Articles | Volume 17, issue 5
https://doi.org/10.5194/cp-17-2255-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-17-2255-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Southern Ocean bottom-water cooling and ice sheet expansion during the middle Miocene climate transition
Bjerknes Centre for Climate Research, Bergen, 5007, Norway
Department of Earth Science, University of Bergen, Bergen, 5007, Norway
present address: Max Planck Institute for Chemistry, Mainz, 55128, Germany
Sevasti Modestou
Bjerknes Centre for Climate Research, Bergen, 5007, Norway
Department of Earth Science, University of Bergen, Bergen, 5007, Norway
Stefano M. Bernasconi
Geological Institute, ETH Zurich, Zurich, 8092, Switzerland
A. Nele Meckler
Bjerknes Centre for Climate Research, Bergen, 5007, Norway
Department of Earth Science, University of Bergen, Bergen, 5007, Norway
Related authors
No articles found.
Yves Krüger, Leonardo Pasqualetto, Alvaro Fernandez, Kim M. Cobb, and A. Nele Meckler
Clim. Past, 21, 1553–1584, https://doi.org/10.5194/cp-21-1553-2025, https://doi.org/10.5194/cp-21-1553-2025, 2025
Short summary
Short summary
Using a stalagmite from Whiterock Cave (Gunung Mulu National Park, Northern Borneo), covering the time interval from 460000 to 333000 years B.P., including two glacial terminations, we employed nucleation-assisted fluid inclusion microthermometry to reconstruct a tropical cave temperature record. The record reveals an amplitude of glacial-interglacial temperature changes of 4.2 °C and a strong linear correlation with Antarctic temperature anomalies, yielding a polar amplification factor of 2.3.
Alexander J. Clark, Ismael Torres-Romero, Madalina Jaggi, Stefano M. Bernasconi, and Heather M. Stoll
Clim. Past, 20, 2081–2101, https://doi.org/10.5194/cp-20-2081-2024, https://doi.org/10.5194/cp-20-2081-2024, 2024
Short summary
Short summary
Coccoliths are abundant in sediments across the world’s oceans, yet it is difficult to apply traditional carbon or oxygen isotope methodologies for temperature reconstructions. We show that our coccolith clumped isotope temperature calibration with well-constrained temperatures systematically differs from inorganic carbonate calibrations. We suggest the use of our well-constrained calibration for future coccolith carbonate temperature reconstructions.
Anna Hauge Braaten, Kim A. Jakob, Sze Ling Ho, Oliver Friedrich, Eirik Vinje Galaasen, Stijn De Schepper, Paul A. Wilson, and Anna Nele Meckler
Clim. Past, 19, 2109–2125, https://doi.org/10.5194/cp-19-2109-2023, https://doi.org/10.5194/cp-19-2109-2023, 2023
Short summary
Short summary
In the context of understanding current global warming, the middle Pliocene (3.3–3.0 million years ago) is an important interval in Earth's history because atmospheric carbon dioxide concentrations were similar to levels today. We have reconstructed deep-sea temperatures at two different locations for this period, and find that a very different mode of ocean circulation or mixing existed, with important implications for how heat was transported in the deep ocean.
Jasmine S. Berg, Paula C. Rodriguez, Cara Magnabosco, Longhui Deng, Stefano M. Bernasconi, Hendrik Vogel, Marina Morlock, and Mark A. Lever
EGUsphere, https://doi.org/10.5194/egusphere-2023-2102, https://doi.org/10.5194/egusphere-2023-2102, 2023
Preprint archived
Short summary
Short summary
The addition of sulfur to organic matter is generally thought to protect it from microbial degradation. We analyzed buried sulfur compounds in a 10-m sediment core representing the entire ~13,500 year history of an alpine lake. Surprisingly, organic sulfur and pyrite formed very rapidly and were characterized by very light isotope signatures that suggest active microbial sulfur cycling in the deep subsurface.
Jenny Maccali, Anna Nele Meckler, Stein-Erik Lauritzen, Torill Brekken, Helen Aase Rokkan, Alvaro Fernandez, Yves Krüger, Jane Adigun, Stéphane Affolter, and Markus Leuenberger
Clim. Past, 19, 1847–1862, https://doi.org/10.5194/cp-19-1847-2023, https://doi.org/10.5194/cp-19-1847-2023, 2023
Short summary
Short summary
The southern coast of South Africa hosts some key archeological sites for the study of early human evolution. Here we present a short but high-resolution record of past changes in the hydroclimate and temperature on the southern coast of South Africa based on the study of a speleothem collected from Bloukrantz Cave. Overall, the paleoclimate indicators suggest stable temperature from 48.3 to 45.2 ka, whereas precipitation was variable, with marked short drier episodes.
Cinthya Esther Nava Fernandez, Tobias Braun, Bethany Fox, Adam Hartland, Ola Kwiecien, Chelsea Pederson, Sebastian Hoepker, Stefano Bernasconi, Madalina Jaggi, John Hellstrom, Fernando Gázquez, Amanda French, Norbert Marwan, Adrian Immenhauser, and Sebastian Franz Martin Breitenbach
Clim. Past Discuss., https://doi.org/10.5194/cp-2021-172, https://doi.org/10.5194/cp-2021-172, 2022
Manuscript not accepted for further review
Short summary
Short summary
We provide a ca. 1000 year long (6.4–5.4 ka BP) stalagmite-based reconstruction of mid-Holocene rainfall variability in the tropical western Pacific. The annually laminated multi-proxy (δ13C, δ18O, X/Ca, gray values) record comes from Niue island and informs on El Nino-Southern Oscillation and South Pacific Convergence Zone dynamics. Our data suggest that ENSO was active and influenced rainfall seasonality over the covered time interval. Rainfall seasonality was subdued during active ENSO phases
Luca Smeraglia, Nathan Looser, Olivier Fabbri, Flavien Choulet, Marcel Guillong, and Stefano M. Bernasconi
Solid Earth, 12, 2539–2551, https://doi.org/10.5194/se-12-2539-2021, https://doi.org/10.5194/se-12-2539-2021, 2021
Short summary
Short summary
In this paper, we dated fault movements at geological timescales which uplifted the sedimentary successions of the Jura Mountains from below the sea level up to Earth's surface. To do so, we applied the novel technique of U–Pb geochronology on calcite mineralizations that precipitated on fault surfaces during times of tectonic activity. Our results document a time frame of the tectonic evolution of the Jura Mountains and provide new insight into the broad geological history of the Western Alps.
