowaczyk, J. Brigham-Grette, and M. Melles
Clim. Past, 10, 1017–1039, https://doi.org/10.5194/cp-10-1017-2014, https://doi.org/10.5194/cp-10-1017-2014, 2014
K. Lohmann, J. H. Jungclaus, D. Matei, J. Mignot, M. Menary, H. R. Langehaug, J. Ba, Y. Gao, O. H. Otterå, W. Park, and S. Lorenz
Ocean Sci., 10, 227–241, https://doi.org/10.5194/os-10-227-2014, https://doi.org/10.5194/os-10-227-2014, 2014
F. S. E. Vamborg, V. Brovkin, and M. Claussen
Earth Syst. Dynam., 5, 89–101, https://doi.org/10.5194/esd-5-89-2014, https://doi.org/10.5194/esd-5-89-2014, 2014
Y. Wang, U. Herzschuh, L. S. Shumilovskikh, S. Mischke, H. J. B. Birks, J. Wischnewski, J. Böhner, F. Schlütz, F. Lehmkuhl, B. Diekmann, B. Wünnemann, and C. Zhang
Clim. Past, 10, 21–39, https://doi.org/10.5194/cp-10-21-2014, https://doi.org/10.5194/cp-10-21-2014, 2014
R. Zibulski, U. Herzschuh, L. A. Pestryakova, J. Wolter, S. Müller, N. Schilling, S. Wetterich, L. Schirrmeister, and F. Tian
Biogeosciences, 10, 5703–5728, https://doi.org/10.5194/bg-10-5703-2013, https://doi.org/10.5194/bg-10-5703-2013, 2013
M. Claussen, K. Selent, V. Brovkin, T. Raddatz, and V. Gayler
Biogeosciences, 10, 3593–3604, https://doi.org/10.5194/bg-10-3593-2013, https://doi.org/10.5194/bg-10-3593-2013, 2013
M. Toohey and T. von Clarmann
Atmos. Meas. Tech., 6, 937–948, https://doi.org/10.5194/amt-6-937-2013, https://doi.org/10.5194/amt-6-937-2013, 2013
J. Segschneider, A. Beitsch, C. Timmreck, V. Brovkin, T. Ilyina, J. Jungclaus, S. J. Lorenz, K. D. Six, and D. Zanchettin
Biogeosciences, 10, 669–687, https://doi.org/10.5194/bg-10-669-2013, https://doi.org/10.5194/bg-10-669-2013, 2013
Related subject area
Subject: Vegetation Dynamics | Archive: Modelling only | Timescale: Holocene
The challenge of comparing pollen-based quantitative vegetation reconstructions with outputs from vegetation models – a European perspective
How does the explicit treatment of convection alter the precipitation–soil hydrology interaction in the mid-Holocene African humid period?
Effect of nitrogen limitation and soil biophysics on Holocene greening of the Sahara
The end of the African humid period as seen by a transient comprehensive Earth system model simulation of the last 8000 years
Harmonising plant functional type distributions for evaluating Earth system models
Controls on fire activity over the Holocene
North African vegetation–precipitation feedback in early and mid-Holocene climate simulations with CCSM3-DGVM
Comparing modelled fire dynamics with charcoal records for the Holocene
Climate and CO2 modulate the C3/C4 balance and δ13C signal in simulated vegetation
Anne Dallmeyer, Anneli Poska, Laurent Marquer, Andrea Seim, and Marie-José Gaillard
Clim. Past, 19, 1531–1557, https://doi.org/10.5194/cp-19-1531-2023, https://doi.org/10.5194/cp-19-1531-2023, 2023
Short summary
Short summary
We compare past tree cover changes in Europe during the last 8000 years simulated with two dynamic global vegetation models and inferred from pollen data. The major model–data mismatch is related to the much earlier onset of anthropogenic deforestation in the data compared to the prescribed land use in the models. We show that land use, and not climate, is the main driver of the Holocene forest decline. The model–data agreement depends on the model tuning, challenging model–data comparisons.
Leonore Jungandreas, Cathy Hohenegger, and Martin Claussen
Clim. Past, 19, 637–664, https://doi.org/10.5194/cp-19-637-2023, https://doi.org/10.5194/cp-19-637-2023, 2023
Short summary
Short summary
Increasing the vegetation cover over mid-Holcocene North Africa expands the West African monsoon ∼ 4–5° further north. This northward shift of monsoonal precipitation is caused by interactions of the land surface with large-scale monsoon circulation and the coupling of soil moisture to precipitation. We highlight the importance of considering not only how soil moisture influences precipitation but also how different precipitation characteristics alter the soil hydrology via runoff generation.
Jooyeop Lee, Martin Claussen, Jeongwon Kim, Je-Woo Hong, In-Sun Song, and Jinkyu Hong
Clim. Past, 18, 313–326, https://doi.org/10.5194/cp-18-313-2022, https://doi.org/10.5194/cp-18-313-2022, 2022
Short summary
Short summary
It is still a challenge to simulate the so–called Green Sahara (GS), which was a wet and vegetative Sahara region in the mid–Holocene, using current climate models. Our analysis shows that Holocene greening is simulated better if the amount of soil nitrogen and soil texture is properly modified for the humid and vegetative GS period. Future climate simulation needs to consider consequent changes in soil nitrogen and texture with changes in vegetation cover for proper climate simulations.
Anne Dallmeyer, Martin Claussen, Stephan J. Lorenz, and Timothy Shanahan
Clim. Past, 16, 117–140, https://doi.org/10.5194/cp-16-117-2020, https://doi.org/10.5194/cp-16-117-2020, 2020
Short summary
Short summary
We analyse the end of the African humid period (AHP) in a transient Holocene simulation performed with the comprehensive Earth system model MPI-ESM1.2. The model reproduces the time-transgressive end of the AHP evident in proxy data and indicates that changes in moisture can be attributed to the retreat of the summer monsoon and to changes in the extratropical troughs. The spatially varying impact of these systems imposes regionally different responses to the Holocene insolation change.
Anne Dallmeyer, Martin Claussen, and Victor Brovkin
Clim. Past, 15, 335–366, https://doi.org/10.5194/cp-15-335-2019, https://doi.org/10.5194/cp-15-335-2019, 2019
Short summary
Short summary
A simple but powerful method for the biomisation of plant functional type distributions is introduced and tested for six different dynamic global vegetation models based on pre-industrial and palaeo-simulations. The method facilitates the direct comparison between vegetation distributions simulated by different Earth system models and between model results and the pollen-based biome reconstructions. It is therefore a powerful tool for the evaluation of Earth system models.
