Articles | Volume 17, issue 5
https://doi.org/10.5194/cp-17-2255-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-17-2255-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Southern Ocean bottom-water cooling and ice sheet expansion during the middle Miocene climate transition
Bjerknes Centre for Climate Research, Bergen, 5007, Norway
Department of Earth Science, University of Bergen, Bergen, 5007, Norway
present address: Max Planck Institute for Chemistry, Mainz, 55128, Germany
Sevasti Modestou
Bjerknes Centre for Climate Research, Bergen, 5007, Norway
Department of Earth Science, University of Bergen, Bergen, 5007, Norway
Stefano M. Bernasconi
Geological Institute, ETH Zurich, Zurich, 8092, Switzerland
A. Nele Meckler
Bjerknes Centre for Climate Research, Bergen, 5007, Norway
Department of Earth Science, University of Bergen, Bergen, 5007, Norway
Related authors
No articles found.
Alexander J. Clark, Ismael Torres-Romero, Madalina Jaggi, Stefano M. Bernasconi, and Heather M. Stoll
Clim. Past, 20, 2081–2101, https://doi.org/10.5194/cp-20-2081-2024, https://doi.org/10.5194/cp-20-2081-2024, 2024
Short summary
Short summary
Coccoliths are abundant in sediments across the world’s oceans, yet it is difficult to apply traditional carbon or oxygen isotope methodologies for temperature reconstructions. We show that our coccolith clumped isotope temperature calibration with well-constrained temperatures systematically differs from inorganic carbonate calibrations. We suggest the use of our well-constrained calibration for future coccolith carbonate temperature reconstructions.
Anna Hauge Braaten, Kim A. Jakob, Sze Ling Ho, Oliver Friedrich, Eirik Vinje Galaasen, Stijn De Schepper, Paul A. Wilson, and Anna Nele Meckler
Clim. Past, 19, 2109–2125, https://doi.org/10.5194/cp-19-2109-2023, https://doi.org/10.5194/cp-19-2109-2023, 2023
Short summary
Short summary
In the context of understanding current global warming, the middle Pliocene (3.3–3.0 million years ago) is an important interval in Earth's history because atmospheric carbon dioxide concentrations were similar to levels today. We have reconstructed deep-sea temperatures at two different locations for this period, and find that a very different mode of ocean circulation or mixing existed, with important implications for how heat was transported in the deep ocean.
Jasmine S. Berg, Paula C. Rodriguez, Cara Magnabosco, Longhui Deng, Stefano M. Bernasconi, Hendrik Vogel, Marina Morlock, and Mark A. Lever
EGUsphere, https://doi.org/10.5194/egusphere-2023-2102, https://doi.org/10.5194/egusphere-2023-2102, 2023
Preprint archived
Short summary
Short summary
The addition of sulfur to organic matter is generally thought to protect it from microbial degradation. We analyzed buried sulfur compounds in a 10-m sediment core representing the entire ~13,500 year history of an alpine lake. Surprisingly, organic sulfur and pyrite formed very rapidly and were characterized by very light isotope signatures that suggest active microbial sulfur cycling in the deep subsurface.
Jenny Maccali, Anna Nele Meckler, Stein-Erik Lauritzen, Torill Brekken, Helen Aase Rokkan, Alvaro Fernandez, Yves Krüger, Jane Adigun, Stéphane Affolter, and Markus Leuenberger
Clim. Past, 19, 1847–1862, https://doi.org/10.5194/cp-19-1847-2023, https://doi.org/10.5194/cp-19-1847-2023, 2023
Short summary
Short summary
The southern coast of South Africa hosts some key archeological sites for the study of early human evolution. Here we present a short but high-resolution record of past changes in the hydroclimate and temperature on the southern coast of South Africa based on the study of a speleothem collected from Bloukrantz Cave. Overall, the paleoclimate indicators suggest stable temperature from 48.3 to 45.2 ka, whereas precipitation was variable, with marked short drier episodes.
Cinthya Esther Nava Fernandez, Tobias Braun, Bethany Fox, Adam Hartland, Ola Kwiecien, Chelsea Pederson, Sebastian Hoepker, Stefano Bernasconi, Madalina Jaggi, John Hellstrom, Fernando Gázquez, Amanda French, Norbert Marwan, Adrian Immenhauser, and Sebastian Franz Martin Breitenbach
Clim. Past Discuss., https://doi.org/10.5194/cp-2021-172, https://doi.org/10.5194/cp-2021-172, 2022
Manuscript not accepted for further review
Short summary
Short summary
We provide a ca. 1000 year long (6.4–5.4 ka BP) stalagmite-based reconstruction of mid-Holocene rainfall variability in the tropical western Pacific. The annually laminated multi-proxy (δ13C, δ18O, X/Ca, gray values) record comes from Niue island and informs on El Nino-Southern Oscillation and South Pacific Convergence Zone dynamics. Our data suggest that ENSO was active and influenced rainfall seasonality over the covered time interval. Rainfall seasonality was subdued during active ENSO phases
Luca Smeraglia, Nathan Looser, Olivier Fabbri, Flavien Choulet, Marcel Guillong, and Stefano M. Bernasconi
Solid Earth, 12, 2539–2551, https://doi.org/10.5194/se-12-2539-2021, https://doi.org/10.5194/se-12-2539-2021, 2021
Short summary
Short summary
In this paper, we dated fault movements at geological timescales which uplifted the sedimentary successions of the Jura Mountains from below the sea level up to Earth's surface. To do so, we applied the novel technique of U–Pb geochronology on calcite mineralizations that precipitated on fault surfaces during times of tectonic activity. Our results document a time frame of the tectonic evolution of the Jura Mountains and provide new insight into the broad geological history of the Western Alps.
Andre Baldermann, Oliver Wasser, Elshan Abdullayev, Stefano Bernasconi, Stefan Löhr, Klaus Wemmer, Werner E. Piller, Maxim Rudmin, and Sylvain Richoz
Clim. Past, 17, 1955–1972, https://doi.org/10.5194/cp-17-1955-2021, https://doi.org/10.5194/cp-17-1955-2021, 2021
Short summary
Short summary
We identified the provenance, (post)depositional history, weathering conditions and hydroclimate that formed the detrital and authigenic silicates and soil carbonates of the Valley of Lakes sediments in Central Asia during the Cenozoic (~34 to 21 Ma). Aridification pulses in continental Central Asia coincide with marine glaciation events and are caused by Cenozoic climate forcing and the exhumation of the Tian Shan, Hangay and Altai mountains, which reduced the moisture influx by westerly winds.
Annika Fiskal, Eva Anthamatten, Longhui Deng, Xingguo Han, Lorenzo Lagostina, Anja Michel, Rong Zhu, Nathalie Dubois, Carsten J. Schubert, Stefano M. Bernasconi, and Mark A. Lever
Biogeosciences, 18, 4369–4388, https://doi.org/10.5194/bg-18-4369-2021, https://doi.org/10.5194/bg-18-4369-2021, 2021
Short summary
Short summary
Microbially produced methane can serve as a carbon source for freshwater macrofauna most likely through grazing on methane-oxidizing bacteria. This study investigates the contributions of different carbon sources to macrofaunal biomass. Our data suggest that the average contribution of methane-derived carbon is similar between different fauna but overall remains low. This is further supported by the low abundance of methane-cycling microorganisms.
Alba Zappone, Antonio Pio Rinaldi, Melchior Grab, Quinn C. Wenning, Clément Roques, Claudio Madonna, Anne C. Obermann, Stefano M. Bernasconi, Matthias S. Brennwald, Rolf Kipfer, Florian Soom, Paul Cook, Yves Guglielmi, Christophe Nussbaum, Domenico Giardini, Marco Mazzotti, and Stefan Wiemer
Solid Earth, 12, 319–343, https://doi.org/10.5194/se-12-319-2021, https://doi.org/10.5194/se-12-319-2021, 2021
Short summary
Short summary
The success of the geological storage of carbon dioxide is linked to the availability at depth of a capable reservoir and an impermeable caprock. The sealing capacity of the caprock is a key parameter for long-term CO2 containment. Faults crosscutting the caprock might represent preferential pathways for CO2 to escape. A decameter-scale experiment on injection in a fault, monitored by an integrated network of multiparamerter sensors, sheds light on the mobility of fluids within the fault.
Eric Salomon, Atle Rotevatn, Thomas Berg Kristensen, Sten-Andreas Grundvåg, Gijs Allard Henstra, Anna Nele Meckler, Richard Albert, and Axel Gerdes
Solid Earth, 11, 1987–2013, https://doi.org/10.5194/se-11-1987-2020, https://doi.org/10.5194/se-11-1987-2020, 2020
Short summary
Short summary
This study focuses on the impact of major rift border faults on fluid circulation and hanging wall sediment diagenesis by investigating a well-exposed example in NE Greenland using field observations, U–Pb calcite dating, clumped isotope, and minor element analyses. We show that fault-proximal sediments became calcite cemented quickly after deposition to form a near-impermeable barrier along the fault, which has important implications for border fault zone evolution and reservoir assessments.