Andre Baldermann, Oliver Wasser, Elshan Abdullayev, Stefano Bernasconi, Stefan Löhr, Klaus Wemmer, Werner E. Piller, Maxim Rudmin, and Sylvain Richoz
Clim. Past, 17, 1955–1972, https://doi.org/10.5194/cp-17-1955-2021, https://doi.org/10.5194/cp-17-1955-2021, 2021
Short summary
Short summary
We identified the provenance, (post)depositional history, weathering conditions and hydroclimate that formed the detrital and authigenic silicates and soil carbonates of the Valley of Lakes sediments in Central Asia during the Cenozoic (~34 to 21 Ma). Aridification pulses in continental Central Asia coincide with marine glaciation events and are caused by Cenozoic climate forcing and the exhumation of the Tian Shan, Hangay and Altai mountains, which reduced the moisture influx by westerly winds.
Annika Fiskal, Eva Anthamatten, Longhui Deng, Xingguo Han, Lorenzo Lagostina, Anja Michel, Rong Zhu, Nathalie Dubois, Carsten J. Schubert, Stefano M. Bernasconi, and Mark A. Lever
Biogeosciences, 18, 4369–4388, https://doi.org/10.5194/bg-18-4369-2021, https://doi.org/10.5194/bg-18-4369-2021, 2021
Short summary
Short summary
Microbially produced methane can serve as a carbon source for freshwater macrofauna most likely through grazing on methane-oxidizing bacteria. This study investigates the contributions of different carbon sources to macrofaunal biomass. Our data suggest that the average contribution of methane-derived carbon is similar between different fauna but overall remains low. This is further supported by the low abundance of methane-cycling microorganisms.
Alba Zappone, Antonio Pio Rinaldi, Melchior Grab, Quinn C. Wenning, Clément Roques, Claudio Madonna, Anne C. Obermann, Stefano M. Bernasconi, Matthias S. Brennwald, Rolf Kipfer, Florian Soom, Paul Cook, Yves Guglielmi, Christophe Nussbaum, Domenico Giardini, Marco Mazzotti, and Stefan Wiemer
Solid Earth, 12, 319–343, https://doi.org/10.5194/se-12-319-2021, https://doi.org/10.5194/se-12-319-2021, 2021
Short summary
Short summary
The success of the geological storage of carbon dioxide is linked to the availability at depth of a capable reservoir and an impermeable caprock. The sealing capacity of the caprock is a key parameter for long-term CO2 containment. Faults crosscutting the caprock might represent preferential pathways for CO2 to escape. A decameter-scale experiment on injection in a fault, monitored by an integrated network of multiparamerter sensors, sheds light on the mobility of fluids within the fault.
Eric Salomon, Atle Rotevatn, Thomas Berg Kristensen, Sten-Andreas Grundvåg, Gijs Allard Henstra, Anna Nele Meckler, Richard Albert, and Axel Gerdes
Solid Earth, 11, 1987–2013, https://doi.org/10.5194/se-11-1987-2020, https://doi.org/10.5194/se-11-1987-2020, 2020
Short summary
Short summary
This study focuses on the impact of major rift border faults on fluid circulation and hanging wall sediment diagenesis by investigating a well-exposed example in NE Greenland using field observations, U–Pb calcite dating, clumped isotope, and minor element analyses. We show that fault-proximal sediments became calcite cemented quickly after deposition to form a near-impermeable barrier along the fault, which has important implications for border fault zone evolution and reservoir assessments.
Cited articles
Abrajevitch, A., Roberts, A. P., and Kodama, K.:
Volcanic iron fertilization of primary productivity at Kerguelen Plateau, Southern Ocean, through the Middle Miocene Climate Transition,
Palaeogeogr. Palaeocl.,
410, 1–13, https://doi.org/10.1016/j.palaeo.2014.05.028, 2014.
Belkin, I. M. and Gordon, A. L.:
Southern Ocean fronts from the Greenwich meridian to Tasmania,
J. Geophys. Res.,
101, 3675–3696, https://doi.org/10.1029/95jc02750, 1996.
Bemis, B. E., Spero, H. J., Bijma, J., and Lea, D. W.:
Reevaluation of the oxygen isotopic composition of planktonic foraminifera: Experimental results and revised paleotemperature equations,
Paleoceanography,
13, 150–160, https://doi.org/10.1029/98pa00070, 1998.
Berger, W. H.:
Deep-Sea Carbonates: Pleistocene Dissolution Cycles,
J. Foramin. Res.,
3, 187–195, https://doi.org/10.2113/gsjfr.3.4.187, 1973.
Bernasconi, S. M., Hu, B., Wacker, U., Fiebig, J., Breitenbach, S. F. M., and Rutz, T.:
Background effects on Faraday collectors in gas-source mass spectrometry and implications for clumped isotope measurements,
Rapid Commun. Mass Sp.,
27, 603–612, https://doi.org/10.1002/rcm.6490, 2013.
Bernasconi, S. M., Müller, I. A., Bergmann, K. D., Breitenbach, S. F. M., Fernandez, A., Hodell, D. A., Jaggi, M., Meckler, A. N., Millan, I., and Ziegler, M.:
Reducing uncertainties in carbonate clumped isotope analysis through consistent carbonate-based standardization,
Geochem. Geophy. Geosy.,
19, 2895–2914, https://doi.org/10.1029/2017GC007385, 2018.