S. Kloster, T. Brücher, V. Brovkin, and S. Wilkenskjeld
Clim. Past, 11, 781–788, https://doi.org/10.5194/cp-11-781-2015, https://doi.org/10.5194/cp-11-781-2015, 2015
R. Rachmayani, M. Prange, and M. Schulz
Clim. Past, 11, 175–185, https://doi.org/10.5194/cp-11-175-2015, https://doi.org/10.5194/cp-11-175-2015, 2015
Short summary
Short summary
The role of vegetation-precipitation feedbacks in modifying the North African rainfall response to enhanced early to mid-Holocene summer insolation is analysed using the climate-vegetation model CCSM3-DGVM. Dynamic vegetation amplifies the positive early to mid-Holocene summer precipitation anomaly by ca. 20% in the Sahara-Sahel region. The primary vegetation feedback operates through surface latent heat flux anomalies by canopy evapotranspiration and their effect on the African easterly jet.
T. Brücher, V. Brovkin, S. Kloster, J. R. Marlon, and M. J. Power
Clim. Past, 10, 811–824, https://doi.org/10.5194/cp-10-811-2014, https://doi.org/10.5194/cp-10-811-2014, 2014
O. Flores, E. S. Gritti, and D. Jolly
Clim. Past, 5, 431–440, https://doi.org/10.5194/cp-5-431-2009, https://doi.org/10.5194/cp-5-431-2009, 2009
Cited articles
Bader, J., Jungclaus, J., Krivova, N., Lorenz, S., Maycock, A., Raddatz, T.,
Schmidt, H., Toohey, M., Wu, C.-J, and Claussen, M.: Global temperature
modes shed light on the Holocene temperature conundrum, Nat. Commun., 11, 4726, https://doi.org/10.1038/s41467-020-18478-6, 2020.
Barr, C., Tibby, J., Leng, M. J., Tyler, J. J., Henderson, A. C. G., Overpeck,
J. T., Simpson, G. L., Cole, J. E., Phipps, S. J., Marshall, J. C.,
Mcgregor, G. B., Hua, Q., and Mcrobie, F. H.: Holocene El Niño–Southern
Oscillation variability reflected in subtropical Australian precipitation,
Sci. Rep., 9, 1627, https://doi.org/10.1038/s41598-019-38626-3,
2019.
Bartlein, P. J. and Shafer, S. L.: Paleo calendar-effect adjustments in time-slice and transient climate-model simulations (PaleoCalAdjust v1.0): impact and strategies for data analysis, Geosci. Model Dev., 12, 3889–3913, https://doi.org/10.5194/gmd-12-3889-2019, 2019.
Behling, H. and Hooghiemstra, H.: Neotropical savanna environments in space
and time: Late Quaternary interhemispheric comparisons, chap. 18, in: Interhemispheric Climate Linkages, edited by: Markgraf, V., Academic Press, San Diego, USA, 2001.
Berger, A. L.: Long-term variations of daily insolation and quater-nary
climatic changes, J. Atmos. Sci., 35, 2362–2367, 1978.
Bezdek, J. C.: Pattern Recognition with Fuzzy Objective Function Al-gorithms,
Plenum, New York, USA, 1981.
Bigelow, N. H., Brubaker, L. B., Edwards, M. E., Harrison, S. P., Prentice,
I. C., Anderson, P. M., Andreev, A. A., Bartlein, P. J., Christensen, T. R.,
Cramer, W., Kaplan, J. O., Lozhkin, A. V., Matveyeva, N. V., Murray, D. F.,
McGuire, A. D., Razzhivin, V. Y., Ritchie, J. C., Smith, B., Walker, D. A.,
Gajewski, K., Wolf, V., Holmqvist, B. H., Igarashi, Y., Kremenetskii, K.,
Paus, A., Pisaric, M. F. J., and Volkova, V. S.: Climate change and Arctic
ecosystems: 1. Vegetation changes north of 55 degrees N between the last
glacial maximum, mid-Holocene, and present, J. Geophys. Res.-Atmos., 108, 8170, https://doi.org/10.1029/2002JD002558, 2003.
Bond, W. J.: What limits trees in C4 grasslands and savannas?, Annu. Rev. Ecol. Evol. Syst., 39, 641–659,
https://doi.org/10.1146/annurev.ecolsys.39.110707.173411, 2008.
Bond, W. J., Midgley, G. F., and Woodward, F. I.: What controls South African
vegetation-climate or fire?, S. Afr. J. Bot., 69, 79–91, 2003.
Braconnot, P., Zhu, D., Marti, O., and Servonnat, J.: Strengths and challenges for transient Mid- to Late Holocene simulations with dynamical vegetation, Clim. Past, 15, 997–1024, https://doi.org/10.5194/cp-15-997-2019, 2019.
Brovkin, V., Bendtsen, J., Claussen, M., Ganopolski, A., Kubatzki, C.,
Petoukhov, V., and Andreev, A.: Carbon cycle, vegetation, and climate
dynamics in the Holocene: Experiments with the CLIMBER-2 model, Global
Biogeochem. Cy., 16, 1139, https://doi.org/10.1029/2001GB001662, 2002.
Brovkin, V., Raddatz, T., Reick, C. H., Claussen, M., and Gayler, V.: Global
biogeophysical interactions between forest and climate. Geophys. Res. Lett.,
36, L07405, https://doi.org/10.1029/2009GL037543, 2009.
Brovkin, V., Lorenz, S., Raddatz, T., Ilyina, T., Stemmler, I., Toohey, M., and Claussen, M.: What was the source of the atmospheric CO2 increase during the Holocene?, Biogeosciences, 16, 2543–2555, https://doi.org/10.5194/bg-16-2543-2019, 2019.
Burrough, S. L. and Thomas, D. S. G.: Central southern Africa at the time of
the African Humid Period: a new analysis of Holocene palaeoenvironmental and
palaeoclimate data, Quaternary Sci. Rev., 80, 29–46, https://doi.org/10.1016/j.quascirev.2013.08.001, 2013.
Cao, X., Tian, F., Dallmeyer, A., and Herzschuh, U.: Northern Hemisphere
biome changes (> 30∘ N) since 40 cal ka BP and their
driving factors inferred from model-data comparisons, Quaternary Sci.
Rev., 220, 291–309, https://doi.org/10.1016/j.quascirev.2019.07.034, 2019a.
Cao, X., Tian, F., Li, F., Gaillard, M.-J., Rudaya, N., Xu, Q., and Herzschuh, U.: Pollen-based quantitative land-cover reconstruction for northern Asia covering the last 40 ka cal BP, Clim. Past, 15, 1503–1536, https://doi.org/10.5194/cp-15-1503-2019, 2019b.
Chauhan, M. S., Sharma, A., Phartiyal, B., and Kumar, K.: Holocene vegetation
and climatic variations in Central India: A study based on multiproxy
evidences, J. Asian Earth Sci., 77, 45–58, https://doi.org/10.1016/j.jseaes.2013.08.005, 2013.
Clement, A. C., Hall, A., and Broccoli, A.: The importance of precessional
signals inthe tropical climate, Clim. Dynam., 22, 327–341, 2004.