Annika Fiskal, Longhui Deng, Anja Michel, Philip Eickenbusch, Xingguo Han, Lorenzo Lagostina, Rong Zhu, Michael Sander, Martin H. Schroth, Stefano M. Bernasconi, Nathalie Dubois, and Mark A. Lever
Biogeosciences, 16, 3725–3746, https://doi.org/10.5194/bg-16-3725-2019, https://doi.org/10.5194/bg-16-3725-2019, 2019
Maria Andrianaki, Juna Shrestha, Florian Kobierska, Nikolaos P. Nikolaidis, and Stefano M. Bernasconi
Hydrol. Earth Syst. Sci., 23, 3219–3232, https://doi.org/10.5194/hess-23-3219-2019, https://doi.org/10.5194/hess-23-3219-2019, 2019
Short summary
Short summary
We tested the performance of the SWAT hydrological model after being transferred from a small Alpine watershed to a greater area. We found that the performance of the model for the greater catchment was satisfactory and the climate change simulations gave insights into the impact of climate change on our site. Assessment tests are important in identifying the strengths and weaknesses of the models when they are applied under extreme conditions different to the ones that were calibrated.
Maximilian Rieder, Wencke Wegner, Monika Horschinegg, Stefanie Klackl, Nereo Preto, Anna Breda, Susanne Gier, Urs Klötzli, Stefano M. Bernasconi, Gernot Arp, and Patrick Meister
Solid Earth, 10, 1243–1267, https://doi.org/10.5194/se-10-1243-2019, https://doi.org/10.5194/se-10-1243-2019, 2019
Short summary
Short summary
The formation of dolomite (CaMg(CO3)2), an abundant mineral in Earth's geological record, is still incompletely understood. We studied dolomites embedded in a 100 m thick succession of coastal alluvial clays of Triassic age in the southern Alps. Observation by light microscopy and Sr isotopes suggests that dolomites may spontaneously from concentrated evaporating seawater, in coastal ephemeral lakes or tidal flats along the western margin of the Triassic Tethys sea.
Christopher J. Hollis, Tom Dunkley Jones, Eleni Anagnostou, Peter K. Bijl, Marlow Julius Cramwinckel, Ying Cui, Gerald R. Dickens, Kirsty M. Edgar, Yvette Eley, David Evans, Gavin L. Foster, Joost Frieling, Gordon N. Inglis, Elizabeth M. Kennedy, Reinhard Kozdon, Vittoria Lauretano, Caroline H. Lear, Kate Littler, Lucas Lourens, A. Nele Meckler, B. David A. Naafs, Heiko Pälike, Richard D. Pancost, Paul N. Pearson, Ursula Röhl, Dana L. Royer, Ulrich Salzmann, Brian A. Schubert, Hannu Seebeck, Appy Sluijs, Robert P. Speijer, Peter Stassen, Jessica Tierney, Aradhna Tripati, Bridget Wade, Thomas Westerhold, Caitlyn Witkowski, James C. Zachos, Yi Ge Zhang, Matthew Huber, and Daniel J. Lunt
Geosci. Model Dev., 12, 3149–3206, https://doi.org/10.5194/gmd-12-3149-2019, https://doi.org/10.5194/gmd-12-3149-2019, 2019
Short summary
Short summary
The Deep-Time Model Intercomparison Project (DeepMIP) is a model–data intercomparison of the early Eocene (around 55 million years ago), the last time that Earth's atmospheric CO2 concentrations exceeded 1000 ppm. Previously, we outlined the experimental design for climate model simulations. Here, we outline the methods used for compilation and analysis of climate proxy data. The resulting climate
atlaswill provide insights into the mechanisms that control past warm climate states.
F. Kobierska, T. Jonas, J. W. Kirchner, and S. M. Bernasconi
Hydrol. Earth Syst. Sci., 19, 3681–3693, https://doi.org/10.5194/hess-19-3681-2015, https://doi.org/10.5194/hess-19-3681-2015, 2015
C. von Sperber, F. Tamburini, B. Brunner, S. M. Bernasconi, and E. Frossard
Biogeosciences, 12, 4175–4184, https://doi.org/10.5194/bg-12-4175-2015, https://doi.org/10.5194/bg-12-4175-2015, 2015
Related subject area
Subject: Proxy Use-Development-Validation | Archive: Marine Archives | Timescale: Cenozoic
A clumped isotope calibration of coccoliths at well-constrained culture temperatures for marine temperature reconstructions
Can we reliably reconstruct the mid-Pliocene Warm Period with sparse data and uncertain models?
Southern Ocean control on atmospheric CO2 changes across late-Pliocene Marine Isotope Stage M2
Paleocene–Eocene age glendonites from the Mid-Norwegian Margin – indicators of cold snaps in the hothouse?
Assessing environmental change associated with early Eocene hyperthermals in the Atlantic Coastal Plain, USA
Technical note: A new online tool for δ18O–temperature conversions
A 15-million-year surface- and subsurface-integrated TEX86 temperature record from the eastern equatorial Atlantic
Sclerochronological evidence of pronounced seasonality from the late Pliocene of the southern North Sea basin and its implications
Pliocene evolution of the tropical Atlantic thermocline depth
Maastrichtian–Rupelian paleoclimates in the southwest Pacific – a critical re-evaluation of biomarker paleothermometry and dinoflagellate cyst paleoecology at Ocean Drilling Program Site 1172
Rapid and sustained environmental responses to global warming: the Paleocene–Eocene Thermal Maximum in the eastern North Sea
Atmospheric carbon dioxide variations across the middle Miocene climate transition
OPTiMAL: a new machine learning approach for GDGT-based palaeothermometry
Technical note: A new automated radiolarian image acquisition, stacking, processing, segmentation and identification workflow
Late Paleocene–early Eocene Arctic Ocean sea surface temperatures: reassessing biomarker paleothermometry at Lomonosov Ridge
Surface-circulation change in the southwest Pacific Ocean across the Middle Eocene Climatic Optimum: inferences from dinoflagellate cysts and biomarker paleothermometry
A new age model for the Pliocene of the southern North Sea basin: a multi-proxy climate reconstruction
Joint inversion of proxy system models to reconstruct paleoenvironmental time series from heterogeneous data
Mercury anomalies across the Palaeocene–Eocene Thermal Maximum
Reinforcing the North Atlantic backbone: revision and extension of the composite splice at ODP Site 982
Highly variable Pliocene sea surface conditions in the Norwegian Sea
The PRISM4 (mid-Piacenzian) paleoenvironmental reconstruction
Revisiting carbonate chemistry controls on planktic foraminifera Mg / Ca: implications for sea surface temperature and hydrology shifts over the Paleocene–Eocene Thermal Maximum and Eocene–Oligocene transition
The Paleocene–Eocene Thermal Maximum at DSDP Site 277, Campbell Plateau, southern Pacific Ocean
The bivalve Glycymeris planicostalis as a high-resolution paleoclimate archive for the Rupelian (Early Oligocene) of central Europe
Pliocene diatom and sponge spicule oxygen isotope ratios from the Bering Sea: isotopic offsets and future directions
Re-evaluation of the age model for North Atlantic Ocean Site 982 – arguments for a return to the original chronology
Exploring the controls on element ratios in middle Eocene samples of the benthic foraminifera Oridorsalis umbonatus
Application of Fourier Transform Infrared Spectroscopy (FTIR) for assessing biogenic silica sample purity in geochemical analyses and palaeoenvironmental research
Alexander J. Clark, Ismael Torres-Romero, Madalina Jaggi, Stefano M. Bernasconi, and Heather M. Stoll
Clim. Past, 20, 2081–2101, https://doi.org/10.5194/cp-20-2081-2024, https://doi.org/10.5194/cp-20-2081-2024, 2024
Short summary
Short summary
Coccoliths are abundant in sediments across the world’s oceans, yet it is difficult to apply traditional carbon or oxygen isotope methodologies for temperature reconstructions. We show that our coccolith clumped isotope temperature calibration with well-constrained temperatures systematically differs from inorganic carbonate calibrations. We suggest the use of our well-constrained calibration for future coccolith carbonate temperature reconstructions.
James D. Annan, Julia C. Hargreaves, Thorsten Mauritsen, Erin McClymont, and Sze Ling Ho
Clim. Past, 20, 1989–1999, https://doi.org/10.5194/cp-20-1989-2024, https://doi.org/10.5194/cp-20-1989-2024, 2024
Short summary
Short summary
We have created a new global surface temperature reconstruction of the climate of the mid-Pliocene Warm Period, representing the period roughly 3.2 million years before the present day. We estimate that the globally averaged mean temperature was around 3.9 °C warmer than it was in pre-industrial times, but there is significant uncertainty in this value.
Suning Hou, Leonie Toebrock, Mart van der Linden, Fleur Rothstegge, Martin Ziegler, Lucas J. Lourens, and Peter K. Bijl
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-33, https://doi.org/10.5194/cp-2024-33, 2024
Revised manuscript accepted for CP
Short summary
Short summary
Based on dinoflagellate cyst assemblage and sea surface temperature record west offshore Tasmania, we find a northward migration and freshening of the subtropical front, not at the M2 glacial maximum but at its deglaciation phase. This oceanographic change aligns well with the trends in pCO2. We propose that iceberg discharge from the M2 deglaciation freshened the subtropical front, which together with the other oceanographic changes, affected atmosphere-ocean CO2 exchange in the Southern Ocean.