Billups, K. and Schrag, D. P.: Paleotemperatures and ice volume of the past 27 Myr revisited with paired and measurements on benthic foraminifera, Paleoceanography, 17, 3-1–3-11, https://doi.org/10.1029/2000PA000567, 2002.
Bradshaw, C. D., Langebroek, P. M., Lear, C. H., Lunt, D. J., Coxall, H. K., Sosdian, S. M., and de Boer, A. M.:
Hydrological impact of Middle Miocene Antarctic ice-free areas coupled to deep ocean temperatures,
Nat. Geosci.,
14, 429–436, https://doi.org/10.1038/s41561-021-00745-w, 2021.
Breitenbach, S. F. M., Mleneck-Vautravers, M. J., Grauel, A.-L., Lo, L., Bernasconi, S. M., Müller, I. A., Rolfe, J., Gázquez, F., Greaves, M., and Hodell, D. A.:
Coupled and clumped isotope analyses of foraminifera provide consistent water temperatures,
Geochim. Cosmochim. Ac.,
236, 283–296, https://doi.org/10.1016/j.gca.2018.03.010, 2018.
Burls, N. J., Bradshaw, C. D., De Boer, A. M., Herold, N., Huber, M., Pound, M., Donnadieu, Y., Farnsworth, A., Frigola, A., Gasson, E., von der Heydt, A. S., Hutchinson, D. K., Knorr, G., Lawrence, K. T., Lear, C. H., Li, X., Lohmann, G., Lunt, D. J., Marzocchi, A., Prange, M., Riihimaki, C. A., Sarr, A.-C., Siler, N., and Zhang, Z.:
Simulating Miocene warmth: insights from an opportunistic Multi-Model ensemble (MioMIP1),
Paleoceanography and Paleoclimatology,
36, e2020PA004054, https://doi.org/10.1029/2020PA004054, 2021.
Cao, W., Zahirovic, S., Flament, N., Williams, S., Golonka, J., and Müller, R. D.: Improving global paleogeography since the late Paleozoic using paleobiology, Biogeosciences, 14, 5425–5439, https://doi.org/10.5194/bg-14-5425-2017, 2017.
Chaisson, W. P. and Leckie, R. M.: High-resolution Neogene planktonic foraminifer biostratigraphy of Site 806, Ontong Java Plateau (western equatorial Pacific), Proceedings of the Ocean Drilling Program, Scientific Results, 130, edited by: Berger, W. H., Kroenke, L. W., Mayer, L. A., et al., 137–178, 1993.
Cramer, B. S., Miller, K. G., Barrett, P. J., and Wright, J. D.:
Late Cretaceous–Neogene trends in deep ocean temperature and continental ice volume: Reconciling records of benthic foraminiferal geochemistry (δ18O and ) with sea level history,
J. Geophys. Res.,
116, 1–23, https://doi.org/10.1029/2011jc007255, 2011.
Crampton, J. S., Cody, R. D., Levy, R., Harwood, D., McKay, R., and Naish, T. R.:
Southern Ocean phytoplankton turnover in response to stepwise Antarctic cooling over the past 15 million years,
P. Natl. Acad. Sci. USA,
113, 6868–6873, https://doi.org/10.1073/pnas.1600318113, 2016.
Daëron, M., Blamart, D., Peral, M., and Affek, H. P.:
Absolute isotopic abundance ratios and the accuracy of Δ47 measurements,
Chem. Geol.,
442, 83–96, https://doi.org/10.1016/j.chemgeo.2016.08.014, 2016.
Dalziel, I. W. D., Lawver, L. A., Pearce, J. A., Barker, P. F., Hastie, A. R., Barfod, D. N., Schenke, H.-W., and Davis, M. B.:
A potential barrier to deep Antarctic circumpolar flow until the late Miocene?,
Geology,
41, 947–950, https://doi.org/10.1130/G34352.1, 2013.
de Boer, B., van de Wal, R. S. W., Bintanja, R., Lourens, L. J., and Tuenter, E.:
Cenozoic global ice-volume and temperature simulations with 1-D ice-sheet models forced by benthic δ18O records,
Ann. Glaciol.,
51, 23–33, https://doi.org/10.3189/172756410791392736, 2010.
Defliese, W. F., Hren, M. T., and Lohmann, K. C.:
Compositional and temperature effects of phosphoric acid fractionation on Δ47 analysis and implications for discrepant calibrations,
Chem. Geol.,
396, 51–60, https://doi.org/10.1016/j.chemgeo.2014.12.018, 2015.
Dennis, K. J., Affek, H. P., Passey, B. H., Schrag, D. P., and Eiler, J. M.:
Defining an absolute reference frame for “clumped” isotope studies of CO2,
Geochim. Cosmochim. Ac.,
75, 7117–7131, https://doi.org/10.1016/j.gca.2011.09.025, 2011.
Diester-Haass, L., Billups, K., Jacquemin, I., Emeis, K. C., Lefebvre, V., and François, L.: Paleoproductivity during the middle Miocene carbon isotope events: A data-model approach, Paleoceanography, 28, 334–346, https://doi.org/10.1002/palo.20033, 2013.
Eiler, J. M.:
“Clumped-isotope” geochemistry–The study of naturally-occurring, multiply-substituted isotopologues, Earth Planet. Sc. Lett., 262, 309–327, https://doi.org/10.1016/j.epsl.2007.08.020, 2007.
Eiler, J. M.:
Paleoclimate reconstruction using carbonate clumped isotope thermometry,
Quaternary Sci. Rev.,
30, 3575–3588, https://doi.org/10.1016/j.quascirev.2011.09.001, 2011.
Elderfield, H., Yu, J., Anand, P., Kiefer, T., and Nyland, B.:
Calibrations for benthic foraminiferal paleothermometry and the carbonate ion hypothesis,
Earth Planet. Sc. Lett.,
250, 633–649, https://doi.org/10.1016/j.epsl.2006.07.041, 2006.