Cole-Dai, J., Ferris, D. G., Kennedy, J. A., Sigl, M., McConnell, J. R.,
Fudge, T. J., Geng, L., Maselli, O. J., Taylor, K. C., and Souney, J. M.:
Comprehensive record of volcanic eruptions in the Holocene (11 000 years)
from the WAIS Divide, Antarctica ice core, J. Geophys. Res.-Atmos., 126, e2020JD032855, https://doi.org/10.1029/2020JD032855, 2021.
Crowley, T. J. and Unterman, M. B.: Technical details concerning development of a 1200 yr proxy index for global volcanism, Earth Syst. Sci. Data, 5, 187–197, https://doi.org/10.5194/essd-5-187-2013, 2013.
Crucifix, M., Loutre, M. F, Tulkens, P., Fichefet, T., and Berger, A.: Climate evolution during the Holocene: A study with an Earth system model of
intermediate complexity, Clim. Dynam., 19, 43–60, 10.1007/S00382-001-0208-6,
2002.
Cruz, F. W., Vuille, M., and Burns, S. J.: Orbitally driven east–west
antiphasing of South American precipitation, Nat. Geosci., 2,
210–214, 2009.
D'Agostino, R., Bader, J., Bordoni, S., Ferreira, D., and Jungclaus, J:
Northern hemisphere monsoon response to mid-holocene orbital forcing and
greenhouse gas-induced global warming, Geophys. Res. Lett., 46, 1591–1601, 2019.
Dallmeyer, A., Claussen, M., Fischer, N., Haberkorn, K., Wagner, S., Pfeiffer, M., Jin, L., Khon, V., Wang, Y., and Herzschuh, U.: The evolution of sub-monsoon systems in the Afro-Asian monsoon region during the Holocene– comparison of different transient climate model simulations, Clim. Past, 11, 305–326, https://doi.org/10.5194/cp-11-305-2015, 2015.
Dallmeyer, A., Claussen, M., and Brovkin, V.: Harmonising plant functional type distributions for evaluating Earth system models, Clim. Past, 15, 335–366, https://doi.org/10.5194/cp-15-335-2019, 2019.
Dallmeyer, A., Claussen, M., Lorenz, S. J., and Shanahan, T.: The end of the African humid period as seen by a transient comprehensive Earth system model simulation of the last 8000 years, Clim. Past, 16, 117–140, https://doi.org/10.5194/cp-16-117-2020, 2020.
Davis, B. A. S., Brewer, S., Stevenson, A. C., and Guiot, J.: The temperature
of Europe during the Holocene reconstructed from pollen data, Quaternary
Sci. Rev. 22, 1701–1716, 2003.
deMenocal, P. B., Ortiz, J., Guilderson, T., Adkins, J., Santhein, M., Baker,
L., and Yarusinsky, M.: Abrupt onset and termination of the African Humid
Period: Rapid climate responses to gradual insolation forcing, Quaternary
Sci. Rev., 19, 347–361, 2000.
Egerer, S., Claussen, M., Reick, C., and Stanelle, T.: The link between marine sediment records and changes in Holocene Saharan landscape: simulating the dust cycle, Clim. Past, 12, 1009–1027, https://doi.org/10.5194/cp-12-1009-2016, 2016.
Feng, Z.-D., An, C. B., and Wang, H. B.: Holocene climatic and environmental
changes in the arid and semi-arid areas of China: a review, Holocene,
16, 119–130, 2006.
Fischer, N. and Jungclaus, J. H.: Evolution of the seasonal temperature cycle in a transient Holocene simulation: orbital forcing and sea-ice, Clim. Past, 7, 1139–1148, https://doi.org/10.5194/cp-7-1139-2011, 2011.
Fletcher, M. S. and Moreno, P. I.: Have the Southern Westerlies changed in a
zonally symmetric manner over the last 14 000 years? A hemisphere-wide take
on a controversial problem, Quatern. Int., 253,
32-46, https://doi.org/10.1016/j.quaint.2011.04.042, 2012.
Foster, D. R., Oswald, W. W., Faison, E. K., Doughty, E. D., and Hansen, B. C. S.: A climatic driver for abrupt mid-Holocene vegetation dynamics and the hemlock decline in New England, Ecology, 87, 2959–2966, 2006.
Gaetani, M., Pohl, B., Douville, H., and Fontaine, B.: West African Monsoon
influence on the summer Euro-Atlantic circulation, Geophys. Res. Lett.,
38, 38–42, https://doi.org/10.1029/2011GL047150, 2011.
Gao, C. C., Oman, L., Robock, A., and Stenchikov, G. L.: Atmospheric
volcanic loading derived from bipolar ice cores: Accounting for the spatial
distribution of volcanic deposition, J. Geophys. Res.-Atmos., 112, D09109, https://doi.org/10.1029/2006JD007461, 2007.
Garreaud, R. D., Vuille, M., Compagnucci, R., and Marengo, J.: Present-day South American climate. Palaeogeogr. Palaeocl.,
281, 180–195, 2009.
Giesecke, T., Bennett, K. D., Birks, H. J. B., Bjune, A. E., Bozilova, E.,
Feurdean, A., Finsinger, W., Froyd, C., Pokorny, P., Rosch, M., Seppa, H.,
Tonkov, S., Valsecchi, V., and Wolters, S.: The pace of Holocene vegetation
change – testing for synchronous developments, Quaternary Sci. Rev.,
30, 2805–2814, https://doi.org/10.1016/j.quascirev.2011.06.014, 2011.
Gill, A. E.: Some simple solutions for heat-induced tropical circulation,
Quart. J. Roy. Meteor. Soc., 106, 447–462, 1980.
Grimm, E. C.: Lozano-García, S., Behling, H., Markgraf, V.: Holocene
Vegetation and Climate Variability in the Americas, Interhemispheric Climate
Linkages, chap. 19, Academic Press, 325–370,
https://doi.org/10.1016/B978-012472670-3/50022-7, 2001.
Harrison, S.: BIOME 6000 DB classified plotfile version 1, University of
Reading [data set], https://doi.org/10.17864/1947.99, 2017.
Harrison, S. P., Kutzbach, J. E., Liu, Z., Bartlein, P. J., Otto-Bliesner,
Muhs, D., Prentice, I. C., and Thompson, R. S.: Mid-Holocene climates of the
Americas: A dynamical response to changed seasonality, Clim. Dynam., 20,
663–688, 2003.
Haug, G. H., Hughen, K. A., Sigman, D. M., Peterson, L. C., and Rfhl, U.: Southward migration of the Intertropical Convergence Zone through the Holocene, Science, 293, 1304–1308, 2001.
Hély, C., Lézine, A.-M., and contributors, A.: Holocene changes in African vegetation: tradeoff between climate and water availability, Clim. Past, 10, 681–686, https://doi.org/10.5194/cp-10-681-2014, 2014.
Herzschuh, U., Birks, H. J. B., Ni, J., Zhao, Y., Liu, H., Liu, X., and
Grosse, G.: Holocene land-cover changes on the Tibetan Plateau,
Holocene, 20, 91–104, 2010.