Madeleine L. Vickers, Morgan T. Jones, Jack Longman, David Evans, Clemens V. Ullmann, Ella Wulfsberg Stokke, Martin Vickers, Joost Frieling, Dustin T. Harper, Vincent J. Clementi, and IODP Expedition 396 Scientists
Clim. Past, 20, 1–23, https://doi.org/10.5194/cp-20-1-2024, https://doi.org/10.5194/cp-20-1-2024, 2024
Short summary
Short summary
The discovery of cold-water glendonite pseudomorphs in sediments deposited during the hottest part of the Cenozoic poses an apparent climate paradox. This study examines their occurrence, association with volcanic sediments, and speculates on the timing and extent of cooling, fitting this with current understanding of global climate during this period. We propose that volcanic activity was key to both physical and chemical conditions that enabled the formation of glendonites in these sediments.
William Rush, Jean Self-Trail, Yang Zhang, Appy Sluijs, Henk Brinkhuis, James Zachos, James G. Ogg, and Marci Robinson
Clim. Past, 19, 1677–1698, https://doi.org/10.5194/cp-19-1677-2023, https://doi.org/10.5194/cp-19-1677-2023, 2023
Short summary
Short summary
The Eocene contains several brief warming periods referred to as hyperthermals. Studying these events and how they varied between locations can help provide insight into our future warmer world. This study provides a characterization of two of these events in the mid-Atlantic region of the USA. The records of climate that we measured demonstrate significant changes during this time period, but the type and timing of these changes highlight the complexity of climatic changes.
Daniel E. Gaskell and Pincelli M. Hull
Clim. Past, 19, 1265–1274, https://doi.org/10.5194/cp-19-1265-2023, https://doi.org/10.5194/cp-19-1265-2023, 2023
Short summary
Short summary
One of the most common ways of reconstructing temperatures in the geologic past is by analyzing oxygen isotope ratios in fossil shells. However, converting these data to temperatures can be a technically complicated task. Here, we present a new online tool that automates this task.
Carolien M. H. van der Weijst, Koen J. van der Laan, Francien Peterse, Gert-Jan Reichart, Francesca Sangiorgi, Stefan Schouten, Tjerk J. T. Veenstra, and Appy Sluijs
Clim. Past, 18, 1947–1962, https://doi.org/10.5194/cp-18-1947-2022, https://doi.org/10.5194/cp-18-1947-2022, 2022
Short summary
Short summary
The TEX86 proxy is often used by paleoceanographers to reconstruct past sea-surface temperatures. However, the origin of the TEX86 signal in marine sediments has been debated since the proxy was first proposed. In our paper, we show that TEX86 carries a mixed sea-surface and subsurface temperature signal and should be calibrated accordingly. Using our 15-million-year record, we subsequently show how a TEX86 subsurface temperature record can be used to inform us on past sea-surface temperatures.
Andrew L. A. Johnson, Annemarie M. Valentine, Bernd R. Schöne, Melanie J. Leng, and Stijn Goolaerts
Clim. Past, 18, 1203–1229, https://doi.org/10.5194/cp-18-1203-2022, https://doi.org/10.5194/cp-18-1203-2022, 2022
Short summary
Short summary
Determining seasonal temperatures demands proxies that record the highest and lowest temperatures over the annual cycle. Many record neither, but oxygen isotope profiles from shells in principle record both. Oxygen isotope data from late Pliocene bivalve molluscs of the southern North Sea basin show that the seasonal temperature range was at times much higher than previously estimated and higher than now. This suggests reduced oceanic heat supply, in contrast to some previous interpretations.
Carolien M. H. van der Weijst, Josse Winkelhorst, Wesley de Nooijer, Anna von der Heydt, Gert-Jan Reichart, Francesca Sangiorgi, and Appy Sluijs
Clim. Past, 18, 961–973, https://doi.org/10.5194/cp-18-961-2022, https://doi.org/10.5194/cp-18-961-2022, 2022
Short summary
Short summary
A hypothesized link between Pliocene (5.3–2.5 million years ago) global climate and tropical thermocline depth is currently only backed up by data from the Pacific Ocean. In our paper, we present temperature, salinity, and thermocline records from the tropical Atlantic Ocean. Surprisingly, the Pliocene thermocline evolution was remarkably different in the Atlantic and Pacific. We need to reevaluate the mechanisms that drive thermocline depth, and how these are tied to global climate change.
Peter K. Bijl, Joost Frieling, Marlow Julius Cramwinckel, Christine Boschman, Appy Sluijs, and Francien Peterse
Clim. Past, 17, 2393–2425, https://doi.org/10.5194/cp-17-2393-2021, https://doi.org/10.5194/cp-17-2393-2021, 2021
Short summary
Short summary
Here, we use the latest insights for GDGT and dinocyst-based paleotemperature and paleoenvironmental reconstructions in late Cretaceous–early Oligocene sediments from ODP Site 1172 (East Tasman Plateau, Australia). We reconstruct strong river runoff during the Paleocene–early Eocene, a progressive decline thereafter with increased wet/dry seasonality in the northward-drifting hinterland. Our critical review leaves the anomalous warmth of the Eocene SW Pacific Ocean unexplained.
Ella W. Stokke, Morgan T. Jones, Lars Riber, Haflidi Haflidason, Ivar Midtkandal, Bo Pagh Schultz, and Henrik H. Svensen
Clim. Past, 17, 1989–2013, https://doi.org/10.5194/cp-17-1989-2021, https://doi.org/10.5194/cp-17-1989-2021, 2021
Short summary
Short summary
In this paper, we present new sedimentological, geochemical, and mineralogical data exploring the environmental response to climatic and volcanic impact during the Paleocene–Eocene Thermal Maximum (~55.9 Ma; PETM). Our data suggest a rise in continental weathering and a shift to anoxic–sulfidic conditions. This indicates a rapid environmental response to changes in the carbon cycle and temperatures and highlights the important role of shelf areas as carbon sinks driving the PETM recovery.
Markus Raitzsch, Jelle Bijma, Torsten Bickert, Michael Schulz, Ann Holbourn, and Michal Kučera
Clim. Past, 17, 703–719, https://doi.org/10.5194/cp-17-703-2021, https://doi.org/10.5194/cp-17-703-2021, 2021
Short summary
Short summary
At approximately 14 Ma, the East Antarctic Ice Sheet expanded to almost its current extent, but the role of CO2 in this major climate transition is not entirely known. We show that atmospheric CO2 might have varied on 400 kyr cycles linked to the eccentricity of the Earth’s orbit. The resulting change in weathering and ocean carbon cycle affected atmospheric CO2 in a way that CO2 rose after Antarctica glaciated, helping to stabilize the climate system on its way to the “ice-house” world.
Tom Dunkley Jones, Yvette L. Eley, William Thomson, Sarah E. Greene, Ilya Mandel, Kirsty Edgar, and James A. Bendle
Clim. Past, 16, 2599–2617, https://doi.org/10.5194/cp-16-2599-2020, https://doi.org/10.5194/cp-16-2599-2020, 2020
Short summary
Short summary
We explore the utiliity of the composition of fossil lipid biomarkers, which are commonly preserved in ancient marine sediments, in providing estimates of past ocean temperatures. The group of lipids concerned show compositional changes across the modern oceans that are correlated, to some extent, with local surface ocean temperatures. Here we present new machine learning approaches to improve our understanding of this temperature sensitivity and its application to reconstructing past climates.
Martin Tetard, Ross Marchant, Giuseppe Cortese, Yves Gally, Thibault de Garidel-Thoron, and Luc Beaufort
Clim. Past, 16, 2415–2429, https://doi.org/10.5194/cp-16-2415-2020, https://doi.org/10.5194/cp-16-2415-2020, 2020
Short summary
Short summary
Radiolarians are marine micro-organisms that produce a siliceous shell that is preserved in the fossil record and can be used to reconstruct past climate variability. However, their study is only possible after a time-consuming manual selection of their shells from the sediment followed by their individual identification. Thus, we develop a new fully automated workflow consisting of microscopic radiolarian image acquisition, image processing and identification using artificial intelligence.
Appy Sluijs, Joost Frieling, Gordon N. Inglis, Klaas G. J. Nierop, Francien Peterse, Francesca Sangiorgi, and Stefan Schouten
Clim. Past, 16, 2381–2400, https://doi.org/10.5194/cp-16-2381-2020, https://doi.org/10.5194/cp-16-2381-2020, 2020
Short summary
Short summary
We revisit 15-year-old reconstructions of sea surface temperatures in the Arctic Ocean for the late Paleocene and early Eocene epochs (∼ 57–53 million years ago) based on the distribution of fossil membrane lipids of archaea preserved in Arctic Ocean sediments. We find that improvements in the methods over the past 15 years do not lead to different results. However, data quality is now higher and potential biases better characterized. Results confirm remarkable Arctic warmth during this time.
