Articles | Volume 16, issue 6
https://doi.org/10.5194/cp-16-2599-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-16-2599-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
OPTiMAL: a new machine learning approach for GDGT-based palaeothermometry
Tom Dunkley Jones
CORRESPONDING AUTHOR
School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT, UK
Yvette L. Eley
School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT, UK
William Thomson
School of Mathematics, University of Birmingham, Edgbaston, B15 2TT, UK
Sarah E. Greene
School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT, UK
Ilya Mandel
School of Physics and Astronomy, Monash University, Clayton, Vic.
3800, Australia
The ARC Centre of Excellence for Gravitational Wave Discovery –
OzGrav, Hawthorn, Australia
Birmingham Institute for Gravitational Wave Astronomy, School of
Physics and Astronomy, University of Birmingham, B15 2TT, Birmingham, UK
Kirsty Edgar
School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT, UK
James A. Bendle
School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT, UK
Related authors
Peter K. Bijl, Kasia K. Sliwinska, Bella Duncan, Arnaud Huguet, Sebastian Naeher, Ronnakrit Rattanasriampaipong, Claudia Sosa-Montes de Oca, Alexandra Auderset, Melissa Berke, Bum Soo Kim, Nina Davtian, Tom Dunkley Jones, Desmond Eefting, Felix Elling, Lauren O'Connor, Richard D. Pancost, Francien Peterse, Pierrick Fenies, Addison Rice, Appy Sluijs, Devika Varma, Wenjie Xiao, and Yige Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-1467, https://doi.org/10.5194/egusphere-2025-1467, 2025
Short summary
Short summary
Many academic laboratories worldwide process environmental samples for analysis of membrane lipid molecules of archaea, for the reconstruction of past environmental conditions. However, the sample workup scheme involves many steps, each of which has a risk of contamination or bias, affecting the results. This paper reviews steps involved in sampling, extraction and analysis of lipids, interpretation and archiving of the data. This ensures reproducable, reusable, comparable and consistent data.
Flavia Boscolo-Galazzo, Amy Jones, Tom Dunkley Jones, Katherine A. Crichton, Bridget S. Wade, and Paul N. Pearson
Biogeosciences, 19, 743–762, https://doi.org/10.5194/bg-19-743-2022, https://doi.org/10.5194/bg-19-743-2022, 2022
Short summary
Short summary
Deep-living organisms are a major yet poorly known component of ocean biomass. Here we reconstruct the evolution of deep-living zooplankton and phytoplankton. Deep-dwelling zooplankton and phytoplankton did not occur 15 Myr ago, when the ocean was several degrees warmer than today. Deep-dwelling species first evolve around 7.5 Myr ago, following global climate cooling. Their evolution was driven by colder ocean temperatures allowing more food, oxygen, and light at depth.
Daniel J. Lunt, Fran Bragg, Wing-Le Chan, David K. Hutchinson, Jean-Baptiste Ladant, Polina Morozova, Igor Niezgodzki, Sebastian Steinig, Zhongshi Zhang, Jiang Zhu, Ayako Abe-Ouchi, Eleni Anagnostou, Agatha M. de Boer, Helen K. Coxall, Yannick Donnadieu, Gavin Foster, Gordon N. Inglis, Gregor Knorr, Petra M. Langebroek, Caroline H. Lear, Gerrit Lohmann, Christopher J. Poulsen, Pierre Sepulchre, Jessica E. Tierney, Paul J. Valdes, Evgeny M. Volodin, Tom Dunkley Jones, Christopher J. Hollis, Matthew Huber, and Bette L. Otto-Bliesner
Clim. Past, 17, 203–227, https://doi.org/10.5194/cp-17-203-2021, https://doi.org/10.5194/cp-17-203-2021, 2021
Short summary
Short summary
This paper presents the first modelling results from the Deep-Time Model Intercomparison Project (DeepMIP), in which we focus on the early Eocene climatic optimum (EECO, 50 million years ago). We show that, in contrast to previous work, at least three models (CESM, GFDL, and NorESM) produce climate states that are consistent with proxy indicators of global mean temperature and polar amplification, and they achieve this at a CO2 concentration that is consistent with the CO2 proxy record.
Gordon N. Inglis, Fran Bragg, Natalie J. Burls, Marlow Julius Cramwinckel, David Evans, Gavin L. Foster, Matthew Huber, Daniel J. Lunt, Nicholas Siler, Sebastian Steinig, Jessica E. Tierney, Richard Wilkinson, Eleni Anagnostou, Agatha M. de Boer, Tom Dunkley Jones, Kirsty M. Edgar, Christopher J. Hollis, David K. Hutchinson, and Richard D. Pancost
Clim. Past, 16, 1953–1968, https://doi.org/10.5194/cp-16-1953-2020, https://doi.org/10.5194/cp-16-1953-2020, 2020
Short summary
Short summary
This paper presents estimates of global mean surface temperatures and climate sensitivity during the early Paleogene (∼57–48 Ma). We employ a multi-method experimental approach and show that i) global mean surface temperatures range between 27 and 32°C and that ii) estimates of
bulkequilibrium climate sensitivity (∼3 to 4.5°C) fall within the range predicted by the IPCC AR5 Report. This work improves our understanding of two key climate metrics during the early Paleogene.
