Articles | Volume 17, issue 5
https://doi.org/10.5194/cp-17-1989-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-17-1989-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Rapid and sustained environmental responses to global warming: the Paleocene–Eocene Thermal Maximum in the eastern North Sea
Ella W. Stokke
CORRESPONDING AUTHOR
CEED, University of Oslo, P.O. Box 1028, 0315 Oslo, Norway
Morgan T. Jones
CEED, University of Oslo, P.O. Box 1028, 0315 Oslo, Norway
Lars Riber
Department of Geosciences, University of Oslo, P.O. Box 1047,
Blindern, 0316 Oslo, Norway
Haflidi Haflidason
Department of Earth Science, University of Bergen, Allégt. 41,
5007 Bergen, Norway
Bjerknes Centre for Climate Research, Jahnebakken 5, 5007 Bergen,
Norway
Ivar Midtkandal
Department of Geosciences, University of Oslo, P.O. Box 1047,
Blindern, 0316 Oslo, Norway
Bo Pagh Schultz
Museum Salling, Fur Museum, Nederby 28, 7884 Fur, Denmark
Henrik H. Svensen
CEED, University of Oslo, P.O. Box 1028, 0315 Oslo, Norway
Related authors
Madeleine L. Vickers, Morgan T. Jones, Jack Longman, David Evans, Clemens V. Ullmann, Ella Wulfsberg Stokke, Martin Vickers, Joost Frieling, Dustin T. Harper, Vincent J. Clementi, and IODP Expedition 396 Scientists
Clim. Past, 20, 1–23, https://doi.org/10.5194/cp-20-1-2024, https://doi.org/10.5194/cp-20-1-2024, 2024
Short summary
Short summary
The discovery of cold-water glendonite pseudomorphs in sediments deposited during the hottest part of the Cenozoic poses an apparent climate paradox. This study examines their occurrence, association with volcanic sediments, and speculates on the timing and extent of cooling, fitting this with current understanding of global climate during this period. We propose that volcanic activity was key to both physical and chemical conditions that enabled the formation of glendonites in these sediments.
Morgan T. Jones, Ella W. Stokke, Alan D. Rooney, Joost Frieling, Philip A. E. Pogge von Strandmann, David J. Wilson, Henrik H. Svensen, Sverre Planke, Thierry Adatte, Nicolas Thibault, Madeleine L. Vickers, Tamsin A. Mather, Christian Tegner, Valentin Zuchuat, and Bo P. Schultz
Clim. Past, 19, 1623–1652, https://doi.org/10.5194/cp-19-1623-2023, https://doi.org/10.5194/cp-19-1623-2023, 2023
Short summary
Short summary
There are periods in Earth’s history when huge volumes of magma are erupted at the Earth’s surface. The gases released from volcanic eruptions and from sediments heated by the magma are believed to have caused severe climate changes in the geological past. We use a variety of volcanic and climatic tracers to assess how the North Atlantic Igneous Province (56–54 Ma) affected the oceans and atmosphere during a period of extreme global warming.
Morgan T. Jones, Lawrence M. E. Percival, Ella W. Stokke, Joost Frieling, Tamsin A. Mather, Lars Riber, Brian A. Schubert, Bo Schultz, Christian Tegner, Sverre Planke, and Henrik H. Svensen
Clim. Past, 15, 217–236, https://doi.org/10.5194/cp-15-217-2019, https://doi.org/10.5194/cp-15-217-2019, 2019
Short summary
Short summary
Mercury anomalies in sedimentary rocks are used to assess whether there were periods of elevated volcanism in the geological record. We focus on five sites that cover the Palaeocene–Eocene Thermal Maximum, an extreme global warming event that occurred 55.8 million years ago. We find that sites close to the eruptions from the North Atlantic Igneous Province display significant mercury anomalies across this time interval, suggesting that magmatism played a role in the global warming event.
Kim Senger, Grace Shephard, Fenna Ammerlaan, Owen Anfinson, Pascal Audet, Bernard Coakley, Victoria Ershova, Jan Inge Faleide, Sten-Andreas Grundvåg, Rafael Kenji Horota, Karthik Iyer, Julian Janocha, Morgan Jones, Alexander Minakov, Margaret Odlum, Anna M. R. Sartell, Andrew Schaeffer, Daniel Stockli, Marie A. Vander Kloet, and Carmen Gaina
Geosci. Commun. Discuss., https://doi.org/10.5194/gc-2024-3, https://doi.org/10.5194/gc-2024-3, 2024
Revised manuscript accepted for GC
Short summary
Short summary
The article describes a course that we have developed at the University Centre in Svalbard that covers many aspects of Arctic Geology. The students experience this from a wide range of lecturers, focussing both on the small and larger scales, and covering many geoscientific disciplines.
Madeleine L. Vickers, Morgan T. Jones, Jack Longman, David Evans, Clemens V. Ullmann, Ella Wulfsberg Stokke, Martin Vickers, Joost Frieling, Dustin T. Harper, Vincent J. Clementi, and IODP Expedition 396 Scientists
Clim. Past, 20, 1–23, https://doi.org/10.5194/cp-20-1-2024, https://doi.org/10.5194/cp-20-1-2024, 2024
Short summary
Short summary
The discovery of cold-water glendonite pseudomorphs in sediments deposited during the hottest part of the Cenozoic poses an apparent climate paradox. This study examines their occurrence, association with volcanic sediments, and speculates on the timing and extent of cooling, fitting this with current understanding of global climate during this period. We propose that volcanic activity was key to both physical and chemical conditions that enabled the formation of glendonites in these sediments.
Kim Senger, Denise Kulhanek, Morgan T. Jones, Aleksandra Smyrak-Sikora, Sverre Planke, Valentin Zuchuat, William J. Foster, Sten-Andreas Grundvåg, Henning Lorenz, Micha Ruhl, Kasia K. Sliwinska, Madeleine L. Vickers, and Weimu Xu
Sci. Dril., 32, 113–135, https://doi.org/10.5194/sd-32-113-2023, https://doi.org/10.5194/sd-32-113-2023, 2023
Short summary
Short summary
Geologists can decipher the past climates and thus better understand how future climate change may affect the Earth's complex systems. In this paper, we report on a workshop held in Longyearbyen, Svalbard, to better understand how rocks in Svalbard (an Arctic archipelago) can be used to quantify major climatic shifts recorded in the past.
Eva P. S. Eibl, Kristin S. Vogfjörd, Benedikt G. Ófeigsson, Matthew J. Roberts, Christopher J. Bean, Morgan T. Jones, Bergur H. Bergsson, Sebastian Heimann, and Thoralf Dietrich
Earth Surf. Dynam., 11, 933–959, https://doi.org/10.5194/esurf-11-933-2023, https://doi.org/10.5194/esurf-11-933-2023, 2023
Short summary
Short summary
Floods draining beneath an ice cap are hazardous events that generate six different short- or long-lasting types of seismic signals. We use these signals to see the collapse of the ice once the water has left the lake, the propagation of the flood front to the terminus, hydrothermal explosions and boiling in the bedrock beneath the drained lake, and increased water flow at rapids in the glacial river. We can thus track the flood and assess the associated hazards better in future flooding events.
Morgan T. Jones, Ella W. Stokke, Alan D. Rooney, Joost Frieling, Philip A. E. Pogge von Strandmann, David J. Wilson, Henrik H. Svensen, Sverre Planke, Thierry Adatte, Nicolas Thibault, Madeleine L. Vickers, Tamsin A. Mather, Christian Tegner, Valentin Zuchuat, and Bo P. Schultz
Clim. Past, 19, 1623–1652, https://doi.org/10.5194/cp-19-1623-2023, https://doi.org/10.5194/cp-19-1623-2023, 2023
Short summary
Short summary
There are periods in Earth’s history when huge volumes of magma are erupted at the Earth’s surface. The gases released from volcanic eruptions and from sediments heated by the magma are believed to have caused severe climate changes in the geological past. We use a variety of volcanic and climatic tracers to assess how the North Atlantic Igneous Province (56–54 Ma) affected the oceans and atmosphere during a period of extreme global warming.
Christian Berndt, Sverre Planke, Damon Teagle, Ritske Huismans, Trond Torsvik, Joost Frieling, Morgan T. Jones, Dougal A. Jerram, Christian Tegner, Jan Inge Faleide, Helen Coxall, and Wei-Li Hong
Sci. Dril., 26, 69–85, https://doi.org/10.5194/sd-26-69-2019, https://doi.org/10.5194/sd-26-69-2019, 2019
Short summary
Short summary
The northeast Atlantic encompasses archetypal examples of volcanic rifted margins. Twenty-five years after the last ODP leg on these volcanic margins, the reasons for excess melting are still disputed with at least three competing hypotheses being discussed. We are proposing a new drilling campaign that will constrain the timing, rates of volcanism, and vertical movements of rifted margins.
Morgan T. Jones, Lawrence M. E. Percival, Ella W. Stokke, Joost Frieling, Tamsin A. Mather, Lars Riber, Brian A. Schubert, Bo Schultz, Christian Tegner, Sverre Planke, and Henrik H. Svensen
Clim. Past, 15, 217–236, https://doi.org/10.5194/cp-15-217-2019, https://doi.org/10.5194/cp-15-217-2019, 2019
Short summary
Short summary
Mercury anomalies in sedimentary rocks are used to assess whether there were periods of elevated volcanism in the geological record. We focus on five sites that cover the Palaeocene–Eocene Thermal Maximum, an extreme global warming event that occurred 55.8 million years ago. We find that sites close to the eruptions from the North Atlantic Igneous Province display significant mercury anomalies across this time interval, suggesting that magmatism played a role in the global warming event.
Karthik Iyer, Henrik Svensen, and Daniel W. Schmid
Geosci. Model Dev., 11, 43–60, https://doi.org/10.5194/gmd-11-43-2018, https://doi.org/10.5194/gmd-11-43-2018, 2018
Short summary
Short summary
Igneous intrusions in sedimentary basins have a profound effect on the thermal structure of the hosting sedimentary rocks. In this paper, we present a user-friendly 1-D FEM-based tool, SILLi, that calculates the thermal effects of sill intrusions on the enclosing sedimentary stratigraphy. The motivation is to make a standardized numerical toolkit openly available that can be widely used by scientists with different backgrounds to test the effects of magmatic bodies in a wide variety of settings.
