Articles | Volume 14, issue 6
https://doi.org/10.5194/cp-14-751-2018
https://doi.org/10.5194/cp-14-751-2018
Research article
 | 
08 Jun 2018
Research article |  | 08 Jun 2018

Difference between the North Atlantic and Pacific meridional overturning circulation in response to the uplift of the Tibetan Plateau

Baohuang Su, Dabang Jiang, Ran Zhang, Pierre Sepulchre, and Gilles Ramstein

Related authors

Transient climate simulations of the Holocene (version 1) – experimental design and boundary conditions
Zhiping Tian, Dabang Jiang, Ran Zhang, and Baohuang Su
Geosci. Model Dev., 15, 4469–4487, https://doi.org/10.5194/gmd-15-4469-2022,https://doi.org/10.5194/gmd-15-4469-2022, 2022
Short summary

Related subject area

Subject: Climate Modelling | Archive: Modelling only | Timescale: Cenozoic
Sustainability of regional Antarctic ice sheets under late Eocene seasonal atmospheric conditions
Dennis H. A. Vermeulen, Michiel L. J. Baatsen, and Anna S. von der Heydt
Clim. Past, 21, 95–114, https://doi.org/10.5194/cp-21-95-2025,https://doi.org/10.5194/cp-21-95-2025, 2025
Short summary
The geometry of sea-level change across a mid-Pliocene glacial cycle
Meghan E. King, Jessica R. Creveling, and Jerry X. Mitrovica
Clim. Past, 21, 53–65, https://doi.org/10.5194/cp-21-53-2025,https://doi.org/10.5194/cp-21-53-2025, 2025
Short summary
Using a multi-layer snow model for transient paleo-studies: surface mass balance evolution during the Last Interglacial
Thi-Khanh-Dieu Hoang, Aurélien Quiquet, Christophe Dumas, Andreas Born, and Didier M. Roche
Clim. Past, 21, 27–51, https://doi.org/10.5194/cp-21-27-2025,https://doi.org/10.5194/cp-21-27-2025, 2025
Short summary
South Asian summer monsoon enhanced by the uplift of the Iranian Plateau in Middle Miocene
Meng Zuo, Yong Sun, Yan Zhao, Gilles Ramstein, Lin Ding, and Tianjun Zhou
Clim. Past, 20, 1817–1836, https://doi.org/10.5194/cp-20-1817-2024,https://doi.org/10.5194/cp-20-1817-2024, 2024
Short summary
Aerosol uncertainties in tropical precipitation changes for the mid-Pliocene warm period
Anni Zhao, Ran Feng, Chris M. Brierley, Jian Zhang, and Yongyun Hu
Clim. Past, 20, 1195–1211, https://doi.org/10.5194/cp-20-1195-2024,https://doi.org/10.5194/cp-20-1195-2024, 2024
Short summary

Cited articles

Abe, M., Kitoh, A., and Yasunari, T.: An evolution of the Asian summer monsoon associated with mountain uplift—simulation with the MRI atmosphere-ocean coupled GCM, J. Meteorol. Soc. Jpn., 81, 909–933, 2003. 
An, Z., Kutzbach, J. E., Prell, W. L., and Porter, S. C.: Evolution of Asian monsoons and phased uplift of the Himalaya–Tibetan plateau since Late Miocene times, Nature, 411, 62–66, 2001. 
Bolin, B.: On the influence of the earth's orography on the general character of the westerlies, Tellus, 2, 184–195, 1950. 
Borrelli, C., Cramer, B. S., and Katz, M. E.: Bipolar Atlantic deepwater circulation in the middle-late Eocene: Effects of southern ocean gateway openings, Paleoceanography, 29, 308–327, 2014. 
Botsyun, S., Sepulchre, P., Risi, C., and Donnadieu, Y.: Impacts of Tibetan Plateau uplift on atmospheric dynamics and associated precipitation δ18O, Clim. Past, 12, 1401–1420, https://doi.org/10.5194/cp-12-1401-2016, 2016. 
Download
Short summary
The present numerical experiments undertaken by a coupled atmosphere–ocean model indicate that the uplift of the Tibetan Plateau alone could have been a potential driver for the reorganization of Pacific and Atlantic meridional overturning circulations between the late Eocene and early Oligocene. In other words, the Tibetan Plateau could play an important role in maintaining the current large-scale overturning circulation in the Atlantic and Pacific.