Kirsty M. Edgar, Maria Grigoratou, Fanny M. Monteiro, Ruby Barrett, Rui Ying, and Daniela N. Schmidt
Biogeosciences, 22, 3463–3483, https://doi.org/10.5194/bg-22-3463-2025, https://doi.org/10.5194/bg-22-3463-2025, 2025
Short summary
Short summary
Planktic foraminifera are microscopic marine organisms whose calcium carbonate shells provide valuable insights into past ocean conditions. A promising means of understanding foraminiferal ecology and their environmental interactions is to constrain their key functional traits relating to feeding, symbioses, motility, calcification, and reproduction. Here we review what we know of their functional traits, key gaps in our understanding, and suggestions on how to fill them.
Lukas Jonkers, Tonke Strack, Montserrat Alonso-Garcia, Simon D'haenens, Robert Huber, Michal Kucera, Iván Hernández-Almeida, Chloe L. C. Jones, Brett Metcalfe, Rajeev Saraswat, Lóránd Silye, Sanjay K. Verma, Muhamad Naim Abd Malek, Gerald Auer, Cátia F. Barbosa, Maria A. Barcena, Karl-Heinz Baumann, Flavia Boscolo-Galazzo, Joeven Austine S. Calvelo, Lucilla Capotondi, Martina Caratelli, Jorge Cardich, Humberto Carvajal-Chitty, Markéta Chroustová, Helen K. Coxall, Renata M. de Mello, Anne de Vernal, Paula Diz, Kirsty M. Edgar, Helena L. Filipsson, Ángela Fraguas, Heather L. Furlong, Giacomo Galli, Natalia L. García Chapori, Robyn Granger, Jeroen Groeneveld, Adil Imam, Rebecca Jackson, David Lazarus, Julie Meilland, Marína Molčan Matejová, Raphael Morard, Caterina Morigi, Sven N. Nielsen, Diana Ochoa, Maria Rose Petrizzo, Andrés S. Rigual-Hernández, Marina C. Rillo, Matthew L. Staitis, Gamze Tanık, Raúl Tapia, Nishant Vats, Bridget S. Wade, and Anna E. Weinmann
J. Micropalaeontol., 44, 145–168, https://doi.org/10.5194/jm-44-145-2025, https://doi.org/10.5194/jm-44-145-2025, 2025
Short summary
Short summary
Our study provides guidelines improving the reuse of marine microfossil assemblage data, which are valuable for understanding past ecosystems and environmental change. Based on a survey of 113 researchers, we identified key data attributes required for effective reuse. Analysis of a selection of datasets available online reveals a gap between the attributes scientists consider essential and the data currently available, highlighting the need for clearer data documentation and sharing practices.
Peter K. Bijl, Kasia K. Sliwinska, Bella Duncan, Arnaud Huguet, Sebastian Naeher, Ronnakrit Rattanasriampaipong, Claudia Sosa-Montes de Oca, Alexandra Auderset, Melissa Berke, Bum Soo Kim, Nina Davtian, Tom Dunkley Jones, Desmond Eefting, Felix Elling, Lauren O'Connor, Richard D. Pancost, Francien Peterse, Pierrick Fenies, Addison Rice, Appy Sluijs, Devika Varma, Wenjie Xiao, and Yige Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-1467, https://doi.org/10.5194/egusphere-2025-1467, 2025
Short summary
Short summary
Many academic laboratories worldwide process environmental samples for analysis of membrane lipid molecules of archaea, for the reconstruction of past environmental conditions. However, the sample workup scheme involves many steps, each of which has a risk of contamination or bias, affecting the results. This paper reviews steps involved in sampling, extraction and analysis of lipids, interpretation and archiving of the data. This ensures reproducable, reusable, comparable and consistent data.
Bella J. Duncan, Robert McKay, Richard Levy, Joseph G. Prebble, Timothy Naish, Osamu Seki, Christoph Kraus, Heiko Moossen, G. Todd Ventura, Denise K. Kulhanek, and James Bendle
EGUsphere, https://doi.org/10.5194/egusphere-2024-4021, https://doi.org/10.5194/egusphere-2024-4021, 2025
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
We use plant wax compound specific stable isotopes to investigate how ancient Antarctic vegetation adapted to glacial conditions 23 million years ago. We find plants became less water efficient to prioritise photosynthesis during short, harsh growing seasons. Ecosystem changes also included enhanced aridity, and a shift to a stunted, low elevation vegetation. This shows the adaptability of ancient Antarctic vegetation under atmospheric CO2 conditions comparable to modern.
Flavia Boscolo-Galazzo, Amy Jones, Tom Dunkley Jones, Katherine A. Crichton, Bridget S. Wade, and Paul N. Pearson
Biogeosciences, 19, 743–762, https://doi.org/10.5194/bg-19-743-2022, https://doi.org/10.5194/bg-19-743-2022, 2022
Short summary
Short summary
Deep-living organisms are a major yet poorly known component of ocean biomass. Here we reconstruct the evolution of deep-living zooplankton and phytoplankton. Deep-dwelling zooplankton and phytoplankton did not occur 15 Myr ago, when the ocean was several degrees warmer than today. Deep-dwelling species first evolve around 7.5 Myr ago, following global climate cooling. Their evolution was driven by colder ocean temperatures allowing more food, oxygen, and light at depth.
