Articles | Volume 16, issue 6
https://doi.org/10.5194/cp-16-2599-2020
https://doi.org/10.5194/cp-16-2599-2020
Research article
 | 
23 Dec 2020
Research article |  | 23 Dec 2020

OPTiMAL: a new machine learning approach for GDGT-based palaeothermometry

Tom Dunkley Jones, Yvette L. Eley, William Thomson, Sarah E. Greene, Ilya Mandel, Kirsty Edgar, and James A. Bendle

Related authors

Reviews and syntheses: Best practices for the application of marine GDGTs as proxy for paleotemperatures: sampling, processing, analyses, interpretation, and archiving protocols
Peter K. Bijl, Kasia K. Śliwińska, Bella Duncan, Arnaud Huguet, Sebastian Naeher, Ronnakrit Rattanasriampaipong, Claudia Sosa-Montes de Oca, Alexandra Auderset, Melissa A. Berke, Bum Soo Kim, Nina Davtian, Tom Dunkley Jones, Desmond D. Eefting, Felix J. Elling, Pierrick Fenies, Gordon N. Inglis, Lauren O'Connor, Richard D. Pancost, Francien Peterse, Addison Rice, Appy Sluijs, Devika Varma, Wenjie Xiao, and Yi Ge Zhang
Biogeosciences, 22, 6465–6508, https://doi.org/10.5194/bg-22-6465-2025,https://doi.org/10.5194/bg-22-6465-2025, 2025
Short summary
Late Neogene evolution of modern deep-dwelling plankton
Flavia Boscolo-Galazzo, Amy Jones, Tom Dunkley Jones, Katherine A. Crichton, Bridget S. Wade, and Paul N. Pearson
Biogeosciences, 19, 743–762, https://doi.org/10.5194/bg-19-743-2022,https://doi.org/10.5194/bg-19-743-2022, 2022
Short summary
DeepMIP: model intercomparison of early Eocene climatic optimum (EECO) large-scale climate features and comparison with proxy data
Daniel J. Lunt, Fran Bragg, Wing-Le Chan, David K. Hutchinson, Jean-Baptiste Ladant, Polina Morozova, Igor Niezgodzki, Sebastian Steinig, Zhongshi Zhang, Jiang Zhu, Ayako Abe-Ouchi, Eleni Anagnostou, Agatha M. de Boer, Helen K. Coxall, Yannick Donnadieu, Gavin Foster, Gordon N. Inglis, Gregor Knorr, Petra M. Langebroek, Caroline H. Lear, Gerrit Lohmann, Christopher J. Poulsen, Pierre Sepulchre, Jessica E. Tierney, Paul J. Valdes, Evgeny M. Volodin, Tom Dunkley Jones, Christopher J. Hollis, Matthew Huber, and Bette L. Otto-Bliesner
Clim. Past, 17, 203–227, https://doi.org/10.5194/cp-17-203-2021,https://doi.org/10.5194/cp-17-203-2021, 2021
Short summary

Cited articles

Aitchison, J.: The Statistical Analysis of Compositional Data, J. R. Stat. Soc. Series B Stat. Methodol., 44, 139–160, 1982. 
Aitchison, J.: Principal component analysis of compositional data, Biometrika, 70, 57–65, 1983. 
Aitchison, J. and Greenacre, M.: Biplots of compositional data, J. R. Stat. Soc. Ser. C Appl. Stat., 51, 375–392, 2002. 
Álvarez, M. A., Rosasco, L., and Lawrence, N. D.: Kernels for Vector-Valued Functions: A Review, Foundations and Trends® in Machine Learning, 4, 195–266, 2012. 
Bale, N. J., Palatinszky, M., Rijpstra, I. C., Herbold, C. W., Wagner, M., and Sinnighe Damste, J. S.: Membrane lipid composition of the moderately thermophilic ammonia-oxidizing Archaeon “Candidatus Nitrosotenius uzonensis” at different growth temperatures, Appl. Environ. Microb., 85, e01332-19, https://doi.org/10.1128/AEM.01332-19, 2019. 
Download
Short summary
We explore the utiliity of the composition of fossil lipid biomarkers, which are commonly preserved in ancient marine sediments, in providing estimates of past ocean temperatures. The group of lipids concerned show compositional changes across the modern oceans that are correlated, to some extent, with local surface ocean temperatures. Here we present new machine learning approaches to improve our understanding of this temperature sensitivity and its application to reconstructing past climates.
Share