Marlow Julius Cramwinckel, Lineke Woelders, Emiel P. Huurdeman, Francien Peterse, Stephen J. Gallagher, Jörg Pross, Catherine E. Burgess, Gert-Jan Reichart, Appy Sluijs, and Peter K. Bijl
Clim. Past, 16, 1667–1689, https://doi.org/10.5194/cp-16-1667-2020, https://doi.org/10.5194/cp-16-1667-2020, 2020
Short summary
Short summary
Phases of past transient warming can be used as a test bed to study the environmental response to climate change independent of tectonic change. Using fossil plankton and organic molecules, here we reconstruct surface ocean temperature and circulation in and around the Tasman Gateway during a warming phase 40 million years ago termed the Middle Eocene Climatic Optimum. We find that plankton assemblages track ocean circulation patterns, with superimposed variability being related to temperature.
Emily Dearing Crampton-Flood, Lars J. Noorbergen, Damian Smits, R. Christine Boschman, Timme H. Donders, Dirk K. Munsterman, Johan ten Veen, Francien Peterse, Lucas Lourens, and Jaap S. Sinninghe Damsté
Clim. Past, 16, 523–541, https://doi.org/10.5194/cp-16-523-2020, https://doi.org/10.5194/cp-16-523-2020, 2020
Short summary
Short summary
The mid-Pliocene warm period (mPWP; 3.3–3.0 million years ago) is thought to be the last geological interval with similar atmospheric carbon dioxide concentrations as the present day. Further, the mPWP was 2–3 °C warmer than present, making it a good analogue for estimating the effects of future climate change. Here, we construct a new precise age model for the North Sea during the mPWP, and provide a detailed reconstruction of terrestrial and marine climate using a multi-proxy approach.
Gabriel J. Bowen, Brenden Fischer-Femal, Gert-Jan Reichart, Appy Sluijs, and Caroline H. Lear
Clim. Past, 16, 65–78, https://doi.org/10.5194/cp-16-65-2020, https://doi.org/10.5194/cp-16-65-2020, 2020
Short summary
Short summary
Past climate conditions are reconstructed using indirect and incomplete geological, biological, and geochemical proxy data. We propose that such reconstructions are best obtained by statistical inversion of hierarchical models that represent how multi–proxy observations and calibration data are produced by variation of environmental conditions in time and/or space. These methods extract new information from traditional proxies and provide robust, comprehensive estimates of uncertainty.
Morgan T. Jones, Lawrence M. E. Percival, Ella W. Stokke, Joost Frieling, Tamsin A. Mather, Lars Riber, Brian A. Schubert, Bo Schultz, Christian Tegner, Sverre Planke, and Henrik H. Svensen
Clim. Past, 15, 217–236, https://doi.org/10.5194/cp-15-217-2019, https://doi.org/10.5194/cp-15-217-2019, 2019
Short summary
Short summary
Mercury anomalies in sedimentary rocks are used to assess whether there were periods of elevated volcanism in the geological record. We focus on five sites that cover the Palaeocene–Eocene Thermal Maximum, an extreme global warming event that occurred 55.8 million years ago. We find that sites close to the eruptions from the North Atlantic Igneous Province display significant mercury anomalies across this time interval, suggesting that magmatism played a role in the global warming event.
Anna Joy Drury, Thomas Westerhold, David Hodell, and Ursula Röhl
Clim. Past, 14, 321–338, https://doi.org/10.5194/cp-14-321-2018, https://doi.org/10.5194/cp-14-321-2018, 2018
Short summary
Short summary
North Atlantic Site 982 is key to our understanding of climate evolution over the past 12 million years. However, the stratigraphy and age model are unverified. We verify the composite splice using XRF core scanning data and establish a revised benthic foraminiferal stable isotope astrochronology from 8.0–4.5 million years ago. Our new stratigraphy accurately correlates the Atlantic and the Mediterranean and suggests a connection between late Miocene cooling and dynamic ice sheet expansion.
Paul E. Bachem, Bjørg Risebrobakken, Stijn De Schepper, and Erin L. McClymont
Clim. Past, 13, 1153–1168, https://doi.org/10.5194/cp-13-1153-2017, https://doi.org/10.5194/cp-13-1153-2017, 2017
Short summary
Short summary
We present a high-resolution multi-proxy study of the Norwegian Sea, covering the 5.33 to 3.14 Ma time window within the Pliocene. We show that large-scale climate transitions took place during this warmer than modern time, most likely in response to ocean gateway transformations. Strong warming at 4.0 Ma in the Norwegian Sea, when regions closer to Greenland cooled, indicate that increased northward ocean heat transport may be compatible with expanding glaciation and Arctic sea ice growth.
Harry Dowsett, Aisling Dolan, David Rowley, Robert Moucha, Alessandro M. Forte, Jerry X. Mitrovica, Matthew Pound, Ulrich Salzmann, Marci Robinson, Mark Chandler, Kevin Foley, and Alan Haywood
Clim. Past, 12, 1519–1538, https://doi.org/10.5194/cp-12-1519-2016, https://doi.org/10.5194/cp-12-1519-2016, 2016
Short summary
Short summary
Past intervals in Earth history provide unique windows into conditions much different than those observed today. We investigated the paleoenvironments of a past warm interval (~ 3 million years ago). Our reconstruction includes data sets for surface temperature, vegetation, soils, lakes, ice sheets, topography, and bathymetry. These data are being used along with global climate models to expand our understanding of the climate system and to help us prepare for future changes.
David Evans, Bridget S. Wade, Michael Henehan, Jonathan Erez, and Wolfgang Müller
Clim. Past, 12, 819–835, https://doi.org/10.5194/cp-12-819-2016, https://doi.org/10.5194/cp-12-819-2016, 2016
Short summary
Short summary
We show that seawater pH exerts a substantial control on planktic foraminifera Mg / Ca, a widely applied palaeothermometer. As a result, temperature reconstructions based on this proxy are likely inaccurate over climatic events associated with a significant change in pH. We examine the implications of our findings for hydrological and temperature shifts over the Paleocene-Eocene Thermal Maximum and for the degree of surface ocean precursor cooling before the Eocene-Oligocene transition.
C. J. Hollis, B. R. Hines, K. Littler, V. Villasante-Marcos, D. K. Kulhanek, C. P. Strong, J. C. Zachos, S. M. Eggins, L. Northcote, and A. Phillips
Clim. Past, 11, 1009–1025, https://doi.org/10.5194/cp-11-1009-2015, https://doi.org/10.5194/cp-11-1009-2015, 2015
Short summary
Short summary
Re-examination of a Deep Sea Drilling Project sediment core (DSDP Site 277) from the western Campbell Plateau has identified the initial phase of the Paleocene-Eocene Thermal Maximum (PETM) within nannofossil chalk, the first record of the PETM in an oceanic setting in the southern Pacific Ocean (paleolatitude of ~65°S). Geochemical proxies indicate that intermediate and surface waters warmed by ~6° at the onset of the PETM prior to the full development of the negative δ13C excursion.
E. O. Walliser, B. R. Schöne, T. Tütken, J. Zirkel, K. I. Grimm, and J. Pross
Clim. Past, 11, 653–668, https://doi.org/10.5194/cp-11-653-2015, https://doi.org/10.5194/cp-11-653-2015, 2015
A. M. Snelling, G. E. A. Swann, J. Pike, and M. J. Leng
Clim. Past, 10, 1837–1842, https://doi.org/10.5194/cp-10-1837-2014, https://doi.org/10.5194/cp-10-1837-2014, 2014
K. T. Lawrence, I. Bailey, and M. E. Raymo
Clim. Past, 9, 2391–2397, https://doi.org/10.5194/cp-9-2391-2013, https://doi.org/10.5194/cp-9-2391-2013, 2013
C. F. Dawber and A. K. Tripati
Clim. Past, 8, 1957–1971, https://doi.org/10.5194/cp-8-1957-2012, https://doi.org/10.5194/cp-8-1957-2012, 2012
G. E. A. Swann and S. V. Patwardhan
Clim. Past, 7, 65–74, https://doi.org/10.5194/cp-7-65-2011, https://doi.org/10.5194/cp-7-65-2011, 2011
Cited articles
Abrajevitch, A., Roberts, A. P., and Kodama, K.:
Volcanic iron fertilization of primary productivity at Kerguelen Plateau, Southern Ocean, through the Middle Miocene Climate Transition,
Palaeogeogr. Palaeocl.,
410, 1–13, https://doi.org/10.1016/j.palaeo.2014.05.028, 2014.
Belkin, I. M. and Gordon, A. L.:
Southern Ocean fronts from the Greenwich meridian to Tasmania,
J. Geophys. Res.,
101, 3675–3696, https://doi.org/10.1029/95jc02750, 1996.
Bemis, B. E., Spero, H. J., Bijma, J., and Lea, D. W.:
Reevaluation of the oxygen isotopic composition of planktonic foraminifera: Experimental results and revised paleotemperature equations,
Paleoceanography,
13, 150–160, https://doi.org/10.1029/98pa00070, 1998.