Kate E. Ashley, Xavier Crosta, Johan Etourneau, Philippine Campagne, Harry Gilchrist, Uthmaan Ibraheem, Sarah E. Greene, Sabine Schmidt, Yvette Eley, Guillaume Massé, and James Bendle
Biogeosciences, 18, 5555–5571, https://doi.org/10.5194/bg-18-5555-2021, https://doi.org/10.5194/bg-18-5555-2021, 2021
Short summary
Short summary
We explore the potential for the use of carbon isotopes of algal fatty acid as a new proxy for past primary productivity in Antarctic coastal zones. Coastal polynyas are hotspots of primary productivity and are known to draw down CO2 from the atmosphere. Reconstructions of past productivity changes could provide a baseline for the role of these areas as sinks for atmospheric CO2.
Markus Adloff, Andy Ridgwell, Fanny M. Monteiro, Ian J. Parkinson, Alexander J. Dickson, Philip A. E. Pogge von Strandmann, Matthew S. Fantle, and Sarah E. Greene
Geosci. Model Dev., 14, 4187–4223, https://doi.org/10.5194/gmd-14-4187-2021, https://doi.org/10.5194/gmd-14-4187-2021, 2021
Short summary
Short summary
We present the first representation of the trace metals Sr, Os, Li and Ca in a 3D Earth system model (cGENIE). The simulation of marine metal sources (weathering, hydrothermal input) and sinks (deposition) reproduces the observed concentrations and isotopic homogeneity of these metals in the modern ocean. With these new tracers, cGENIE can be used to test hypotheses linking these metal cycles and the cycling of other elements like O and C and simulate their dynamic response to external forcing.
Osamu Seki and James Bendle
Clim. Past Discuss., https://doi.org/10.5194/cp-2021-62, https://doi.org/10.5194/cp-2021-62, 2021
Manuscript not accepted for further review
Short summary
Short summary
The reconstruction of CO2 levels in the past is a crucial objective in palaeoclimate research. However, estimates of CO2 level markedly differ among the data. We revised reported alkenone δ13C based CO2 records from the Pliocene to Pleistocene based on a refined approach. Our approach significantly reduced the large offsets between reported alkenone δ13C CO2 records, confirming that better constraints on environmental variables are key aspects for improving alkenone δ13C based CO2 estimates.
Daniel J. Lunt, Fran Bragg, Wing-Le Chan, David K. Hutchinson, Jean-Baptiste Ladant, Polina Morozova, Igor Niezgodzki, Sebastian Steinig, Zhongshi Zhang, Jiang Zhu, Ayako Abe-Ouchi, Eleni Anagnostou, Agatha M. de Boer, Helen K. Coxall, Yannick Donnadieu, Gavin Foster, Gordon N. Inglis, Gregor Knorr, Petra M. Langebroek, Caroline H. Lear, Gerrit Lohmann, Christopher J. Poulsen, Pierre Sepulchre, Jessica E. Tierney, Paul J. Valdes, Evgeny M. Volodin, Tom Dunkley Jones, Christopher J. Hollis, Matthew Huber, and Bette L. Otto-Bliesner
Clim. Past, 17, 203–227, https://doi.org/10.5194/cp-17-203-2021, https://doi.org/10.5194/cp-17-203-2021, 2021
Short summary
Short summary
This paper presents the first modelling results from the Deep-Time Model Intercomparison Project (DeepMIP), in which we focus on the early Eocene climatic optimum (EECO, 50 million years ago). We show that, in contrast to previous work, at least three models (CESM, GFDL, and NorESM) produce climate states that are consistent with proxy indicators of global mean temperature and polar amplification, and they achieve this at a CO2 concentration that is consistent with the CO2 proxy record.
Kate E. Ashley, Robert McKay, Johan Etourneau, Francisco J. Jimenez-Espejo, Alan Condron, Anna Albot, Xavier Crosta, Christina Riesselman, Osamu Seki, Guillaume Massé, Nicholas R. Golledge, Edward Gasson, Daniel P. Lowry, Nicholas E. Barrand, Katelyn Johnson, Nancy Bertler, Carlota Escutia, Robert Dunbar, and James A. Bendle
Clim. Past, 17, 1–19, https://doi.org/10.5194/cp-17-1-2021, https://doi.org/10.5194/cp-17-1-2021, 2021
Short summary
Short summary
We present a multi-proxy record of Holocene glacial meltwater input, sediment transport, and sea-ice variability off East Antarctica. Our record shows that a rapid Antarctic sea-ice increase during the mid-Holocene (~ 4.5 ka) occurred against a backdrop of increasing glacial meltwater input and gradual climate warming. We suggest that mid-Holocene ice shelf cavity expansion led to cooling of surface waters and sea-ice growth, which slowed basal ice shelf melting.