Related subject area
Subject: Proxy Use-Development-Validation | Archive: Marine Archives | Timescale: Cenozoic
A clumped isotope calibration of coccoliths at well-constrained culture temperatures for marine temperature reconstructions
Can we reliably reconstruct the mid-Pliocene Warm Period with sparse data and uncertain models?
Paleocene–Eocene age glendonites from the Mid-Norwegian Margin – indicators of cold snaps in the hothouse?
Assessing environmental change associated with early Eocene hyperthermals in the Atlantic Coastal Plain, USA
Technical note: A new online tool for δ18O–temperature conversions
A 15-million-year surface- and subsurface-integrated TEX86 temperature record from the eastern equatorial Atlantic
Sclerochronological evidence of pronounced seasonality from the late Pliocene of the southern North Sea basin and its implications
Pliocene evolution of the tropical Atlantic thermocline depth
Maastrichtian–Rupelian paleoclimates in the southwest Pacific – a critical re-evaluation of biomarker paleothermometry and dinoflagellate cyst paleoecology at Ocean Drilling Program Site 1172
Southern Ocean bottom-water cooling and ice sheet expansion during the middle Miocene climate transition
Atmospheric carbon dioxide variations across the middle Miocene climate transition
OPTiMAL: a new machine learning approach for GDGT-based palaeothermometry
Technical note: A new automated radiolarian image acquisition, stacking, processing, segmentation and identification workflow
Late Paleocene–early Eocene Arctic Ocean sea surface temperatures: reassessing biomarker paleothermometry at Lomonosov Ridge
Surface-circulation change in the southwest Pacific Ocean across the Middle Eocene Climatic Optimum: inferences from dinoflagellate cysts and biomarker paleothermometry
A new age model for the Pliocene of the southern North Sea basin: a multi-proxy climate reconstruction
Joint inversion of proxy system models to reconstruct paleoenvironmental time series from heterogeneous data
Mercury anomalies across the Palaeocene–Eocene Thermal Maximum
Reinforcing the North Atlantic backbone: revision and extension of the composite splice at ODP Site 982
Highly variable Pliocene sea surface conditions in the Norwegian Sea
The PRISM4 (mid-Piacenzian) paleoenvironmental reconstruction
Revisiting carbonate chemistry controls on planktic foraminifera Mg / Ca: implications for sea surface temperature and hydrology shifts over the Paleocene–Eocene Thermal Maximum and Eocene–Oligocene transition
The Paleocene–Eocene Thermal Maximum at DSDP Site 277, Campbell Plateau, southern Pacific Ocean
The bivalve Glycymeris planicostalis as a high-resolution paleoclimate archive for the Rupelian (Early Oligocene) of central Europe
Pliocene diatom and sponge spicule oxygen isotope ratios from the Bering Sea: isotopic offsets and future directions
Re-evaluation of the age model for North Atlantic Ocean Site 982 – arguments for a return to the original chronology
Exploring the controls on element ratios in middle Eocene samples of the benthic foraminifera Oridorsalis umbonatus
Application of Fourier Transform Infrared Spectroscopy (FTIR) for assessing biogenic silica sample purity in geochemical analyses and palaeoenvironmental research
Alexander J. Clark, Ismael Torres-Romero, Madalina Jaggi, Stefano M. Bernasconi, and Heather M. Stoll
Clim. Past, 20, 2081–2101, https://doi.org/10.5194/cp-20-2081-2024, https://doi.org/10.5194/cp-20-2081-2024, 2024
Short summary
Short summary
Coccoliths are abundant in sediments across the world’s oceans, yet it is difficult to apply traditional carbon or oxygen isotope methodologies for temperature reconstructions. We show that our coccolith clumped isotope temperature calibration with well-constrained temperatures systematically differs from inorganic carbonate calibrations. We suggest the use of our well-constrained calibration for future coccolith carbonate temperature reconstructions.
James D. Annan, Julia C. Hargreaves, Thorsten Mauritsen, Erin McClymont, and Sze Ling Ho
Clim. Past, 20, 1989–1999, https://doi.org/10.5194/cp-20-1989-2024, https://doi.org/10.5194/cp-20-1989-2024, 2024
Short summary
Short summary
We have created a new global surface temperature reconstruction of the climate of the mid-Pliocene Warm Period, representing the period roughly 3.2 million years before the present day. We estimate that the globally averaged mean temperature was around 3.9 °C warmer than it was in pre-industrial times, but there is significant uncertainty in this value.
Madeleine L. Vickers, Morgan T. Jones, Jack Longman, David Evans, Clemens V. Ullmann, Ella Wulfsberg Stokke, Martin Vickers, Joost Frieling, Dustin T. Harper, Vincent J. Clementi, and IODP Expedition 396 Scientists
Clim. Past, 20, 1–23, https://doi.org/10.5194/cp-20-1-2024, https://doi.org/10.5194/cp-20-1-2024, 2024
Short summary
Short summary
The discovery of cold-water glendonite pseudomorphs in sediments deposited during the hottest part of the Cenozoic poses an apparent climate paradox. This study examines their occurrence, association with volcanic sediments, and speculates on the timing and extent of cooling, fitting this with current understanding of global climate during this period. We propose that volcanic activity was key to both physical and chemical conditions that enabled the formation of glendonites in these sediments.
William Rush, Jean Self-Trail, Yang Zhang, Appy Sluijs, Henk Brinkhuis, James Zachos, James G. Ogg, and Marci Robinson
Clim. Past, 19, 1677–1698, https://doi.org/10.5194/cp-19-1677-2023, https://doi.org/10.5194/cp-19-1677-2023, 2023
Short summary
Short summary
The Eocene contains several brief warming periods referred to as hyperthermals. Studying these events and how they varied between locations can help provide insight into our future warmer world. This study provides a characterization of two of these events in the mid-Atlantic region of the USA. The records of climate that we measured demonstrate significant changes during this time period, but the type and timing of these changes highlight the complexity of climatic changes.
Daniel E. Gaskell and Pincelli M. Hull
Clim. Past, 19, 1265–1274, https://doi.org/10.5194/cp-19-1265-2023, https://doi.org/10.5194/cp-19-1265-2023, 2023
Short summary
Short summary
One of the most common ways of reconstructing temperatures in the geologic past is by analyzing oxygen isotope ratios in fossil shells. However, converting these data to temperatures can be a technically complicated task. Here, we present a new online tool that automates this task.
Carolien M. H. van der Weijst, Koen J. van der Laan, Francien Peterse, Gert-Jan Reichart, Francesca Sangiorgi, Stefan Schouten, Tjerk J. T. Veenstra, and Appy Sluijs
Clim. Past, 18, 1947–1962, https://doi.org/10.5194/cp-18-1947-2022, https://doi.org/10.5194/cp-18-1947-2022, 2022
Short summary
Short summary
The TEX86 proxy is often used by paleoceanographers to reconstruct past sea-surface temperatures. However, the origin of the TEX86 signal in marine sediments has been debated since the proxy was first proposed. In our paper, we show that TEX86 carries a mixed sea-surface and subsurface temperature signal and should be calibrated accordingly. Using our 15-million-year record, we subsequently show how a TEX86 subsurface temperature record can be used to inform us on past sea-surface temperatures.
Andrew L. A. Johnson, Annemarie M. Valentine, Bernd R. Schöne, Melanie J. Leng, and Stijn Goolaerts
Clim. Past, 18, 1203–1229, https://doi.org/10.5194/cp-18-1203-2022, https://doi.org/10.5194/cp-18-1203-2022, 2022
Short summary
Short summary
Determining seasonal temperatures demands proxies that record the highest and lowest temperatures over the annual cycle. Many record neither, but oxygen isotope profiles from shells in principle record both. Oxygen isotope data from late Pliocene bivalve molluscs of the southern North Sea basin show that the seasonal temperature range was at times much higher than previously estimated and higher than now. This suggests reduced oceanic heat supply, in contrast to some previous interpretations.
Carolien M. H. van der Weijst, Josse Winkelhorst, Wesley de Nooijer, Anna von der Heydt, Gert-Jan Reichart, Francesca Sangiorgi, and Appy Sluijs
Clim. Past, 18, 961–973, https://doi.org/10.5194/cp-18-961-2022, https://doi.org/10.5194/cp-18-961-2022, 2022
Short summary
Short summary
A hypothesized link between Pliocene (5.3–2.5 million years ago) global climate and tropical thermocline depth is currently only backed up by data from the Pacific Ocean. In our paper, we present temperature, salinity, and thermocline records from the tropical Atlantic Ocean. Surprisingly, the Pliocene thermocline evolution was remarkably different in the Atlantic and Pacific. We need to reevaluate the mechanisms that drive thermocline depth, and how these are tied to global climate change.
Peter K. Bijl, Joost Frieling, Marlow Julius Cramwinckel, Christine Boschman, Appy Sluijs, and Francien Peterse
Clim. Past, 17, 2393–2425, https://doi.org/10.5194/cp-17-2393-2021, https://doi.org/10.5194/cp-17-2393-2021, 2021
Short summary
Short summary
Here, we use the latest insights for GDGT and dinocyst-based paleotemperature and paleoenvironmental reconstructions in late Cretaceous–early Oligocene sediments from ODP Site 1172 (East Tasman Plateau, Australia). We reconstruct strong river runoff during the Paleocene–early Eocene, a progressive decline thereafter with increased wet/dry seasonality in the northward-drifting hinterland. Our critical review leaves the anomalous warmth of the Eocene SW Pacific Ocean unexplained.
Thomas J. Leutert, Sevasti Modestou, Stefano M. Bernasconi, and A. Nele Meckler
Clim. Past, 17, 2255–2271, https://doi.org/10.5194/cp-17-2255-2021, https://doi.org/10.5194/cp-17-2255-2021, 2021
Short summary
Short summary
The Miocene climatic optimum associated with high atmospheric CO2 levels (~17–14 Ma) was followed by a period of dramatic climate change. We present a clumped isotope-based bottom-water temperature record from the Southern Ocean covering this key climate transition. Our record reveals warm conditions and a substantial cooling preceding the main ice volume increase, possibly caused by thresholds involved in ice growth and/or regional effects at our study site.