Hopcroft, P., Valdes, P., Harper, A., and Beerling, D.: Multi vegetation
model evaluation of the Green Sahara climate regime, Geophys. Res. Lett., 44, 6804–6813, https://doi.org/10.1002/2017GL073740, 2017.
Hurtt, G. C., Chini, L., Sahajpal, R., Frolking, S., Bodirsky, B. L., Calvin, K., Doelman, J. C., Fisk, J., Fujimori, S., Klein Goldewijk, K., Hasegawa, T., Havlik, P., Heinimann, A., Humpenöder, F., Jungclaus, J., Kaplan, J. O., Kennedy, J., Krisztin, T., Lawrence, D., Lawrence, P., Ma, L., Mertz, O., Pongratz, J., Popp, A., Poulter, B., Riahi, K., Shevliakova, E., Stehfest, E., Thornton, P., Tubiello, F. N., van Vuuren, D. P., and Zhang, X.: Harmonization of global land use change and management for the period 850–2100 (LUH2) for CMIP6, Geosci. Model Dev., 13, 5425–5464, https://doi.org/10.5194/gmd-13-5425-2020, 2020.
Ilyina, T., Six, K., Segschneider, J., Maier-Reimer, E., Li, H., and
Núñez-Riboni, I.: Global ocean biogeochemistry model HAMOCC: Model
architecture and performance as component of the MPI-Earth System Model in
different CMIP5 experimental realizations, J. Adv. Model. Earth Syst., 5, 287–315,
https://doi.org/10.1029/2012MS000178, 2013.
Jiang, D., Tian, Z., and Lang, X.: Mid-Holocene global monsoon area and
precipitation from PMIP simulations, Clim. Dynam., 44, 2493–2512, https://doi.org/10.1007/s00382-014-2175-8, 2015.
Jolly, D., Prentice, I. C., Bonneille, R., Ballouche, A., Bengo, M., Brenac,
P., Buchet, G., Burney, D., Cazet, J.-P., Cheddadi, R., Edorh, T., Elenga,
H., Elmoutaki, S., Guiot, J., Laarif, F., Lamb, H., Lezine, A.-M., Maley,
J., Mbenza, M., Peyron, O., Reille, M., Reynaud-Farrera, I., Riollet, G.,
Ritchie, J. C., Roche, E., Scott, L., Ssemmanda, I., Straka, H., Umer, M.,
Van Campo, E., Vilimumbalo, S., Vincens, A., and Waller, M.: Biome
reconstruction from pollen and plant macrofossil data for Africa and the
Arabian peninsula at 0 and 6000 years, J. Biogeogr.,
25, 1007–1027, 1998.
Jungclaus, J. H., Fischer, N., Haak, H., Lohmann, K., Marotzke, J., Matei,
D., Mikolajewicz, U., Notz, D., and von Storch, J. S.: Characteristics of
the ocean simulations in the Max Planck Institute Ocean Model (MPIOM) the
ocean component of the MPI-Earth system model, J. Adv. Model. Earth Syst., 5,
422–446, https://doi.org/10.1002/jame.20023, 2013.
Köhler, P.: Interactive comment on “What was the source of the atmospheric CO2 increase during the Holocene?” by Victor Brovkin et al., Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-64-SC1, 2019.
Krivova, N. A., Solanki, S. K., and Unruh, Y. C.: Towards a long-term record
of solar total and spectral irradiance, J. Atmos. Sol.-Terr. Phy., 73, 223–234, 10.1016/j.jastp.2009.11.013, 2011.
Kröpelin, S., Verschuren, D., Lézine, A.-M., Eggermont, H., Cocquyt,
C., Francus, P., Cazet, J.-P., Fagot, M., Rumes, B., Russell, J. M., Darius,
F., Conley, D. J., Schuster, M., von Suchodoletz, H., and Engstrom, D. R.:
Climate-driven ecosystem succession in the Sahara: the past 6000 years,
Science, 320, 765–768, 2008.
Kutzbach, J. E.: Monsoon climate of the early Holocene – climate experiment
with the earths orbital parameters for 9000 years ago, Science, 214, 59–61,
1981.
Lamy, F., Hebbeln, D., Röhl, U., and Wefer, G.: Holocene rainfall variability in southern Chile: a marine record of latitudinal shifts of the Southern Westerlies, Earth Planet. Sc. Lett., 185, 369–382, https://doi.org/10.1016/S0012-821X(00)00381-2, 2001.
Lamy, F., Kilian, R., Arz, H. W., Francois, J.-P., Kaiser, J., Prange, M.,
and Steinke, T.: Holocene changes in the position and intensity of the
southern westerly wind belt, Nat. Geosci., 3, 695–699,
https://doi.org/10.1038/ngeo959, 2010.
Ledru, M. P., Mourguiart, P., and Riccomini, C.: Related changes in biodiversity, insolation and climate in the Atlantic rainforest since the last interglacial, Palaeogeogr. Palaeocl., 271,
140–152, 2009.
Li, F., Gaillard, M.-J., Cao, X., Herzschuh, U., Sugita, S., Tarasov, P. E., Wagner, M., Xu, Q., Ni, J., Wang, W., Zhao, Y., An, C., Beusen, A. H. W., Chen, F., Feng, Z., Klein Goldewijk, C. G. M., Huang, X., Li, Y., Li, Y., Liu, H., Sun, A., Yao, Y., Zheng, Z., and Jia, X.: Toward
quantification of Holocene anthropogenic land-cover change in temperate
China: a review in the light of pollen-based REVEALS reconstructions of
regional plant cover, Earth-Sci. Rev., 203, 103119, https://doi.org/10.1016/j.earscirev.2020.103119, 2020.
Liu, J., Wang, B., Ding, Q., Kuang, X., Soon, W., and Zorita, E.: Centennial
variations of the global monsoon precipitation in the last millennium:
Results from ECHO-G model, J. Climate, 22, 2356–2371,
https://doi.org/10.1175/2008JCLI2353.1, 2009.
Liu, Z., Otto-Bliesner, B., Kutzbach, J., Li, L., and Shields, C.: Coupled
Climate Simulation of the Evolution of Global Monsoons in the Holocene, J. Climate, 16, 2472–2490, https://doi.org/10.1175/1520-0442(2003)016<2472:CCSOTE>2.0.CO;2, 2003.
Liu, Z., Harrison, S. P., Kutzbach, J., and Otto-Bliesner, B.: Global
monsoons in the mid-Holocene and oceanic feedback, Clim. Dynam., 22, 157–182, https://doi.org/10.1007/s00382-003-0372-y,
2004.
Lorenz, S. J., Kim, J.-H., Rimbu, N., Schneider, R. R., and Lohmann, G.:
Orbitally driven insolation forcing onHolocene climate trends: Evidence from
alkenone data and climate modeling, Paleoceanography, 21,
PA1002, https://doi.org/10.1029/2005PA001152, 2006.