Gordon N. Inglis, Fran Bragg, Natalie J. Burls, Marlow Julius Cramwinckel, David Evans, Gavin L. Foster, Matthew Huber, Daniel J. Lunt, Nicholas Siler, Sebastian Steinig, Jessica E. Tierney, Richard Wilkinson, Eleni Anagnostou, Agatha M. de Boer, Tom Dunkley Jones, Kirsty M. Edgar, Christopher J. Hollis, David K. Hutchinson, and Richard D. Pancost
Clim. Past, 16, 1953–1968, https://doi.org/10.5194/cp-16-1953-2020, https://doi.org/10.5194/cp-16-1953-2020, 2020
Short summary
Short summary
This paper presents estimates of global mean surface temperatures and climate sensitivity during the early Paleogene (∼57–48 Ma). We employ a multi-method experimental approach and show that i) global mean surface temperatures range between 27 and 32°C and that ii) estimates of
bulkequilibrium climate sensitivity (∼3 to 4.5°C) fall within the range predicted by the IPCC AR5 Report. This work improves our understanding of two key climate metrics during the early Paleogene.
Cited articles
Aitchison, J.: The Statistical Analysis of Compositional Data, J. R. Stat.
Soc. Series B Stat. Methodol., 44, 139–160, 1982.
Aitchison, J.: Principal component analysis of compositional data,
Biometrika, 70, 57–65, 1983.
Aitchison, J. and Greenacre, M.: Biplots of compositional data, J. R. Stat.
Soc. Ser. C Appl. Stat., 51, 375–392, 2002.
Álvarez, M. A., Rosasco, L., and Lawrence, N. D.: Kernels for Vector-Valued Functions: A Review, Foundations and Trends® in Machine
Learning, 4, 195–266, 2012.
Bale, N. J., Palatinszky, M., Rijpstra, I. C., Herbold, C. W., Wagner, M., and
Sinnighe Damste, J. S.: Membrane lipid composition of the moderately
thermophilic ammonia-oxidizing Archaeon “Candidatus Nitrosotenius uzonensis” at
different growth temperatures, Appl. Environ. Microb., 85, e01332-19, https://doi.org/10.1128/AEM.01332-19, 2019.
Bijl, P. K., Schouten, S., Sluijs, A., Reichart, G.-J., Zachos, J. C., and
Brinkhuis, H.: Early Palaeogene temperature evolution of the southwest Pacific
Ocean, Nature, 461, 776–779, 2009.
Bijl, P. K., Bendle, J. A. P., Bohaty, S. M., Pross, J., Schouten, S., Tauxe,
L., Stickley, C., McKay, R. M., Röhl, U., Olney, M., Slujis, A., Escutia,
C., Brinkhuis, H., and Expedition 318 Scientists: Eocene cooling linked to
early flow across the Tasmanian Gateway, P. Natl. Acad. Sci. USA, 110,
9645–9650, 2013.
Blaga, C. I., Reichart, G. J., Heiri, O., and Sinninghe Damsté, J. S.: Tetraether membrane lipid distributions in water-column particulate matter and sediments: a study of 47 European lakes along a north¬south transect, J. Paleolimnol., 41, 523–540, https://doi.org/10.1007/s10933-008-9242-2, 2009.
Brassell, S. C.: Climatic influences on the Paleogene evolution of
alkenones, Paleoceanography, 29, 255–272, https://doi.org/10.1002/2013PA002576, 2014.
Brinkhuis, H., Schouten, S., Collinson, M. E., Sluijs, A., Damsté, J. S.
S., Dickens, G. R., Huber, M., Cronin, T. M., Onodera, J., Takahashi, K.,
Bujak, J. P., Stein, R., van der Burgh, J., Eldrett, J. S., Harding, I. C.,
Lotter, A. F., Sangiorgi, F., Cittert, H. V. K.-V., de Leeuw, J. W.,
Matthiessen, J., Backman, J., Moran, K., and the Expedition Scientists:
Episodic fresh surface waters in the Eocene Arctic Ocean, Nature, 441, 606–609, 2006.
Castañeda, I. S., Schefuß, E., Pätzold, J., Sinninghe Damsté, J. S., Weldeab, S., and Schouten, S.: Millennial-scale sea surface temperature changes
in the eastern Mediterranean (Nile River Delta region) over the last 27,000
years, Paleoceanography, 25, PA1208, https://doi.org/10.1029/2009PA001740, 2010.
Coifman, R. R., Lafon, S., Lee, A. B., Maggioni, M., Nadler, B., Warner, F., and
Zucker, S. W.: Geometric diffusions as a tool for harmonic analysis and
structure definition of data: diffusion maps, P. Natl. Acad. Sci. USA, 102, 7426–7431, 2005.
Coulston, J. W., Blinn, C. E., and Thomas, V. A.: Approximating prediction
uncertainty for random forest regression models, Photogramm. Eng. Rem. S., 82, 189–197,
https://doi.org/10.14358/PERS.82.3.189, 2016.
Cramwinckel, M. J., Huber, M., Kocken, I. J., Agnini, C., Bijl, P. K.,
Bohaty, S. M., Frieling, J., Goldner, A., Hilgen, F. J., Kip, E. L.,
Peterse, F., van der Ploeg, R., Röhl, U., Schouten, S., and Sluijs, A.:
Synchronous tropical and polar temperature evolution in the Eocene, Nature,
559, 382–386, 2018.