Markus Raitzsch, Jelle Bijma, Torsten Bickert, Michael Schulz, Ann Holbourn, and Michal Kučera
Clim. Past, 17, 703–719, https://doi.org/10.5194/cp-17-703-2021, https://doi.org/10.5194/cp-17-703-2021, 2021
Short summary
Short summary
At approximately 14 Ma, the East Antarctic Ice Sheet expanded to almost its current extent, but the role of CO2 in this major climate transition is not entirely known. We show that atmospheric CO2 might have varied on 400 kyr cycles linked to the eccentricity of the Earth’s orbit. The resulting change in weathering and ocean carbon cycle affected atmospheric CO2 in a way that CO2 rose after Antarctica glaciated, helping to stabilize the climate system on its way to the “ice-house” world.
Tom Dunkley Jones, Yvette L. Eley, William Thomson, Sarah E. Greene, Ilya Mandel, Kirsty Edgar, and James A. Bendle
Clim. Past, 16, 2599–2617, https://doi.org/10.5194/cp-16-2599-2020, https://doi.org/10.5194/cp-16-2599-2020, 2020
Short summary
Short summary
We explore the utiliity of the composition of fossil lipid biomarkers, which are commonly preserved in ancient marine sediments, in providing estimates of past ocean temperatures. The group of lipids concerned show compositional changes across the modern oceans that are correlated, to some extent, with local surface ocean temperatures. Here we present new machine learning approaches to improve our understanding of this temperature sensitivity and its application to reconstructing past climates.
Martin Tetard, Ross Marchant, Giuseppe Cortese, Yves Gally, Thibault de Garidel-Thoron, and Luc Beaufort
Clim. Past, 16, 2415–2429, https://doi.org/10.5194/cp-16-2415-2020, https://doi.org/10.5194/cp-16-2415-2020, 2020
Short summary
Short summary
Radiolarians are marine micro-organisms that produce a siliceous shell that is preserved in the fossil record and can be used to reconstruct past climate variability. However, their study is only possible after a time-consuming manual selection of their shells from the sediment followed by their individual identification. Thus, we develop a new fully automated workflow consisting of microscopic radiolarian image acquisition, image processing and identification using artificial intelligence.
Appy Sluijs, Joost Frieling, Gordon N. Inglis, Klaas G. J. Nierop, Francien Peterse, Francesca Sangiorgi, and Stefan Schouten
Clim. Past, 16, 2381–2400, https://doi.org/10.5194/cp-16-2381-2020, https://doi.org/10.5194/cp-16-2381-2020, 2020
Short summary
Short summary
We revisit 15-year-old reconstructions of sea surface temperatures in the Arctic Ocean for the late Paleocene and early Eocene epochs (∼ 57–53 million years ago) based on the distribution of fossil membrane lipids of archaea preserved in Arctic Ocean sediments. We find that improvements in the methods over the past 15 years do not lead to different results. However, data quality is now higher and potential biases better characterized. Results confirm remarkable Arctic warmth during this time.
Marlow Julius Cramwinckel, Lineke Woelders, Emiel P. Huurdeman, Francien Peterse, Stephen J. Gallagher, Jörg Pross, Catherine E. Burgess, Gert-Jan Reichart, Appy Sluijs, and Peter K. Bijl
Clim. Past, 16, 1667–1689, https://doi.org/10.5194/cp-16-1667-2020, https://doi.org/10.5194/cp-16-1667-2020, 2020
Short summary
Short summary
Phases of past transient warming can be used as a test bed to study the environmental response to climate change independent of tectonic change. Using fossil plankton and organic molecules, here we reconstruct surface ocean temperature and circulation in and around the Tasman Gateway during a warming phase 40 million years ago termed the Middle Eocene Climatic Optimum. We find that plankton assemblages track ocean circulation patterns, with superimposed variability being related to temperature.
Emily Dearing Crampton-Flood, Lars J. Noorbergen, Damian Smits, R. Christine Boschman, Timme H. Donders, Dirk K. Munsterman, Johan ten Veen, Francien Peterse, Lucas Lourens, and Jaap S. Sinninghe Damsté
Clim. Past, 16, 523–541, https://doi.org/10.5194/cp-16-523-2020, https://doi.org/10.5194/cp-16-523-2020, 2020
Short summary
Short summary
The mid-Pliocene warm period (mPWP; 3.3–3.0 million years ago) is thought to be the last geological interval with similar atmospheric carbon dioxide concentrations as the present day. Further, the mPWP was 2–3 °C warmer than present, making it a good analogue for estimating the effects of future climate change. Here, we construct a new precise age model for the North Sea during the mPWP, and provide a detailed reconstruction of terrestrial and marine climate using a multi-proxy approach.
Gabriel J. Bowen, Brenden Fischer-Femal, Gert-Jan Reichart, Appy Sluijs, and Caroline H. Lear
Clim. Past, 16, 65–78, https://doi.org/10.5194/cp-16-65-2020, https://doi.org/10.5194/cp-16-65-2020, 2020
Short summary
Short summary
Past climate conditions are reconstructed using indirect and incomplete geological, biological, and geochemical proxy data. We propose that such reconstructions are best obtained by statistical inversion of hierarchical models that represent how multi–proxy observations and calibration data are produced by variation of environmental conditions in time and/or space. These methods extract new information from traditional proxies and provide robust, comprehensive estimates of uncertainty.
Morgan T. Jones, Lawrence M. E. Percival, Ella W. Stokke, Joost Frieling, Tamsin A. Mather, Lars Riber, Brian A. Schubert, Bo Schultz, Christian Tegner, Sverre Planke, and Henrik H. Svensen
Clim. Past, 15, 217–236, https://doi.org/10.5194/cp-15-217-2019, https://doi.org/10.5194/cp-15-217-2019, 2019
Short summary
Short summary
Mercury anomalies in sedimentary rocks are used to assess whether there were periods of elevated volcanism in the geological record. We focus on five sites that cover the Palaeocene–Eocene Thermal Maximum, an extreme global warming event that occurred 55.8 million years ago. We find that sites close to the eruptions from the North Atlantic Igneous Province display significant mercury anomalies across this time interval, suggesting that magmatism played a role in the global warming event.
Anna Joy Drury, Thomas Westerhold, David Hodell, and Ursula Röhl
Clim. Past, 14, 321–338, https://doi.org/10.5194/cp-14-321-2018, https://doi.org/10.5194/cp-14-321-2018, 2018
Short summary
Short summary
North Atlantic Site 982 is key to our understanding of climate evolution over the past 12 million years. However, the stratigraphy and age model are unverified. We verify the composite splice using XRF core scanning data and establish a revised benthic foraminiferal stable isotope astrochronology from 8.0–4.5 million years ago. Our new stratigraphy accurately correlates the Atlantic and the Mediterranean and suggests a connection between late Miocene cooling and dynamic ice sheet expansion.
Paul E. Bachem, Bjørg Risebrobakken, Stijn De Schepper, and Erin L. McClymont
Clim. Past, 13, 1153–1168, https://doi.org/10.5194/cp-13-1153-2017, https://doi.org/10.5194/cp-13-1153-2017, 2017
Short summary
Short summary
We present a high-resolution multi-proxy study of the Norwegian Sea, covering the 5.33 to 3.14 Ma time window within the Pliocene. We show that large-scale climate transitions took place during this warmer than modern time, most likely in response to ocean gateway transformations. Strong warming at 4.0 Ma in the Norwegian Sea, when regions closer to Greenland cooled, indicate that increased northward ocean heat transport may be compatible with expanding glaciation and Arctic sea ice growth.
Harry Dowsett, Aisling Dolan, David Rowley, Robert Moucha, Alessandro M. Forte, Jerry X. Mitrovica, Matthew Pound, Ulrich Salzmann, Marci Robinson, Mark Chandler, Kevin Foley, and Alan Haywood
Clim. Past, 12, 1519–1538, https://doi.org/10.5194/cp-12-1519-2016, https://doi.org/10.5194/cp-12-1519-2016, 2016
Short summary
Short summary
Past intervals in Earth history provide unique windows into conditions much different than those observed today. We investigated the paleoenvironments of a past warm interval (~ 3 million years ago). Our reconstruction includes data sets for surface temperature, vegetation, soils, lakes, ice sheets, topography, and bathymetry. These data are being used along with global climate models to expand our understanding of the climate system and to help us prepare for future changes.
David Evans, Bridget S. Wade, Michael Henehan, Jonathan Erez, and Wolfgang Müller
Clim. Past, 12, 819–835, https://doi.org/10.5194/cp-12-819-2016, https://doi.org/10.5194/cp-12-819-2016, 2016
Short summary
Short summary
We show that seawater pH exerts a substantial control on planktic foraminifera Mg / Ca, a widely applied palaeothermometer. As a result, temperature reconstructions based on this proxy are likely inaccurate over climatic events associated with a significant change in pH. We examine the implications of our findings for hydrological and temperature shifts over the Paleocene-Eocene Thermal Maximum and for the degree of surface ocean precursor cooling before the Eocene-Oligocene transition.
C. J. Hollis, B. R. Hines, K. Littler, V. Villasante-Marcos, D. K. Kulhanek, C. P. Strong, J. C. Zachos, S. M. Eggins, L. Northcote, and A. Phillips
Clim. Past, 11, 1009–1025, https://doi.org/10.5194/cp-11-1009-2015, https://doi.org/10.5194/cp-11-1009-2015, 2015
Short summary
Short summary
Re-examination of a Deep Sea Drilling Project sediment core (DSDP Site 277) from the western Campbell Plateau has identified the initial phase of the Paleocene-Eocene Thermal Maximum (PETM) within nannofossil chalk, the first record of the PETM in an oceanic setting in the southern Pacific Ocean (paleolatitude of ~65°S). Geochemical proxies indicate that intermediate and surface waters warmed by ~6° at the onset of the PETM prior to the full development of the negative δ13C excursion.