Berger, W. H.:
Deep-Sea Carbonates: Pleistocene Dissolution Cycles,
J. Foramin. Res.,
3, 187–195, https://doi.org/10.2113/gsjfr.3.4.187, 1973.
Bernasconi, S. M., Hu, B., Wacker, U., Fiebig, J., Breitenbach, S. F. M., and Rutz, T.:
Background effects on Faraday collectors in gas-source mass spectrometry and implications for clumped isotope measurements,
Rapid Commun. Mass Sp.,
27, 603–612, https://doi.org/10.1002/rcm.6490, 2013.
Bernasconi, S. M., Müller, I. A., Bergmann, K. D., Breitenbach, S. F. M., Fernandez, A., Hodell, D. A., Jaggi, M., Meckler, A. N., Millan, I., and Ziegler, M.:
Reducing uncertainties in carbonate clumped isotope analysis through consistent carbonate-based standardization,
Geochem. Geophy. Geosy.,
19, 2895–2914, https://doi.org/10.1029/2017GC007385, 2018.
Billups, K. and Schrag, D. P.: Paleotemperatures and ice volume of the past 27 Myr revisited with paired and measurements on benthic foraminifera, Paleoceanography, 17, 3-1–3-11, https://doi.org/10.1029/2000PA000567, 2002.
Bradshaw, C. D., Langebroek, P. M., Lear, C. H., Lunt, D. J., Coxall, H. K., Sosdian, S. M., and de Boer, A. M.:
Hydrological impact of Middle Miocene Antarctic ice-free areas coupled to deep ocean temperatures,
Nat. Geosci.,
14, 429–436, https://doi.org/10.1038/s41561-021-00745-w, 2021.
Breitenbach, S. F. M., Mleneck-Vautravers, M. J., Grauel, A.-L., Lo, L., Bernasconi, S. M., Müller, I. A., Rolfe, J., Gázquez, F., Greaves, M., and Hodell, D. A.:
Coupled and clumped isotope analyses of foraminifera provide consistent water temperatures,
Geochim. Cosmochim. Ac.,
236, 283–296, https://doi.org/10.1016/j.gca.2018.03.010, 2018.
Burls, N. J., Bradshaw, C. D., De Boer, A. M., Herold, N., Huber, M., Pound, M., Donnadieu, Y., Farnsworth, A., Frigola, A., Gasson, E., von der Heydt, A. S., Hutchinson, D. K., Knorr, G., Lawrence, K. T., Lear, C. H., Li, X., Lohmann, G., Lunt, D. J., Marzocchi, A., Prange, M., Riihimaki, C. A., Sarr, A.-C., Siler, N., and Zhang, Z.:
Simulating Miocene warmth: insights from an opportunistic Multi-Model ensemble (MioMIP1),
Paleoceanography and Paleoclimatology,
36, e2020PA004054, https://doi.org/10.1029/2020PA004054, 2021.
Cao, W., Zahirovic, S., Flament, N., Williams, S., Golonka, J., and Müller, R. D.: Improving global paleogeography since the late Paleozoic using paleobiology, Biogeosciences, 14, 5425–5439, https://doi.org/10.5194/bg-14-5425-2017, 2017.
Chaisson, W. P. and Leckie, R. M.: High-resolution Neogene planktonic foraminifer biostratigraphy of Site 806, Ontong Java Plateau (western equatorial Pacific), Proceedings of the Ocean Drilling Program, Scientific Results, 130, edited by: Berger, W. H., Kroenke, L. W., Mayer, L. A., et al., 137–178, 1993.
Cramer, B. S., Miller, K. G., Barrett, P. J., and Wright, J. D.:
Late Cretaceous–Neogene trends in deep ocean temperature and continental ice volume: Reconciling records of benthic foraminiferal geochemistry (δ18O and ) with sea level history,
J. Geophys. Res.,
116, 1–23, https://doi.org/10.1029/2011jc007255, 2011.
Crampton, J. S., Cody, R. D., Levy, R., Harwood, D., McKay, R., and Naish, T. R.:
Southern Ocean phytoplankton turnover in response to stepwise Antarctic cooling over the past 15 million years,
P. Natl. Acad. Sci. USA,
113, 6868–6873, https://doi.org/10.1073/pnas.1600318113, 2016.
Daëron, M., Blamart, D., Peral, M., and Affek, H. P.:
Absolute isotopic abundance ratios and the accuracy of Δ47 measurements,
Chem. Geol.,
442, 83–96, https://doi.org/10.1016/j.chemgeo.2016.08.014, 2016.
Dalziel, I. W. D., Lawver, L. A., Pearce, J. A., Barker, P. F., Hastie, A. R., Barfod, D. N., Schenke, H.-W., and Davis, M. B.:
A potential barrier to deep Antarctic circumpolar flow until the late Miocene?,
Geology,
41, 947–950, https://doi.org/10.1130/G34352.1, 2013.
de Boer, B., van de Wal, R. S. W., Bintanja, R., Lourens, L. J., and Tuenter, E.:
Cenozoic global ice-volume and temperature simulations with 1-D ice-sheet models forced by benthic δ18O records,
Ann. Glaciol.,
51, 23–33, https://doi.org/10.3189/172756410791392736, 2010.
Defliese, W. F., Hren, M. T., and Lohmann, K. C.:
Compositional and temperature effects of phosphoric acid fractionation on Δ47 analysis and implications for discrepant calibrations,
Chem. Geol.,
396, 51–60, https://doi.org/10.1016/j.chemgeo.2014.12.018, 2015.
Dennis, K. J., Affek, H. P., Passey, B. H., Schrag, D. P., and Eiler, J. M.:
Defining an absolute reference frame for “clumped” isotope studies of CO2,
Geochim. Cosmochim. Ac.,
75, 7117–7131, https://doi.org/10.1016/j.gca.2011.09.025, 2011.
Diester-Haass, L., Billups, K., Jacquemin, I., Emeis, K. C., Lefebvre, V., and François, L.: Paleoproductivity during the middle Miocene carbon isotope events: A data-model approach, Paleoceanography, 28, 334–346, https://doi.org/10.1002/palo.20033, 2013.
Eiler, J. M.:
“Clumped-isotope” geochemistry–The study of naturally-occurring, multiply-substituted isotopologues, Earth Planet. Sc. Lett., 262, 309–327, https://doi.org/10.1016/j.epsl.2007.08.020, 2007.
Eiler, J. M.:
Paleoclimate reconstruction using carbonate clumped isotope thermometry,
Quaternary Sci. Rev.,
30, 3575–3588, https://doi.org/10.1016/j.quascirev.2011.09.001, 2011.
Elderfield, H., Yu, J., Anand, P., Kiefer, T., and Nyland, B.:
Calibrations for benthic foraminiferal paleothermometry and the carbonate ion hypothesis,
Earth Planet. Sc. Lett.,
250, 633–649, https://doi.org/10.1016/j.epsl.2006.07.041, 2006.
Evans, D. and Müller, W.:
Deep time foraminifera paleothermometry: Nonlinear correction for secular change in seawater ,
Paleoceanography,
27, 1–11, https://doi.org/10.1029/2012pa002315, 2012.
Fairbanks, R. G. and Matthews, R. K.:
The marine oxygen isotope record in Pleistocene coral, Barbados, West Indies,
Quaternary Res.,
10, 181–196, https://doi.org/10.1016/0033-5894(78)90100-X, 1978.
Fernandez, A., Müller, I. A., Rodríguez-Sanz, L., van Dijk, J., Looser, N., and Bernasconi, S. M.:
A Reassessment of the Precision of Carbonate Clumped Isotope Measurements: Implications for Calibrations and Paleoclimate Reconstructions,
Geochem. Geophy. Geosy.,
18, 4375–4386, https://doi.org/10.1002/2017gc007106, 2017.
Flower, B. P. and Kennett, J. P.:
Middle Miocene Ocean-Climate Transition – High-Resolution Oxygen and Carbon Isotopic Records from Deep-Sea Drilling Project Site 588A, Southwest Pacific,
Paleoceanography,
8, 811–843, https://doi.org/10.1029/93pa02196, 1993.
Foster, G. L., Lear, C. H., and Rae, J. W. B.: The evolution of pCO2, ice volume and climate during the middle Miocene, Earth Planet. Sc. Lett., 341–344, 243–254, https://doi.org/10.1016/j.epsl.2012.06.007, 2012.
Frigola, A., Prange, M., and Schulz, M.: Boundary conditions for the Middle Miocene Climate Transition (MMCT v1.0), Geosci. Model Dev., 11, 1607–1626, https://doi.org/10.5194/gmd-11-1607-2018, 2018.
Gasson, E., DeConto, R. M., Pollard, D., and Levy, R. H.:
Dynamic Antarctic ice sheet during the early to mid-Miocene,
P. Natl. Acad. Sci. USA,
113, 3459–3464, https://doi.org/10.1073/pnas.1516130113, 2016.