Evans, D. and Müller, W.:
Deep time foraminifera paleothermometry: Nonlinear correction for secular change in seawater ,
Paleoceanography,
27, 1–11, https://doi.org/10.1029/2012pa002315, 2012.
Fairbanks, R. G. and Matthews, R. K.:
The marine oxygen isotope record in Pleistocene coral, Barbados, West Indies,
Quaternary Res.,
10, 181–196, https://doi.org/10.1016/0033-5894(78)90100-X, 1978.
Fernandez, A., Müller, I. A., Rodríguez-Sanz, L., van Dijk, J., Looser, N., and Bernasconi, S. M.:
A Reassessment of the Precision of Carbonate Clumped Isotope Measurements: Implications for Calibrations and Paleoclimate Reconstructions,
Geochem. Geophy. Geosy.,
18, 4375–4386, https://doi.org/10.1002/2017gc007106, 2017.
Flower, B. P. and Kennett, J. P.:
Middle Miocene Ocean-Climate Transition – High-Resolution Oxygen and Carbon Isotopic Records from Deep-Sea Drilling Project Site 588A, Southwest Pacific,
Paleoceanography,
8, 811–843, https://doi.org/10.1029/93pa02196, 1993.
Foster, G. L., Lear, C. H., and Rae, J. W. B.: The evolution of pCO2, ice volume and climate during the middle Miocene, Earth Planet. Sc. Lett., 341–344, 243–254, https://doi.org/10.1016/j.epsl.2012.06.007, 2012.
Frigola, A., Prange, M., and Schulz, M.: Boundary conditions for the Middle Miocene Climate Transition (MMCT v1.0), Geosci. Model Dev., 11, 1607–1626, https://doi.org/10.5194/gmd-11-1607-2018, 2018.
Gasson, E., DeConto, R. M., Pollard, D., and Levy, R. H.:
Dynamic Antarctic ice sheet during the early to mid-Miocene,
P. Natl. Acad. Sci. USA,
113, 3459–3464, https://doi.org/10.1073/pnas.1516130113, 2016.
Ghosh, P., Adkins, J., Affek, H., Balta, B., Guo, W., Schauble, E. A., Schrag, D., and Eiler, J. M.:
13C-18O bonds in carbonate minerals: A new kind of paleothermometer,
Geochim. Cosmochim. Ac.,
70, 1439–1456, https://doi.org/10.1016/j.gca.2005.11.014, 2006.
Gottschalk, J., Riveiros, N. V, Waelbroeck, C., Skinner, L. C., Michel, E., Duplessy, J. C., Hodell, D., and Mackensen, A.:
Carbon isotope offsets between benthic foraminifer species of the genus Cibicides (Cibicidoides) in the glacial sub-Antarctic Atlantic,
Paleoceanography,
31, 1583–1602, https://doi.org/10.1002/2016pa003029, 2016.
Gradstein, F. M., Ogg, J. G., Schmitz, M., and Ogg, G.:
The Geologic Time Scale 2012,
Elsevier, Oxford, 2012.
Grauel, A. L., Schmid, T. W., Hu, B., Bergami, C., Capotondi, L., Zhou, L., and Bernasconi, S. M.: Calibration and application of the “clumped isotope” thermometer to foraminifera for high-resolution climate reconstructions,
Geochim. Cosmochim. Ac., 108, 125–140, https://doi.org/10.1016/j.gca.2012.12.049, 2013.
Hamon, N., Sepulchre, P., Lefebvre, V., and Ramstein, G.: The role of eastern Tethys seaway closure in the Middle Miocene Climatic Transition (ca. 14 Ma), Clim. Past, 9, 2687–2702, https://doi.org/10.5194/cp-9-2687-2013, 2013.
He, B., Olack, G. A., and Colman, A. S.:
Pressure baseline correction and high-precision CO2 clumped-isotope (Δ47) measurements in bellows and micro-volume modes,
Rapid Commun. Mass Sp.,
26, 2837–2853, https://doi.org/10.1002/rcm.6436, 2012.
Ho, S. L. and Laepple, T.:
Flat meridional temperature gradient in the early Eocene in the subsurface rather than surface ocean,
Nat. Geosci.,
9, 606–610, https://doi.org/10.1038/ngeo2763, 2016.
Holbourn, A., Kuhnt, W., Simo, J. A., and Li, Q.:
Middle Miocene isotope stratigraphy and paleoceanographic evolution of the northwest and southwest Australian margins (Wombat Plateau and Great Australian Bight),
Palaeogeogr. Palaeocl.,
208, 1–22, https://doi.org/10.1016/j.palaeo.2004.02.003, 2004.
Holbourn, A., Kuhnt, W., Schulz, M., and Erlenkeuser, H.:
Impacts of orbital forcing and atmospheric carbon dioxide on Miocene ice-sheet expansion,
Nature,
438, 483–487, https://doi.org/10.1038/nature04123, 2005.
Holbourn, A., Kuhnt, W., Schulz, M., Flores, J. A., and Andersen, N.:
Orbitally-paced climate evolution during the middle Miocene “Monterey” carbon-isotope excursion,
Earth Planet. Sc. Lett.,
261, 534–550, https://doi.org/10.1016/j.epsl.2007.07.026, 2007.
Holbourn, A., Kuhnt, W., Frank, M., and Haley, B. A.:
Changes in Pacific Ocean circulation following the Miocene onset of permanent Antarctic ice cover,
Earth Planet. Sc. Lett.,
365, 38–50, https://doi.org/10.1016/j.epsl.2013.01.020, 2013.
Holbourn, A., Kuhnt, W., Lyle, M., Schneider, L., Romero, O., and Andersen, N.:
Middle Miocene climate cooling linked to intensification of eastern equatorial Pacific upwelling,
Geology,
42, 19–22, https://doi.org/10.1130/G34890.1, 2014.