E. O. Walliser, B. R. Schöne, T. Tütken, J. Zirkel, K. I. Grimm, and J. Pross
Clim. Past, 11, 653–668, https://doi.org/10.5194/cp-11-653-2015, https://doi.org/10.5194/cp-11-653-2015, 2015
A. M. Snelling, G. E. A. Swann, J. Pike, and M. J. Leng
Clim. Past, 10, 1837–1842, https://doi.org/10.5194/cp-10-1837-2014, https://doi.org/10.5194/cp-10-1837-2014, 2014
K. T. Lawrence, I. Bailey, and M. E. Raymo
Clim. Past, 9, 2391–2397, https://doi.org/10.5194/cp-9-2391-2013, https://doi.org/10.5194/cp-9-2391-2013, 2013
C. F. Dawber and A. K. Tripati
Clim. Past, 8, 1957–1971, https://doi.org/10.5194/cp-8-1957-2012, https://doi.org/10.5194/cp-8-1957-2012, 2012
G. E. A. Swann and S. V. Patwardhan
Clim. Past, 7, 65–74, https://doi.org/10.5194/cp-7-65-2011, https://doi.org/10.5194/cp-7-65-2011, 2011
Cited articles
Abdelmalak, M. M., Planke, S., Faleide, J. I., Jerram, D. A., Zastrozhnov,
D., Eide, S., and Myklebust, R.: The development of volcanic sequences at
rifted margins: New insights from the structure and morphology of the
Vøring Escarpment, mid-Norwegian Margin, J. Geophys. Res.-Sol. Ea., 121, 5212–5236, https://doi.org/10.1002/2015JB012788, 2016.
Alegret, L., Ortiz, S., and Molina, E.: Extinction and recovery of benthic
foraminifera across the Paleocene–Eocene Thermal Maximum at the Alamedilla
section (Southern Spain), Palaeogeogr. Palaeoclim.,
279, 186–200, https://doi.org/10.1016/j.palaeo.2009.05.009, 2009.
Algeo, T. J. and Liu, J.: A re-assessment of elemental proxies for
paleoredox analysis, Chem. Geol., 540, 119549,
https://doi.org/10.1016/j.chemgeo.2020.119549, 2020.
Algeo, T. J. and Tribovillard, N.: Environmental analysis of
paleoceanographic systems based on molybdenum–uranium covariation, Chem.
Geol., 268, 211–225, https://doi.org/10.1016/j.chemgeo.2009.09.001,
2009.
Alley, R. B.: A heated mirror for future climate, Science, 352,
151–152, https://doi.org/10.1126/science.aaf4837, 2016.
Anell, I., Thybo, H., and Rasmussen, E.: A synthesis of Cenozoic
sedimentation in the North Sea, Basin Res., 24, 154–179,
https://doi.org/10.1111/j.1365-2117.2011.00517.x, 2012.
Babila, T. L., Penman, D. E., Hönisch, B., Kelly, D. C., Bralower, T.
J., Rosenthal, Y., and Zachos, J. C.: Capturing the global signature of
surface ocean acidification during the Palaeocene–Eocene Thermal Maximum,
Philos. T. Roy. Soc. A, 376, 20170072,
https://doi.org/10.1098/rsta.2017.0072, 2018.
Bains, S., Norris, R. D., Corfield, R. M., and Faul, K. L.: Termination of
global warmth at the Palaeocene/Eocene boundary through productivity
feedback, Nature, 407, 171–174, https://doi.org/10.1038/35025035, 2000.
Behar, F., Beaumont, V., and Penteado, H. D. B.: Rock-Eval 6 technology:
performances and developments, Oil Gas Sci. Technol., 56,
111–134, https://doi.org/10.2516/ogst:2001013, 2001.
Bograd, S. J., Castro, C. G., Di Lorenzo, E., Palacios, D. M., Bailey, H.,
Gilly, W., and Chavez, F. P.: Oxygen declines and the shoaling of the
hypoxic boundary in the California Current, Geophys. Res. Lett.,
35, L12607, https://doi.org/10.1029/2008GL034185, 2008.
Bolle, M. P., Tantawy, A. A., Pardo, A., Adatte, T., Burns, S., and Kassab,
A.: Climatic and environmental changes documented in the upper Paleocene to
lower Eocene of Egypt, Eclogae Geol. Helv., 93, 33–52,
https://doi.org/10.5169/seals-168806, 2000.
Bornemann, A., Norris, R. D., Lyman, J. A., D'haenens, S., Groeneveld, J.,
Röhl, U., and Speijer, R. P.: Persistent environmental change after
the Paleocene–Eocene Thermal Maximum in the eastern North Atlantic, Earth
Planet. Sc. Lett., 394, 70–81,
https://doi.org/10.1016/j.epsl.2014.03.017, 2014.
Bowen, G. J.: Up in smoke: A role for organic carbon feedbacks in Paleogene
hyperthermals, Global Planet. Change, 109, 18–29,
https://doi.org/10.1016/j.gloplacha.2013.07.001, 2013.
Bowen, G. J. and Zachos, J. C.: Rapid carbon sequestration at the
termination of the Palaeocene–Eocene Thermal Maximum, Nat. Geosci.,
3, 866–869, https://doi.org/10.1038/ngeo1014, 2010.
Bowen, G. J., Maibauer, B. J., Kraus, M. J., Röhl, U., Westerhold, T.,
Steimke, A., and Clyde, W. C.: Two massive, rapid releases of carbon
during the onset of the Plaeocene–Eocene thermal maximum, Nat.
Geosci., 8, 44–47, https://doi.org/10.1038/ngeo2316, 2015.
Bridgestock, L., Hsieh, Y. T., Porcelli, D., and Henderson, G. M.: Increased
export production during recovery from the Paleocene–Eocene thermal maximum
constrained by sedimentary Ba isotopes, Earth Planet. Sc. Lett.,
510, 53–63, https://doi.org/10.1016/j.epsl.2018.12.036, 2019.
Bøggild, O. B.: Den vulkanske Aske i Moleret samt en Oversigt over
Danmarks ældre Tertiærbjergarter, B. Geol. Soc.
Denmark, 33, 1–159, 1918.
Carmichael, M. J., Inglis, G. N., Badger, M. P., Naafs, B. D. A., Behrooz,
L., Remmelzwaal, S., and Dickson, A. J.: Hydrological and associated
biogeochemical consequences of rapid global warming during the
Paleocene-Eocene Thermal Maximum, Global Planet. Change, 157, 114–138,
https://doi.org/10.1016/j.gloplacha.2017.07.014, 2017.
Carmichael, M. J., Pancost, R. D., and Lunt, D. J.: Changes in the
occurrence of extreme precipitation events at the Paleocene–Eocene thermal
maximum, Earth Planet. Sc. Lett., 501, 24–36,
https://doi.org/10.1016/j.epsl.2018.08.005, 2018.
Cassidy, M., Watt, S. F., Palmer, M. R., Trofimovs, J., Symons, W.,
Maclachlan, S. E., and Stinton, A. J.: Construction of volcanic records from
marine sediment cores: A review and case study (Montserrat, West Indies),
Earth-Sci. Rev., 138, 137–155,
https://doi.org/10.1016/j.earscirev.2014.08.008, 2014.
Charles, A. J., Condon, D. J., Harding, I. C., Pälike, H., Marshall, J.
E., Cui, Y., and Croudace, I. W.: Constraints on the numerical age of
the Paleocene-Eocene boundary, Geochem. Geophy. Geosy., 12, Q0AA17,
https://doi.org/10.1029/2010GC003426, 2011.
Clausen, O. R., Nielsen, O. B., Huuse, M., and Michelsen, O.: Geological
indications for Palaeogene uplift in the eastern North Sea Basin, Global
Planet. Change, 24, 175–187,
https://doi.org/10.1016/S0921-8181(00)00007-2, 2000.
Cramer, B. S., Toggweiler, J. R., Wright, J. D., Katz, M. E., and Miller, K.
G.: Ocean overturning since the Late Cretaceous: Inferences from a new
benthic foraminiferal isotope compilation, Paleoceanography, 24, PA4216,
https://doi.org/10.1029/2008PA001683, 2009.
Cramwinckel, M. J., Huber, M., Kocken, I. J., Agnini, C., Bijl, P. K.,
Bohaty, S. M., and Peterse, F.: Synchronous tropical and polar
temperature evolution in the Eocene, Nature, 559, 382–386,
https://doi.org/10.1038/s41586-018-0272-2, 2018.
Croudace, I. W., Rindby, A., and Rothwell, R. G.: ITRAX: description and
evaluation of a new multi-function X-ray core scanner, in: New Techniques in Sediment Core Analysis, edited by: Rothwell, R. G., Geological Society, London,
Special Publications, 267, 51–63,
https://doi.org/10.1144/GSL.SP.2006.267.01.04, 2006.
Dickens, G. R., O'Neil, J. R., Rea, D. K., and Owen, R. M.: Dissociation of
oceanic methane hydrate as a cause of the carbon isotope excursion at the
end of the Paleocene, Paleoceanogr. Paleoclim., 10, 965–971,
https://doi.org/10.1029/95PA02087, 1995.
Dickson, A. J., Rees-Owen, R. L., März, C., Coe, A. L., Cohen, A. S.,
Pancost, R. D., and Shcherbinina, E.: The spread of marine anoxia on the
northern Tethys margin during the Paleocene-Eocene Thermal Maximum,
Paleoceanography, 29, 471–488, https://doi.org/10.1002/2014PA002629,
2014.
Dickson, A. J., Cohen, A. S., Coe, A. L., Davies, M., Shcherbinina, E. A.,
and Gavrilov, Y. O.: Evidence for weathering and volcanism during the PETM
from Arctic Ocean and Peri-Tethys osmium isotope records, Palaeogeogr.
Palaeoclim., 438, 300–307,
https://doi.org/10.1016/j.palaeo.2015.08.019, 2015.
Doebelin, N. and Kleeberg, R.: Profex: a graphical user interface for the
Rietveld refinement program BGMN, J. Appl. Crystallogr., 48,
1573–1580, https://doi.org/10.1107/S1600576715014685, 2015.