De Rosa, M., Esposito, E., Gambacorta, A., Nicolaus, B., and Bu'Lock, J. D.:
Effects of temperatures on ether lipid composition of Caldariella acidophilia, Phytochemistry, 19, 827–831,
1980.
Douglas, P. M. J., Affek, H. P., Ivany, L. C., Houben, A. J. P., Sijp, W.
P., Sluijs, A., Schouten, S., and Pagani, M.: Pronounced zonal heterogeneity in
Eocene southern high-latitude sea surface temperatures, P.
Natl. Acad. Sci. USA, 111, 6582–6587, 2014.
Dunkley Jones, T., Lunt, D. J., Schmidt, D. N., Ridgwell, A., Sluijs, A.,
Valdes, P. J., and Maslin, M.: Climate model and proxy data constraints on
ocean warming across the Paleocene–Eocene Thermal Maximum, Earth-Sci.
Rev., 125, 123–145, 2013.
Egozcue, J. J., Pawlowsky-Glahn, V., Mateu-Figueras, G., and Barceló-Vidal,
C.: Isometric Logratio Transformations for Compositional Data Analysis,
Math. Geol., 35, 279–300, 2003.
Elling, F. J., Könneke, M., Lipp, J. S., Becker, K. W., Gagen, E. J.,
and Hinrichs, K.-U.: Effects of growth phase on the membrane lipid
composition of the thaumarchaeon Nitrosopumilus maritimus and their
implications for archaeal lipid distributions in the marine environment,
Geochim. Cosmochim. Ac., 141, 5790–597, 2014.
Elling, F. J., Könneke, M., Mußmann, M., Greve, A., and Hinrichs,
K.-U.: Influence of temperature, pH, and salinity on membrane lipid
composition and TEX86 of marine planktonic thaumarchaeal isolates,
Geochim. Cosmochim. Ac., 171, 238–255, 2015.
Elling, F. J., Konnecke, M., Nicol, G. W., Stieglmeier, M., Bayer, B.,
Spieck, E., de la Torre, J. R., Becker, K. W., Thomm, M. Prosser, J. I.,
Herndl, G., Schleper, C., and Hinrichs, K.-U.: Chemotaxonomic characterisation of
the thaumarchaeal lipidome, Environ. Microbiol., 19, 2681–2700,
2017.
Filzmoser, P., Hron, K., and Reimann, C.: Principal component analysis for
compositional data with outliers, Environmetrics, 20, 621–632, 2009a.
Filzmoser, P., Hron, K., Reimann, C., and Garrett, R.: Robust factor analysis
for compositional data, Comput. Geosci., 35, 1854–1861, 2009b.
Filzmoser, P., Hron, K., and Reimann, C.: Interpretation of multivariate
outliers for compositional data, Comput. Geosci., 39, 77–85, 2012.
Gliozzi, A., Paoli, G., De Rosa, M., and Gambacorta, A.: Effect of isoprenoid
cyclization on the transition temperature of lipids in thermophilic
archaebacteria, BBA-Biomembranes, 735, 234–242, 1983.
Greene, S. and Mandel, I.: carbonatefan/OPTiMAL: First release. (Version v1.0.0), Zenodo, https://doi.org/10.5281/zenodo.4293851, 2020.
Haghverdi, L., Buettner, F., and Theis, F. J.: Diffusion maps for high-dimensional
single-cell analysis of differentiation data, Bioinformatics, 31, 2989–2998,
2015.
Haghverdi, L., Büttner, M., Wolf, F. A., Buettner, F., and Theis, F. J.:
Diffusion pseudotime robustly reconstructs lineage branching, Nat. Methods,
13, 845–848, 2016.
Haslett, J., Whiley, M., Bhattacharya, S., Salter-Townshend, M., Wilson,
S. P., Allen, J. R. M., Huntley, B., and Mitchell, F. J. G.: Bayesian palaeoclimate
reconstruction, J Roy. Stat. Soc. A, 169, 395–438, 2006.
Herfort, L., Schouten, S., Boon, J. P., and Sinninghe Damsté, J. S.:
Application of the TEX86 temperature proxy to the southern North Sea,
Org. Geochem., 37, 1715–1726, 2006.
Hertzberg, J. E., Schmidt, M. W., Bianchi, T. S., Smith, R. K., Shields, M.
R., and Marcantonio, F.: Comparison of eastern tropical Pacific TEX86
and Globigerinoides ruber Mg/Ca derived sea surface temperatures: Insights
from the Holocene and Last Glacial Maximum, Earth Planet. Sc.
Lett., 434, 320–332, 2016.
Hollis, C. J., Handley, L., Crouch, E. M., Morgans, H. E., Baker, J. A.,
Creech, J., Collins, K. S., Gibbs, S. J., Huber, M., and Schouten, S.: Tropical
sea temperatures in the high-latitude South Pacific during the Eocene,
Geology, 37, 99–102, 2009.
Hollis, C. J., Taylor, K. W. R., Handley, L., Pancost, R. D., Huber, M.,
Creech, J. B., Hines, B. R., Crouch, E. M., Morgans, H. E. G., Crampton,
J. S., Gibbs, S., Pearson, P. N., and Zachos, J. C.: Early Paleogene
temperature history of the Southwest Pacific Ocean: Reconciling proxies and
models, Earth Planet. Sc.