Holbourn, A., Kuhnt, W., Frank, M., and Haley, B.: Middle Miocene benthic oxygen and carbon stable isotopes of ODP Site 130-806B, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.895208, 2018.
Hu, B., Radke, J., Schlüter, H. J., Heine, F. T., Zhou, L., and Bernasconi, S. M.:
A modified procedure for gas-source isotope ratio mass spectrometry: the long-integration dual-inlet (LIDI) methodology and implications for clumped isotope measurements,
Rapid Commun. Mass Sp.,
28, 1413–1425, https://doi.org/10.1002/rcm.6909, 2014.
Huntington, K. W., Eiler, J. M., Affek, H. P., Guo, W., Bonifacie, M., Yeung, L. Y., Thiagarajan, N., Passey, B. H., Tripati, A. K., Daëron, M., and Came, R.:
Methods and limitations of 'clumped' CO2 isotope (Δ47) analysis by gas-source isotope ratio mass spectrometry,
J. Mass Spectrom.,
44, 1318–1329, https://doi.org/10.1002/jms.1614, 2009.
John, C. M. and Bowen, D.:
Community software for challenging isotope analysis: First applications of 'Easotope' to clumped isotopes,
Rapid Commun. Mass Sp.,
30, 2285–2300, https://doi.org/10.1002/rcm.7720, 2016.
Kele, S., Breitenbach, S. F. M., Capezzuoli, E., Meckler, A. N., Ziegler, M., Millan, I. M., Kluge, T., Deák, J., Hanselmann, K., John, C. M., Yan, H., Liu, Z., and Bernasconi, S. M.:
Temperature dependence of oxygen- and clumped isotope fractionation in carbonates: A study of travertines and tufas in the 6–95 ∘C temperature range,
Geochim. Cosmochim. Ac.,
168, 172–192, https://doi.org/10.1016/j.gca.2015.06.032, 2015.
Knorr, G. and Lohmann, G.:
Climate warming during Antarctic ice sheet expansion at the Middle Miocene transition,
Nat. Geosci.,
7, 376–381, https://doi.org/10.1038/NGEO2119, 2014.
Kochhann, K. G. D., Holbourn, A., Kuhnt, W., Channell, J. E. T., Lyle, M., Shackford, J. K., Wilkens, R. H., and Andersen, N.:
Eccentricity pacing of eastern equatorial Pacific carbonate dissolution cycles during the Miocene Climatic Optimum,
Paleoceanography,
31, 1176–1192, https://doi.org/10.1002/2016PA002988, 2016.
Kominz, M. A., Browning, J. V, Miller, K. G., Sugarman, P. J., Mizintseva, S., and Scotese, C. R.:
Late Cretaceous to Miocene sea-level estimates from the New Jersey and Delaware coastal plain coreholes: an error analysis,
Basin Res.,
20, 211–226, https://doi.org/10.1111/j.1365-2117.2008.00354.x, 2008.
Kuhnert, H., Bickert, T., and Paulsen, H.:
Southern Ocean frontal system changes precede Antarctic ice sheet growth during the middle Miocene,
Earth Planet. Sc. Lett.,
284, 630–638, https://doi.org/10.1016/j.epsl.2009.05.030, 2009.
Lagabrielle, Y., Goddéris, Y., Donnadieu, Y., Malavieille, J., and Suarez, M.:
The tectonic history of Drake Passage and its possible impacts on global climate,
Earth Planet. Sc. Lett.,
279, 197–211, https://doi.org/10.1016/j.epsl.2008.12.037, 2009.
Langebroek, P. M., Paul, A., and Schulz, M.: Antarctic ice-sheet response to atmospheric CO2 and insolation in the Middle Miocene, Clim. Past, 5, 633–646, https://doi.org/10.5194/cp-5-633-2009, 2009.
Langebroek, P. M., Paul, A., and Schulz, M.: Simulating the sea level imprint on marine oxygen isotope records during the middle Miocene using an ice sheet–climate model, Paleoceanography, 25, PA4203, https://doi.org/10.1029/2008PA001704, 2010.
Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A. C. M., and Levrard, B.:
A long-term numerical solution for the insolation quantities of the Earth,
Astron. Astrophys.,
428, 261–285, https://doi.org/10.1051/0004-6361:20041335, 2004.
Lear, C. H., Rosenthal, Y., and Slowey, N.:
Benthic foraminiferal -paleothermometry: A revised core-top calibration,
Geochim. Cosmochim. Ac.,
66, 3375–3387, https://doi.org/10.1016/s0016-7037(02)00941-9, 2002.
Lear, C. H., Mawbey, E. M., and Rosenthal, Y.:
Cenozoic benthic foraminiferal and records: Toward unlocking temperatures and saturation states,
Paleoceanography,
25, 1–11, https://doi.org/10.1029/2009PA001880, 2010.
Lear, C. H., Coxall, H. K., Foster, G. L., Lunt, D. J., Mawbey, E. M., Rosenthal, Y., Sosdian, S. M., Thomas, E., and Wilson, P. A.:
Neogene ice volume and ocean temperatures: Insights from infaunal foraminiferal paleothermometry,
Paleoceanography,
30, 1437–1454, https://doi.org/10.1002/2015PA002833, 2015.
Leutert, T. J., Sexton, P. F., Tripati, A., Piasecki, A., Ho, S. L., and Meckler, A. N.:
Sensitivity of clumped isotope temperatures in fossil benthic and planktic foraminifera to diagenetic alteration,
Geochim. Cosmochim. Ac.,
257, 354–372, https://doi.org/10.1016/j.gca.2019.05.005, 2019.
Leutert, T. J., Auderset, A., Martínez-García, A., Modestou, S., and Meckler, A. N.: Coupled Southern Ocean cooling and Antarctic ice sheet expansion during the middle Miocene, Nat. Geosci., 13, 634–639, https://doi.org/10.1038/s41561-020-0623-0, 2020.