MacDonald, G. M., Velichko, A. A., Kremenetski, C. V., Borisova, O. K., Goleva,
A. A., Andreev, A. A., Cwynar, L. C., Riding, R. T., Forman, S. L., Edwards,
T. W. D., Aravena, R., Hammarlund, D., Szeicz, J. M., and Gattaulin, V. N.:
Holocene treeline history and climate change across northern Eurasia, Quat.
Res., 53, 302–311, 2000.
Maksic, J., Shimizu, M. H., Sampaio, G., Venancio, I. M., Cardoso, M., and
Ferreira, F. A.: Simulation of the holocene climate over South America and
impacts on the vegetation, Holocene, 29, 287–299, 2019.
Marchant, R., Richer, S., Boles, O., Capitani, C., Courtney-Mustaphi, C. J.,
Lane, P., Prendergast, M. E., Stump, D., De Cort, G., Kaplan, J. O., Phelps,
L., Kay, A., Olago, D., Petek, N., Platts, P. J., Punwong, P., Widgren, M.,
Wynne-Jones, S., Ferro-Vázquez, C., Benard, J., Boivin, N., Crowther,
A., Cuní-Sanchez, A., Deere, N. J., Ekblom, A., Farmer, J., Finch, J.,
Fuller, D., Gaillard-Lemdahl, M.-J., Gillson, L., Githumbi, E., Kabora, T.,
Kariuki, R., Kinyanjui, R., Kyazike, E., Lang, C., Lejju, J., Morrison, K.
D., Muiruri, V., Mumbi, C., Muthoni, R., Muzuka, A., Ndiema, E., Kabonyi
Nzabandora, C., Onjala, I., Schrijver, A. P., Rucina, S., Shoemaker, A.,
Thornton-Barnett, S., van der Plas, G., Watson, E. E., Williamson, D., and
Wright, D.: Drivers and trajectories of land cover change in East Africa:
Human and environmental interactions from 6000 years ago to present,
Earth-Sci. Rev., 178, 322–378,
https://doi.org/10.1016/j.earscirev.2017.12.010, 2018.
Marengo, J. A., Soares, W. R., Saulo, C., and Nicolini, M.: Climatology of
the Low-Level Jet East of the Andes as Derived from the NCEP–NCAR
Reanalyses: Characteristics and Temporal Variability, J. Climate, 17, 2261–2280,
https://doi.org/10.1175/1520-0442(2004)017<2261:COTLJE>2.0.CO;2, 2004.
Marquer, L., Gaillard, M.-J., Sugita, S., Poska, A., Trondman, A.-K.,
Mazier, F., Nielsen, A. B., Fyfe, R. M., Jönsson, A. M., Smith, B., Kaplan, J. O., Alenius, T., Birks, H. J. B., Bjune, A. E., Christiansen, J., Dodson, J., Edwards, K. J., Giesecke, T., Herzschuh, U., Kangur, M., Koff, T., Latalowa, M., Lechterbeck, J., Olofsson, J., and Seppä, H.: Quantifying the effects of land use and climate on Holocene vegetation in Europe, Quaternary Sci. Rev., 171, 20–37, 2017.
Marsicek, J. P., Shuman, B., Brewer, S., Foster, D. R., and Oswald, W. W.:
Moisture and temperature changes associated with the mid-Holocene Tsuga
decline in the northeastern United States, Quaternary Sci. Rev.,
80, 129–142, https://doi.org/10.1016/j.quascirev.2013.09.001,
2013.
Matsuno, T.: Quasi-geostrophic motions in the equatorial area, J. Meteor.
Soc. Jpn., 44, 25–43, 1966.
Mauritsen, T., Bader, J., Becker, T., Behrens, J., Bittner, M., Brokopf, R.,
Brovkin, V., Claussen, M., Crueger, T., Esch, M., Fast, I., Fiedler, S.,
Popke, D., Gayler, V., Giorgetta, M., Goll, D., Haak, H., Hagemann, S.,
Hedemann, C., Hohenegger, C., Ilyina, T., Jahns, T., Jimenez Cuesta de la
Otero, D., Jungclaus, J., Kleinen, T., Kloster, S., Kracher, D., Kinne, S.,
Kleberg, D., Lasslop, G., Kornblueh, L., Marotzke, J., Matei, D., Meraner,
K., Mikolajewicz, U., Modali, K., Möbis, B., Müller, W., Nabel, J.,
Nam, C., Notz, D., Nyawira, S., Paulsen, H., Peters, K., Pincus, R.,
Pohlmann, H., Pongratz, J., Popp, M., Raddatz, T., Rast, S., Redler, R.,
Reick, C., Rohrschneider, T., Schemann, V., Schmidt, H., Schnur, R.,
Schulzweida, U., Six, K., Stein, L., Stemmler, I., Stevens, B., von Storch,
J., Tian, F., Voigt, A., de Vrese, P., Wieners, K.-H., Wilkenskjeld, S.,
Roeckner, E., and Winkler, A.: Developments in the MPI-M Earth System Model
version 1.2 (MPI-ESM1.2) and its response to increasing CO2, J.
Adv. Model. Earth Syst., 11, 998–1038, https://doi.org/10.1029/2018MS001400,
2019.
Mayewski, P. A., Meeker, L. D., Twickler, M. S., Whitlow, S., Yang, Q. Z.,
Lyons, W. B., and Prentice, M.: Major features and forcing of high-latitude
northern hemisphere atmospheric circulation using a 110 000-year-long
glaciochemical series, J. Geophys. Res.-Oceans, 102, 26345–26366, https://doi.org/10.1029/96JC03365, 1997.
Mayewski, P. A., Rohling, E. E., Stager, J. C., Karlén, W., Maasch, K.
A., Meeker, L. D., Meyerson, E. A., Gasse, F., Van Kreveld, S., Holmgren,
K., Lee-Thorp, J., Rosqvist, G., Rack, F., Staubwasser, M., Schneider, R., and Steig, E.: Holocene climate variability, Quat. Res., 62, 243–255, https://doi.org/10.1016/j.yqres.2004.07.001, 2004.
Mayle, F. E. and Power, M. J.: Impact of a drier early-mid-Holocene climate upon Amazonian forests, Philos. T. Roy. Soc. B, 363, 1829–1838, 2008.
Mayle, F. E., Burbridge, R., and Killeen, T. J.: Millennial-scale dynamics of
southern Amazonian rain forests, Science, 290, 2291–2294, https://doi.org/10.1126/science.290.5500.2291, 2000.
McGlone, M. S., Kershawk, A. P., and Markgraf, V.: El Niño/Southern
Oscillation climatic variability in Australasian and South American
paleoenvironmental records, in: El Niño:
Historical and Paleoclimatic Aspects of the Southern Oscillation, edited by: Diaz, H. F. and Markgraf, V., Cambridge University Press, Cambridge, UK, 436–462, 1992.