Lett., 349–350, 53–66, 2012.
Hollis, C. J., Dunkley Jones, T., Anagnostou, E., Bijl, P. K., Cramwinckel, M. J., Cui, Y., Dickens, G. R., Edgar, K. M., Eley, Y., Evans, D., Foster, G. L., Frieling, J., Inglis, G. N., Kennedy, E. M., Kozdon, R., Lauretano, V., Lear, C. H., Littler, K., Lourens, L., Meckler, A. N., Naafs, B. D. A., Pälike, H., Pancost, R. D., Pearson, P. N., Röhl, U., Royer, D. L., Salzmann, U., Schubert, B. A., Seebeck, H., Sluijs, A., Speijer, R. P., Stassen, P., Tierney, J., Tripati, A., Wade, B., Westerhold, T., Witkowski, C., Zachos, J. C., Zhang, Y. G., Huber, M., and Lunt, D. J.: The DeepMIP contribution to PMIP4: methodologies for selection, compilation and analysis of latest Paleocene and early Eocene climate proxy data, incorporating version 0.1 of the DeepMIP database, Geosci. Model Dev., 12, 3149–3206, https://doi.org/10.5194/gmd-12-3149-2019, 2019.
Hopmans, E. C., Weijers, J. W. H., Schefuss, E., Herfort, L., Sinninghe
Damsté, J. S., and Schouten, S.: A novel proxy for terrestrial organic
matter in sediments based on branched and isoprenoid tetraether lipids,
Earth Planet. Sc. Lett., 224, 107–116, 2004.
Huguet, C., Kim, J.-H., Sinninghe Damsté, J. S., and Schouten, S.:
Reconstruction of sea surface temperature variations in the Arabian Sea over
the last 23 kyr using organic proxies (TEX86 and UK ,
Paleoceanography, 21, PA3003, https://doi.org/10.1029/2005PA001215, 2006.
Hurley, S. J., Elling, F. J., Könneke, M., Buchwald, C., Wankel, S. D.,
Santoro, A. E., Lipp. J.S., Hinrichs, K., and Pearson, A.: Influence of ammonia
oxidation rate on thaumarchaeal lipid composition and the TEX86
temperature proxy, P. Natl. Acad. Sci. USA, 113,
7762–7767, 2016.
Inglis, G. N., Farnsworth, A., Lunt, D., Foster, G. L., Hollis, C. J.,
Pagani, M., Jardine, P. E., Pearson, P. N., Markwick, P., Galsworthy, A. M.
J., Raynham, L., Taylor, K. W. R., and Pancost, R. D.: Descent toward the
Icehouse: Eocene sea surface cooling inferred from GDGT distributions,
Paleoceanography, 30, 1000–1020, 2015.
Jenkyns, H. C., Schouten-Huibers, L., Schouten, S., and Sinninghe Damsté, J. S.: Warm Middle Jurassic–Early Cretaceous high-latitude sea-surface temperatures from the Southern Ocean, Clim. Past, 8, 215–226, https://doi.org/10.5194/cp-8-215-2012, 2012.
Kim, J.-H., Schouten, S., Hopmans, E. C., Donner, B., and Sinninghe
Damsté, J. S.: Global sediment core-top calibration of the TEX86
paleothermometer in the ocean, Geochim. Cosmochim. Ac., 72,
1154–1173, 2008.
Kim, J.-H., van der Meer, J., Schouten, S., Helmke, P., Willmott, V.,
Sangiorgi, F., Koç, N., Hopmans, E. C., and Sinninghe Damsté, J. S.:
New indices and calibrations derived from the distribution of crenarchaeal
isoprenoid tetraether lipids: Implications for past sea surface temperature
reconstructions, Geochim. Cosmochim. Ac., 74, 4639–4654, 2010.
Linnert, C., Robinson, S. A., Lees, J. A., Bown, P. R., Perez-Rodriguez, I.,
Petrizzo, M. R., Falzoni, F., Littler, K., Antonio Arz, J., and Russell, E. E.:
Evidence for global cooling in the Late Cretaceous, Nat. Commun.,
5, 1–7, 2014.
Liu, Z., Pagani, M., Zinniker, D., DeConto, R., Huber, M., Brinkhuis, H., Shah, S. R., Leckie, R. M., and Pearson, A.: Global cooling during the Eocene-Oligocene climate transition, Science, 323, 1187–1190, https://doi.org/10.1126/science.1166368, 2009.
Lunt, D. J., Dunkley Jones, T., Heinemann, M., Huber, M., LeGrande, A., Winguth, A., Loptson, C., Marotzke, J., Roberts, C. D., Tindall, J., Valdes, P., and Winguth, C.: A model–data comparison for a multi-model ensemble of early Eocene atmosphere–ocean simulations: EoMIP, Clim. Past, 8, 1717–1736, https://doi.org/10.5194/cp-8-1717-2012, 2012.
Mentch, L. and Hooker, G.: Quantifying Uncertainty in Random Forests via
Confidence Intervals and Hypothesis Tests, J. Mach. Learn.
