
 
This document provides more detail on the forward model described briefly in the main 
text. We focus on transformations for compositional data and their use, diffusion maps 
and the forward model. 
 
1. Compositional data analysis and coordinate transformations 
 
Composition data are data that lie in a simplex. In other words, each datapoint must 
contain strictly positive entries which sum to a constant, often one. The dataset of 
fractional abundances of GDGTs is a compositional dataset. We refer to a single point as 
a composition. 
 
The majority of multivariate statistics are designed for data that lie in Euclidean space, i.e. 
unconstrained space. Problems in compositional spaces may arise due to the inherent 
correlation between compositional parts, or models producing non-compositional 
predictions (e.g. uncertainty intervals extending beyond 1 for a given compositional part). 
For that reason, finding a mapping between the simplex and Euclidean space allows 
standard multivariate techniques to be applied to compositional data. 
 

 
 

 
can be employed (Martín-Fernàndez et al., 2012). We use the impCoda function in the R 
package robCompositions for this purpose.  
 
2. Diffusion maps for data visualisation 
 



Diffusion maps (Coifman et al, 2006) are a method for nonlinear dimensionality reduction 
and visualisation. The building block of a diffusion map is a graph representing the data, 
in which the vertices are datapoints. These vertices are joined by weighted edges, and a 
variety of choices exist for assigning weights to these edges. For the implementation we 
use in the main text, we represent the data as a fully connected graph (i.e., each edge has 
non-zero weight). The weight assigned to each edge between two points xi and xj is given 
by  
 

 
(Egozcue et al., 2003).  
 
We then used these weights to define a discrete-time, discrete-distance Markov process 
on the data, with some transition matrix P which depends on W (for full details of the 
choice of the transition matrix we use in the main text see Haghverdi et al., 2015).  
 

 
distance in the original space (Nadler et al., 2006).  
 
3. Details of the forward model 
 
The forward model is built on multi-output (or vector-valued) Gaussian Processes. We 
call this model a forward model in the sense of Haslet et al. (2006), i.e., the basic building 
block of the model is the assumption that measured compositions arise via some unknown 
function of temperature plus additional temperature-independent noise. The more 
traditional regression strategy would be to model the outcome of interest (temperature) 
as a function of measured predictions (compositions), and indeed this is the approach of 
the Gaussian Process Regression model described in the main text.  



 
 
MOGP refers to a zero-mean, multi-output Gaussian process with kernel K. There are a 
number of choices for kernels in multi-output Gaussian process regression models 
(Alvarez et al., 2012). We choose perhaps the simplest option, the Intrinsic 
Coregionalisation Model (ICM) with a Matern 3/2 base kernel. The model is implemented 
in Python 3.6 via the GPy library – the kernel hyperparameters are optimised by 
maximising the marginal likelihood, and probabilistic predictions are subsequently made 
using the exact form for the posterior. The code is available as part of the Github repository 
detailed in the main text.  
 

 

 
 



integration see Press et al. (2007). 
 
For further details on the implementation of the model see the accompanying code. A 
schematic of the model is presented in Figure 1.  
 

 
 
Figure S1: Schematic representation of the forward model 
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