Articles | Volume 13, issue 10
https://doi.org/10.5194/cp-13-1381-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/cp-13-1381-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Quantifying the influence of the terrestrial biosphere on glacial–interglacial climate dynamics
Taraka Davies-Barnard
CORRESPONDING AUTHOR
BRIDGE, Cabot Institute, and School of Geographical Sciences, University of Bristol, Bristol, BS8 1SS, UK
College of Engineering, Mathematics, and Physical Sciences, University of Exeter, Exeter, EX4 4QE, UK
Andy Ridgwell
BRIDGE, Cabot Institute, and School of Geographical Sciences, University of Bristol, Bristol, BS8 1SS, UK
Department of Earth Sciences, University of California, Riverside, CA 92521, USA
Joy Singarayer
Department of Meteorology and Centre for Past Climate Change, University of Reading, P.O. Box 243, Whiteknights Campus, Reading, RG6 6BB, UK
Paul Valdes
BRIDGE, Cabot Institute, and School of Geographical Sciences, University of Bristol, Bristol, BS8 1SS, UK
Related authors
Taraka Davies-Barnard, Sönke Zaehle, and Pierre Friedlingstein
Biogeosciences, 19, 3491–3503, https://doi.org/10.5194/bg-19-3491-2022, https://doi.org/10.5194/bg-19-3491-2022, 2022
Short summary
Short summary
Biological nitrogen fixation is the largest natural input of new nitrogen onto land. Earth system models mainly represent global total terrestrial biological nitrogen fixation within observational uncertainties but overestimate tropical fixation. The model range of increase in biological nitrogen fixation in the SSP3-7.0 scenario is 3 % to 87 %. While biological nitrogen fixation is a key source of new nitrogen, its predictive power for net primary productivity in models is limited.
Andrew J. Wiltshire, Eleanor J. Burke, Sarah E. Chadburn, Chris D. Jones, Peter M. Cox, Taraka Davies-Barnard, Pierre Friedlingstein, Anna B. Harper, Spencer Liddicoat, Stephen Sitch, and Sönke Zaehle
Geosci. Model Dev., 14, 2161–2186, https://doi.org/10.5194/gmd-14-2161-2021, https://doi.org/10.5194/gmd-14-2161-2021, 2021
Short summary
Short summary
Limited nitrogen availbility can restrict the growth of plants and their ability to assimilate carbon. It is important to include the impact of this process on the global land carbon cycle. This paper presents a model of the coupled land carbon and nitrogen cycle, which is included within the UK Earth System model to improve projections of climate change and impacts on ecosystems.
Taraka Davies-Barnard, Johannes Meyerholt, Sönke Zaehle, Pierre Friedlingstein, Victor Brovkin, Yuanchao Fan, Rosie A. Fisher, Chris D. Jones, Hanna Lee, Daniele Peano, Benjamin Smith, David Wårlind, and Andy J. Wiltshire
Biogeosciences, 17, 5129–5148, https://doi.org/10.5194/bg-17-5129-2020, https://doi.org/10.5194/bg-17-5129-2020, 2020
Paul J. Valdes, Edward Armstrong, Marcus P. S. Badger, Catherine D. Bradshaw, Fran Bragg, Michel Crucifix, Taraka Davies-Barnard, Jonathan J. Day, Alex Farnsworth, Chris Gordon, Peter O. Hopcroft, Alan T. Kennedy, Natalie S. Lord, Dan J. Lunt, Alice Marzocchi, Louise M. Parry, Vicky Pope, William H. G. Roberts, Emma J. Stone, Gregory J. L. Tourte, and Jonny H. T. Williams
Geosci. Model Dev., 10, 3715–3743, https://doi.org/10.5194/gmd-10-3715-2017, https://doi.org/10.5194/gmd-10-3715-2017, 2017
Short summary
Short summary
In this paper we describe the family of climate models used by the BRIDGE research group at the University of Bristol as well as by various other institutions. These models are based on the UK Met Office HadCM3 models and here we describe the various modifications which have been made as well as the key features of a number of configurations in use.
Keyi Cheng, Andy Ridgwell, and Dalton S. Hardisty
Biogeosciences, 21, 4927–4949, https://doi.org/10.5194/bg-21-4927-2024, https://doi.org/10.5194/bg-21-4927-2024, 2024
Short summary
Short summary
The carbonate paleoredox proxy, I / Ca, has shown its potential to quantify the redox change in the past ocean, which is of broad importance for understanding climate change and evolution. Here, we tuned and optimized the marine iodine cycling embedded in an Earth system model, “cGENIE”, against modern ocean observations and then tested its ability to estimate I / Ca in the Cretaceous ocean. Our study implies cGENIE’s potential to quantify redox change in the past using the I / Ca proxy.
Violet L. Patterson, Lauren J. Gregoire, Ruza F. Ivanovic, Niall Gandy, Jonathan Owen, Robin S. Smith, Oliver G. Pollard, Lachlan C. Astfalck, and Paul J. Valdes
Clim. Past, 20, 2191–2218, https://doi.org/10.5194/cp-20-2191-2024, https://doi.org/10.5194/cp-20-2191-2024, 2024
Short summary
Short summary
Simulations of the last two glacial periods are run using a computer model in which the atmosphere and ice sheets interact. The results show that the initial conditions used in the simulations are the primary reason for the difference in simulated North American ice sheet volume between each period. Thus, the climate leading up to the glacial maxima and other factors, such as vegetation, are important contributors to the differences in the ice sheets at the Last and Penultimate glacial maxima.
Elisa Ziegler, Nils Weitzel, Jean-Philippe Baudouin, Marie-Luise Kapsch, Uwe Mikolajewicz, Lauren Gregoire, Ruza Ivanovic, Paul J. Valdes, Christian Wirths, and Kira Rehfeld
EGUsphere, https://doi.org/10.5194/egusphere-2024-1396, https://doi.org/10.5194/egusphere-2024-1396, 2024
Short summary
Short summary
During the Last Deglaciation global surface temperature rose by about 4–7 degrees over several millennia. We show that changes of year-to-year up to century-to-century fluctuations of temperature and precipitation during the Deglaciation were mostly larger than during either the preceding or succeeding more stable periods in fifteen climate model simulations. The analysis demonstrates how ice sheets, meltwater and volcanism influence simulated variability to inform future simulation protocols.
Brooke Snoll, Ruza Ivanovic, Lauren Gregoire, Sam Sherriff-Tadano, Laurie Menviel, Takashi Obase, Ayako Abe-Ouchi, Nathaelle Bouttes, Chengfei He, Feng He, Marie Kapsch, Uwe Mikolajewicz, Juan Muglia, and Paul Valdes
Clim. Past, 20, 789–815, https://doi.org/10.5194/cp-20-789-2024, https://doi.org/10.5194/cp-20-789-2024, 2024
Short summary
Short summary
Geological records show rapid climate change throughout the recent deglaciation. The drivers of these changes are still misunderstood but are often attributed to shifts in the Atlantic Ocean circulation from meltwater input. A cumulative effort to understand these processes prompted numerous simulations of this period. We use these to explain the chain of events and our collective ability to simulate them. The results demonstrate the importance of the meltwater amount used in the simulation.
Yixuan Xie, Daniel J. Lunt, and Paul J. Valdes
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-22, https://doi.org/10.5194/cp-2024-22, 2024
Revised manuscript accepted for CP
Short summary
Short summary
Dust plays a crucial role in the climate system; while it is relatively well studied for the present day, we still lack how it was in the past and the underlying mechanism in the multi-million-year time scale of Earth’s history. Here, for the first time, we simulate dust emissions with the newly developed DUSTY model over the past 540 million years with a temporal resolution of ~5 million years and identify palaeogeography as the primary control of these variations.
Aaron A. Naidoo-Bagwell, Fanny M. Monteiro, Katharine R. Hendry, Scott Burgan, Jamie D. Wilson, Ben A. Ward, Andy Ridgwell, and Daniel J. Conley
Geosci. Model Dev., 17, 1729–1748, https://doi.org/10.5194/gmd-17-1729-2024, https://doi.org/10.5194/gmd-17-1729-2024, 2024
Short summary
Short summary
As an extension to the EcoGEnIE 1.0 Earth system model that features a diverse plankton community, EcoGEnIE 1.1 includes siliceous plankton diatoms and also considers their impact on biogeochemical cycles. With updates to existing nutrient cycles and the introduction of the silicon cycle, we see improved model performance relative to observational data. Through a more functionally diverse plankton community, the new model enables more comprehensive future study of ocean ecology.