Res., 17, 1–41, 2016.
O'Brien, C. L., Robinson, S. A., Pancost, R. D., Sinninghe Damsté, J.
S., Schouten, S., Lunt, D. J., Alsenz, H., Bornemann, A., Bottini, C.,
Brassell, S. C., Farnsworth, A., Forster, A., Huber, B. T., Inglis, G. N.,
Jenkyns, H. C., Linnert, C., Littler, K., Markwick, P., McAnena, A.,
Mutterlose, J., Naafs, B. D. A., Püttmann, W., Sluijs, A., van Helmond,
N. A. G. M., Vellekoop, J., Wagner, T., and Wrobel, N. E.: Cretaceous
sea-surface temperature evolution: Constraints from TEX86 and
planktonic foraminiferal oxygen isotopes, Earth-Sci. Rev., 172,
224–247, 2017.
Park, E., Hefter, J., Fischer, G., and Mollenhauer, G.: TEX86 in sinking
particles in three eastern Atlantic upwelling regimes, Org. Geochem.,
124, 151–163, 2018.
Pearson, P. N., van Dongen, B. E., Nicholas, C. J., Pancost, R. D.,
Schouten, S., Singano, J. M., and Wade, B. S.: Stable warm tropical climate
through the Eocene Epoch, Geology, 35, 211–214, 2007.
Polik, C. A., Elling, F. J., and Pearson, A.: Impacts of Paleoecology on the
TEX86 Sea Surface Temperature Proxy in the Pliocene-Pleistocene
Mediterranean Sea, Paleoceanogr. Paleocl., 33, 1472–1489,
2018.
Qin, W., Carlson, L. T., Armbrust, E. V., Stahl, D. A., Devol, A. H.,
Moffett, J. W., and Ingalls, A. E.: Confounding effects of oxygen and
temperature on the TEX 86 signature of marine Thaumarchaeota, P. Natl. Acad. Sci. USA, 112, 10979–10984, 2015.
Rasmussen, C. E. and Nickisch, H.: Gaussian Processes for Machine Learning
(GPML) Toolbox, J. Mach. Learn. Res., 11, 3011–3015, 2010.
Rasmussen, C. E. and Williams, C. K. I.: Gaussian Processes for Machine
Learning, MIT Press, Cambridge, MA, USA, ISBN 026218253X, 2006.
Schouten, E., Hopmans, E. C., Forster, A., Van Breugel, Y., Kuypers, M. M. M., and
Sinninghe Damsté, J. S.: Extremely high seasurface temperatures at low
latitudes during the middle Cretaceous as revealed by archaeal membrane
lipids, Geology, 31, 1069–1072, 2003.
Schouten, S., Hopmans, E. C., Schefuß, E., and Sinninghe Damsté, J. S.:
Distributional variations in marine crenarchaeotal membrane lipids: a new
tool for reconstructing ancient sea water temperatures?, Earth Planet.
Sc. Lett., 204, 265–274, 2002.
Schouten, S., Forster, A., Panoto, F. E., and Sinninghe Damsté, J. S.:
Towards calibration of the TEX86 palaeothermometer for 20 tropical sea
surface temperatures in ancient greenhouse worlds, Org. Geochem., 38,
1537–1546, 2007.
Schouten, S., Hopmans, E. C., Baas, M., Boumann, H., Standfest, S., Könneke, M., Stahl, D. A., andSinninghe Damsté, J. S.: Intact membrane lipids of “Candidatus Nitrosopumilus maritimus”, a cultivated representative of the cosmopolitan mesophilic group I crenarchaeota, Appl. Environ. Microb., 74, 2433–2440, https://doi.org/10.1128/AEM.01709-07, 2008.
Schouten, S., Hopmans, E. C., and Sinninghe Damsté, J. S.: The organic
geochemistry of glycerol dialkyl glycerol tetraether lipids: A review,
Org. Geochem., 54, 19–61, 2013.
Seki, O., Bendle, J. A., Harada, N., Kobayashi, M., Sawada, K., Moossen, H., and
Sakamoto, T.: Assessment and calibration of TEX86 paleothermometry in
the Sea of Okhotsk and sub-polar North Pacific region: Implications for
paleoceanography, Progr. Oceanogr., 126, 254–266, 2014.
Sinninghe Damsté, J. S., Hopmans, E. C., Schouten, S., Van Duin, A. C. T., and Geenevasen, J. A. J.: Crenarchaeol: the characteristic core glycerol dibiphytanyl glycerol tetraether membrane lipid of cosmopolitan pelagic crenarchaeota, J. Lipid Res., 43, 1641–1651, https://doi.org/10.1194/jlr.M200148-JLR200, 2002.
Sinninghe Damsté, J. S., Schouten, S., and Verschuren, D.: Distribution of tetraether lipids in the 25-ka sedimentary record of Lake Challa: extracting reliable TEX86 and MBT/CBT palaeotemperatures from an equatorial African lake, Quaternary Sci. Rev., 50, 43–54, https://doi.org/10.1016/j.quascirev.2012.07.001, 2012.