Ghosh, P., Adkins, J., Affek, H., Balta, B., Guo, W., Schauble, E. A., Schrag, D., and Eiler, J. M.:
13C-18O bonds in carbonate minerals: A new kind of paleothermometer,
Geochim. Cosmochim. Ac.,
70, 1439–1456, https://doi.org/10.1016/j.gca.2005.11.014, 2006.
Gottschalk, J., Riveiros, N. V, Waelbroeck, C., Skinner, L. C., Michel, E., Duplessy, J. C., Hodell, D., and Mackensen, A.:
Carbon isotope offsets between benthic foraminifer species of the genus Cibicides (Cibicidoides) in the glacial sub-Antarctic Atlantic,
Paleoceanography,
31, 1583–1602, https://doi.org/10.1002/2016pa003029, 2016.
Gradstein, F. M., Ogg, J. G., Schmitz, M., and Ogg, G.:
The Geologic Time Scale 2012,
Elsevier, Oxford, 2012.
Grauel, A. L., Schmid, T. W., Hu, B., Bergami, C., Capotondi, L., Zhou, L., and Bernasconi, S. M.: Calibration and application of the “clumped isotope” thermometer to foraminifera for high-resolution climate reconstructions,
Geochim. Cosmochim. Ac., 108, 125–140, https://doi.org/10.1016/j.gca.2012.12.049, 2013.
Hamon, N., Sepulchre, P., Lefebvre, V., and Ramstein, G.: The role of eastern Tethys seaway closure in the Middle Miocene Climatic Transition (ca. 14 Ma), Clim. Past, 9, 2687–2702, https://doi.org/10.5194/cp-9-2687-2013, 2013.
He, B., Olack, G. A., and Colman, A. S.:
Pressure baseline correction and high-precision CO2 clumped-isotope (Δ47) measurements in bellows and micro-volume modes,
Rapid Commun. Mass Sp.,
26, 2837–2853, https://doi.org/10.1002/rcm.6436, 2012.
Ho, S. L. and Laepple, T.:
Flat meridional temperature gradient in the early Eocene in the subsurface rather than surface ocean,
Nat. Geosci.,
9, 606–610, https://doi.org/10.1038/ngeo2763, 2016.
Holbourn, A., Kuhnt, W., Simo, J. A., and Li, Q.:
Middle Miocene isotope stratigraphy and paleoceanographic evolution of the northwest and southwest Australian margins (Wombat Plateau and Great Australian Bight),
Palaeogeogr. Palaeocl.,
208, 1–22, https://doi.org/10.1016/j.palaeo.2004.02.003, 2004.
Holbourn, A., Kuhnt, W., Schulz, M., and Erlenkeuser, H.:
Impacts of orbital forcing and atmospheric carbon dioxide on Miocene ice-sheet expansion,
Nature,
438, 483–487, https://doi.org/10.1038/nature04123, 2005.
Holbourn, A., Kuhnt, W., Schulz, M., Flores, J. A., and Andersen, N.:
Orbitally-paced climate evolution during the middle Miocene “Monterey” carbon-isotope excursion,
Earth Planet. Sc. Lett.,
261, 534–550, https://doi.org/10.1016/j.epsl.2007.07.026, 2007.
Holbourn, A., Kuhnt, W., Frank, M., and Haley, B. A.:
Changes in Pacific Ocean circulation following the Miocene onset of permanent Antarctic ice cover,
Earth Planet. Sc. Lett.,
365, 38–50, https://doi.org/10.1016/j.epsl.2013.01.020, 2013.
Holbourn, A., Kuhnt, W., Lyle, M., Schneider, L., Romero, O., and Andersen, N.:
Middle Miocene climate cooling linked to intensification of eastern equatorial Pacific upwelling,
Geology,
42, 19–22, https://doi.org/10.1130/G34890.1, 2014.
Holbourn, A., Kuhnt, W., Frank, M., and Haley, B.: Middle Miocene benthic oxygen and carbon stable isotopes of ODP Site 130-806B, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.895208, 2018.
Hu, B., Radke, J., Schlüter, H. J., Heine, F. T., Zhou, L., and Bernasconi, S. M.:
A modified procedure for gas-source isotope ratio mass spectrometry: the long-integration dual-inlet (LIDI) methodology and implications for clumped isotope measurements,
Rapid Commun. Mass Sp.,
28, 1413–1425, https://doi.org/10.1002/rcm.6909, 2014.
Huntington, K. W., Eiler, J. M., Affek, H. P., Guo, W., Bonifacie, M., Yeung, L. Y., Thiagarajan, N., Passey, B. H., Tripati, A. K., Daëron, M., and Came, R.:
Methods and limitations of 'clumped' CO2 isotope (Δ47) analysis by gas-source isotope ratio mass spectrometry,
J. Mass Spectrom.,
44, 1318–1329, https://doi.org/10.1002/jms.1614, 2009.
John, C. M. and Bowen, D.:
Community software for challenging isotope analysis: First applications of 'Easotope' to clumped isotopes,
Rapid Commun. Mass Sp.,
30, 2285–2300, https://doi.org/10.1002/rcm.7720, 2016.
Kele, S., Breitenbach, S. F. M., Capezzuoli, E., Meckler, A. N., Ziegler, M., Millan, I. M., Kluge, T., Deák, J., Hanselmann, K., John, C. M., Yan, H., Liu, Z., and Bernasconi, S. M.:
Temperature dependence of oxygen- and clumped isotope fractionation in carbonates: A study of travertines and tufas in the 6–95 ∘C temperature range,
Geochim. Cosmochim. Ac.,
168, 172–192, https://doi.org/10.1016/j.gca.2015.06.032, 2015.
Knorr, G. and Lohmann, G.:
Climate warming during Antarctic ice sheet expansion at the Middle Miocene transition,
Nat. Geosci.,
7, 376–381, https://doi.org/10.1038/NGEO2119, 2014.
Kochhann, K. G. D., Holbourn, A., Kuhnt, W., Channell, J. E. T., Lyle, M., Shackford, J. K., Wilkens, R. H., and Andersen, N.:
Eccentricity pacing of eastern equatorial Pacific carbonate dissolution cycles during the Miocene Climatic Optimum,
Paleoceanography,
31, 1176–1192, https://doi.org/10.1002/2016PA002988, 2016.
Kominz, M. A., Browning, J. V, Miller, K. G., Sugarman, P. J., Mizintseva, S., and Scotese, C. R.:
Late Cretaceous to Miocene sea-level estimates from the New Jersey and Delaware coastal plain coreholes: an error analysis,
Basin Res.,
20, 211–226, https://doi.org/10.1111/j.1365-2117.2008.00354.x, 2008.
Kuhnert, H., Bickert, T., and Paulsen, H.:
Southern Ocean frontal system changes precede Antarctic ice sheet growth during the middle Miocene,
Earth Planet. Sc. Lett.,
284, 630–638, https://doi.org/10.1016/j.epsl.2009.05.030, 2009.
Lagabrielle, Y., Goddéris, Y., Donnadieu, Y., Malavieille, J., and Suarez, M.:
The tectonic history of Drake Passage and its possible impacts on global climate,
Earth Planet. Sc. Lett.,
279, 197–211, https://doi.org/10.1016/j.epsl.2008.12.037, 2009.
Langebroek, P. M., Paul, A., and Schulz, M.: Antarctic ice-sheet response to atmospheric CO2 and insolation in the Middle Miocene, Clim. Past, 5, 633–646, https://doi.org/10.5194/cp-5-633-2009, 2009.
Langebroek, P. M., Paul, A., and Schulz, M.: Simulating the sea level imprint on marine oxygen isotope records during the middle Miocene using an ice sheet–climate model, Paleoceanography, 25, PA4203, https://doi.org/10.1029/2008PA001704, 2010.
Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A. C. M., and Levrard, B.:
A long-term numerical solution for the insolation quantities of the Earth,
Astron. Astrophys.,
428, 261–285, https://doi.org/10.1051/0004-6361:20041335, 2004.
Lear, C. H., Rosenthal, Y., and Slowey, N.:
Benthic foraminiferal -paleothermometry: A revised core-top calibration,
Geochim. Cosmochim. Ac.,
66, 3375–3387, https://doi.org/10.1016/s0016-7037(02)00941-9, 2002.
Lear, C. H., Mawbey, E. M., and Rosenthal, Y.:
Cenozoic benthic foraminiferal and records: Toward unlocking temperatures and saturation states,
Paleoceanography,
25, 1–11, https://doi.org/10.1029/2009PA001880, 2010.
Lear, C. H., Coxall, H. K., Foster, G. L., Lunt, D. J., Mawbey, E. M., Rosenthal, Y., Sosdian, S. M., Thomas, E., and Wilson, P. A.:
Neogene ice volume and ocean temperatures: Insights from infaunal foraminiferal paleothermometry,
Paleoceanography,
30, 1437–1454, https://doi.org/10.1002/2015PA002833, 2015.