Takashi Obase, Laurie Menviel, Ayako Abe-Ouchi, Tristan Vadsaria, Ruza Ivanovic, Brooke Snoll, Sam Sherriff-Tadano, Paul Valdes, Lauren Gregoire, Marie-Luise Kapsch, Uwe Mikolajewicz, Nathaelle Bouttes, Didier Roche, Fanny Lhardy, Chengfei He, Bette Otto-Bliesner, Zhengyu Liu, and Wing-Le Chan
Clim. Past Discuss., https://doi.org/10.5194/cp-2023-86, https://doi.org/10.5194/cp-2023-86, 2023
Revised manuscript under review for CP
Short summary
Short summary
This study analyses transient simulations of the last deglaciation performed by six climate models to understand the processes driving southern high latitude temperature changes. We find that atmospheric CO2 changes and AMOC changes are the primary drivers of the major warming and cooling during the middle stage of the deglaciation. The multi-model analysis highlights the model’s sensitivity of CO2, AMOC to meltwater, and the meltwater history on temperature changes in southern high latitudes.
Caitlyn R. Witkowski, Vittoria Lauretano, Alex Farnsworth, Shufeng Li, Shi-Hu Li, Jan Peter Mayser, B. David A. Naafs, Robert A. Spicer, Tao Su, He Tang, Zhe-Kun Zhou, Paul J. Valdes, and Richard D. Pancost
EGUsphere, https://doi.org/10.5194/egusphere-2023-373, https://doi.org/10.5194/egusphere-2023-373, 2023
Preprint archived
Short summary
Short summary
Untangling the complex tectonic evolution in the Tibetan region can help us understand its impacts on climate, the Asian monsoon system, and the development of major biodiversity hotspots. We show that this “missing link” site between high elevation Tibet and low elevation coastal China had a dynamic environment but no temperature change, meaning its been at its current-day elevation for the past 34 million years.
Suzanne Robinson, Ruza F. Ivanovic, Lauren J. Gregoire, Julia Tindall, Tina van de Flierdt, Yves Plancherel, Frerk Pöppelmeier, Kazuyo Tachikawa, and Paul J. Valdes
Geosci. Model Dev., 16, 1231–1264, https://doi.org/10.5194/gmd-16-1231-2023, https://doi.org/10.5194/gmd-16-1231-2023, 2023
Short summary
Short summary
We present the implementation of neodymium (Nd) isotopes into the ocean model of FAMOUS (Nd v1.0). Nd fluxes from seafloor sediment and incorporation of Nd onto sinking particles represent the major global sources and sinks, respectively. However, model–data mismatch in the North Pacific and northern North Atlantic suggest that certain reactive components of the sediment interact the most with seawater. Our results are important for interpreting Nd isotopes in terms of ocean circulation.
Michael P. Erb, Nicholas P. McKay, Nathan Steiger, Sylvia Dee, Chris Hancock, Ruza F. Ivanovic, Lauren J. Gregoire, and Paul Valdes
Clim. Past, 18, 2599–2629, https://doi.org/10.5194/cp-18-2599-2022, https://doi.org/10.5194/cp-18-2599-2022, 2022
Short summary
Short summary
To look at climate over the past 12 000 years, we reconstruct spatial temperature using natural climate archives and information from model simulations. Our results show mild global mean warmth around 6000 years ago, which differs somewhat from past reconstructions. Undiagnosed seasonal biases in the data could explain some of the observed temperature change, but this still would not explain the large difference between many reconstructions and climate models over this period.
Taraka Davies-Barnard, Sönke Zaehle, and Pierre Friedlingstein
Biogeosciences, 19, 3491–3503, https://doi.org/10.5194/bg-19-3491-2022, https://doi.org/10.5194/bg-19-3491-2022, 2022
Short summary
Short summary
Biological nitrogen fixation is the largest natural input of new nitrogen onto land. Earth system models mainly represent global total terrestrial biological nitrogen fixation within observational uncertainties but overestimate tropical fixation. The model range of increase in biological nitrogen fixation in the SSP3-7.0 scenario is 3 % to 87 %. While biological nitrogen fixation is a key source of new nitrogen, its predictive power for net primary productivity in models is limited.
Katherine A. Crichton, Andy Ridgwell, Daniel J. Lunt, Alex Farnsworth, and Paul N. Pearson
Clim. Past, 17, 2223–2254, https://doi.org/10.5194/cp-17-2223-2021, https://doi.org/10.5194/cp-17-2223-2021, 2021
Short summary
Short summary
The middle Miocene (15 Ma) was a period of global warmth up to 8 °C warmer than present. We investigate changes in ocean circulation and heat distribution since the middle Miocene and the cooling to the present using the cGENIE Earth system model. We create seven time slices at ~2.5 Myr intervals, constrained with paleo-proxy data, showing a progressive reduction in atmospheric CO2 and a strengthening of the Atlantic Meridional Overturning Circulation.
Yoshiki Kanzaki, Dominik Hülse, Sandra Kirtland Turner, and Andy Ridgwell
Geosci. Model Dev., 14, 5999–6023, https://doi.org/10.5194/gmd-14-5999-2021, https://doi.org/10.5194/gmd-14-5999-2021, 2021
Short summary
Short summary
Sedimentary carbonate plays a central role in regulating Earth’s carbon cycle and climate, and also serves as an archive of paleoenvironments, hosting various trace elements/isotopes. To help obtain
trueenvironmental changes from carbonate records over diagenetic distortion, IMP has been newly developed and has the capability to simulate the diagenesis of multiple carbonate particles and implement different styles of particle mixing by benthos using an adapted transition matrix method.
Paul J. Valdes, Christopher R. Scotese, and Daniel J. Lunt
Clim. Past, 17, 1483–1506, https://doi.org/10.5194/cp-17-1483-2021, https://doi.org/10.5194/cp-17-1483-2021, 2021
Short summary
Short summary
Deep ocean temperatures are widely used as a proxy for global mean surface temperature in the past, but the underlying assumptions have not been tested. We use two unique sets of 109 climate model simulations for the last 545 million years to show that the relationship is valid for approximately the last 100 million years but breaks down for older time periods when the continents (and hence ocean circulation) are in very different positions.
Jun Shao, Lowell D. Stott, Laurie Menviel, Andy Ridgwell, Malin Ödalen, and Mayhar Mohtadi
Clim. Past, 17, 1507–1521, https://doi.org/10.5194/cp-17-1507-2021, https://doi.org/10.5194/cp-17-1507-2021, 2021
Short summary
Short summary
Planktic and shallow benthic foraminiferal stable carbon isotope
(δ13C) data show a rapid decline during the last deglaciation. This widespread signal was linked to respired carbon released from the deep ocean and its transport through the upper-ocean circulation. Using numerical simulations in which a stronger flux of respired carbon upwells and outcrops in the Southern Ocean, we find that the depleted δ13C signal is transmitted to the rest of the upper ocean through air–sea gas exchange.
Daniel J. Lunt, Deepak Chandan, Alan M. Haywood, George M. Lunt, Jonathan C. Rougier, Ulrich Salzmann, Gavin A. Schmidt, and Paul J. Valdes
Geosci. Model Dev., 14, 4307–4317, https://doi.org/10.5194/gmd-14-4307-2021, https://doi.org/10.5194/gmd-14-4307-2021, 2021
Short summary
Short summary
Often in science we carry out experiments with computers in which several factors are explored, for example, in the field of climate science, how the factors of greenhouse gases, ice, and vegetation affect temperature. We can explore the relative importance of these factors by
swapping in and outdifferent values of these factors, and can also carry out experiments with many different combinations of these factors. This paper discusses how best to analyse the results from such experiments.