Metcalfe, S. E., Barron, J. E., and Davies, S. J.: The holocene history of the North American Monsoon: Known knowns and known unknowns in understanding its spatial and temporal complexity, Quaternary Sci. Rev., 120, 1–27, https://doi.org/10.1016/j.quascirev.2015.04.004, 2015.
Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A., and Leisch, F.:
e1071: Misc Functions of the Department of Statistics, Probability Theory
Group (Formerly: E1071), TU Wien, R package version 1.6-8, available at: https://CRAN.R-project.org/package=e1071 (last access:
14 September 2020), 2017.
Mottl, O., Flantua, S., Bhatta, K., Astrup Felde, V., Giesecke, T., Goring, S., Grimm, E., Haberle, S., Henry, H., Ivory, S., Kuneš, P., Wolters, S., Seddon, A., and Williams, J.: Global acceleration in rates of vegetation change over the past 18 000 years, Science, 372, 860–864, https://doi.org/10.1126/science.abg1685, 2021.
MPG.PuRe: Holocene vegetation transitions and their climatic drivers in MPI-ESM1.2, Publication Repository of the Max-Planck-Society, available at: http://hdl.handle.net/21.11116/0000-0008-8051-B, last access: 24 November 2021.
Nakanishi, T., Tachibana, Y., and Ando, Y.: Possible semi-circumglobal
teleconnection across Eurasia driven by deep convection over the Sahel,
Clim. Dynam., 57, 2287–2299, https://doi.org/10.1007/s00382-021-05804-x, 2021.
Nicholls, N.: Historical El Niño/Southern Oscillation variability in the
Australasian region, in: El Niño: Historical
and Paleoclimatic Aspects of the Southern Oscillation, edited by: Diaz, H. F. and Makrkgraf, V., Cambridge University Press, Cambridge, UK, 151–173, 1992.
Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn,
D., Minchin, P. R., O'Hara, R. B., Simpson, G. L., Solymos, P., Stevens,
M. H. H., Szoecs, E., and Wagner, H.: vegan: Community Ecology Package, R package version 2.4-6, available at: https://CRAN.R-project.org/package=vegan (last access: 14 September 2020), 2018.
Olago, D.: Vegetation changes over palaeo-time scales in Africa, Clim. Res., 17, 105–121, 2001.
Overpeck, J. T. and Webb, R.S.: Non-glacial rapid climate events: Past and
future, Proc. Natl. Acad. Sci. USA, 97, 1335–1338, 2000.
Pickett, E. J., Harrison, S. P., Hope, G., Harle, K., Dodson, J. R., Kershaw,
A. P., Prentice, I. C., Backhouse, J., Colhoun, E. A., D'Costa, D., Flenley,
J., Grindrod, J., Haberle, S., Hassell, C., Kenyon, C., Macphail, M.,
Martin, H., Martin, A. H., McKenzie, M., Newsome, J. C., Penny, D., Powell,
J., Raine, J. I., Southern, W., Stevenson, J., Sutra, J. P., Thomas, I., van
der Kaars, S., and Ward, J.: Pollen-based reconstructions of biome distributions
for Australia, Southeast Asia and the Pacific (SEAPAC region) at 0, 6000 and
18 000 14C yr B.P., J. Biogeogr., 31, 1381–1444,
https://doi.org/10.1111/j.1365-2699.2004.01001.x, 2004.
Prado, L. F., Wainer, I., and Chiessi, C. M.: Mid-Holocene PMIP3/CMIP5 model results: Intercomparison for the South American Monsoon System, Holocene, 23,
1915–1920, 2013a.
Prado, L. F., Wainer, I., Chiessi, C. M., Ledru, M.-P., and Turcq, B.: A mid-Holocene climate reconstruction for eastern South America, Clim. Past, 9, 2117–2133, https://doi.org/10.5194/cp-9-2117-2013, 2013b.
Prentice, I. C., Jolly, D., and BIOME 6000 participants: Mid-Holocene and
glacial-maximum vegetation geography of the northern continents and Africa,
J. Biogeogr., 27, 507–519, 2000.
Quigley, M. C, Horton, T., Hellstrom, J. C., Cupper, M. L., and Sandiford, M.: Holocene climate change in arid Australia from speleothem and alluvial
records, Holocene, 20, 1093–1104, https://doi.org/10.1177/0959683610369508, 2010.
Rachmayani, R., Prange, M., and Schulz, M.: North African vegetation–precipitation feedback in early and mid-Holocene climate simulations with CCSM3-DGVM, Clim. Past, 11, 175–185, https://doi.org/10.5194/cp-11-175-2015, 2015.
Ratnam, J., Bond, W. J., Fensham, R. J., Hoffmann, W. A., Archibald, S.,
Lehmann, C. E. R., Anderson, M. T., Higgins, S. I., and Sankaran, M.: When
is a “forest” a savanna, and why does it matter?, Glob. Ecol. Biogeogr.,
20, 653–660, https://doi.org/10.1111/j.1466-8238.2010.00634.x,
2011.
Reick, C. H., Raddatz, T., Brovkin, V., and Gayler, V.: The representation
of natural and anthropogenic land cover change in MPI-ESM, J. Adv. Model.
Earth Syst., 5, 1–24, https://doi.org/10.1002/jame.20022, 2013.
Ren, G.: Changes in forest cover in China during the Holocene, Veget. Hist.
Archaeobot., 16, 119–126, 2007.
Rodwell, M. J. and Hoskins, B. J.: Subtropical anticyclones and summer
monsoons, J. Climate, 14, 3192–3211,
https://doi.org/10.1175/1520-0442(2001)014<3192:SAASM>2.0.CO;2,
2001.
Rojas, M. and Moreno, P. I.: Atmospheric circulation changes andneoglacial conditions in the Southern Hemisphere mid-latitudes: insights from PMIP2 simulations at 6 kyr, Clim. Dynam., 37, 357–375, https://doi.org/10.1007/s00382-010-0866-3, 2011.
Rossetti, D. F., Cohen, M. C. L., and Pessenda, L. C. R.: Vegetation change in Southwestern Amazonia (Brazil) and relationship to the late Pleistocene and Holocene climate, Radiocarbon, 59, 69–89, 2017.
Ruddiman, W. F.: Earth's Climate: Past and Future, 2nd revised edition,
W.H. Freeman and Company, New York, USA, p. 388, 2008.
Scheffer, M., Carpenter, S., Foley, J. A., Folke, C., and Walker, B.: Catastrophic shifts in ecosystems, Nature, 413, 591–596, 2001.
Scott, L. and Tee-Thorp, J. A.: Holocene climatic trends and rhythms in
southern Africa, Past Climate Variability through Europe and Africa,
Springer, Dordrecht, the Netherlands, 69–91, 2004.