Leutert, T. J., Modestou, S., Bernasconi, S. M., and Meckler, A. N.: Clumped isotope bottom water temperature record data from Ocean Drilling Program (ODP) Site 747, Version 1.0, Interdisciplinary Earth Data Alliance [data set], https://doi.org/10.26022/IEDA/111808, 2021a.
Leutert, T. J., Modestou, S., Bernasconi, S. M., and Meckler, A. N.: Middle Miocene bottom water carbonate clumped isotope temperatures, ODP Hole 120-747A, Kerguelen Plateau, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.923258, 2021b.
Levy, R., Harwood, D., Florindo, F., Sangiorgi, F., Tripati, R., von Eynatten, H., Gasson, E., Kuhn, G., Tripati, A., DeConto, R., Fielding, C., Field, B., Golledge, N., McKay, R., Naish, T., Olney, M., Pollard, D., Schouten, S., Talarico, F., Warny, S., Willmott, V., Acton, G., Panter, K., Paulsen, T., Taviani, M., and SMS Science Team:
Antarctic ice sheet sensitivity to atmospheric CO2 variations in the early to mid-Miocene,
P. Natl. Acad. Sci. USA, 113, 3453–3458, https://doi.org/10.1073/pnas.1516030113, 2016.
Lewis, A. R., Marchant, D. R., Ashworth, A. C., Hemming, S. R., and Machlus, M. L.:
Major middle Miocene global climate change: Evidence from East Antarctica and the Transantarctic Mountains,
Geol. Soc. Am. Bull.,
119, 1449–1461, https://doi.org/10.1130/0016-7606(2007)119[1449:Mmmgcc]2.0.Co;2, 2007.
Locarnini, R. A., Mishonov, A. V, Antonov, J. I., Boyer, T. P., Garcia, H. E., Baranova, O. K., Zweng, M. M., Paver, C. R., Reagan, J. R., Johnson, D. R., Hamilton, M., and Seidov, D.: World Ocean Atlas 2013, Volume 1: Temperature, edited by: Levitus, S. and Mishonov, A., NOAA Atlas NESDIS 73, 40 pp., 2013.
Majewski, W. and Bohaty, S. M.:
Surface-water cooling and salinity decrease during the Middle Miocene climate transition at Southern Ocean ODP Site 747 (Kerguelen Plateau),
Mar. Micropaleontol.,
74, 1–14, https://doi.org/10.1016/j.marmicro.2009.10.002, 2010.
Marchitto, T. M., Curry, W. B., Lynch-Stieglitz, J., Bryan, S. P., Cobb, K. M., and Lund, D. C.:
Improved oxygen isotope temperature calibrations for cosmopolitan benthic foraminifera,
Geochim. Cosmochim. Ac.,
130, 1–11, https://doi.org/10.1016/j.gca.2013.12.034, 2014.
Matthews, K. J., Maloney, K. T., Zahirovic, S., Williams, S. E., Seton, M., and Müller, D.:
Global plate boundary evolution and kinematics since the late Paleozoic,
Global Planet. Change,
146, 226–250, https://doi.org/10.1016/j.gloplacha.2016.10.002, 2016.
Meckler, A. N., Ziegler, M., Millan, M. I., Breitenbach, S. F. M., and Bernasconi, S. M.:
Long-term performance of the Kiel carbonate device with a new correction scheme for clumped isotope measurements,
Rapid Commun. Mass Sp.,
28, 1705–1715, https://doi.org/10.1002/rcm.6949, 2014.
Meinicke, N., Ho, S. L., Hannisdal, B., Nürnberg, D., Tripati, A., Schiebel, R., and Meckler, A. N.:
A robust calibration of the clumped isotopes to temperature relationship for foraminifers,
Geochim. Cosmochim. Ac.,
270, 160–183, https://doi.org/10.1016/j.gca.2019.11.022, 2020.
Modestou, S. E., Leutert, T. J., Fernandez, A., Lear, C. H., and Meckler, A. N.: Warm middle Miocene Indian Ocean bottom water temperatures: comparison of clumped isotope and -based estimates, Paleoceanography and Paleoclimatology, 35, e2020PA003927, https://doi.org/10.1029/2020PA003927, 2020.
Müller, I. A., Fernandez, A., Radke, J., van Dijk, J., Bowen, D., Schwieters, J., and Bernasconi, S. M.:
Carbonate clumped isotope analyses with the long-integration dual-inlet (LIDI) workflow: scratching at the lower sample weight boundaries,
Rapid Commun. Mass Sp.,
31, 1057–1066, https://doi.org/10.1002/rcm.7878, 2017.
Müller, R. D., Cannon, J., Qin, X., Watson, R. J., Gurnis, M., Williams, S., Pfaffelmoser, T., Seton, M., Russell, S. H. J., and Zahirovic, S.:
GPlates: Building a Virtual Earth Through Deep Time,
Geochem. Geophy. Geosy.,
19, 2243–2261, https://doi.org/10.1029/2018GC007584, 2018.
Nathan, S. A. and Leckie, R. M.:
Early history of the Western Pacific Warm Pool during the middle to late Miocene (∼ 13.2–5.8 Ma): Role of sea-level change and implications for equatorial circulation,
Palaeogeogr. Palaeocl.,
274, 140–159, https://doi.org/10.1016/j.palaeo.2009.01.007, 2009.
Paillard, D., Labeyrie, L., and Yiou, P.: Macintosh program performs time-series analysis, EOS T. Am. Geophys Un., 77, 379, https://doi.org/10.1029/96EO00259, 1996.
Pearson, P. N., Ditchfield, P. W., Singano, J., Harcourt-Brown, K. G., Nicholas, C. J., Olsson, R. K., Shackleton, N. J., and Hall, M. A.: Warm tropical sea surface temperatures in the Late Cretaceous and Eocene epochs, Nature, 413, 481–487, https://doi.org/10.1038/35097000, 2001.
