This document provides more detail on the forward model described briefly in the main
text. We focus on transformations for compositional data and their use, diffusion maps
and the forward model.

1. Compositional data analysis and coordinate transformations

Composition data are data that lie in a simplex. In other words, each datapoint must
contain strictly positive entries which sum to a constant, often one. The dataset of
fractional abundances of GDGTs is a compositional dataset. We refer to a single point as
a composition.

The majority of multivariate statistics are designed for data that lie in Euclidean space, i.e.
unconstrained space. Problems in compositional spaces may arise due to the inherent
correlation between compositional parts, or models producing non-compositional
predictions (e.g. uncertainty intervals extending beyond 1 for a given compositional part).
For that reason, finding a mapping between the simplex and Euclidean space allows
standard multivariate techniques to be applied to compositional data.

There are a number of options based on log-ratio transformations. We choose the iso-
metric log-ratio transformation for this work for the reasons laid out by Egozcue et al
(2003) [1], the main reasons being that it reflects the true dimensionality of composi-

tional data and provides a one-to-one mapping between the simplex and Euclidean
space.

Given a compositional vector x € % where S? is the d —dimensional unit simplex, the
isometric log-ratio transformation ilr : $ — R(#~1) is given by

(ilr(x)) " = (clr(x)) " @

where ®isad x (d — 1) matrix, clr(x); = In (g'(r;)) is the centred log-ratio transforma-
tion, and g(x) is the geometric mean of x.

We use the ilr transformation as implemented by the function pivotCoord in the R
package robCompositions. Note that ilr-transformation is unsuitable for data contain-
ing zero components. A commonly used strategy is to assume that zero values are not
true zeros, but are below some detection limit imposed by the measurement technol-
ogy. Thus zeros are treated as missing values and a variety of imputation methods
can be employed (Martin-Fernandez et al., 2012). We use the impCoda function in the R
package robCompositions for this purpose.

2. Diffusion maps for data visualisation



Diffusion maps (Coifman et al, 2006) are a method for nonlinear dimensionality reduction
and visualisation. The building block of a diffusion map is a graph representing the data,
in which the vertices are datapoints. These vertices are joined by weighted edges, and a
variety of choices exist for assigning weights to these edges. For the implementation we
use in the main text, we represent the data as a fully connected graph (i.e., each edge has
non-zero weight). The weight assigned to each edge between two points x; and x; is given

by

d?(x;, x;)
Wij = exp <—72(;2 I )

where d is some distance function and ¢ is a lengthscale parameter to be set later.
Essentially this builds a graph in which points which are ‘close” subject to d and ¢
have heavily weighted edges and points which are distant have small weights on their
edges.

To properly account for the compositional nature of the data, we use a simplicial dis-
tance measure rather than the typical Euclidean distance. We choose the Aitchison
distance, which is simply the Euclidean distance between ilr-transformed datapoints
(Egozcue et al., 2003).

We then used these weights to define a discrete-time, discrete-distance Markov process
on the data, with some transition matrix P which depends on W (for full details of the
choice of the transition matrix we use in the main text see Haghverdi et al., 2015).

The eigenvectors of this transition matrix are referred to as diffusion components.
They represent the dominant modes of variation in the data. The diffusion distance be-
tween two points reflects their connectivity in the graph and is related to the probabil-
ity that one point can be reached from the other in some specified time. The advantage
of representing the points by their diffusion components for visualisation purposes is
that Euclidean distance in the diffusion space is approximately equivalent to diffusion
distance in the original space (Nadler et al., 2006).

3. Details of the forward model

The forward model is built on multi-output (or vector-valued) Gaussian Processes. We
call this model a forward model in the sense of Haslet et al. (2006), i.e., the basic building
block of the model is the assumption that measured compositions arise via some unknown
function of temperature plus additional temperature-independent noise. The more
traditional regression strategy would be to model the outcome of interest (temperature)
as a function of measured predictions (compositions), and indeed this is the approach of
the Gaussian Process Regression model described in the main text.