Markus Adloff, Andy Ridgwell, Fanny M. Monteiro, Ian J. Parkinson, Alexander J. Dickson, Philip A. E. Pogge von Strandmann, Matthew S. Fantle, and Sarah E. Greene
Geosci. Model Dev., 14, 4187–4223, https://doi.org/10.5194/gmd-14-4187-2021, https://doi.org/10.5194/gmd-14-4187-2021, 2021
Short summary
Short summary
We present the first representation of the trace metals Sr, Os, Li and Ca in a 3D Earth system model (cGENIE). The simulation of marine metal sources (weathering, hydrothermal input) and sinks (deposition) reproduces the observed concentrations and isotopic homogeneity of these metals in the modern ocean. With these new tracers, cGENIE can be used to test hypotheses linking these metal cycles and the cycling of other elements like O and C and simulate their dynamic response to external forcing.
Masa Kageyama, Sandy P. Harrison, Marie-L. Kapsch, Marcus Lofverstrom, Juan M. Lora, Uwe Mikolajewicz, Sam Sherriff-Tadano, Tristan Vadsaria, Ayako Abe-Ouchi, Nathaelle Bouttes, Deepak Chandan, Lauren J. Gregoire, Ruza F. Ivanovic, Kenji Izumi, Allegra N. LeGrande, Fanny Lhardy, Gerrit Lohmann, Polina A. Morozova, Rumi Ohgaito, André Paul, W. Richard Peltier, Christopher J. Poulsen, Aurélien Quiquet, Didier M. Roche, Xiaoxu Shi, Jessica E. Tierney, Paul J. Valdes, Evgeny Volodin, and Jiang Zhu
Clim. Past, 17, 1065–1089, https://doi.org/10.5194/cp-17-1065-2021, https://doi.org/10.5194/cp-17-1065-2021, 2021
Short summary
Short summary
The Last Glacial Maximum (LGM; ~21 000 years ago) is a major focus for evaluating how well climate models simulate climate changes as large as those expected in the future. Here, we compare the latest climate model (CMIP6-PMIP4) to the previous one (CMIP5-PMIP3) and to reconstructions. Large-scale climate features (e.g. land–sea contrast, polar amplification) are well captured by all models, while regional changes (e.g. winter extratropical cooling, precipitations) are still poorly represented.
Sebastiaan J. van de Velde, Dominik Hülse, Christopher T. Reinhard, and Andy Ridgwell
Geosci. Model Dev., 14, 2713–2745, https://doi.org/10.5194/gmd-14-2713-2021, https://doi.org/10.5194/gmd-14-2713-2021, 2021
Short summary
Short summary
Biogeochemical interactions between iron and sulfur are central to the long-term biogeochemical evolution of Earth’s oceans. Here, we introduce an iron–sulphur cycle in a model of Earth's oceans. Our analyses show that the results of the model are robust towards parameter choices and that simulated concentrations and reactions are comparable to those observed in ancient ocean analogues (anoxic lakes). Our model represents an important step forward in the study of iron–sulfur cycling.
Andrew J. Wiltshire, Eleanor J. Burke, Sarah E. Chadburn, Chris D. Jones, Peter M. Cox, Taraka Davies-Barnard, Pierre Friedlingstein, Anna B. Harper, Spencer Liddicoat, Stephen Sitch, and Sönke Zaehle
Geosci. Model Dev., 14, 2161–2186, https://doi.org/10.5194/gmd-14-2161-2021, https://doi.org/10.5194/gmd-14-2161-2021, 2021
Short summary
Short summary
Limited nitrogen availbility can restrict the growth of plants and their ability to assimilate carbon. It is important to include the impact of this process on the global land carbon cycle. This paper presents a model of the coupled land carbon and nitrogen cycle, which is included within the UK Earth System model to improve projections of climate change and impacts on ecosystems.
Daniel J. Lunt, Fran Bragg, Wing-Le Chan, David K. Hutchinson, Jean-Baptiste Ladant, Polina Morozova, Igor Niezgodzki, Sebastian Steinig, Zhongshi Zhang, Jiang Zhu, Ayako Abe-Ouchi, Eleni Anagnostou, Agatha M. de Boer, Helen K. Coxall, Yannick Donnadieu, Gavin Foster, Gordon N. Inglis, Gregor Knorr, Petra M. Langebroek, Caroline H. Lear, Gerrit Lohmann, Christopher J. Poulsen, Pierre Sepulchre, Jessica E. Tierney, Paul J. Valdes, Evgeny M. Volodin, Tom Dunkley Jones, Christopher J. Hollis, Matthew Huber, and Bette L. Otto-Bliesner
Clim. Past, 17, 203–227, https://doi.org/10.5194/cp-17-203-2021, https://doi.org/10.5194/cp-17-203-2021, 2021
Short summary
Short summary
This paper presents the first modelling results from the Deep-Time Model Intercomparison Project (DeepMIP), in which we focus on the early Eocene climatic optimum (EECO, 50 million years ago). We show that, in contrast to previous work, at least three models (CESM, GFDL, and NorESM) produce climate states that are consistent with proxy indicators of global mean temperature and polar amplification, and they achieve this at a CO2 concentration that is consistent with the CO2 proxy record.
Katherine A. Crichton, Jamie D. Wilson, Andy Ridgwell, and Paul N. Pearson
Geosci. Model Dev., 14, 125–149, https://doi.org/10.5194/gmd-14-125-2021, https://doi.org/10.5194/gmd-14-125-2021, 2021
Short summary
Short summary
Temperature is a controller of metabolic processes and therefore also a controller of the ocean's biological carbon pump (BCP). We calibrate a temperature-dependent version of the BCP in the cGENIE Earth system model. Since the pre-industrial period, warming has intensified near-surface nutrient recycling, supporting production and largely offsetting stratification-induced surface nutrient limitation. But at the same time less carbon that sinks out of the surface then reaches the deep ocean.
Irene Malmierca-Vallet, Louise C. Sime, Paul J. Valdes, and Julia C. Tindall
Clim. Past, 16, 2485–2508, https://doi.org/10.5194/cp-16-2485-2020, https://doi.org/10.5194/cp-16-2485-2020, 2020
Christopher T. Reinhard, Stephanie L. Olson, Sandra Kirtland Turner, Cecily Pälike, Yoshiki Kanzaki, and Andy Ridgwell
Geosci. Model Dev., 13, 5687–5706, https://doi.org/10.5194/gmd-13-5687-2020, https://doi.org/10.5194/gmd-13-5687-2020, 2020
Short summary
Short summary
We provide documentation and testing of new developments for the oceanic and atmospheric methane cycles in the cGENIE Earth system model. The model is designed to explore Earth's methane cycle across a wide range of timescales and scenarios, in particular assessing the mean climate state and climate perturbations in Earth's deep past. We further document the impact of atmospheric oxygen levels and ocean chemistry on fluxes of methane to the atmosphere from the ocean biosphere.
Taraka Davies-Barnard, Johannes Meyerholt, Sönke Zaehle, Pierre Friedlingstein, Victor Brovkin, Yuanchao Fan, Rosie A. Fisher, Chris D. Jones, Hanna Lee, Daniele Peano, Benjamin Smith, David Wårlind, and Andy J. Wiltshire
Biogeosciences, 17, 5129–5148, https://doi.org/10.5194/bg-17-5129-2020, https://doi.org/10.5194/bg-17-5129-2020, 2020
Charles J. R. Williams, Maria-Vittoria Guarino, Emilie Capron, Irene Malmierca-Vallet, Joy S. Singarayer, Louise C. Sime, Daniel J. Lunt, and Paul J. Valdes
Clim. Past, 16, 1429–1450, https://doi.org/10.5194/cp-16-1429-2020, https://doi.org/10.5194/cp-16-1429-2020, 2020
Short summary
Short summary
Computer simulations of the geological past are an important tool to improve our understanding of climate change. We present results from two simulations using the latest version of the UK's climate model, the mid-Holocene (6000 years ago) and Last Interglacial (127 000 years ago). The simulations reproduce temperatures consistent with the pattern of incoming radiation. Model–data comparisons indicate that some regions (and some seasons) produce better matches to the data than others.
Malin Ödalen, Jonas Nycander, Andy Ridgwell, Kevin I. C. Oliver, Carlye D. Peterson, and Johan Nilsson
Biogeosciences, 17, 2219–2244, https://doi.org/10.5194/bg-17-2219-2020, https://doi.org/10.5194/bg-17-2219-2020, 2020
Short summary
Short summary
In glacial periods, ocean uptake of carbon is likely a key player for achieving low atmospheric CO2. In climate models, ocean biological uptake of carbon (C) and phosphorus (P) are often assumed to occur in fixed proportions.
In this study, we allow the ratio of C : P to vary and simulate, to first approximation, the complex biological changes that occur in the ocean over long timescales. We show here that, for glacial–interglacial cycles, this complexity contributes to low atmospheric CO2.
Alan T. Kennedy-Asser, Daniel J. Lunt, Paul J. Valdes, Jean-Baptiste Ladant, Joost Frieling, and Vittoria Lauretano
Clim. Past, 16, 555–573, https://doi.org/10.5194/cp-16-555-2020, https://doi.org/10.5194/cp-16-555-2020, 2020
Short summary
Short summary
Global cooling and a major expansion of ice over Antarctica occurred ~ 34 million years ago at the Eocene–Oligocene transition (EOT). A large secondary proxy dataset for high-latitude Southern Hemisphere temperature before, after and across the EOT is compiled and compared to simulations from two coupled climate models. Although there are inconsistencies between the models and data, the comparison shows amongst other things that changes in the Drake Passage were unlikely the cause of the EOT.
Yoshiki Kanzaki, Bernard P. Boudreau, Sandra Kirtland Turner, and Andy Ridgwell
Geosci. Model Dev., 12, 4469–4496, https://doi.org/10.5194/gmd-12-4469-2019, https://doi.org/10.5194/gmd-12-4469-2019, 2019
Short summary
Short summary
This paper provides eLABS, an extension of the lattice-automaton bioturbation simulator LABS. In our new model, the benthic animal behavior interacts and changes dynamically with oxygen and organic matter concentrations and the water flows caused by benthic animals themselves, in a 2-D marine-sediment grid. The model can address the mechanisms behind empirical observations of bioturbation based on the interactions between physical, chemical and biological aspects of marine sediment.
Jennifer E. Dentith, Ruza F. Ivanovic, Lauren J. Gregoire, Julia C. Tindall, Laura F. Robinson, and Paul J. Valdes
Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-365, https://doi.org/10.5194/bg-2019-365, 2019
Publication in BG not foreseen
Short summary
Short summary
We have added three new tracers (a dye tracer and two representations of radiocarbon, 14C) into the ocean of the FAMOUS climate model to study large-scale circulation and the marine carbon cycle. The model performs well compared to modern 14C observations, both spatially and temporally. Proxy 14C records are interpreted in terms of water age, but comparing our dye tracer to our 14C tracer, we find that this is only valid in certain areas; elsewhere, the carbon cycle complicates the signal.
David C. Wade, Nathan Luke Abraham, Alexander Farnsworth, Paul J. Valdes, Fran Bragg, and Alexander T. Archibald
Clim. Past, 15, 1463–1483, https://doi.org/10.5194/cp-15-1463-2019, https://doi.org/10.5194/cp-15-1463-2019, 2019
Short summary
Short summary
The amount of O2 in the atmosphere may have varied from as little as 10 % to as much as 35 % during the last 541 Myr. These changes are large enough to have led to changes in atmospheric mass, which may alter the radiative budget of the atmosphere. We present the first fully 3-D numerical model simulations to investigate the climate impacts of changes in O2 during different climate states. We identify a complex new mechanism causing increases in surface temperature when O2 levels were higher.
Mario Krapp, Robert Beyer, Stephen L. Edmundson, Paul J. Valdes, and Andrea Manica
Clim. Past Discuss., https://doi.org/10.5194/cp-2019-91, https://doi.org/10.5194/cp-2019-91, 2019
Revised manuscript not accepted
Short summary
Short summary
The local response of the global climate system to the external drivers of the glacial–interglacial climates throughout the Quaternary can be approximated by a simple linear regression model. Based on numerical climate model simulations for the last glacial cycle, our global climate model emulator (GCMET) is able to reconstruct the climate of the last 800 000 years, in good agreement with long-term terrestrial and marine proxy records.
Jamie D. Wilson, Stephen Barker, Neil R. Edwards, Philip B. Holden, and Andy Ridgwell
Biogeosciences, 16, 2923–2936, https://doi.org/10.5194/bg-16-2923-2019, https://doi.org/10.5194/bg-16-2923-2019, 2019
Short summary
Short summary
The remains of plankton rain down from the surface ocean to the deep ocean, acting to store CO2 in the deep ocean. We used a model of biology and ocean circulation to explore the importance of this process in different regions of the ocean. The amount of CO2 stored in the deep ocean is most sensitive to changes in the Southern Ocean. As plankton in the Southern Ocean are likely those most impacted by future climate change, the amount of CO2 they store in the deep ocean could also be affected.
Krista M. S. Kemppinen, Philip B. Holden, Neil R. Edwards, Andy Ridgwell, and Andrew D. Friend
Clim. Past, 15, 1039–1062, https://doi.org/10.5194/cp-15-1039-2019, https://doi.org/10.5194/cp-15-1039-2019, 2019
Short summary
Short summary
We simulate the Last Glacial Maximum atmospheric CO2 decrease with a large ensemble of parameter sets to investigate the range of possible physical and biogeochemical Earth system changes accompanying the CO2 decrease. Amongst the dominant ensemble changes is an increase in terrestrial carbon, which we attribute to a slower soil respiration rate, and the preservation of carbon by the LGM ice sheets. Further investigation into the role of terrestrial carbon is warranted.
Maria Grigoratou, Fanny M. Monteiro, Daniela N. Schmidt, Jamie D. Wilson, Ben A. Ward, and Andy Ridgwell
Biogeosciences, 16, 1469–1492, https://doi.org/10.5194/bg-16-1469-2019, https://doi.org/10.5194/bg-16-1469-2019, 2019
Short summary
Short summary
The paper presents a novel study based on the traits of shell size, calcification and feeding behaviour of two planktonic foraminifera life stages using modelling simulations. With the model, we tested the cost and benefit of calcification and explored how the interactions of planktonic foraminifera among other plankton groups influence their biomass under different environmental conditions. Our results provide new insights into environmental controls in planktonic foraminifera ecology.
David J. Wilton, Marcus P. S. Badger, Euripides P. Kantzas, Richard D. Pancost, Paul J. Valdes, and David J. Beerling
Geosci. Model Dev., 12, 1351–1364, https://doi.org/10.5194/gmd-12-1351-2019, https://doi.org/10.5194/gmd-12-1351-2019, 2019
Short summary
Short summary
Methane is an important greenhouse gas naturally produced in wetlands (areas of land inundated with water). Models of the Earth's past climate need estimates of the amounts of methane wetlands produce; and in order to calculate those we need to model wetlands. In this work we develop a method for modelling the fraction of an area of the Earth that is wetland, repeat this over all the Earth's land surface and apply this to a study of the Earth as it was around 50 million years ago.
Ben A. Ward, Jamie D. Wilson, Ros M. Death, Fanny M. Monteiro, Andrew Yool, and Andy Ridgwell
Geosci. Model Dev., 11, 4241–4267, https://doi.org/10.5194/gmd-11-4241-2018, https://doi.org/10.5194/gmd-11-4241-2018, 2018
Short summary
Short summary
A novel configuration of an Earth system model includes a diverse plankton community. The model – EcoGEnIE – is sufficiently complex to reproduce a realistic, size-structured plankton community, while at the same time retaining the efficiency to run to a global steady state (~ 10k years). The increased capabilities of EcoGEnIE will allow future exploration of ecological communities on much longer timescales than have so far been examined in global ocean models and particularly for past climate.
Tom Dunkley Jones, Hayley R. Manners, Murray Hoggett, Sandra Kirtland Turner, Thomas Westerhold, Melanie J. Leng, Richard D. Pancost, Andy Ridgwell, Laia Alegret, Rob Duller, and Stephen T. Grimes
Clim. Past, 14, 1035–1049, https://doi.org/10.5194/cp-14-1035-2018, https://doi.org/10.5194/cp-14-1035-2018, 2018
Short summary
Short summary
The Paleocene–Eocene Thermal Maximum (PETM) is a transient global warming event associated with a doubling of atmospheric carbon dioxide concentrations. Here we document a major increase in sediment accumulation rates on a subtropical continental margin during the PETM, likely due to marked changes in hydro-climates and sediment transport. These high sedimentation rates persist through the event and may play a key role in the removal of carbon from the atmosphere by the burial of organic carbon.
Dominik Hülse, Sandra Arndt, Stuart Daines, Pierre Regnier, and Andy Ridgwell
Geosci. Model Dev., 11, 2649–2689, https://doi.org/10.5194/gmd-11-2649-2018, https://doi.org/10.5194/gmd-11-2649-2018, 2018
Short summary
Short summary
We present a 1-D analytical diagenetic model resolving organic matter (OM) cycling and the associated biogeochemical dynamics in marine sediments designed to be coupled to Earth system models (ESMs). The reaction network accounts for the most important reactions associated with OM dynamics. The coupling is described and the OM degradation rate constant is tuned. Various observations, such as pore water profiles, sediment water interface fluxes and OM content, are reproduced with good accuracy.
Masa Kageyama, Pascale Braconnot, Sandy P. Harrison, Alan M. Haywood, Johann H. Jungclaus, Bette L. Otto-Bliesner, Jean-Yves Peterschmitt, Ayako Abe-Ouchi, Samuel Albani, Patrick J. Bartlein, Chris Brierley, Michel Crucifix, Aisling Dolan, Laura Fernandez-Donado, Hubertus Fischer, Peter O. Hopcroft, Ruza F. Ivanovic, Fabrice Lambert, Daniel J. Lunt, Natalie M. Mahowald, W. Richard Peltier, Steven J. Phipps, Didier M. Roche, Gavin A. Schmidt, Lev Tarasov, Paul J. Valdes, Qiong Zhang, and Tianjun Zhou
Geosci. Model Dev., 11, 1033–1057, https://doi.org/10.5194/gmd-11-1033-2018, https://doi.org/10.5194/gmd-11-1033-2018, 2018
Short summary
Short summary
The Paleoclimate Modelling Intercomparison Project (PMIP) takes advantage of the existence of past climate states radically different from the recent past to test climate models used for climate projections and to better understand these climates. This paper describes the PMIP contribution to CMIP6 (Coupled Model Intercomparison Project, 6th phase) and possible analyses based on PMIP results, as well as on other CMIP6 projects.
Malin Ödalen, Jonas Nycander, Kevin I. C. Oliver, Laurent Brodeau, and Andy Ridgwell
Biogeosciences, 15, 1367–1393, https://doi.org/10.5194/bg-15-1367-2018, https://doi.org/10.5194/bg-15-1367-2018, 2018
Short summary
Short summary
We conclude that different initial states for an ocean model result in different capacities for ocean carbon storage due to differences in the ocean circulation state and the origin of the carbon in the initial ocean carbon reservoir. This could explain why it is difficult to achieve comparable responses of the ocean carbon system in model inter-comparison studies in which the initial states vary between models. We show that this effect of the initial state is quantifiable.
Natalie S. Lord, Michel Crucifix, Dan J. Lunt, Mike C. Thorne, Nabila Bounceur, Harry Dowsett, Charlotte L. O'Brien, and Andy Ridgwell
Clim. Past, 13, 1539–1571, https://doi.org/10.5194/cp-13-1539-2017, https://doi.org/10.5194/cp-13-1539-2017, 2017
Short summary
Short summary
We present projections of long-term changes in climate, produced using a statistical emulator based on climate data from a state-of-the-art climate model. We use the emulator to model changes in temperature and precipitation over the late Pliocene (3.3–2.8 million years before present) and the next 200 thousand years. The impact of the Earth's orbit and the atmospheric carbon dioxide concentration on climate is assessed, and the data for the late Pliocene are compared to proxy temperature data.
Paul J. Valdes, Edward Armstrong, Marcus P. S. Badger, Catherine D. Bradshaw, Fran Bragg, Michel Crucifix, Taraka Davies-Barnard, Jonathan J. Day, Alex Farnsworth, Chris Gordon, Peter O. Hopcroft, Alan T. Kennedy, Natalie S. Lord, Dan J. Lunt, Alice Marzocchi, Louise M. Parry, Vicky Pope, William H. G. Roberts, Emma J. Stone, Gregory J. L. Tourte, and Jonny H. T. Williams
Geosci. Model Dev., 10, 3715–3743, https://doi.org/10.5194/gmd-10-3715-2017, https://doi.org/10.5194/gmd-10-3715-2017, 2017
Short summary
Short summary
In this paper we describe the family of climate models used by the BRIDGE research group at the University of Bristol as well as by various other institutions. These models are based on the UK Met Office HadCM3 models and here we describe the various modifications which have been made as well as the key features of a number of configurations in use.
Emma J. Stone, Emilie Capron, Daniel J. Lunt, Antony J. Payne, Joy S. Singarayer, Paul J. Valdes, and Eric W. Wolff
Clim. Past, 12, 1919–1932, https://doi.org/10.5194/cp-12-1919-2016, https://doi.org/10.5194/cp-12-1919-2016, 2016
Short summary
Short summary
Climate models forced only with greenhouse gas concentrations and orbital parameters representative of the early Last Interglacial are unable to reproduce the observed colder-than-present temperatures in the North Atlantic and the warmer-than-present temperatures in the Southern Hemisphere. Using a climate model forced also with a freshwater amount derived from data representing melting from the remnant Northern Hemisphere ice sheets accounts for this response via the bipolar seesaw mechanism.
William H. G. Roberts, Antony J. Payne, and Paul J. Valdes
Clim. Past, 12, 1601–1617, https://doi.org/10.5194/cp-12-1601-2016, https://doi.org/10.5194/cp-12-1601-2016, 2016
Short summary
Short summary
There are observations from ocean sediment cores that during the last ice age the Laurentide Ice Sheet, which sat over North America, periodically surged. In this study we show the role that water at the base of an ice sheet plays in these surges. We show that with a more realistic representation of water drainage at the base of the ice sheet than usually used, these surges can still occur and that they are triggered by an internal ice sheet instability; no external trigger is needed.
Ruza F. Ivanovic, Lauren J. Gregoire, Masa Kageyama, Didier M. Roche, Paul J. Valdes, Andrea Burke, Rosemarie Drummond, W. Richard Peltier, and Lev Tarasov
Geosci. Model Dev., 9, 2563–2587, https://doi.org/10.5194/gmd-9-2563-2016, https://doi.org/10.5194/gmd-9-2563-2016, 2016
Short summary
Short summary
This manuscript presents the experiment design for the PMIP4 Last Deglaciation Core experiment: a transient simulation of the last deglaciation, 21–9 ka. Specified model boundary conditions include time-varying orbital parameters, greenhouse gases, ice sheets, ice meltwater fluxes and other geographical changes (provided for 26–0 ka). The context of the experiment and the choices for the boundary conditions are explained, along with the future direction of the working group.
M. Clare Smith, Joy S. Singarayer, Paul J. Valdes, Jed O. Kaplan, and Nicholas P. Branch
Clim. Past, 12, 923–941, https://doi.org/10.5194/cp-12-923-2016, https://doi.org/10.5194/cp-12-923-2016, 2016
Short summary
Short summary
We used climate modelling to estimate the biogeophysical impacts of agriculture on the climate over the last 8000 years of the Holocene. Our results show statistically significant surface temperature changes (mainly cooling) from as early as 7000 BP in the JJA season and throughout the entire annual cycle by 2–3000 BP. The changes were greatest in the areas of land use change but were also seen in other areas. Precipitation was also affected, particularly in Europe, India, and the ITCZ region.
Matthew J. Carmichael, Daniel J. Lunt, Matthew Huber, Malte Heinemann, Jeffrey Kiehl, Allegra LeGrande, Claire A. Loptson, Chris D. Roberts, Navjit Sagoo, Christine Shields, Paul J. Valdes, Arne Winguth, Cornelia Winguth, and Richard D. Pancost
Clim. Past, 12, 455–481, https://doi.org/10.5194/cp-12-455-2016, https://doi.org/10.5194/cp-12-455-2016, 2016
Short summary
Short summary
In this paper, we assess how well model-simulated precipitation rates compare to those indicated by geological data for the early Eocene, a warm interval 56–49 million years ago. Our results show that a number of models struggle to produce sufficient precipitation at high latitudes, which likely relates to cool simulated temperatures in these regions. However, calculating precipitation rates from plant fossils is highly uncertain, and further data are now required.
B. A. A. Hoogakker, R. S. Smith, J. S. Singarayer, R. Marchant, I. C. Prentice, J. R. M. Allen, R. S. Anderson, S. A. Bhagwat, H. Behling, O. Borisova, M. Bush, A. Correa-Metrio, A. de Vernal, J. M. Finch, B. Fréchette, S. Lozano-Garcia, W. D. Gosling, W. Granoszewski, E. C. Grimm, E. Grüger, J. Hanselman, S. P. Harrison, T. R. Hill, B. Huntley, G. Jiménez-Moreno, P. Kershaw, M.-P. Ledru, D. Magri, M. McKenzie, U. Müller, T. Nakagawa, E. Novenko, D. Penny, L. Sadori, L. Scott, J. Stevenson, P. J. Valdes, M. Vandergoes, A. Velichko, C. Whitlock, and C. Tzedakis
Clim. Past, 12, 51–73, https://doi.org/10.5194/cp-12-51-2016, https://doi.org/10.5194/cp-12-51-2016, 2016
Short summary
Short summary
In this paper we use two climate models to test how Earth’s vegetation responded to changes in climate over the last 120 000 years, looking at warm interglacial climates like today, cold ice-age glacial climates, and intermediate climates. The models agree well with observations from pollen, showing smaller forested areas and larger desert areas during cold periods. Forests store most terrestrial carbon; the terrestrial carbon lost during cold climates was most likely relocated to the oceans.
J. A. Bradley, A. M. Anesio, J. S. Singarayer, M. R. Heath, and S. Arndt
Geosci. Model Dev., 8, 3441–3470, https://doi.org/10.5194/gmd-8-3441-2015, https://doi.org/10.5194/gmd-8-3441-2015, 2015
Short summary
Short summary
Recent climate warming causing ice retreat exposes new terrestrial ecosystems that have potentially significant yet largely unexplored roles on large-scale biogeochemical cycling and climate. SHIMMER (Soil biogeocHemIcal Model for Microbial Ecosystem Response) is a new numerical model designed to simulate microbial community establishment and elemental cycling (C, N and P) during initial soil formation in exposed glacier forefields. It is also transferable to other extreme ecosystem types.
J. D. Wilson, A. Ridgwell, and S. Barker
Biogeosciences, 12, 5547–5562, https://doi.org/10.5194/bg-12-5547-2015, https://doi.org/10.5194/bg-12-5547-2015, 2015
Short summary
Short summary
We explore whether ocean model transport rates, in the form of a transport matrix, can be used to estimate remineralisation rates from dissolved nutrient concentrations and infer vertical fluxes of particulate organic carbon. Estimated remineralisation rates are significantly sensitive to uncertainty in the observations and the modelled circulation. The remineralisation of dissolved organic matter is an additional source of uncertainty when inferring vertical fluxes from remineralisation rates.
N. S. Jones, A. Ridgwell, and E. J. Hendy
Biogeosciences, 12, 1339–1356, https://doi.org/10.5194/bg-12-1339-2015, https://doi.org/10.5194/bg-12-1339-2015, 2015
Short summary
Short summary
Production of calcium carbonate by coral reefs is important in the global carbon cycle. Using a global framework we evaluate four models of reef calcification against observed values. The temperature-only model showed significant skill in reproducing coral calcification rates. The absence of any predictive power for whole reef systems highlights the importance of coral cover and the need for an ecosystem modelling approach accounting for population dynamics in terms of mortality and recruitment.
J. H. T. Williams, I. J. Totterdell, P. R. Halloran, and P. J. Valdes
Geosci. Model Dev., 7, 1419–1431, https://doi.org/10.5194/gmd-7-1419-2014, https://doi.org/10.5194/gmd-7-1419-2014, 2014
R. Death, J. L. Wadham, F. Monteiro, A. M. Le Brocq, M. Tranter, A. Ridgwell, S. Dutkiewicz, and R. Raiswell
Biogeosciences, 11, 2635–2643, https://doi.org/10.5194/bg-11-2635-2014, https://doi.org/10.5194/bg-11-2635-2014, 2014
R. F. Ivanovic, P. J. Valdes, R. Flecker, and M. Gutjahr
Clim. Past, 10, 607–622, https://doi.org/10.5194/cp-10-607-2014, https://doi.org/10.5194/cp-10-607-2014, 2014
G. Colbourn, A. Ridgwell, and T. M. Lenton
Geosci. Model Dev., 6, 1543–1573, https://doi.org/10.5194/gmd-6-1543-2013, https://doi.org/10.5194/gmd-6-1543-2013, 2013
P. J. Irvine, L. J. Gregoire, D. J. Lunt, and P. J. Valdes
Geosci. Model Dev., 6, 1447–1462, https://doi.org/10.5194/gmd-6-1447-2013, https://doi.org/10.5194/gmd-6-1447-2013, 2013
M. Eby, A. J. Weaver, K. Alexander, K. Zickfeld, A. Abe-Ouchi, A. A. Cimatoribus, E. Crespin, S. S. Drijfhout, N. R. Edwards, A. V. Eliseev, G. Feulner, T. Fichefet, C. E. Forest, H. Goosse, P. B. Holden, F. Joos, M. Kawamiya, D. Kicklighter, H. Kienert, K. Matsumoto, I. I. Mokhov, E. Monier, S. M. Olsen, J. O. P. Pedersen, M. Perrette, G. Philippon-Berthier, A. Ridgwell, A. Schlosser, T. Schneider von Deimling, G. Shaffer, R. S. Smith, R. Spahni, A. P. Sokolov, M. Steinacher, K. Tachiiri, K. Tokos, M. Yoshimori, N. Zeng, and F. Zhao
Clim. Past, 9, 1111–1140, https://doi.org/10.5194/cp-9-1111-2013, https://doi.org/10.5194/cp-9-1111-2013, 2013
P. B. Holden, N. R. Edwards, S. A. Müller, K. I. C. Oliver, R. M. Death, and A. Ridgwell
Biogeosciences, 10, 1815–1833, https://doi.org/10.5194/bg-10-1815-2013, https://doi.org/10.5194/bg-10-1815-2013, 2013
J. H. T. Williams, R. S. Smith, P. J. Valdes, B. B. B. Booth, and A. Osprey
Geosci. Model Dev., 6, 141–160, https://doi.org/10.5194/gmd-6-141-2013, https://doi.org/10.5194/gmd-6-141-2013, 2013
B. Ringeval, P. O. Hopcroft, P. J. Valdes, P. Ciais, G. Ramstein, A. J. Dolman, and M. Kageyama
Clim. Past, 9, 149–171, https://doi.org/10.5194/cp-9-149-2013, https://doi.org/10.5194/cp-9-149-2013, 2013
Related subject area
Subject: Climate Modelling | Archive: Modelling only | Timescale: Pleistocene
Contrasting the Penultimate Glacial Maximum and the Last Glacial Maximum (140 and 21 ka) using coupled climate–ice sheet modelling
Contrasting responses of summer precipitation to orbital forcing in Japan and China over the past 450 kyr
Stretched polar vortex increases mid-latitude climate variability during the Last Glacial Maximum
Investigating similarities and differences of the penultimate and last glacial terminations with a coupled ice sheet–climate model
Last Glacial Maximum climate and atmospheric circulation over the Australian region from climate models
Uncertainties originating from GCM downscaling and bias correction with application to the MIS-11c Greenland Ice Sheet
Surface mass balance and climate of the Last Glacial Maximum Northern Hemisphere ice sheets: simulations with CESM2.1
A transient coupled general circulation model (CGCM) simulation of the past 3 million years
Atmosphere–cryosphere interactions during the last phase of the Last Glacial Maximum (21 ka) in the European Alps
Summer surface air temperature proxies point to near-sea-ice-free conditions in the Arctic at 127 ka
On the importance of moisture conveyor belts from the tropical eastern Pacific for wetter conditions in the Atacama Desert during the mid-Pliocene
Modeled storm surge changes in a warmer world: the Last Interglacial
No changes in overall AMOC strength in interglacial PMIP4 time slices
The role of ice-sheet topography in the Alpine hydro-climate at glacial times
Simulating glacial dust changes in the Southern Hemisphere using ECHAM6.3-HAM2.3
Climate and ice sheet evolutions from the last glacial maximum to the pre-industrial period with an ice-sheet–climate coupled model
The role of land cover in the climate of glacial Europe
Simulated stability of the Atlantic Meridional Overturning Circulation during the Last Glacial Maximum
Large-scale features of Last Interglacial climate: results from evaluating the lig127k simulations for the Coupled Model Intercomparison Project (CMIP6)–Paleoclimate Modeling Intercomparison Project (PMIP4)
Evaluation of Arctic warming in mid-Pliocene climate simulations
Simulating Marine Isotope Stage 7 with a coupled climate–ice sheet model
Comparison of past and future simulations of ENSO in CMIP5/PMIP3 and CMIP6/PMIP4 models
An empirical evaluation of bias correction methods for palaeoclimate simulations
Hypersensitivity of glacial summer temperatures in Siberia
Distorted Pacific–North American teleconnection at the Last Glacial Maximum
Understanding the Australian Monsoon change during the Last Glacial Maximum with a multi-model ensemble
Effect of high dust amount on surface temperature during the Last Glacial Maximum: a modelling study using MIROC-ESM
The role of regional feedbacks in glacial inception on Baffin Island: the interaction of ice flow and meteorology
Intra-interglacial climate variability: model simulations of Marine Isotope Stages 1, 5, 11, 13, and 15
A GCM comparison of Pleistocene super-interglacial periods in relation to Lake El'gygytgyn, NE Arctic Russia
Global sensitivity analysis of the Indian monsoon during the Pleistocene
Interaction of ice sheets and climate during the past 800 000 years
Simulating last interglacial climate with NorESM: role of insolation and greenhouse gases in the timing of peak warmth
Impact of geomagnetic excursions on atmospheric chemistry and dynamics
Assessing the impact of Laurentide Ice Sheet topography on glacial climate
Interdependence of the growth of the Northern Hemisphere ice sheets during the last glaciation: the role of atmospheric circulation
Different ocean states and transient characteristics in Last Glacial Maximum simulations and implications for deglaciation
Why could ice ages be unpredictable?
Assessing the impact of late Pleistocene megafaunal extinctions on global vegetation and climate
The last interglacial (Eemian) climate simulated by LOVECLIM and CCSM3
LGM permafrost distribution: how well can the latest PMIP multi-model ensembles perform reconstruction?
Tropical vegetation response to Heinrich Event 1 as simulated with the UVic ESCM and CCSM3
Influence of Last Glacial Maximum boundary conditions on the global water isotope distribution in an atmospheric general circulation model
A new global reconstruction of temperature changes at the Last Glacial Maximum
Modelling snow accumulation on Greenland in Eemian, glacial inception, and modern climates in a GCM
Modelling large-scale ice-sheet–climate interactions following glacial inception
Sensitivity of the North Atlantic climate to Greenland Ice Sheet melting during the Last Interglacial
The impact of different glacial boundary conditions on atmospheric dynamics and precipitation in the North Atlantic region
Present and LGM permafrost from climate simulations: contribution of statistical downscaling
The key role of topography in altering North Atlantic atmospheric circulation during the last glacial period
Violet L. Patterson, Lauren J. Gregoire, Ruza F. Ivanovic, Niall Gandy, Jonathan Owen, Robin S. Smith, Oliver G. Pollard, Lachlan C. Astfalck, and Paul J. Valdes
Clim. Past, 20, 2191–2218, https://doi.org/10.5194/cp-20-2191-2024, https://doi.org/10.5194/cp-20-2191-2024, 2024
Short summary
Short summary
Simulations of the last two glacial periods are run using a computer model in which the atmosphere and ice sheets interact. The results show that the initial conditions used in the simulations are the primary reason for the difference in simulated North American ice sheet volume between each period. Thus, the climate leading up to the glacial maxima and other factors, such as vegetation, are important contributors to the differences in the ice sheets at the Last and Penultimate glacial maxima.
Taiga Matsushita, Mariko Harada, Hiroaki Ueda, Takeshi Nakagawa, Yoshimi Kubota, Yoshiaki Suzuki, and Youichi Kamae
Clim. Past, 20, 2017–2029, https://doi.org/10.5194/cp-20-2017-2024, https://doi.org/10.5194/cp-20-2017-2024, 2024
Short summary
Short summary
We present a climate simulation using version 2.3 of the Meteorological Research Institute's Coupled General Circulation Model (MRI-CGCM2.3) to examine the impact of insolation changes on East Asian summer monsoon variability over the past 450 kyr. We show that changes in summer insolation over East Asia led to distinct climatic responses in China and Japan, driven by altered atmospheric circulation due to the intensification of the North Pacific subtropical high and the North Pacific High.
Yurui Zhang, Hans Renssen, Heikki Seppä, Zhen Li, and Xingrui Li
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-46, https://doi.org/10.5194/cp-2024-46, 2024
Revised manuscript accepted for CP
Short summary
Short summary
The upper and lower atmosphere are interacted. The polar regions, with a high-speed and cyclonically rotating winds, provide a window that the upper air flow affects the mid-latitudes' weather which results in intra-seasonal climate variability. To explore their impacts on glacial-interglacial cycles, we analysed climate model results, and found that the stretched upper air flow increases glacial climate variability via more cold air outbreaks, highlighting their connections on multi-timescales.
Aurélien Quiquet and Didier M. Roche
Clim. Past, 20, 1365–1385, https://doi.org/10.5194/cp-20-1365-2024, https://doi.org/10.5194/cp-20-1365-2024, 2024
Short summary
Short summary
In this work, we use the same experimental protocol to simulate the last two glacial terminations with a coupled ice sheet–climate model. Major differences among the two terminations are that the ice sheets retreat earlier and the Atlantic oceanic circulation is more prone to collapse during the penultimate termination. However, for both terminations the pattern of ice retreat is similar, and this retreat is primarily explained by orbital forcing changes and greenhouse gas concentration changes.
Yanxuan Du, Josephine R. Brown, and J. M. Kale Sniderman
Clim. Past, 20, 393–413, https://doi.org/10.5194/cp-20-393-2024, https://doi.org/10.5194/cp-20-393-2024, 2024
Short summary
Short summary
This study provides insights into regional Australian climate variations (temperature, precipitation, wind, and atmospheric circulation) during the Last Glacial Maximum (21 000 kyr ago) and the interconnections between climate variables in different seasons from climate model simulations. Model results are evaluated and compared with available palaeoclimate proxy records. Results show model responses diverge widely in both the tropics and mid-latitudes in the Australian region.
Brian R. Crow, Lev Tarasov, Michael Schulz, and Matthias Prange
Clim. Past, 20, 281–296, https://doi.org/10.5194/cp-20-281-2024, https://doi.org/10.5194/cp-20-281-2024, 2024
Short summary
Short summary
An abnormally warm period around 400,000 years ago is thought to have resulted in a large melt event for the Greenland Ice Sheet. Using a sequence of climate model simulations connected to an ice model, we estimate a 50 % melt of Greenland compared to today. Importantly, we explore how the exact methodology of connecting the temperatures and precipitation from the climate model to the ice sheet model can influence these results and show that common methods could introduce errors.
Sarah L. Bradley, Raymond Sellevold, Michele Petrini, Miren Vizcaino, Sotiria Georgiou, Jiang Zhu, Bette L. Otto-Bliesner, and Marcus Lofverstrom
Clim. Past, 20, 211–235, https://doi.org/10.5194/cp-20-211-2024, https://doi.org/10.5194/cp-20-211-2024, 2024
Short summary
Short summary
The Last Glacial Maximum (LGM) was the most recent period with large ice sheets in Europe and North America. We provide a detailed analysis of surface mass and energy components for two time periods that bracket the LGM: 26 and 21 ka BP. We use an earth system model which has been adopted for modern ice sheets. We find that all Northern Hemisphere ice sheets have a positive surface mass balance apart from the British and Irish ice sheets and the North American ice sheet complex.
Kyung-Sook Yun, Axel Timmermann, Sun-Seon Lee, Matteo Willeit, Andrey Ganopolski, and Jyoti Jadhav
Clim. Past, 19, 1951–1974, https://doi.org/10.5194/cp-19-1951-2023, https://doi.org/10.5194/cp-19-1951-2023, 2023
Short summary
Short summary
To quantify the sensitivity of the earth system to orbital-scale forcings, we conducted an unprecedented quasi-continuous coupled general climate model simulation with the Community Earth System Model, which covers the climatic history of the past 3 million years. This study could stimulate future transient paleo-climate model simulations and perspectives to further highlight and document the effect of anthropogenic CO2 emissions in the broader paleo-climatic context.
Costanza Del Gobbo, Renato R. Colucci, Giovanni Monegato, Manja Žebre, and Filippo Giorgi
Clim. Past, 19, 1805–1823, https://doi.org/10.5194/cp-19-1805-2023, https://doi.org/10.5194/cp-19-1805-2023, 2023
Short summary
Short summary
We studied atmosphere–cryosphere interaction during the last phase of the Last Glacial Maximum in the Alpine region, using a high-resolution regional climate model. We analysed the climate south and north of the Alps, using a detailed map of the Alpine equilibrium line altitude (ELA) to study the mechanism that sustained the Alpine glaciers at 21 ka. The Genoa low and a mild Mediterranean Sea led to frequent snowfall in the southern Alps, thus preserving the glaciers and lowering the ELA.
Louise C. Sime, Rahul Sivankutty, Irene Vallet-Malmierca, Agatha M. de Boer, and Marie Sicard
Clim. Past, 19, 883–900, https://doi.org/10.5194/cp-19-883-2023, https://doi.org/10.5194/cp-19-883-2023, 2023
Short summary
Short summary
It is not known if the Last Interglacial (LIG) experienced Arctic summers that were sea ice free: models show a wide spread in LIG Arctic temperature and sea ice results. Evaluation against sea ice markers is hampered by few observations. Here, an assessment of 11 climate model simulations against summer temperatures shows that the most skilful models have a 74 %–79 % reduction in LIG sea ice. The measurements of LIG areas indicate a likely mix of ice-free and near-ice-free LIG summers.
Mark Reyers, Stephanie Fiedler, Patrick Ludwig, Christoph Böhm, Volker Wennrich, and Yaping Shao
Clim. Past, 19, 517–532, https://doi.org/10.5194/cp-19-517-2023, https://doi.org/10.5194/cp-19-517-2023, 2023
Short summary
Short summary
In this study we performed high-resolution climate model simulations for the hyper-arid Atacama Desert for the mid-Pliocene (3.2 Ma). The aim is to uncover the atmospheric processes that are involved in the enhancement of strong rainfall events during this period. We find that strong upper-level moisture fluxes (so-called moisture conveyor belts) originating in the tropical eastern Pacific are the main driver for increased rainfall in the mid-Pliocene.
Paolo Scussolini, Job Dullaart, Sanne Muis, Alessio Rovere, Pepijn Bakker, Dim Coumou, Hans Renssen, Philip J. Ward, and Jeroen C. J. H. Aerts
Clim. Past, 19, 141–157, https://doi.org/10.5194/cp-19-141-2023, https://doi.org/10.5194/cp-19-141-2023, 2023
Short summary
Short summary
We reconstruct sea level extremes due to storm surges in a past warmer climate. We employ a novel combination of paleoclimate modeling and global ocean hydrodynamic modeling. We find that during the Last Interglacial, about 127 000 years ago, seasonal sea level extremes were indeed significantly different – higher or lower – on long stretches of the global coast. These changes are associated with different patterns of atmospheric storminess linked with meridional shifts in wind bands.
Zhiyi Jiang, Chris Brierley, David Thornalley, and Sophie Sax
Clim. Past, 19, 107–121, https://doi.org/10.5194/cp-19-107-2023, https://doi.org/10.5194/cp-19-107-2023, 2023
Short summary
Short summary
This work looks at a series of model simulations of two past warm climates. We focus on the deep overturning circulation in the Atlantic Ocean. We show that there are no robust changes in the overall strength of the circulation. We also show that the circulation hardly plays a role in changes in the surface climate across the globe.
Patricio Velasquez, Martina Messmer, and Christoph C. Raible
Clim. Past, 18, 1579–1600, https://doi.org/10.5194/cp-18-1579-2022, https://doi.org/10.5194/cp-18-1579-2022, 2022
Short summary
Short summary
We investigate the sensitivity of the glacial Alpine hydro-climate to northern hemispheric and local ice-sheet changes. We perform sensitivity simulations of up to 2 km horizontal resolution over the Alps for glacial periods. The findings demonstrate that northern hemispheric and local ice-sheet topography are important role in regulating the Alpine hydro-climate and permits a better understanding of the Alpine precipitation patterns at glacial times.
Stephan Krätschmer, Michèlle van der Does, Frank Lamy, Gerrit Lohmann, Christoph Völker, and Martin Werner
Clim. Past, 18, 67–87, https://doi.org/10.5194/cp-18-67-2022, https://doi.org/10.5194/cp-18-67-2022, 2022
Short summary
Short summary
We use an atmospheric model coupled to an aerosol model to investigate the global mineral dust cycle with a focus on the Southern Hemisphere for warmer and colder climate states and compare our results to observational data. Our findings suggest that Australia is the predominant source of dust deposited over Antarctica during the last glacial maximum. In addition, we find that the southward transport of dust from all sources to Antarctica happens at lower altitudes in colder climates.
Aurélien Quiquet, Didier M. Roche, Christophe Dumas, Nathaëlle Bouttes, and Fanny Lhardy
Clim. Past, 17, 2179–2199, https://doi.org/10.5194/cp-17-2179-2021, https://doi.org/10.5194/cp-17-2179-2021, 2021
Short summary
Short summary
In this paper we discuss results obtained with a set of coupled ice-sheet–climate model experiments for the last 26 kyrs. The model displays a large sensitivity of the oceanic circulation to the amount of the freshwater flux resulting from ice sheet melting. Ice sheet geometry changes alone are not enough to lead to abrupt climate events, and rapid warming at high latitudes is here only reported during abrupt oceanic circulation recoveries that occurred when accounting for freshwater flux.
Patricio Velasquez, Jed O. Kaplan, Martina Messmer, Patrick Ludwig, and Christoph C. Raible
Clim. Past, 17, 1161–1180, https://doi.org/10.5194/cp-17-1161-2021, https://doi.org/10.5194/cp-17-1161-2021, 2021
Short summary
Short summary
This study assesses the importance of resolution and land–atmosphere feedbacks for European climate. We performed an asynchronously coupled experiment that combined a global climate model (~ 100 km), a regional climate model (18 km), and a dynamic vegetation model (18 km). Modelled climate and land cover agree reasonably well with independent reconstructions based on pollen and other paleoenvironmental proxies. The regional climate is significantly influenced by land cover.
Frerk Pöppelmeier, Jeemijn Scheen, Aurich Jeltsch-Thömmes, and Thomas F. Stocker
Clim. Past, 17, 615–632, https://doi.org/10.5194/cp-17-615-2021, https://doi.org/10.5194/cp-17-615-2021, 2021
Short summary
Short summary
The stability of the Atlantic Meridional Overturning Circulation (AMOC) critically depends on its mean state. We simulate the response of the AMOC to North Atlantic freshwater perturbations under different glacial boundary conditions. We find that a closed Bering Strait greatly increases the AMOC's sensitivity to freshwater hosing. Further, the shift from mono- to bistability strongly depends on the chosen boundary conditions, with weaker circulation states exhibiting more abrupt transitions.
Bette L. Otto-Bliesner, Esther C. Brady, Anni Zhao, Chris M. Brierley, Yarrow Axford, