Articles | Volume 16, issue 6
https://doi.org/10.5194/cp-16-2599-2020
https://doi.org/10.5194/cp-16-2599-2020
Research article
 | 
23 Dec 2020
Research article |  | 23 Dec 2020

OPTiMAL: a new machine learning approach for GDGT-based palaeothermometry

Tom Dunkley Jones, Yvette L. Eley, William Thomson, Sarah E. Greene, Ilya Mandel, Kirsty Edgar, and James A. Bendle

Related authors

Reviews and syntheses: Best practices for the application of marine GDGTs as proxy for paleotemperatures: sampling, processing, analyses, interpretation, and archiving protocols
Peter K. Bijl, Kasia K. Sliwinska, Bella Duncan, Arnaud Huguet, Sebastian Naeher, Ronnakrit Rattanasriampaipong, Claudia Sosa-Montes de Oca, Alexandra Auderset, Melissa Berke, Bum Soo Kim, Nina Davtian, Tom Dunkley Jones, Desmond Eefting, Felix Elling, Lauren O'Connor, Richard D. Pancost, Francien Peterse, Fenies Pierrick, Addison Rice, Appy Sluijs, Devika Varma, Wenjie Xiao, and Yige Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-1467,https://doi.org/10.5194/egusphere-2025-1467, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Late Neogene evolution of modern deep-dwelling plankton
Flavia Boscolo-Galazzo, Amy Jones, Tom Dunkley Jones, Katherine A. Crichton, Bridget S. Wade, and Paul N. Pearson
Biogeosciences, 19, 743–762, https://doi.org/10.5194/bg-19-743-2022,https://doi.org/10.5194/bg-19-743-2022, 2022
Short summary
DeepMIP: model intercomparison of early Eocene climatic optimum (EECO) large-scale climate features and comparison with proxy data
Daniel J. Lunt, Fran Bragg, Wing-Le Chan, David K. Hutchinson, Jean-Baptiste Ladant, Polina Morozova, Igor Niezgodzki, Sebastian Steinig, Zhongshi Zhang, Jiang Zhu, Ayako Abe-Ouchi, Eleni Anagnostou, Agatha M. de Boer, Helen K. Coxall, Yannick Donnadieu, Gavin Foster, Gordon N. Inglis, Gregor Knorr, Petra M. Langebroek, Caroline H. Lear, Gerrit Lohmann, Christopher J. Poulsen, Pierre Sepulchre, Jessica E. Tierney, Paul J. Valdes, Evgeny M. Volodin, Tom Dunkley Jones, Christopher J. Hollis, Matthew Huber, and Bette L. Otto-Bliesner
Clim. Past, 17, 203–227, https://doi.org/10.5194/cp-17-203-2021,https://doi.org/10.5194/cp-17-203-2021, 2021
Short summary
Global mean surface temperature and climate sensitivity of the early Eocene Climatic Optimum (EECO), Paleocene–Eocene Thermal Maximum (PETM), and latest Paleocene
Gordon N. Inglis, Fran Bragg, Natalie J. Burls, Marlow Julius Cramwinckel, David Evans, Gavin L. Foster, Matthew Huber, Daniel J. Lunt, Nicholas Siler, Sebastian Steinig, Jessica E. Tierney, Richard Wilkinson, Eleni Anagnostou, Agatha M. de Boer, Tom Dunkley Jones, Kirsty M. Edgar, Christopher J. Hollis, David K. Hutchinson, and Richard D. Pancost
Clim. Past, 16, 1953–1968, https://doi.org/10.5194/cp-16-1953-2020,https://doi.org/10.5194/cp-16-1953-2020, 2020
Short summary
Organic-walled dinoflagellate cyst biostratigraphy of the upper Eocene to lower Oligocene Yazoo Formation, US Gulf Coast
Marcelo Augusto De Lira Mota, Guy Harrington, and Tom Dunkley Jones
J. Micropalaeontol., 39, 1–26, https://doi.org/10.5194/jm-39-1-2020,https://doi.org/10.5194/jm-39-1-2020, 2020
Short summary