Leutert, T. J., Sexton, P. F., Tripati, A., Piasecki, A., Ho, S. L., and Meckler, A. N.:
Sensitivity of clumped isotope temperatures in fossil benthic and planktic foraminifera to diagenetic alteration,
Geochim. Cosmochim. Ac.,
257, 354–372, https://doi.org/10.1016/j.gca.2019.05.005, 2019.
Leutert, T. J., Auderset, A., Martínez-García, A., Modestou, S., and Meckler, A. N.: Coupled Southern Ocean cooling and Antarctic ice sheet expansion during the middle Miocene, Nat. Geosci., 13, 634–639, https://doi.org/10.1038/s41561-020-0623-0, 2020.
Leutert, T. J., Modestou, S., Bernasconi, S. M., and Meckler, A. N.: Clumped isotope bottom water temperature record data from Ocean Drilling Program (ODP) Site 747, Version 1.0, Interdisciplinary Earth Data Alliance [data set], https://doi.org/10.26022/IEDA/111808, 2021a.
Leutert, T. J., Modestou, S., Bernasconi, S. M., and Meckler, A. N.: Middle Miocene bottom water carbonate clumped isotope temperatures, ODP Hole 120-747A, Kerguelen Plateau, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.923258, 2021b.
Levy, R., Harwood, D., Florindo, F., Sangiorgi, F., Tripati, R., von Eynatten, H., Gasson, E., Kuhn, G., Tripati, A., DeConto, R., Fielding, C., Field, B., Golledge, N., McKay, R., Naish, T., Olney, M., Pollard, D., Schouten, S., Talarico, F., Warny, S., Willmott, V., Acton, G., Panter, K., Paulsen, T., Taviani, M., and SMS Science Team:
Antarctic ice sheet sensitivity to atmospheric CO2 variations in the early to mid-Miocene,
P. Natl. Acad. Sci. USA, 113, 3453–3458, https://doi.org/10.1073/pnas.1516030113, 2016.
Lewis, A. R., Marchant, D. R., Ashworth, A. C., Hemming, S. R., and Machlus, M. L.:
Major middle Miocene global climate change: Evidence from East Antarctica and the Transantarctic Mountains,
Geol. Soc. Am. Bull.,
119, 1449–1461, https://doi.org/10.1130/0016-7606(2007)119[1449:Mmmgcc]2.0.Co;2, 2007.
Locarnini, R. A., Mishonov, A. V, Antonov, J. I., Boyer, T. P., Garcia, H. E., Baranova, O. K., Zweng, M. M., Paver, C. R., Reagan, J. R., Johnson, D. R., Hamilton, M., and Seidov, D.: World Ocean Atlas 2013, Volume 1: Temperature, edited by: Levitus, S. and Mishonov, A., NOAA Atlas NESDIS 73, 40 pp., 2013.
Majewski, W. and Bohaty, S. M.:
Surface-water cooling and salinity decrease during the Middle Miocene climate transition at Southern Ocean ODP Site 747 (Kerguelen Plateau),
Mar. Micropaleontol.,
74, 1–14, https://doi.org/10.1016/j.marmicro.2009.10.002, 2010.
Marchitto, T. M., Curry, W. B., Lynch-Stieglitz, J., Bryan, S. P., Cobb, K. M., and Lund, D. C.:
Improved oxygen isotope temperature calibrations for cosmopolitan benthic foraminifera,
Geochim. Cosmochim. Ac.,
130, 1–11, https://doi.org/10.1016/j.gca.2013.12.034, 2014.
Matthews, K. J., Maloney, K. T., Zahirovic, S., Williams, S. E., Seton, M., and Müller, D.:
Global plate boundary evolution and kinematics since the late Paleozoic,
Global Planet. Change,
146, 226–250, https://doi.org/10.1016/j.gloplacha.2016.10.002, 2016.
Meckler, A. N., Ziegler, M., Millan, M. I., Breitenbach, S. F. M., and Bernasconi, S. M.:
Long-term performance of the Kiel carbonate device with a new correction scheme for clumped isotope measurements,
Rapid Commun. Mass Sp.,
28, 1705–1715, https://doi.org/10.1002/rcm.6949, 2014.
Meinicke, N., Ho, S. L., Hannisdal, B., Nürnberg, D., Tripati, A., Schiebel, R., and Meckler, A. N.:
A robust calibration of the clumped isotopes to temperature relationship for foraminifers,
Geochim. Cosmochim. Ac.,
270, 160–183, https://doi.org/10.1016/j.gca.2019.11.022, 2020.
Modestou, S. E., Leutert, T. J., Fernandez, A., Lear, C. H., and Meckler, A. N.: Warm middle Miocene Indian Ocean bottom water temperatures: comparison of clumped isotope and -based estimates, Paleoceanography and Paleoclimatology, 35, e2020PA003927, https://doi.org/10.1029/2020PA003927, 2020.
Müller, I. A., Fernandez, A., Radke, J., van Dijk, J., Bowen, D., Schwieters, J., and Bernasconi, S. M.:
Carbonate clumped isotope analyses with the long-integration dual-inlet (LIDI) workflow: scratching at the lower sample weight boundaries,
Rapid Commun. Mass Sp.,
31, 1057–1066, https://doi.org/10.1002/rcm.7878, 2017.
Müller, R. D., Cannon, J., Qin, X., Watson, R. J., Gurnis, M., Williams, S., Pfaffelmoser, T., Seton, M., Russell, S. H. J., and Zahirovic, S.:
GPlates: Building a Virtual Earth Through Deep Time,
Geochem. Geophy. Geosy.,
19, 2243–2261, https://doi.org/10.1029/2018GC007584, 2018.
Nathan, S. A. and Leckie, R. M.:
Early history of the Western Pacific Warm Pool during the middle to late Miocene (∼ 13.2–5.8 Ma): Role of sea-level change and implications for equatorial circulation,
Palaeogeogr. Palaeocl.,
274, 140–159, https://doi.org/10.1016/j.palaeo.2009.01.007, 2009.
Paillard, D., Labeyrie, L., and Yiou, P.: Macintosh program performs time-series analysis, EOS T. Am. Geophys Un., 77, 379, https://doi.org/10.1029/96EO00259, 1996.
Pearson, P. N., Ditchfield, P. W., Singano, J., Harcourt-Brown, K. G., Nicholas, C. J., Olsson, R. K., Shackleton, N. J., and Hall, M. A.: Warm tropical sea surface temperatures in the Late Cretaceous and Eocene epochs, Nature, 413, 481–487, https://doi.org/10.1038/35097000, 2001.
Peral, M., Daëron, M., Blamart, D., Bassinot, F., Dewilde, F., Smialkowski, N., Isguder, G., Bonnin, J., Jorissen, F., Kissel, C., Michel, E., Vázquez Riveiros, N., and Waelbroeck, C.: Updated calibration of the clumped isotope thermometer in planktonic and benthic foraminifera,
Geochim. Cosmochim. Ac., 239, 1–16, https://doi.org/10.1016/j.gca.2018.07.016, 2018.
Pérez, L. F., Martos, Y. M., García, M., Weber, M. E., Raymo, M. E., Williams, T., Bohoyo, F., Armbrecht, L., Bailey, I., Brachfeld, S., Glüder, A., Guitard, M., Gutjahr, M., Hemming, S., Hernández-Almeida, I., Hoem, F. S., Kato, Y., O'Connell, S., Peck, V. L., Reilly, B., Ronge, T. A., Tauxe, L., Warnock, J., Zheng, X. and the IODP Expedition 382 Scientists:
Miocene to present oceanographic variability in the Scotia Sea and Antarctic ice sheets dynamics: Insight from revised seismic-stratigraphy following IODP Expedition 382, Earth Planet. Sc. Lett., 553, 116657, https://doi.org/10.1016/j.epsl.2020.116657, 2021.
Piasecki, A., Bernasconi, S. M., Grauel, A.-L., Hannisdal, B., Ho, S. L., Leutert, T. J., Marchitto, T. M., Meinicke, N., Tisserand, A., and Meckler, N.: Application of Clumped Isotope Thermometry to Benthic Foraminifera,
Geochem. Geophy. Geosy., 20, 2082–2090, https://doi.org/10.1029/2018GC007961, 2019.
Pierce, E. L., van de Flierdt, T., Williams, T., Hemming, S. R., Cook, C. P., and Passchier, S.: Evidence for a dynamic East Antarctic ice sheet during the mid-Miocene climate transition, Earth Planet. Sc. Lett., 478, 1–13, https://doi.org/10.1016/j.epsl.2017.08.011, 2017.
Regenberg, M., Regenberg, A., Garbe-Schönberg, D., and Lea, D. W.:
Global dissolution effects on planktonic foraminiferal ratios controlled by the calcite-saturation state of bottom waters,
Paleoceanography,
29, 127–142, https://doi.org/10.1002/2013pa002492, 2014.
Rodríguez-Sanz, L., Bernasconi, S. M., Marino, G., Heslop, D., Müller, I. A., Fernandez, A., Grant, K. M., and Rohling, E. J.:
Penultimate deglacial warming across the Mediterranean Sea revealed by clumped isotopes in foraminifera,
Sci. Rep., 7, 1–11, https://doi.org/10.1038/s41598-017-16528-6, 2017.