(d-1)

Let x; € S? denote the i measured composition, and let x} € R denote the ilr-

transformation of x;. We begin with the very general model
x; = f(T;) + &

where f : R — R(d — 1) is a function to be specified /determined and ; is a zero-mean
random variable independent of temperature.

The function f describes the way in which sea surface temperatures give rise to steady-
state GDGT compositions in populations of marine archaeota. It is clear that temper-
ature has some effect, but a well-reasoned mechanistic model has, to our knowledge,
not been developed.

In order to capture the model uncertainty associated with the lack of a mechanistic
model, we take a Bayesian approach and place a multi-output Gaussian process prior
on the function f. We also assume that € is Gaussian with diagonal covariance matrix
z.

In other words, the forward model is as follows

T, f,% ~ N (f(T),5),
f ~ MOGP(K),
ool i=1,...,d—1,
¥ = diag(o)

MOGTP refers to a zero-mean, multi-output Gaussian process with kernel K. There are a
number of choices for kernels in multi-output Gaussian process regression models
(Alvarez et al, 2012). We choose perhaps the simplest option, the Intrinsic
Coregionalisation Model (ICM) with a Matern 3/2 base kernel. The model is implemented
in Python 3.6 via the GPy library - the kernel hyperparameters are optimised by
maximising the marginal likelihood, and probabilistic predictions are subsequently made
using the exact form for the posterior. The code is available as part of the Github repository
detailed in the main text.

The most useful outcome of estimating this model is gaining access to the conditional
density p(x*|T), i.e. gaining the ability to predict a distribution over compositions,
given a temperature.

Armed with this distribution, a simple application of Bayes’ rule allows the model to

be inverted and we gain access to p(T|x*), i.e. a distribution over temperatures given
anew composition. In other words, we compute

p(Tlx*) = % 1)



Here p(T) is a prior distribution over temperatures and reflects our prior beliefs about
‘reasonable’ sea surface temperatures. For example, we know that sea surface temper-
atures below ~ —5°C or above ~ 50°C are unreasonable, and our prior should reflect
this. If a uniform prior over all temperatures is assumed (i.e. any temperature is pos-
sible a priori), the posterior is improper (i.e. does not integrate to 1) due to the large
probability mass assigned to all compositions at temperatures far outside the modern
temperature range.

Note that the normalising factor p(x*) = [ p(x*|T)p(T)dT is required to ensure
that the probability distribution is properly normalised and to allow the computation
of quantities of interest such as the predictive mean, [ Tp(T|x*)dT, and variance,
Jx (T —u)?p(T|x*) dT, of the distribution.

Since the integrals are one dimensional, it is straightforward and computationally
cheap to use numerical quadrature to evaluate them.

For the applications in the paper, p(T) is chosen to be a Gaussian distribution, and
so the natural choice is Gauss-Hermite quadrature. We use 500 point Gauss-Hermite

quadrature. For more details on quadrature in general and numerical methods for
integration see Press et al. (2007).

For further details on the implementation of the model see the accompanying code. A
schematic of the model is presented in Figure 1.

/;‘w- Estimate \

Raw Data Transformed Data composition |
8 [ Apply g s
2| 73 X " c temperature) via
© . o transformation; 5 2
2 19 < g multi-output GP:
2 Rt 2 map from d- 8
< 2 dimensional C
= ) g . = x|T ~N(f(T),K(T
g ) S simplex to (d-1)- 2y | (F(1),K(T))
'§ g P ;v'd: = dimensional ' Temperature i dT' _—
O | ARt R S i e -1)- ensiona
o | M- o Euclidean space Marginal means and (1) .lm S

Temperature Temperature Gaussian

standard deviations of
t p(xIT) /

6 Make probabilistic\
c b
N Compute § / predlcho_n_s for new
£ quantities El compositions via:
5 . < T * | * )
g of interest = p(T*|x
g e.g. mean, é e p(x*IT*)p(T*)
2 1 o
3 vanoafnce = . i.e. search for
a| LA — (T x") Temperature temperatures which
Temperature & Marginal means and standard are compatible with

deviations of p(x|T) in the given composition
untransformed space /

Figure S1: Schematic representation of the forward model
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