Dunkley Jones, T., Lunt, D. J., Schmidt, D. N., Ridgwell, A., Sluijs, A.,
Valdes, P. J., and Maslin, M.: Climate model and proxy data constraints on
ocean warming across the Paleocene–Eocene Thermal Maximum, Earth-Sci.
Rev., 125, 123–145, https://doi.org/10.1016/j.earscirev.2013.07.004,
2013.
Dunkley Jones, T., Manners, H. R., Hoggett, M., Kirtland Turner, S., Westerhold, T., Leng, M. J., Pancost, R. D., Ridgwell, A., Alegret, L., Duller, R., and Grimes, S. T.: Dynamics of sediment flux to a bathyal continental margin section through the Paleocene–Eocene Thermal Maximum, Clim. Past, 14, 1035–1049, https://doi.org/10.5194/cp-14-1035-2018, 2018.
Dypvik, H., Riber, L., Burca, F., Rüther, D., Jargvoll, D., Nagy, J.,
and Jochmann, M.: The Paleocene–Eocene thermal maximum (PETM) in
Svalbard – clay mineral and geochemical signals, Palaeogeogr.
Palaeoclim., 302, 156–169,,
https://doi.org/10.1016/j.palaeo.2010.12.025, 2011.
Egger, H., Heilmann-Clausen, C., and Schmitz, B.: The
Paleocene/Eocene-boundary interval of a Tethyan deep-sea section (Austria)
and its correlation with the North Sea Basin, B. Soc.
Geol. Fr., 171, 207–216,
https://doi.org/10.2113/171.2.207, 2000.
Egger, H., Fenner, J., Heilmann-Clausen, C, Rögl, F., Sachsenhofer,
R. F., and Schmitz, B.: Paleoproductivity of the northwestern Tethyan margin
(Anthering Sec-tion, Austria) across the Paleocene-Eocene transition, in:
Causes and
Consequences of Globally Warm Climates in the Early Paleogene, edited by: Wing, S. L., Gingerich, P. D., Schmitz, B., and Thomas, E., Geological
Society of America Special Paper, 369, 133–146, 2003.
Eldholm, O. and Thomas, E.: Environmental impact of volcanic margin
formation, Earth Planet. Sc. Lett., 117, 319–329,
https://doi.org/10.1016/0012-821X(93)90087-P, 1993.
Frieling, J., Svensen, H. H., Planke, S., Cramwinckel, M. J., Selnes, H.,
and Sluijs, A.: Thermogenic methane release as a cause for the long duration
of the PETM, P. Natl. Acad. Sci. USA, 113,
12059–12064, https://doi.org/10.1073/pnas.1603348113, 2016.
Frieling, J., Gebhardt, H., Huber, M., Adekeye, O. A., Akande, S. O.,
Reichart, G. J., and Sluijs, A.: Extreme warmth and heat-stressed
plankton in the tropics during the Paleocene-Eocene Thermal Maximum, Sci.
Adv., 3, e1600891, https://doi.org/10.1126/sciadv.1600891, 2017.
Frieling, J., Peterse, F., Lunt, D. J., Bohaty, S. M., Sinninghe-Damsté,
J. S., Reichart, G. J., and Sluijs, A.: Widespread warming before and
elevated barium burial during the Paleocene-Eocene Thermal Maximum: Evidence
for methane hydrate release?, Paleoceanogr. Paleoclim., 34,
546–566, https://doi.org/10.1029/2018PA003425, 2019.
Gavrilov, Y. O., Kodina, L. A., Lubchenko, I. Y., and Muzylev, N. G.: The
late Paleocene anoxic event in epicontinental seas of Peri-Tethys and
formation of the sapropelite unit: Sedimentology and geochemistry, Lithology
and Mineral Resources, 32(5), 427–450, Translated from: Litologiia I
Poleznye Iskoparmye, 5, 492–517, 1997.
Gibbs, R. J.: Clay mineral segregation in the marine environment, J.
Sediment. Res., 47, 237–243,
https://doi.org/10.1306/212F713A-2B24-11D7-8648000102C1865D, 1977.
Gibson, T. G., Bybell, L. M., and Mason, D. B.: Stratigraphic and climatic
implications of clay mineral changes around the Paleocene/Eocene boundary of
the northeastern US margin, Sediment. Geol., 134, 65–92,
https://doi.org/10.1016/S0037-0738(00)00014-2, 2000.
Gilly, W. F., Beman, J. M., Litvin, S. Y., and Robison, B. H.: Oceanographic
and biological effects of shoaling of the oxygen minimum zone, Annu. Rev.
Mar. Sci., 5, 393–420,
https://doi.org/10.1146/annurev-marine-120710-100849, 2013.
Gislason, S. R. and Oelkers, E. H.: Silicate rock weathering and the global
carbon cycle, in: Frontiers in
Geochemistry: Contribution of Geochemistry to the Study of the Earth, edited by: Harmon, R. S. and Parker, A.,
84–103, https://doi.org/10.1002/9781444329957.ch5, 2011.
Gutjahr, M., Ridgwell, A., Sexton, P. F., Anagnostou, E., Pearson, P. N.,
Pälike, H., and Foster, G. L.: Very large release of mostly volcanic
carbon during the Palaeocene–Eocene Thermal Maximum, Nature, 548,
573–577, https://doi.org/10.1038/nature23646, 2017.
Haaland, H. J., Furnes, H., and Martinsen, O. J.: Paleogene tuffaceous
intervals, Grane Field (Block 25/11), Norwegian North Sea: their
depositional, petrographical, geochemical character and regional
implications, Mar. Petrol. Geol., 17, 101–118,
https://doi.org/10.1016/S0264-8172(99)00009-4, 2000.
Harding, I. C., Charles, A. J., Marshall, J. E., Pälike, H., Roberts, A.
P., Wilson, P. A., and Pearce, R. B.: Sea-level and salinity
fluctuations during the Paleocene–Eocene thermal maximum in Arctic
Spitsbergen, Earth Planet. Sc. Lett., 303, 97–107,
https://doi.org/10.1016/j.epsl.2010.12.043, 2011.
Hare, A. A., Kuzyk, Z. Z. A., Macdonald, R. W., Sanei, H., Barber, D.,
Stern, G. A., and Wang, F.: Characterization of sedimentary organic matter
in recent marine sediments from Hudson Bay, Canada, by Rock-Eval pyrolysis,
Org. Geochem., 68, 52–60,
https://doi.org/10.1016/j.orggeochem.2014.01.007, 2014.
Heilmann-Clausen, C.: Review of Paleocene dinoflagellates from the North Sea
region, Geologiska Föreningens
Förhandlingar, 116, 51–53, https://doi.org/10.1080/11035899409546149, 1994.
Heilmann-Clausen, C.: Palæogene aflejringer over Danskekalken, in:
Aarhus Geokompendier No. 1, edited by: Nielsen, O. B., Danmarks geologi fra Kridt
til i dag, 69–114, 1995.
Heilmann-Clausen, C., Nielsen, O. B., and Gersner, F.: Lithostratigraphy and
depositional environments in the Upper Paleocene and Eocene of Denmark,
B. Geol. Soc. Denmark, 33, 287–323, 1985.
Held, I. M. and Soden, B. J.: Robust responses of the hydrological cycle to
global warming, J. Climate, 19, 5686–5699,
https://doi.org/10.1175/JCLI3990.1, 2006.
Hembury, D. J., Palmer, M. R., Fones, G. R., Mills, R. A., Marsh, R., and
Jones, M. T.: Uptake of dissolved oxygen during marine diagenesis of fresh
volcanic material, Geochim. Cosmochim. Ac., 84, 353–368,
https://doi.org/10.1016/j.gca.2012.01.017, 2012.
Hollis, C. J., Taylor, K. W., Handley, L., Pancost, R. D., Huber, M.,
Creech, J. B., and Gibbs, S.: Early Paleogene temperature history of the
Southwest Pacific Ocean: Reconciling proxies and models, Earth Planet.
Sc. Lett., 349–350, 53–66, https://doi.org/10.1016/j.epsl.2012.06.024,
2012.
Horni, J. A., Hopper, J. R., Blischke, A., Geisler, W. H., Stewart, M.,
McDermott, K., Judge, M., Elerlendsson, O., and Arting, U. E.: Regional
distribution of volcanism within the North Atlantic Igneous Province, in:
A Reappraisal of Crustal Structure,
Tectonostratigraphy and Magmatic Evolution, edited by: Peron-Pinvidic, G., Hopper, J. R., Stoker, M. S., Gaina, C., Doornenbal, J. C.,
Funck, T., and Arting, U. E., Geological Society, London,
special publications, https://doi.org/10.1144/SP447.18, 2017.
Huggett, J. M. and Knox, R. O. B.: Clay mineralogy of the Tertiary onshore
and offshore strata of the British Isles, Clay Miner., 41, 5–46,
https://doi.org/10.1180/0009855064110195, 2006.
Jenkyns, H. C.: Geochemistry of oceanic anoxic events, Geochem.
Geophy. Geosy., 11, Q03004, https://doi.org/10.1029/2009GC002788, 2010.
John, C. M., Banerjee, N. R., Longstaffe, F. J., Sica, C., Law, K. R., and
Zachos, J. C.: Clay assemblage and oxygen isotopic constraints on the
weathering response to the Paleocene-Eocene thermal maximum, east coast of
North America, Geology, 40, 591–594, https://doi.org/10.1130/G32785.1,
2012.
Jolley, D. W. and Widdowson, M.: Did Paleogene North Atlantic rift-related
eruptions drive early Eocene climate cooling?, Lithos, 79, 355–366,
https://doi.org/10.1016/j.lithos.2004.09.007, 2005.
Jones, M. T. and Gislason, S. R.: Rapid releases of metal salts and
nutrients following the deposition of volcanic ash into aqueous
environments, Geochim. Cosmochim. Ac., 72, 3661–3680,
https://doi.org/10.1016/j.gca.2008.05.030, 2008.
Jones, M. T., Percival, L. M. E., Stokke, E. W., Frieling, J., Mather, T. A., Riber, L., Schubert, B. A., Schultz, B., Tegner, C., Planke, S., and Svensen, H. H.: Mercury anomalies across the Palaeocene–Eocene Thermal Maximum, Clim. Past, 15, 217–236, https://doi.org/10.5194/cp-15-217-2019, 2019.