Peral, M., Daëron, M., Blamart, D., Bassinot, F., Dewilde, F., Smialkowski, N., Isguder, G., Bonnin, J., Jorissen, F., Kissel, C., Michel, E., Vázquez Riveiros, N., and Waelbroeck, C.: Updated calibration of the clumped isotope thermometer in planktonic and benthic foraminifera,
Geochim. Cosmochim. Ac., 239, 1–16, https://doi.org/10.1016/j.gca.2018.07.016, 2018.
Pérez, L. F., Martos, Y. M., García, M., Weber, M. E., Raymo, M. E., Williams, T., Bohoyo, F., Armbrecht, L., Bailey, I., Brachfeld, S., Glüder, A., Guitard, M., Gutjahr, M., Hemming, S., Hernández-Almeida, I., Hoem, F. S., Kato, Y., O'Connell, S., Peck, V. L., Reilly, B., Ronge, T. A., Tauxe, L., Warnock, J., Zheng, X. and the IODP Expedition 382 Scientists:
Miocene to present oceanographic variability in the Scotia Sea and Antarctic ice sheets dynamics: Insight from revised seismic-stratigraphy following IODP Expedition 382, Earth Planet. Sc. Lett., 553, 116657, https://doi.org/10.1016/j.epsl.2020.116657, 2021.
Piasecki, A., Bernasconi, S. M., Grauel, A.-L., Hannisdal, B., Ho, S. L., Leutert, T. J., Marchitto, T. M., Meinicke, N., Tisserand, A., and Meckler, N.: Application of Clumped Isotope Thermometry to Benthic Foraminifera,
Geochem. Geophy. Geosy., 20, 2082–2090, https://doi.org/10.1029/2018GC007961, 2019.
Pierce, E. L., van de Flierdt, T., Williams, T., Hemming, S. R., Cook, C. P., and Passchier, S.: Evidence for a dynamic East Antarctic ice sheet during the mid-Miocene climate transition, Earth Planet. Sc. Lett., 478, 1–13, https://doi.org/10.1016/j.epsl.2017.08.011, 2017.
Regenberg, M., Regenberg, A., Garbe-Schönberg, D., and Lea, D. W.:
Global dissolution effects on planktonic foraminiferal ratios controlled by the calcite-saturation state of bottom waters,
Paleoceanography,
29, 127–142, https://doi.org/10.1002/2013pa002492, 2014.
Rodríguez-Sanz, L., Bernasconi, S. M., Marino, G., Heslop, D., Müller, I. A., Fernandez, A., Grant, K. M., and Rohling, E. J.:
Penultimate deglacial warming across the Mediterranean Sea revealed by clumped isotopes in foraminifera,
Sci. Rep., 7, 1–11, https://doi.org/10.1038/s41598-017-16528-6, 2017.
Sangiorgi, F., Bijl, P. K., Passchier, S., Salzmann, U., Schouten, S., McKay, R., Cody, R. D., Pross, J., van de Flierdt, T., Bohaty, S. M., Levy, R., Williams, T., Escutia, C., and Brinkhuis, H.:
Southern Ocean warming and Wilkes Land ice sheet retreat during the mid-Miocene,
Nat. Commun.,
9, 1–11, https://doi.org/10.1038/s41467-017-02609-7, 2018.
Schauble, E. A., Ghosh, P., and Eiler, J. M.:
Preferential formation of 13C-18O bonds in carbonate minerals, estimated using first-principles lattice dynamics,
Geochim. Cosmochim. Ac.,
70, 2510–2529, https://doi.org/10.1016/j.gca.2006.02.011, 2006.
Schlich, R., Wise, S. W., and the Expedition 120 Scientists:
Site 747,
in: Proceedings of the Ocean Drilling Program, Initial Reports, 120, pp. 89–156, 1989.
Schlitzer, R.: Ocean Data View, available at: https://odv.awi.de, last access: 2 June 2020.
Schmid, T. W. and Bernasconi, S. M.:
An automated method for `clumped-isotope' measurements on small carbonate samples,
Rapid Commun. Mass Sp.,
24, 1955–1963, https://doi.org/10.1002/rcm.4598, 2010.
Schmid, T. W., Radke, J., and Bernasconi, S. M.:
Clumped-isotope measurements on small carbonate samples with a Kiel IV carbonate device and a MAT 253 mass spectrometer, Thermo Fisher Application Note 2012, 30233, 2012.
Shevenell, A. E., Kennett, J. P., and Lea, D. W.:
Middle Miocene Southern Ocean Cooling and Antarctic Cryosphere Expansion,
Science,
305, 1766–1770, https://doi.org/10.1126/science.1100061, 2004.
Shevenell, A. E., Kennett, J. P., and Lea, D. W.:
Middle Miocene ice sheet dynamics, deep-sea temperatures, and carbon cycling: A Southern Ocean perspective,
Geochem. Geophy. Geosy.,
9, 1–14, https://doi.org/10.1029/2007GC001736, 2008.
Shipboard Scientific Party: Site 806, in: Proceedings of the Ocean Drilling Program, Initial Reports, edited by: Kroenke, L. W., Berger, W. H., Janecek, T. R., and Shipboard Scientific
Party, Ocean Drilling Program, College Station, TX, 130, 291–367, 1991.
Sigman, D. M., Jaccard, S. L., and Haug, G. H.:
Polar ocean stratification in a cold climate,
Nature,
428, 59–63, https://doi.org/10.1038/nature02357, 2004.
Sosdian, S. M., Greenop, R., Hain, M. P., Foster, G. L., Pearson, P. N., and Lear, C. H.:
Constraining the evolution of Neogene ocean carbonate chemistry using the boron isotope pH proxy,
Earth Planet. Sc. Lett.,
498, 362–376, https://doi.org/10.1016/j.epsl.2018.06.017, 2018.
