Journal cover Journal topic
Climate of the Past An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 3.536
IF3.536
IF 5-year value: 3.967
IF 5-year
3.967
CiteScore value: 6.6
CiteScore
6.6
SNIP value: 1.262
SNIP1.262
IPP value: 3.90
IPP3.90
SJR value: 2.185
SJR2.185
Scimago H <br class='widget-line-break'>index value: 71
Scimago H
index
71
h5-index value: 40
h5-index40
CP | Articles | Volume 16, issue 1
Clim. Past, 16, 161–181, 2020
https://doi.org/10.5194/cp-16-161-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
Clim. Past, 16, 161–181, 2020
https://doi.org/10.5194/cp-16-161-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 22 Jan 2020

Research article | 22 Jan 2020

The effect of mountain uplift on eastern boundary currents and upwelling systems

Gerlinde Jung and Matthias Prange

Related authors

Early Pliocene vegetation and hydrology changes in western equatorial South America
Friederike Grimmer, Lydie Dupont, Frank Lamy, Gerlinde Jung, Catalina González, and Gerold Wefer
Clim. Past, 14, 1739–1754, https://doi.org/10.5194/cp-14-1739-2018,https://doi.org/10.5194/cp-14-1739-2018, 2018
Short summary
Miocene–Pliocene stepwise intensification of the Benguela upwelling over the Walvis Ridge off Namibia
S. Hoetzel, L. M. Dupont, F. Marret, G. Jung, and G. Wefer
Clim. Past Discuss., https://doi.org/10.5194/cpd-11-1913-2015,https://doi.org/10.5194/cpd-11-1913-2015, 2015
Preprint withdrawn

Related subject area

Subject: Climate Modelling | Archive: Modelling only | Timescale: Cenozoic
Sensitivity of mid-Pliocene climate to changes in orbital forcing and PlioMIP's boundary conditions
Eric Samakinwa, Christian Stepanek, and Gerrit Lohmann
Clim. Past, 16, 1643–1665, https://doi.org/10.5194/cp-16-1643-2020,https://doi.org/10.5194/cp-16-1643-2020, 2020
Short summary
Pliocene Model Intercomparison Project (PlioMIP2) simulations using the Model for Interdisciplinary Research on Climate (MIROC4m)
Wing-Le Chan and Ayako Abe-Ouchi
Clim. Past, 16, 1523–1545, https://doi.org/10.5194/cp-16-1523-2020,https://doi.org/10.5194/cp-16-1523-2020, 2020
Short summary
The origin of Asian monsoons: a modelling perspective
Delphine Tardif, Frédéric Fluteau, Yannick Donnadieu, Guillaume Le Hir, Jean-Baptiste Ladant, Pierre Sepulchre, Alexis Licht, Fernando Poblete, and Guillaume Dupont-Nivet
Clim. Past, 16, 847–865, https://doi.org/10.5194/cp-16-847-2020,https://doi.org/10.5194/cp-16-847-2020, 2020
Short summary
Changes in the high-latitude Southern Hemisphere through the Eocene–Oligocene transition: a model–data comparison
Alan T. Kennedy-Asser, Daniel J. Lunt, Paul J. Valdes, Jean-Baptiste Ladant, Joost Frieling, and Vittoria Lauretano
Clim. Past, 16, 555–573, https://doi.org/10.5194/cp-16-555-2020,https://doi.org/10.5194/cp-16-555-2020, 2020
Short summary
Contribution of the coupled atmosphere–ocean–sea ice–vegetation model COSMOS to the PlioMIP2
Christian Stepanek, Eric Samakinwa, and Gerrit Lohmann
Clim. Past Discuss., https://doi.org/10.5194/cp-2020-10,https://doi.org/10.5194/cp-2020-10, 2020
Revised manuscript accepted for CP
Short summary

Cited articles

Andrade, C. A. and Barton, E. D.: The guajira upwelling system, Cont. Shelf Res., 25, 1003–1022, https://doi.org/10.1016/j.csr.2004.12.012, 2005. 
Arnold, N. P. and Tziperman, E.: Reductions in midlatitude upwelling-favorable winds implied by weaker large-scale pliocene sst gradients, Paleoceanography, 31, 27–39, https://doi.org/10.1002/2015PA002806, 2016. 
Barnes, J. B., Ehlers, T. A., Insel, N., McQuarrie, N., and Poulsen, C. J.: Linking orography, climate, and exhumation across the central andes, Geology, 40, 1135–1138, https://doi.org/10.1130/G33229.1, 2012. 
Belmadani, A., Echevin, V., Codron, F., Takahashi, K., and Junquas, C.: What dynamics drive future wind scenarios for coastal upwelling off peru and chile?, Clim. Dynam., 43, 1893–1914, https://doi.org/10.1007/s00382-013-2015-2, 2014. 
Bergh, E. W., Compton, J. S., and Frenzel, P.: Late neogene foraminifera from the northern namibian continental shelf and the transition to the benguela upwelling system, J. Afr. Earth Sci., 141, 33–48, https://doi.org/10.1016/j.jafrearsci.2018.01.018, 2018. 
Publications Copernicus
Download
Short summary
All major mountain ranges were uplifted during Earth's history. Previous work showed that African uplift might have influenced upper-ocean cooling in the Benguela region. But the surface ocean cooled also in other upwelling regions during the last 10 million years. We performed a set of model experiments altering topography in major mountain regions to explore the effects on atmosphere and ocean. The simulations show that mountain uplift is important for upper-ocean temperature evolution.
All major mountain ranges were uplifted during Earth's history. Previous work showed that...
Citation