Seager, R., Neelin, D., Simpson, I., Liu, H., Henderson, N., Shaw, T.,
Kushnir, Y., Ting, M., and Cook, B.: Dynamical and Thermodynamical Causes of
Large-Scale Changes in the Hydrological Cycle over North America in Response
to Global Warming, J. Climate, 27, 7921–7948,
https://doi.org/10.1175/JCLI-D-14-00153.1, 2014.
Seddon, A. W., Macias-Fauria, M., and Willis, K. J.: Climate and abrupt
vegetation change in Northern Europe since the last deglaciation,
Holocene, 25, 25–36, https://doi.org/10.1177/0959683614556383, 2015.
Seddon, A., Macias-Fauria, M., Long, P., Benz, D., and Willis, K. J.: Sensitivity of global terrestrial ecosystems to climate variability, Nature, 531, 229–232, https://doi.org/10.1038/nature16986, 2016.
Severi, M., Becagli, S., Castellano, E., Morganti, A., Traversi, R., Udisti, R., Ruth, U., Fischer, H., Huybrechts, P., Wolff, E., Parrenin, F., Kaufmann, P., Lambert, F., and Steffensen, J. P.: Synchronisation of the EDML and EDC ice cores for the last 52 kyr by volcanic signature matching, Clim. Past, 3, 367–374, https://doi.org/10.5194/cp-3-367-2007, 2007.
Shanahan, T. M., McKay, N. P., Hughen, K. A., Overpeck, J. T., Otto-Bliesner,
B., Heil, C. W., King, J., Scholz, C. A., and Peck, J.: The time-transgressive termination of the African Humid Period, Nat. Geosci., 8, 140–144,
2015.
Shin, S.-J. K., Sardeshmukh, P.-D., Webb, R. S., Oglesby, R. J., and Barsugli, J. J.: Understanding the Mid-Holocene Climate, J. Climate, 19,
2801–2817, 2006.
Shuman, B. N., Newby, P., and Donnelly, J. P.: Abrupt climate change as an
important agent of ecological change in the Northeast U.S. throughout the
past 15 000 years. Quaternary Sci. Rev., 28, 1693–1709, 2009.
Sigl, M., McConnell, J. R., Toohey, M., Curran, M., Das, S. B., Edwards, R.,
Isaksson, E., Kawamura, K., Kipfstuhl, S., Krüger, K., Layman, L.,
Maselli, O. J., Motizuki, Y., Motoyama, H., Pasteris, D. R., and Severi, M.:
Insights from Antarctica on volcanic forcing during the Common Era, Nat. Clim.
Change, 4, 693–697, https://doi.org/10.1038/nclimate2293, 2014.
Sigl, M., Winstrup, M., McConnell, J. R., Welten, K. C., Plunkett, G.,
Ludlow, F., Büntgen, U., Caffee, M., Chellman, N., Dahl-Jensen, D.,
Fischer, H., Kipfstuhl, S., Kostick, C., Maselli, O. J., Mekhaldi, F.,
Mulvaney, R., Muscheler, R., Pasteris, D. R., Pilcher, J. R., Salzer, M.,
Schüpbach, S., Steffensen, J. P., Vinther, B. M., and Woodruff, T. E.:
Timing and climate forcing of volcanic eruptions for the past 2500 years,
Nature, 523, 543–549, https://doi.org/10.1038/nature14565, 2015.
Sigl, M., Fudge, T. J., Winstrup, M., Cole-Dai, J., Ferris, D., McConnell, J. R., Taylor, K. C., Welten, K. C., Woodruff, T. E., Adolphi, F., Bisiaux, M., Brook, E. J., Buizert, C., Caffee, M. W., Dunbar, N. W., Edwards, R., Geng, L., Iverson, N., Koffman, B., Layman, L., Maselli, O. J., McGwire, K., Muscheler, R., Nishiizumi, K., Pasteris, D. R., Rhodes, R. H., and Sowers, T. A.: The WAIS Divide deep ice core WD2014 chronology – Part 2: Annual-layer counting (0–31 ka BP), Clim. Past, 12, 769–786, https://doi.org/10.5194/cp-12-769-2016, 2016.
Sigl, M., Toohey, M., McConnell, J. R., Cole-Dai, J., and Severi, M.: HolVol: Reconstructed volcanic stratospheric sulfur injections and aerosol optical depth for the Holocene (9500 BCE to 1900 CE), PANGAEA [data set], https://doi.org/10.1594/PANGAEA.928646, 2021.
Smith, R. J. and Mayle, F. E.: Impact of mid-to late Holocene precipitation
changes on vegetation across lowland tropical South America: a paleo-data
synthesis, Quaternery Res., 89, 134–155, 2018.
Stevens, B., Giorgetta, M., Esch, M., Mauritsen, T., Crueger, T., Rast, S.,
Salzmann, M., Schmidt, H., Bader, J., Block, K., Brokopf, R., Fast, I.,
Kinne, S., Kornblueh, L., Lohmann, U., Pincus, R., Reichler, T., and
Roeckner, E.: Atmospheric component of the MPI-M Earth System Model: ECHAM6,
J. Adv. Model. Earth Syst., 5, 146–172, https://doi.org/10.1002/jame.20015,
2013.
Tian, F., Cao, X., Dallmeyer, A., Ni, J., Zhao, Y., Wang, Y., and Herzschuh, U.: Quantitative woody cover reconstructions from eastern continental Asia
of the last 22 kyr reveal strong regional peculiarities, Quaternary Sci. Rev., 137, 33–44, https://doi.org/10.1016/j.quascirev.2016.02.001,
2016.
Tierney, J. E., Lewis, S. C., Cook, B. I., LeGrande, A. N., and Schmidt, G. A.: Model, proxy and isotopic perspectives on the East African Humid Period,
Earth Planet. Sc. Lett., 307, 103–112,
https://doi.org/10.1016/j.epsl.2011.04.038, 2011.
Toohey, M. and Sigl, M.: Volcanic stratospheric sulfur injections and aerosol optical depth from 500 BCE to 1900 CE, Earth Syst. Sci. Data, 9, 809–831, https://doi.org/10.5194/essd-9-809-2017, 2017.
Toohey, M., Stevens, B., Schmidt, H., and Timmreck, C.: Easy Volcanic Aerosol (EVA v1.0): an idealized forcing generator for climate simulations, Geosci. Model Dev., 9, 4049–4070, https://doi.org/10.5194/gmd-9-4049-2016, 2016.
Trenberth, K. E., Stepaniak, D. P., and Caron, J. M.: The global monsoon as
seen through the divergent atmospheric circulation, J. Climate, 13,
3969–3993, 2000.