Jordt, H., Thyberg, B. I., and Nøttvedt, A.: Cenozoic evolution of the
central and northern North Sea with focus on differential vertical movements
of the basin floor and surrounding clastic source areas, Geol. Soc.
Lon. Spec. Publ., 167, 219–243,
https://doi.org/10.1144/GSL.SP.2000.167.01.09, 2000.
Kelly, D. C., Zachos, J. C., Bralower, T. J., and Schellenberg, S. A.:
Enhanced terrestrial weathering/runoff and surface ocean carbonate
production during the recovery stages of the Paleocene-Eocene thermal
maximum, Paleoceanography, 20, PA4023, https://doi.org/10.1029/2005PA001163,
2005.
Kemp, S. J., Ellis, M. A., Mounteney, I., and Kender, S.: Palaeoclimatic
implications of high-resolution clay mineral assemblages preceding and
across the onset of the Palaeocene–Eocene Thermal Maximum, North Sea Basin,
Clay Miner., 51, 793–813,
https://doi.org/10.1180/claymin.2016.051.5.08, 2016.
Kender, S., Stephenson, M. H., Riding, J. B., Leng, M. J., Knox, R. W. B.,
Peck, V. L., and Jamieson, R.: Marine and terrestrial environmental
changes in NW Europe preceding carbon release at the Paleocene–Eocene
transition, Earth Planet. Sc. Lett., 353, 108–120,
https://doi.org/10.1016/j.epsl.2012.08.011, 2012.
Kennett, J. P. and Stott, L. D.: Abrupt deep-sea warming,
palaeoceanographic changes and benthic extinctions at the end of the
Palaeocene, Nature, 353, 225–229, https://doi.org/10.1038/353225a0,
1991.
Kent, D. V., Cramer, B. S., Lanci, L., Wang, D., Wright, J. D., and Van der
Voo, R.: A case for a comet impact trigger for the Paleocene/Eocene thermal
maximum and carbon isotope excursion, Earth Planet. Sc. Lett.,
211, 13–26, https://doi.org/10.1016/S0012-821X(03)00188-2, 2003.
Khozyem, H., Adatte, T., Spangenberg, J. E., Tantawy, A. A., and Keller, G.:
Palaeoenvironmental and climatic changes during the Palaeocene–Eocene
Thermal Maximum (PETM) at the Wadi Nukhul Section, Sinai, Egypt, J. Geol. Soc., 170, 341–352,
https://doi.org/10.1144/jgs2012-046, 2013.
King, C.: A Revised Correlation of Tertiary Rocks in the British Isles and
Adjacent Areas of NW Europe, edited by: Gale, A. S. and Barry, T. L., Special
reports, 27, The Geological Society, London, 2016.
Kirtland Turner, S., Hull, P. M., Kump, L. R., and Ridgwell, A.: A
probabilistic assessment of the rapidity of PETM onset, Nat.
Commun., 8, 1–10, https://doi.org/10.1038/s41467-017-00292-2,
2017.
Knox, R. W. O'B. : Tectonic controls on sequence development in the Palaeocene
and earliest Eocene of southeast England: implications for North Sea
stratigraphy, in: Sequence
Stratigraphy in British Geology, edited by: Hesselbo, S. P. and Parkinson, D. N., Geological Society, London, Special
Publications, 103, 209–230,
https://doi.org/10.1144/GSL.SP.1996.103.01.12, 1996.
Knox, R. W. O'B. and Morton, A. C.: The record of early Tertiary N Atlantic
volcanism in sediments of the North Sea Basin, in: Early Tertiary Volcanism and the Opening of the NE Atlantic, edited by: Morton, A. C. and Parson,
L. M.,
Geological Society, London, Special Publications, 39, 407–419,
https://doi.org/10.1144/GSL.SP.1988.039.01.36, 1988.
Knox, R. W. O'B., Bosch, J. H. A., Rasmussen, E. S., Heilmann-Clausen, C., Hiss,
M., De Lugt, I. R., Kasinski, J., King, C., Köthe, A., Slodkowska, B.,
Standke, G., and Vandenberghe, N.: Cenozoic, in: Petroleum Geological Atlas of the Southern Permian Basin Area, edited by: Dornenbaal, H. and Stevenson, A., EAGE
Publications b.v, Houten, 211–223, 2010.
Komar, N. and Zeebe, R. E.: Redox-controlled carbon and phosphorus burial:
A mechanism for enhanced organic carbon sequestration during the PETM, Earth
Planet. Sc. Lett., 479, 71–82,
https://doi.org/10.1016/j.epsl.2017.09.011, 2017.
Kraus, M. J. and Riggins, S.: Transient drying during the Paleocene–Eocene
Thermal Maximum (PETM): analysis of paleosols in the Bighorn Basin, Wyoming,
Palaeogeogr. Palaeoclim., 245, 444–461,
https://doi.org/10.1016/j.palaeo.2006.09.011, 2007.
Lafargue, E., Marquis, F., and Pillot, D.: Rock-Eval 6 applications in
hydrocarbon exploration, production, and soil contamination studies, Rev.
l Fr. Petrol., 53, 421–437, 1998.
Larsen, L. M., Fitton, J. G., and Pedersen, A. K.: Paleogene volcanic ash
layers in the Danish Basin: compositions and source areas in the North
Atlantic Igneous Province, Lithos, 71, 47–80,
https://doi.org/10.1016/j.lithos.2003.07.001, 2003.
Larsen, R. B. and Tegner, C.: Pressure conditions for the solidification of
the Skaergaard intrusion: eruption of East Greenland flood basalts in less
than 300,000 years, Lithos, 92, 181–197,
https://doi.org/10.1016/j.lithos.2006.03.032, 2006.
Littler, K., Röhl, U., Westerhold, T., and Zachos, J. C.: A
high-resolution benthic stable-isotope record for the South Atlantic:
Implications for orbital-scale changes in Late Paleocene–Early Eocene
climate and carbon cycling, Earth Planet. Sc. Lett., 401, 18–30,
https://doi.org/10.1016/j.epsl.2014.05.054, 2014.
Ma, Z., Gray, E., Thomas, E., Murphy, B., Zachos, J., and Paytan, A.: Carbon
sequestration during the Palaeocene–Eocene Thermal Maximum by an efficient
biological pump, Nat. Geosci., 7, 382–388,
https://doi.org/10.1038/ngeo2139, 2014.
Marsh, R., Mills, R. A., Green, D. R., Salter, I., and Taylor, S.: Controls
on sediment geochemistry in the Crozet region, Deep-Sea Res. Pt. II, 54, 2260–2274,
https://doi.org/10.1016/j.dsr2.2007.06.004, 2007.
McInerney, F. A. and Wing, S. L.: The Paleocene-Eocene Thermal Maximum: A
perturbation of carbon cycle, climate, and biosphere with implications for
the future, Annu. Rev. Earth Pl. Sc., 39, 489–516,
https://doi.org/10.1146/annurev-earth-040610-133431, 2011.
McLennan, S. M.: Weathering and global denudation, J. Geol.,
101, 295–303, https://doi.org/10.1086/648222, 1993.
McLennan, S. M.: Relationships between the trace element composition of
sedimentary rocks and upper continental crust, Geochem. Geophy.
Geosy., 2, 1021, https://doi.org/10.1029/2000GC000109, 2001.
Mitlehner, A. G.: Palaeoenvironments in the North Sea Basin around the
Paleocene-Eocene boundary: evidence from diatoms and other siliceous
microfossils, Geological Society, London, Special Publications, 101,
255–273, https://doi.org/10.1144/GSL.SP.1996.101.01.15, 1996.
Moore, D. M. and Reynolds, R. C.: X-ray Diffraction and the Identification
and Analysis of Clay Minerals, Oxford University Press, Oxford, 1997.
Morton, A. C. and Evans, J. A.: Geochemistry of basaltic ash beds from the
Fur Formation, Island of Fur, Denmark, B. Geol. Soc.
Denmark, 37, 1–9, 1988.
Nagy, J., Jargvoll, D., Dypvik, H., Jochmann, M., and Riber, L.:
Environmental changes during the Paleocene–Eocene Thermal Maximum in
Spitsbergen as reflected by benthic foraminifera, Polar Res., 32,
19737, https://doi.org/10.3402/polar.v32i0.19737, 2013.
Nesbitt, H. and Young, G. M.: Early Proterozoic climates and plate motions
inferred from major element chemistry of lutites, Nature, 299,
715–717, https://doi.org/10.1038/299715a0, 1982.
Nielsen, O. B. and Heilmann-Clausen, C.: Palaeogene volcanism: the
sedimentary record in Denmark, Geological Society, London, Special
Publications, 39, 395–405, https://doi.org/10.1144/GSL.SP.1988.039.01.35,
1988.
Nielsen, O. B., Sørensen, S., Thiede, J., and Skarbø, O.: Cenozoic
differential subsidence of North Sea, AAPG Bull., 70, 276–298,
https://doi.org/10.1306/94885679-1704-11D7-8645000102C1865D, 1986.
Nielsen, O. B., Rasmussen, E. S., and Thyberg, B. I.: Distribution of clay
minerals in the northern North Sea Basin during the Paleogene and Neogene: a
result of source-area geology and sorting processes, J. Sediment.
Res., 85, 562–581, https://doi.org/10.2110/jsr.2015.40, 2015.
Nunes, F. and Norris, R. D.: Abrupt reversal in ocean overturning during
the Palaeocene/Eocene warm period, Nature, 439, 60–63,
https://doi.org/10.1038/nature04386, 2006.
Ogg, J.: Geomagnetic Polarity Time Scale, in: The Geologic Time Scale 2012, edited by: Gradstein, F., Ogg, J.,
Schmitz, M., and Ogg, G., Elsevier,
85–113, 2012.
Pälike, C., Delaney, M. L., and Zachos, J. C.: Deep-sea redox across the
Paleocene-Eocene thermal maximum, Geochem. Geophy. Geosy.,
15, 1038–1053, https://doi.org/10.1002/2013GC005074, 2014.