Related subject area

Subject: Proxy Use-Development-Validation | Archive: Marine Archives | Timescale: Cenozoic
Southern Ocean control on atmospheric CO2 changes across late Pliocene Marine Isotope Stage M2
Suning Hou, Leonie Toebrock, Mart van der Linden, Fleur Rothstegge, Martin Ziegler, Lucas J. Lourens, and Peter K. Bijl
Clim. Past, 21, 79–93, https://doi.org/10.5194/cp-21-79-2025,https://doi.org/10.5194/cp-21-79-2025, 2025
Short summary
A clumped isotope calibration of coccoliths at well-constrained culture temperatures for marine temperature reconstructions
Alexander J. Clark, Ismael Torres-Romero, Madalina Jaggi, Stefano M. Bernasconi, and Heather M. Stoll
Clim. Past, 20, 2081–2101, https://doi.org/10.5194/cp-20-2081-2024,https://doi.org/10.5194/cp-20-2081-2024, 2024
Short summary
Can we reliably reconstruct the mid-Pliocene Warm Period with sparse data and uncertain models?
James D. Annan, Julia C. Hargreaves, Thorsten Mauritsen, Erin McClymont, and Sze Ling Ho
Clim. Past, 20, 1989–1999, https://doi.org/10.5194/cp-20-1989-2024,https://doi.org/10.5194/cp-20-1989-2024, 2024
Short summary
Paleocene–Eocene age glendonites from the Mid-Norwegian Margin – indicators of cold snaps in the hothouse?
Madeleine L. Vickers, Morgan T. Jones, Jack Longman, David Evans, Clemens V. Ullmann, Ella Wulfsberg Stokke, Martin Vickers, Joost Frieling, Dustin T. Harper, Vincent J. Clementi, and IODP Expedition 396 Scientists
Clim. Past, 20, 1–23, https://doi.org/10.5194/cp-20-1-2024,https://doi.org/10.5194/cp-20-1-2024, 2024
Short summary
Assessing environmental change associated with early Eocene hyperthermals in the Atlantic Coastal Plain, USA
William Rush, Jean Self-Trail, Yang Zhang, Appy Sluijs, Henk Brinkhuis, James Zachos, James G. Ogg, and Marci Robinson
Clim. Past, 19, 1677–1698, https://doi.org/10.5194/cp-19-1677-2023,https://doi.org/10.5194/cp-19-1677-2023, 2023
Short summary

Cited articles

Aitchison, J.: The Statistical Analysis of Compositional Data, J. R. Stat. Soc. Series B Stat. Methodol., 44, 139–160, 1982. 
Aitchison, J.: Principal component analysis of compositional data, Biometrika, 70, 57–65, 1983. 
Aitchison, J. and Greenacre, M.: Biplots of compositional data, J. R. Stat. Soc. Ser. C Appl. Stat., 51, 375–392, 2002. 
Álvarez, M. A., Rosasco, L., and Lawrence, N. D.: Kernels for Vector-Valued Functions: A Review, Foundations and Trends® in Machine Learning, 4, 195–266, 2012. 
Bale, N. J., Palatinszky, M., Rijpstra, I. C., Herbold, C. W., Wagner, M., and Sinnighe Damste, J. S.: Membrane lipid composition of the moderately thermophilic ammonia-oxidizing Archaeon “Candidatus Nitrosotenius uzonensis” at different growth temperatures, Appl. Environ. Microb., 85, e01332-19, https://doi.org/10.1128/AEM.01332-19, 2019. 
Download
Short summary
We explore the utiliity of the composition of fossil lipid biomarkers, which are commonly preserved in ancient marine sediments, in providing estimates of past ocean temperatures. The group of lipids concerned show compositional changes across the modern oceans that are correlated, to some extent, with local surface ocean temperatures. Here we present new machine learning approaches to improve our understanding of this temperature sensitivity and its application to reconstructing past climates.
Share