Sluijs, A., Schouten, S., Pagani, M., Woltering, M., Brinkhuis, H., Sinninghe
Damsté, J. S., Dickens, G. R., Huber, M., Reichart, G., Stein, R.,
Matthiessen, J., Lourens, L. J., Pedentchouk, N., Backman, J., Moran, K., and
the Expedition 320 Scientists: Subtropical arctic ocean temperatures during
the Palaeocene/Eocene thermal maximum, Nature, 441, 610–613, 2006.
Sluijs, A., Schouten, S., Donders, T. H., Schoon, P. L., Rohl, U., Reichart,
G.-J., Sangiorgi, F., Kim, J.-H., Sinninghe Damsté, J. S., and Brinkhuis,
H.: Warm and wet conditions in the Arctic region during Eocene Thermal
Maximum 2, Nat. Geosci., 2, 777–780, 2009.
Sluijs, A., Frieling, J., Inglis, G. N., Nierop, K. G. J., Peterse, F., Sangiorgi, F., and Schouten, S.: Late Paleocene–early Eocene Arctic Ocean sea surface temperatures: reassessing biomarker paleothermometry at Lomonosov Ridge, Clim. Past, 16, 2381–2400, https://doi.org/10.5194/cp-16-2381-2020, 2020.
Taylor, K. W., Huber, M., Hollis, C. J., Hernandez-Sanchez, M. T., and Pancost,
R. D.: Re-evaluating modern and Palaeogene GDGT distributions: Implications
for SST reconstructions, Global Planet. Change, 108, 158–174, 2013.
Thomas, E. K., Clemens, S. C., Prell, W. L., Herbert, T. D., Huang, Y., Liu, Z., Damsté,
J. S. S., Sun, Y., and Wen, X.: Temperature and leaf wax δ2H records demonstrate seasonal and regional controls on Asian monsoon
proxies, Geology, 42, 1075–1078, https://doi.org/10.1130/G36289.1, 2014.
Tierney, J. E.: GDGT Thermometry: Lipid Tools for Reconstructing
Paleotemperatures, available at: https://www.geo.arizona.edu/~jesst/resources/TierneyPSP_GDGTs.pdf (last access: 14 December 2020), 2012.
Tierney, J. E. and Tingley, M. P.: A Bayesian, spatially-varying
calibration model for the TEX86 proxy, Geochim. Cosmochim. Ac.,
127, 83–106, 2014.
Tierney, J. E. and Tingley, M. P.: A TEX86 surface sediment database
and extended Bayesian calibration, Sci. Data, 2, 150029, https://doi.org/10.1038/sdata.2015.29, 2015.
Trommer, G., Siccha, M., van der Meer, M. T., Schouten, S., Sinninghe Damsté, J. S., Schulz, H., Hemleben, C., and Kucera, M.: Distribution of Crenarchaeota tetraether membrane lipids in surface sediments from the Red Sea, Org. Geochem., 40, 724–731, https://doi.org/10.1016/j.orggeochem.2009.03.001, 2009.
Weijers, J. W. H., Lim, K. L. H., Aquilina, A., Sinninghe Damsté, J. S., and Pancost, R. D.: Biogeochemical controls on glycerol dialkyl glycerol tetraether lipid distributions in sediments characterized by diffusive methane flux, Geochem. Geophy. Geosy., 12, Q10010, https://doi.org/10.1029/2011GC003724, 2011.
Williams, C. K. I. and Rasmussen, C. E.: Gaussian processes for machine
learning, MIT Press Cambridge, MA, USA, 2006.
Wuchter, C., Schouten, S., Coolen, M. J. L., and Sinninghe Damsté, J.
S.: Temperature-dependent variation in the distribution of tetraether
membrane lipids of marine Crenarchaeota: Implications for TEX86
paleothermometry, Paleoceanography, 19, PA4028,
https://doi.org/10.1029/2004PA001041, 2004.
Zhang, Y. G. and Liu, X.: Export Depth of the TEX86 Signal,
Paleoceanogr. Paleocl., 33, 666–671, https://doi.org/10.1029/2018PA003337, 2018.
Zhang, Y. G., Zhang, C. L., Liu, X.-L., Li, L., Hinrichs, K.-U., and Noakes, J.
E.: Methane Index: a tetraether archaeal lipid 15 biomarker indicator for
detecting the instability of marine gas hydrates, Earth Planet.
Sc. Lett., 307, 525–534, 2011.
Zhang, Y. G., Pagani, M., and Liu, Z.: A 12-million-year temperature history of the tropical Pacific Ocean, Science, 343, 84–86, 2014.
Zhang, Y. G., Pagani, M., and Wang, Z.: Ring Index: A new strategy to evaluate the integrity of TEX86 paleothermometry, Paleoceanography, 31, 220–232,
2016.
Short summary
We explore the utiliity of the composition of fossil lipid biomarkers, which are commonly preserved in ancient marine sediments, in providing estimates of past ocean temperatures. The group of lipids concerned show compositional changes across the modern oceans that are correlated, to some extent, with local surface ocean temperatures. Here we present new machine learning approaches to improve our understanding of this temperature sensitivity and its application to reconstructing past climates.
We explore the utiliity of the composition of fossil lipid biomarkers, which are commonly...