Pedersen, G. K. and Surlyk, F.: The Fur Formation, a late Paleocene
ash-bearing diatomite from northern Denmark, B. Geol.
Soc. Denmark, 32, 43–65, 1983.
Pedersen, G. K., Pedersen, S. A. S., Steffensen, J., and Pedersen, C. S.:
Clay content of a clayey diatomite, the Early Eocene Fur Formation, Denmark,
B. Geol. Soc. Denmark, 51, 159–177, 2004.
Pedersen, S. A. S.: Palaeogene diatomite deposits in Denmark: geological
investigations and applied aspects, Geol. Surv. Den.
Greenl., 15, 21–24,
https://doi.org/10.34194/geusb.v15.5034, 2008.
Penman, D. E.: Silicate weathering and North Atlantic silica burial during
the Paleocene-Eocene thermal maximum, Geology, 44, 731–734,
https://doi.org/10.1130/G37704.1, 2016.
Penman, D. E. and Zachos, J. C.: New constraints on massive carbon release
and recovery processes during the Paleocene-Eocene Thermal Maximum,
Environ. Res. Lett., 13, 105008,
https://doi.org/10.1088/1748-9326/aae285, 2018.
Peters, K. E.: Guidelines for evaluating petroleum source rock using
programmed pyrolysis, AAPG Bull., 70, 318–329,
https://doi.org/10.1306/94885688-1704-11D7-8645000102C1865D, 1986.
Peters, K. E., Peters, K. E., Walters, C. C., and Moldowan, J. M.: The
biomarker guide, vol. 1, Cambridge University Press, Cambridge, United Kingdom, 2005.
Petersen, H. I., Nielsen, L. H., Bojesen-Koefoed, J. A., Mathiesen, A.,
Kristensen, L., and Dalhoff, F.: Evaluation of the quality, thermal maturity
and distribution of potential source rocks in the Danish part of the
Norwegian–Danish Basin, Geol. Surv. Den. Greenl., 16, 1–27, https://doi.org/10.34194/geusb.v16.4989, 2008.
Pujalte, V., Schmitz, B., and Baceta, J. I.: Sea-level changes across the
Paleocene–Eocene interval in the Spanish Pyrenees, and their possible
relationship with North Atlantic magmatism, Palaeogeogr.
Palaeoclim., 393, 45–60,
https://doi.org/10.1016/j.palaeo.2013.10.016, 2014.
Rasmussen, E. S., Heilmann-Clausen, C., Waagstein, R., and Eidvin, T.: The
tertiary of Norden, Episodes, 31, 66–72, 2008.
Renne, P. R., Mundil, R., Balco, G., Min, K. and Ludwig, K. R.: Joint
determination of 40K decay constants and 40Ar∗/40K for
the Fish Canyon sanidine standard, and improved accuracy for
40Ar/39Ar geochronology, Geochim. Cosmochim. Ac., 74,
5349–5367, https://doi.org/10.1016/j.gca.2010.06.017, 2010.
Renne, P. R., Balco, G., Ludwig, K. R., Mundil, R., and Min, K.: Response to
the comment by WH Schwarz et al. on “Joint determination of 40K decay
constants and 40Ar∗/40K for the Fish Canyon sanidine
standard, and improved accuracy for 40Ar/39Ar geochronology” by
PR Renne et al.(2010), Geochim. Cosmochim. Ac., 75, 5097–5100,
https://doi.org/10.1016/j.gca.2011.06.021, 2011.
Reynolds III, R. C. and Reynolds Jr., R. C.: NEWMOD II a computer program
for the calculation of one-dimensional diffraction patterns of mixed-layered
clays, 1526 Farlow Avenue. Crofton, MD, 21114, 2012.
Riahi, K., van Vuuren, D. P., Kriegler, E., Edmonds, J., O'neill, B. C.,
Fujimori, S., and Lutz, W.: The shared socioeconomic pathways and their
energy, land use, and greenhouse gas emissions implications: an overview,
Global Environ. Chang., 42, 153–168,
https://doi.org/10.1016/j.gloenvcha.2016.05.009, 2017.
Richter, T. O., van der Gaast, S., Koster, B., Vaars, A., Gieles, R., de
Stigter, H. C., and van Weering, T. C.: The Avaatech XRF Core Scanner:
technical description and applications to NE Atlantic sediments, Geological
Society, London, Special Publications, 267, 39–50,
https://doi.org/10.1144/GSL.SP.2006.267.01.03, 2006.
Rietveld, H.: A profile refinement method for nuclear and magnetic
structures, J. Appl. Crystallogr., 2, 65–71,
https://doi.org/10.1107/S0021889869006558, 1969.
Robert, C. and Kennett, J. P.: Antarctic subtropical humid episode at the
Paleocene-Eocene boundary: Clay-mineral evidence, Geology, 22, 211–214,
https://doi.org/10.1130/0091-7613(1994)022<0211:ASHEAT>2.3.CO;2, 1994.
Rothwell, R. G. and Croudace, I. W.: Twenty Years of XRF Core Scanning
Marine Sediments: What Do Geochemical Proxies Tell Us?, in: Micro-XRF Studies of Sediment Cores, edited by: Croudace, I. and
Rothwell, R., Developments in
Paleoenvironmental Research, 17, Springer, Dordrecht, 25–102, 2015.
Saunders, A. D.: Two LIPs and two Earth-system crises: the impact of the
North Atlantic Igneous Province and the Siberian Traps on the Earth-surface
carbon cycle, Geol. Mag., 153, 201–222,
https://doi.org/10.1017/S0016756815000175, 2016.
Schaller, M. F., Fung, M. K., Wright, J. D., Katz, M. E., and Kent, D. V.:
Impact ejecta at the Paleocene-Eocene boundary, Science, 354, 225–229,
https://doi.org/10.1126/science.aaf5466, 2016.
Schiøler, P., Andsbjerg, J., Clausen, O. R., Dam, G., Dybkjær, K.,
Hamberg, L., and Rasmussen, J. A.: Lithostratigraphy of the
Palaeogene–lower Neogene succession of the Danish North Sea, GEUS Bull.,
12, 1–77, https://doi.org/10.34194/geusb.v12.5249, 2007.
Schmitz, B. and Pujalte, V.: Sea-level, humidity, and land-erosion records
across the initial Eocene thermal maximum from a continental-marine transect
in northern Spain, Geology, 31, 689–692,
https://doi.org/10.1130/G19527.1, 2003.
Schmitz, B., Peucker-Ehrenbrink, B., Heilmann-Clausen, C., Åberg, G.,
Asaro, F., and Lee, C. T. A.: Basaltic explosive volcanism, but no comet
impact, at the Paleocene–Eocene boundary: high-resolution chemical and
isotopic records from Egypt, Spain and Denmark, Earth Planet. Sc.
Lett., 225, 1–17, https://doi.org/10.1016/j.epsl.2004.06.017, 2004.
Schoon, P. L., Heilmann-Clausen, C., Schultz, B. P., Sluijs, A.,
Sinninghe-Damsté, J. S., and Schouten, S.: Recognition of Early Eocene
global carbon isotope excursions using lipids of marine Thaumarchaeota,
Earth Planet. Sc. Lett., 373, 160–168,
https://doi.org/10.1016/j.epsl.2013.04.037, 2013.
Schoon, P. L., Heilmann-Clausen, C., Schultz, B. P., Sinninghe-Damsté,
J. S., and Schouten, S.: Warming and environmental changes in the eastern
North Sea Basin during the Palaeocene–Eocene Thermal Maximum as revealed by
biomarker lipids, Org. Geochem., 78, 79–88,
https://doi.org/10.1016/j.orggeochem.2014.11.003, 2015.
Scott, C. and Lyons, T. W.: Contrasting molybdenum cycling and isotopic
properties in euxinic versus non-euxinic sediments and sedimentary rocks:
Refining the paleoproxies, Chem. Geol., 324, 19–27,
https://doi.org/10.1016/j.chemgeo.2012.05.012, 2012.
Seager, R., Naik, N., and Vecchi, G. A.: Thermodynamic and dynamic
mechanisms for large-scale changes in the hydrological cycle in response to
global warming, J. Climate, 23, 4651–4668,
https://doi.org/10.1175/2010JCLI3655.1, 2010.
Sluijs, A., Brinkhuis, H., Crouch, E. M., John, C. M., Handley, L.,
Munsterman, D., and Pancost, R. D.: Eustatic variations during the
Paleocene-Eocene greenhouse world, Paleoceanography, 23, PA4216,
https://doi.org/10.1029/2008PA001615, 2008.
Sluijs, A., Schouten, S., Donders, T. H., Schoon, P. L., Röhl, U.,
Reichart, G. J., and Brinkhuis, H.: Warm and wet conditions in the
Arctic region during Eocene Thermal Maximum 2, Nat. Geosci., 2,
777–780, https://doi.org/10.1038/ngeo668, 2009.
Sluijs, A., van Roij, L., Harrington, G. J., Schouten, S., Sessa, J. A., LeVay, L. J., Reichart, G.-J., and Slomp, C. P.: Warming, euxinia and sea level rise during the Paleocene–Eocene Thermal Maximum on the Gulf Coastal Plain: implications for ocean oxygenation and nutrient cycling, Clim. Past, 10, 1421–1439, https://doi.org/10.5194/cp-10-1421-2014, 2014.
Soliman, M. F., Aubry, M. P., Schmitz, B., and Sherrell, R. M.: Enhanced
coastal paleoproductivity and nutrient supply in Upper Egypt during the
Paleocene/Eocene Thermal Maximum (PETM): Mineralogical and geochemical
evidence, Palaeogeogr. Palaeoclim., 310,
365–377, https://doi.org/10.1016/j.palaeo.2011.07.027, 2011.
Speijer, R. P. and Wagner, T.: Sea-level changes and black shales associated
with the late Paleocene thermal maximum: Organic-geochemical and
micro-paleontologic evidence from the southern Tethyan margin
(Egypt-Israel), in: Catastrophic
Events and Mass Extinctions: Impacts and Beyond, edited by: Koeberl, C. and MacLeod, K. G., Geological Society of
America Special Paper, 356, 533–549, https://doi.org/10.1130/0-8137-2356-6.533, 2002.