Steinthorsdottir, M., Coxall, H. K., de Boer, A. M., Huber, M., Barbolini, N., Bradshaw, C. D., Burls, N. J., Feakins, S. J., Gasson, E., Henderiks, J., Holbourn, A., Kiel, S., Kohn, M. J., Knorr, G., Kürschner, W. M., Lear, C. H., Liebrand, D., Lunt, D. J., Mörs, T., Pearson, P. N., Pound, M. J., Stoll, H., and Strömberg, C. A. E.: The Miocene: the Future of the Past,
Paleoceanography and Paleoclimatology, 36, e2020PA004037, https://doi.org/10.1029/2020PA004037, 2020.
Super, J. R., Thomas, E., Pagani, M., Huber, M., O'Brien, C., and Hull, P. M.:
North Atlantic temperature and pCO2 coupling in the early-middle Miocene,
Geology,
46, 519–522, https://doi.org/10.1130/g40228.1, 2018.
Thiede, J., Jessen, C., Knutz, P., Kuijpers, A., Mikkelsen, N., Nørgaard-Pedersen, N., and Spielhagen, R. F.:
Millions of years of Greenland Ice Sheet history recorded in ocean sediments,
Polarforschung,
80, 141–159, https://doi.org/10.2312/polarforschung.80.3.141, 2011.
Tian, J., Ma, X., Zhou, J., Jiang, X., Lyle, M., Shackford, J., and Wilkens, R.:
Paleoceanography of the east equatorial Pacific over the past 16 Myr and Pacific–Atlantic comparison: High resolution benthic foraminiferal δ18O and δ13C records at IODP Site U1337,
Earth Planet. Sc. Lett.,
499, 185–196, https://doi.org/10.1016/j.epsl.2018.07.025, 2018.
Torsvik, T. H., Van der Voo, R., Preeden, U., Mac Niocaill, C., Steinberger, B., Doubrovine, P. V, van Hinsbergen, D. J. J., Domeier, M., Gaina, C., Tohver, E., Meert, J. G., McCausland, P. J. A., and Cocks, L. R. M.:
Phanerozoic polar wander, palaeogeography and dynamics,
Earth-Sci. Rev.,
114, 325–368, https://doi.org/10.1016/j.earscirev.2012.06.007, 2012.
Tripati, A. K., Eagle, R. A., Thiagarajan, N., Gagnon, A. C., Bauch, H., Halloran, P. R., and Eiler, J. M.: 13C−18O isotope signatures and ‘clumped isotope’ thermometry in foraminifera and coccoliths, Geochim. Cosmochim. Ac., 74, 5697–5717, https://doi.org/10.1016/j.gca.2010.07.006, 2010.
Tripati, A. K., Hill, P. S., Eagle, R. A., Mosenfelder, J. L., Tang, J., Schauble, E. A., Eiler, J. M., Zeebe, R. E., Uchikawa, J., Coplen, T. B., Ries, J. B., and Henry, D.:
Beyond temperature: Clumped isotope signatures in dissolved inorganic carbon species and the influence of solution chemistry on carbonate mineral composition,
Geochim. Cosmochim. Ac.,
166, 344–371, https://doi.org/10.1016/j.gca.2015.06.021, 2015.
van Hinsbergen, D. J. J., de Groot, L. V, van Schaik, S. J., Spakman, W., Bijl, P. K., Sluijs, A., Langereis, C. G., and Brinkhuis, H.:
A Paleolatitude Calculator for Paleoclimate Studies,
PLoS One,
10, 1–21, https://doi.org/10.1371/journal.pone.0126946, 2015.
Vázquez Riveiros, N., Govin, A., Waelbroeck, C., Mackensen, A., Michel, E., Moreira, S., Bouinot, T., Caillon, N., Orgun, A., and Brandon, M.:
thermometry in planktic foraminifera: Improving paleotemperature estimations for G. bulloides and N. pachyderma left,
Geochem. Geophy. Geosy.,
17, 1249–1264, https://doi.org/10.1002/2015gc006234, 2016.
Vincent, E. and Berger, W. H.:
Carbon Dioxide and Polar Cooling in the Miocene: The Monterey Hypothesis,
in: The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present, vol. 32,
edited by: Sundquist, E. T. and Broecker, W. S.,
AGU, Washington, DC, pp. 455–468, 1985.
Watkins, J. M. and Hunt, J. D.:
A process-based model for non-equilibrium clumped isotope effects in carbonates,
Earth Planet. Sc. Lett.,
432, 152–165, https://doi.org/10.1016/j.epsl.2015.09.042, 2015.
Woodruff, F. and Savin, S. M.:
Miocene Deepwater Oceanography,
Paleoceanography,
4, 87–140, https://doi.org/10.1029/PA004i001p00087, 1989.
Yu, J. M. and Elderfield, H.:
in the benthic foraminifera Cibicidoides wuellerstorfi and Cibicidoides mundulus: Temperature versus carbonate ion saturation,
Earth Planet. Sc. Lett.,
276, 129–139, https://doi.org/10.1016/j.epsl.2008.09.015, 2008.
Zachos, J. C., Pagani, M., Sloan, L., Thomas, E., and Billups, K.:
Trends, rhythms, and aberrations in global climate 65 Ma to present,
Science,
292, 686–693, https://doi.org/10.1126/science.1059412, 2001.
Zeebe, R. E.:
An explanation of the effect of seawater carbonate concentration on foraminiferal oxygen isotopes,
Geochim. Cosmochim. Ac.,
63, 2001–2007, https://doi.org/10.1016/S0016-7037(99)00091-5, 1999.
Short summary
The Miocene climatic optimum associated with high atmospheric CO2 levels (~17–14 Ma) was followed by a period of dramatic climate change. We present a clumped isotope-based bottom-water temperature record from the Southern Ocean covering this key climate transition. Our record reveals warm conditions and a substantial cooling preceding the main ice volume increase, possibly caused by thresholds involved in ice growth and/or regional effects at our study site.
The Miocene climatic optimum associated with high atmospheric CO2 levels (~17–14 Ma) was...