Trondman, A. K., Gaillard, M.-J., Mazier, F., Sugita, S., Fyfe, R., Nielsen,
A. B., Twiddle, C., Barratt, P., Birks, H. J. B., Bjune, A. E., Björkman,
L., Broström, A., Caseldine, C., David, R., Dodson, J., Dörfler, W.,
Fischer, E., van Geel, B., Giesecke, T., Hultberg, T., Kalnina, L., Kangur,
M., van der Knaap, P., Koff, T., Kuneš, P., Lagerås, P., Latałowa,
M., Lechterbeck, J., Leroyer, C., Leydet, M., Lindbladh, M., Marquer, L.,
Mitchell, F. J. G., Odgaard, B. V., Peglar, S. M., Persson, T., Poska, A.,
Rösch, M., Seppä, H., Veski, S., and Wick, L.: Pollen-based
quantitative reconstructions of Holocene regional vegetation cover
(plant-functional types and land-cover types) in Europe suitable for climate
modelling, Glob. Change Biol., 21, 676–697, https://doi.org/10.1111/gcb.12737,
2015.
Van Campo, E., Cour, P., and Sixuan, H.: Holocene environmental changes in
Bangong Co basin (Western Tibet). Part 2: The pollen record, Palaeogeogr.
Palaeocl., 120, 49–63, 1996.
Verdon, D. C. and Franks, S. W.: Indian Ocean sea surface temperature
variability and winter rainfall: Eastern Australia, Water Resour. Res., 41,
1–10, https://doi.org/10.1029/2004WR003845, 2005.
Viau, A. E. and Gajewski, K.: Holocene variations in the global hydrological
cycle quantified by objective gridding of lake databases, J. Geophys.
Res., 106, 31703–31716, 2001.
Viau, A. E., Gajewski, K., Sawada, M. C., and Fines, P.: Millennial-scale
temperature variations in North America during the Holocene, J. Geophys. Res., 111, D09102, https://doi.org/10.1029/2005JD006031, 2006.
Vincens, A., Buchet, G., Williamson, D., and Taieb, M.: A 23 000 yr pollen
record from Lake Rukwa (8∘ S, SW Tanzania): new data on vegetation
dynamics and climate in central eastern Africa, Rev. Palaeobot. Palynol.,
137, 147–162, 2005.
Vigaud, N., Richard, Y., Rouault, M., and Fauchereau, N.: Moisture transport
between the South Atlantic Ocean and southern Africa: relationships with
summer rainfall and associated dynamics, Clim. Dynam., 32, 113–123,
https://doi.org/10.1007/s00382-008-0377-7, 2009.
Wang, P. X., Wang, B., Cheng, H., Fasullo, J., Guo, Z. T., Kiefer, T., and Liu, Z. Y.: The global monsoon across timescales: coherent variability of regional monsoons, Clim. Past, 10, 2007–2052, https://doi.org/10.5194/cp-10-2007-2014, 2014.
Wanner, H., Beer, J., Bütikofer, J., Crowley, T. J., Cubasch, U.,
Flückiger, J., Goosse, H., Grosjean, M., Joos, F., Kaplan, J. O.,
Küttel, M., Müller, S. A., Prentice, I. C., Solomina, O., Stocker,
T. F., Tarasov, P., Wagner, M., and Widmann, M.: Mid- to Late Holocene climate change: an overview, Quaternary Sci. Rev., 27, 1791–1828, https://doi.org/10.1016/j.quascirev.2008.06.013, 2008.
Williams, J. W.: Variations in tree cover in North America since the Last
Glacial Maximum, Global Planet. Change, 35, 1–23, 2003.
Williams, J. W., Post, D. M., Cxynar, L. C., Lotter, A. F., and Levesque, A. J.:
Rapid and widespread vegetation responses to past climate change in the
North Atlantic region, Geology, 30, 971–974, 2002.
Williams, J. W., Shuman, B. N., Webb III, T., Bartlein, P. J, and Leduc, P. L.:
Late Quaternary vegetation dynamics in North America: scaling from taxa to
biomes, Ecol. Monogr., 74, 309–334, 2004.
Williams, J. W., Shuman, B., Bartlein, P. J., Diffenbaugh, N. S., and Webb III, T.:
Rapid, time-transgressive, and variable responses to early Holocene
midcontinental drying in North America, Geology, 38, 135–138, https://doi.org/10.1130/G30413.1, 2010.
Williams, J. W., Tarasov, P. A., Brewer, S., and Notaro, M.: Late-Quaternary
variations in tree cover at the northern forest-tundra ecotone, J. Geophys. Res.-Biogeo., 116, G01017, https://doi.org/10.1029/2010JG001458, 2011.
Xie, L. X. and Beni, G.: Validity measure for fuzzy clustering, IEEE
T. Pattern Anal., 3, 841–847, 1991.
Yu, G., Chen, X., Ni, J., Cheddadi, R., Guiot, J., Han, H., Harrison, S. P.,
Huang, C., Ke, M., Kong, Z., Li, S., Li, W., Liew, P., Liu, G., Liu, J.,
Liu, Q., Liu, K.-B., Prentice, I. C., Qui, W., Ren, G., Song, C., Sugita, S.,
Sun, X., Tang, L., Van Campo, E., Xia, Y., Xu, Q., Yan, S., Yang, X., Zhao,
J., and Zheng, Z.: Palaeovegetation of China: a pollen date-based synthesis
for the mid-Holocene and last glacial maximum, J. Biogeogr., 27, 635–664,
2000.
Zhang, Y., Renssen, H., Seppä, H., and Valdes, P.: Holocene temperature
trends in the extratropical northern hemisphere based on inter-model
comparisons, J. Quaternary Sci., 33, 464–476, 2018.
Zhao, Y. and Harrison, S.: Mid-Holocene monsoons: A multi-model analysis of
the inter-hemispheric differences in the responses toorbital forcing and
ocean feedbacks, Clim. Dynam., 39, 1457–1487, 2012.
Zhao, Y., Yu, Z., and Chen. F.: Spatial and temporal patterns of Holocene
vegetation and climate changes in arid and semi-arid China, Quatern. Int.,
194, 6–18, 2009.
Zhao, Y., Liu, Y. L., Guo, Z. T., Fang, K. Y., Li, Q., and Cao, X. Y.: Abrupt
vegetation shifts caused by gradual climate changes in central Asia during
the Holocene, Sci. China Earth Sci., 60, 1317–1327, 2017.
Zhou, T., Zhang, L., and Li, H.: Changes in global land monsoon area and
total rainfall accumulation over the last half century, Geophys. Res. Lett.,
35, 1–6, https://doi.org/10.1029/2008GL034881, 2008.
Zielinski, G., Mayewski, P., Meeker, L., Whitlow, S., and Twickler, M.: A 110 000-Yr Record of Explosive Volcanism from the GISP2 (Greenland) Ice Core, Quaternary Res., 45, 109–118, https://doi.org/10.1006/qres.1996.0013, 1996.
Short summary
Using the comprehensive Earth system model, MPI-ESM1.2, we explore the global Holocene vegetation changes and interpret them in terms of the Holocene climate change. The model results reveal that most of the Holocene vegetation transitions seen outside the high northern latitudes can be attributed to modifications in the intensity of the global summer monsoons.
Using the comprehensive Earth system model, MPI-ESM1.2, we explore the global Holocene...