Speijer, R. P., Schmitz, B., and van der Zwaan, G. J.: Benthic foraminiferal
extinction and repopulation in response to latest Paleocene Tethyan anoxia,
Geology, 25, 683–686, 1997.
Stefánsson, A. and Gíslason, S. R.: Chemical weathering of
basalts, Southwest Iceland: effect of rock crystallinity and secondary
minerals on chemical fluxes to the ocean, Am. J. Sci.,
301, 513–556, https://doi.org/10.2475/ajs.301.6.513, 2001.
Stein, R., Boucsein, B., and Meyer, H.: Anoxia and high primary production
in the Paleogene central Arctic Ocean: First detailed records from Lomonosov
Ridge, Geophys. Res. Lett., 33, L18606,
https://doi.org/10.1029/2006GL026776, 2006.
Stokke, E. W., Jones, M. T., Tierney, J. E., Svensen, H. H., and Whiteside,
J. H.: Temperature changes across the Paleocene-Eocene Thermal Maximum–a
new high-resolution TEX86 temperature record from the Eastern North Sea
Basin, Earth Planet. Sc. Lett., 544, 116388,
https://doi.org/10.1016/j.epsl.2020.116388, 2020a.
Stokke, E. W., Liu, E. J., and Jones, M. T.: Evidence of explosive
hydromagmatic eruptions during the emplacement of the North Atlantic Igneous
Province, Volcanica, 3, 227–250,
https://doi.org/10.30909/vol.03.02.227250, 2020b.
Storey, M., Duncan, R. A., and Swisher, C. C.: Paleocene-Eocene thermal
maximum and the opening of the northeast Atlantic, Science, 316,
587–589, https://doi.org/10.1126/science.1135274, 2007a.
Storey, M., Duncan, R. A., and Tegner, C.: Timing and duration of volcanism
in the North Atlantic Igneous Province: Implications for geodynamics and
links to the Iceland hotspot, Chem. Geol., 241, 264–281,
https://doi.org/10.1016/j.chemgeo.2007.01.016, 2007b.
Stramma, L., Johnson, G. C., Sprintall, J., and Mohrholz, V.: Expanding
oxygen-minimum zones in the tropical oceans, Science, 320, 655–658,
https://doi.org/10.1126/science.1153847, 2008.
Stramma, L., Prince, E. D., Schmidtko, S., Luo, J., Hoolihan, J. P.,
Visbeck, M., and Körtzinger, A.: Expansion of oxygen minimum zones
may reduce available habitat for tropical pelagic fishes, Nat. Clim.
Change, 2, 33–37, https://doi.org/10.1038/nclimate1304, 2012.
Svensen, H., Planke, S., Malthe-Sørenssen, A., Jamtveit, B., Myklebust,
R., Eidem, T. R., and Rey, S. S.: Release of methane from a volcanic basin
as a mechanism for initial Eocene global warming, Nature, 429, 542–545,
https://doi.org/10.1038/nature02566, 2004.
Svensen, H. H., Bjærke, M. R., and Kverndokk, K.: The Past as a Mirror:
Deep Time Climate Change Exemplarity in the Anthropocene, Culture Unbound,
11, 330–352, https://doi.org/10.3384/cu.2000.1525.1909301, 2019.
Thiry, M.: Palaeoclimatic interpretation of clay minerals in marine
deposits: an outlook from the continental origin, Earth-Sci. Rev.,
49, 201–221, https://doi.org/10.1016/S0012-8252(99)00054-9, 2000.
Thomas, D. J., Zachos, J. C., Bralower, T. J., Thomas, E., and Bohaty, S.:
Warming the fuel for the fire: Evidence for the thermal dissociation of
methane hydrate during the Paleocene-Eocene thermal maximum, Geology,
30, 1067–1070, https://doi.org/10.1130/0091-7613(2002)030<1067:WTFFTF>2.0.CO;2, 2002.
Thomas, E.: Late Cretaceous-early Eocene mass extinctions in the deep sea,
in: Global catastrophes in Earth
history, An interdisciplinary conference on impacts, volcanism, and mass
mortality, edited by: Sharpton, V. L. and Ward P. D., Geol. Soc. Am. Spec. Pap., 247, 481–495, 1990.
Thomas, E. and Shackleton, N. J.: The Paleocene-Eocene benthic
foraminiferal extinction and stable isotope anomalies, Geological Society,
London, Special Publications, 101, 401–441,
https://doi.org/10.1144/GSL.SP.1996.101.01.20, 1996.
Tierney, J. E. and Tingley, M. P.: A Bayesian spatially-varying calibration model for the TEX86 proxy, Geochim. Cosmochim. Ac., 127, 83–106, https://doi.org/10.1016/j.gca.2013.11.02, 2014.
Torfstein, A., Winckler, G., and Tripati, A.: Productivity feedback did not terminate the Paleocene-Eocene Thermal Maximum (PETM), Clim. Past, 6, 265–272, https://doi.org/10.5194/cp-6-265-2010, 2010.
Trenberth, K. E.: Changes in precipitation with climate change, Clim.
Res., 47, 123–138, https://doi.org/10.3354/cr00953, 2011.
Tribovillard, N., Riboulleau, A., Lyons, T., and Baudin, F.: Enhanced
trapping of molybdenum by sulfurized marine organic matter of marine origin
in Mesozoic limestones and shales, Chem. Geol., 213, 385–401,
https://doi.org/10.1016/j.chemgeo.2004.08.011, 2004.
Tribovillard, N., Algeo, T. J., Lyons, T., and Riboulleau, A.: Trace metals
as paleoredox and paleoproductivity proxies: an update, Chem. Geol.,
232, 12–32, https://doi.org/10.1016/j.chemgeo.2006.02.012, 2006.
Tribovillard, N., Algeo, T. J., Baudin, F., and Riboulleau, A.: Analysis of
marine environmental conditions based onmolybdenum–uranium
covariation – Applications to Mesozoic paleoceanography, Chem. Geol.,
324, 46–58, https://doi.org/10.1016/j.chemgeo.2011.09.009, 2012.
van der Meulen, B., Gingerich, P. D., Lourens, L. J., Meijer, N., van
Broekhuizen, S., van Ginneken, S., and Abels, H. A.: Carbon isotope and
mammal recovery from extreme greenhouse warming at the Paleocene–Eocene
boundary in astronomically-calibrated fluvial strata, Bighorn Basin,
Wyoming, USA, Earth Planet. Sc. Lett., 534, 116044,
https://doi.org/10.1016/j.epsl.2019.116044, 2020.
Westerhold, T., Röhl, U., Wilkens, R. H., Gingerich, P. D., Clyde, W. C., Wing, S. L., Bowen, G. J., and Kraus, M. J.: Synchronizing early Eocene deep-sea and continental records – cyclostratigraphic age models for the Bighorn Basin Coring Project drill cores, Clim. Past, 14, 303–319, https://doi.org/10.5194/cp-14-303-2018, 2018.
Wieczorek, R., Fantle, M. S., Kump, L. R., and Ravizza, G.: Geochemical
evidence for volcanic activity prior to and enhanced terrestrial weathering
during the Paleocene Eocene Thermal Maximum, Geochim. Cosmochim.
Ac., 119, 391–410, https://doi.org/10.1016/j.gca.2013.06.005, 2013.
Wilkinson, C. M., Ganerød, M., Hendriks, B. W., and Eide, E. A.:
Compilation and appraisal of geochronological data from the North Atlantic
Igneous Province (NAIP), Geological Society, London, Special Publications,
447, 69–103, https://doi.org/10.1144/SP447.10, 2017.
Yao, W., Paytan, A., and Wortmann, U. G.: Large-scale ocean deoxygenation
during the Paleocene-Eocene Thermal Maximum, Science, 361, 804–806,
https://doi.org/10.1126/science.aar8658, 2018.
Zachos, J. C., Röhl, U., Schellenberg, S. A., Sluijs, A., Hodell, D. A.,
Kelly, D. C., and McCarren, H.: Rapid acidification of the ocean during
the Paleocene-Eocene thermal maximum, Science, 308, 1611–1615, https://doi.org/10.1126/science.1109004, 2005.
Zachos, J. C., Dickens, G. R., and Zeebe, R. E.: An early Cenozoic
perspective on greenhouse warming and carbon-cycle dynamics, Nature,
451, 279–283, https://doi.org/10.1038/nature06588, 2008.
Zachos, J. C., McCarren, H., Murphy, B., Röhl, U., and Westerhold, T.:
Tempo and scale of late Paleocene and early Eocene carbon isotope cycles:
Implications for the origin of hyperthermals, Earth Planet. Sc.
Lett., 299, 242–249, https://doi.org/10.1016/j.epsl.2010.09.004,
2010.
Zacke, A., Voigt, S., Joachimski, M. M., Gale, A. S., Ward, D. J., and
Tütken, T.: Surface-water freshening and high-latitude river discharge
in the Eocene North Sea, J. Geol. Soc., 166, 969–980,
https://doi.org/10.1144/0016-76492008-068, 2009.
Zeebe, R. E., Zachos, J. C., and Dickens, G. R.: Carbon dioxide forcing
alone insufficient to explain Palaeocene–Eocene Thermal Maximum warming,
Nat. Geosci., 2, 576–580, https://doi.org/10.1038/ngeo578, 2009.
Zhou, X., Thomas, E., Rickaby, R. E., Winguth, A. M., and Lu, Z.: I/Ca
evidence for upper ocean deoxygenation during the PETM, Paleoceanography,
29, 964–975, https://doi.org/10.1002/2014PA002702, 2014.
Short summary
In this paper, we present new sedimentological, geochemical, and mineralogical data exploring the environmental response to climatic and volcanic impact during the Paleocene–Eocene Thermal Maximum (~55.9 Ma; PETM). Our data suggest a rise in continental weathering and a shift to anoxic–sulfidic conditions. This indicates a rapid environmental response to changes in the carbon cycle and temperatures and highlights the important role of shelf areas as carbon sinks driving the PETM recovery.
In this paper, we present new sedimentological, geochemical, and mineralogical data exploring...