Sangiorgi, F., Bijl, P. K., Passchier, S., Salzmann, U., Schouten, S., McKay, R., Cody, R. D., Pross, J., van de Flierdt, T., Bohaty, S. M., Levy, R., Williams, T., Escutia, C., and Brinkhuis, H.:
Southern Ocean warming and Wilkes Land ice sheet retreat during the mid-Miocene,
Nat. Commun.,
9, 1–11, https://doi.org/10.1038/s41467-017-02609-7, 2018.
Schauble, E. A., Ghosh, P., and Eiler, J. M.:
Preferential formation of 13C-18O bonds in carbonate minerals, estimated using first-principles lattice dynamics,
Geochim. Cosmochim. Ac.,
70, 2510–2529, https://doi.org/10.1016/j.gca.2006.02.011, 2006.
Schlich, R., Wise, S. W., and the Expedition 120 Scientists:
Site 747,
in: Proceedings of the Ocean Drilling Program, Initial Reports, 120, pp. 89–156, 1989.
Schlitzer, R.: Ocean Data View, available at: https://odv.awi.de, last access: 2 June 2020.
Schmid, T. W. and Bernasconi, S. M.:
An automated method for `clumped-isotope' measurements on small carbonate samples,
Rapid Commun. Mass Sp.,
24, 1955–1963, https://doi.org/10.1002/rcm.4598, 2010.
Schmid, T. W., Radke, J., and Bernasconi, S. M.:
Clumped-isotope measurements on small carbonate samples with a Kiel IV carbonate device and a MAT 253 mass spectrometer, Thermo Fisher Application Note 2012, 30233, 2012.
Shevenell, A. E., Kennett, J. P., and Lea, D. W.:
Middle Miocene Southern Ocean Cooling and Antarctic Cryosphere Expansion,
Science,
305, 1766–1770, https://doi.org/10.1126/science.1100061, 2004.
Shevenell, A. E., Kennett, J. P., and Lea, D. W.:
Middle Miocene ice sheet dynamics, deep-sea temperatures, and carbon cycling: A Southern Ocean perspective,
Geochem. Geophy. Geosy.,
9, 1–14, https://doi.org/10.1029/2007GC001736, 2008.
Shipboard Scientific Party: Site 806, in: Proceedings of the Ocean Drilling Program, Initial Reports, edited by: Kroenke, L. W., Berger, W. H., Janecek, T. R., and Shipboard Scientific
Party, Ocean Drilling Program, College Station, TX, 130, 291–367, 1991.
Sigman, D. M., Jaccard, S. L., and Haug, G. H.:
Polar ocean stratification in a cold climate,
Nature,
428, 59–63, https://doi.org/10.1038/nature02357, 2004.
Sosdian, S. M., Greenop, R., Hain, M. P., Foster, G. L., Pearson, P. N., and Lear, C. H.:
Constraining the evolution of Neogene ocean carbonate chemistry using the boron isotope pH proxy,
Earth Planet. Sc. Lett.,
498, 362–376, https://doi.org/10.1016/j.epsl.2018.06.017, 2018.
Steinthorsdottir, M., Coxall, H. K., de Boer, A. M., Huber, M., Barbolini, N., Bradshaw, C. D., Burls, N. J., Feakins, S. J., Gasson, E., Henderiks, J., Holbourn, A., Kiel, S., Kohn, M. J., Knorr, G., Kürschner, W. M., Lear, C. H., Liebrand, D., Lunt, D. J., Mörs, T., Pearson, P. N., Pound, M. J., Stoll, H., and Strömberg, C. A. E.: The Miocene: the Future of the Past,
Paleoceanography and Paleoclimatology, 36, e2020PA004037, https://doi.org/10.1029/2020PA004037, 2020.
Super, J. R., Thomas, E., Pagani, M., Huber, M., O'Brien, C., and Hull, P. M.:
North Atlantic temperature and pCO2 coupling in the early-middle Miocene,
Geology,
46, 519–522, https://doi.org/10.1130/g40228.1, 2018.
Thiede, J., Jessen, C., Knutz, P., Kuijpers, A., Mikkelsen, N., Nørgaard-Pedersen, N., and Spielhagen, R. F.:
Millions of years of Greenland Ice Sheet history recorded in ocean sediments,
Polarforschung,
80, 141–159, https://doi.org/10.2312/polarforschung.80.3.141, 2011.
Tian, J., Ma, X., Zhou, J., Jiang, X., Lyle, M., Shackford, J., and Wilkens, R.:
Paleoceanography of the east equatorial Pacific over the past 16 Myr and Pacific–Atlantic comparison: High resolution benthic foraminiferal δ18O and δ13C records at IODP Site U1337,
Earth Planet. Sc. Lett.,
499, 185–196, https://doi.org/10.1016/j.epsl.2018.07.025, 2018.
Torsvik, T. H., Van der Voo, R., Preeden, U., Mac Niocaill, C., Steinberger, B., Doubrovine, P. V, van Hinsbergen, D. J. J., Domeier, M., Gaina, C., Tohver, E., Meert, J. G., McCausland, P. J. A., and Cocks, L. R. M.:
Phanerozoic polar wander, palaeogeography and dynamics,
Earth-Sci. Rev.,
114, 325–368, https://doi.org/10.1016/j.earscirev.2012.06.007, 2012.
Tripati, A. K., Eagle, R. A., Thiagarajan, N., Gagnon, A. C., Bauch, H., Halloran, P. R., and Eiler, J. M.: 13C−18O isotope signatures and ‘clumped isotope’ thermometry in foraminifera and coccoliths, Geochim. Cosmochim. Ac., 74, 5697–5717, https://doi.org/10.1016/j.gca.2010.07.006, 2010.
Tripati, A. K., Hill, P. S., Eagle, R. A., Mosenfelder, J. L., Tang, J., Schauble, E. A., Eiler, J. M., Zeebe, R. E., Uchikawa, J., Coplen, T. B., Ries, J. B., and Henry, D.:
Beyond temperature: Clumped isotope signatures in dissolved inorganic carbon species and the influence of solution chemistry on carbonate mineral composition,
Geochim. Cosmochim. Ac.,
166, 344–371, https://doi.org/10.1016/j.gca.2015.06.021, 2015.
van Hinsbergen, D. J. J., de Groot, L. V, van Schaik, S. J., Spakman, W., Bijl, P. K., Sluijs, A., Langereis, C. G., and Brinkhuis, H.:
A Paleolatitude Calculator for Paleoclimate Studies,
PLoS One,
10, 1–21, https://doi.org/10.1371/journal.pone.0126946, 2015.
Vázquez Riveiros, N., Govin, A., Waelbroeck, C., Mackensen, A., Michel, E., Moreira, S., Bouinot, T., Caillon, N., Orgun, A., and Brandon, M.:
thermometry in planktic foraminifera: Improving paleotemperature estimations for G. bulloides and N. pachyderma left,
Geochem. Geophy. Geosy.,
17, 1249–1264, https://doi.org/10.1002/2015gc006234, 2016.
Vincent, E. and Berger, W. H.:
Carbon Dioxide and Polar Cooling in the Miocene: The Monterey Hypothesis,
in: The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present, vol. 32,
edited by: Sundquist, E. T. and Broecker, W. S.,
AGU, Washington, DC, pp. 455–468, 1985.
Watkins, J. M. and Hunt, J. D.:
A process-based model for non-equilibrium clumped isotope effects in carbonates,
Earth Planet. Sc. Lett.,
432, 152–165, https://doi.org/10.1016/j.epsl.2015.09.042, 2015.
Woodruff, F. and Savin, S. M.:
Miocene Deepwater Oceanography,
Paleoceanography,
4, 87–140, https://doi.org/10.1029/PA004i001p00087, 1989.
Yu, J. M. and Elderfield, H.:
in the benthic foraminifera Cibicidoides wuellerstorfi and Cibicidoides mundulus: Temperature versus carbonate ion saturation,
Earth Planet. Sc. Lett.,
276, 129–139, https://doi.org/10.1016/j.epsl.2008.09.015, 2008.
Zachos, J. C., Pagani, M., Sloan, L., Thomas, E., and Billups, K.:
Trends, rhythms, and aberrations in global climate 65 Ma to present,
Science,
292, 686–693, https://doi.org/10.1126/science.1059412, 2001.
Zeebe, R. E.:
An explanation of the effect of seawater carbonate concentration on foraminiferal oxygen isotopes,
Geochim. Cosmochim. Ac.,
63, 2001–2007, https://doi.org/10.1016/S0016-7037(99)00091-5, 1999.
Short summary
The Miocene climatic optimum associated with high atmospheric CO2 levels (~17–14 Ma) was followed by a period of dramatic climate change. We present a clumped isotope-based bottom-water temperature record from the Southern Ocean covering this key climate transition. Our record reveals warm conditions and a substantial cooling preceding the main ice volume increase, possibly caused by thresholds involved in ice growth and/or regional effects at our study site.
The Miocene climatic optimum associated with high atmospheric CO2 levels (~17–14 Ma) was...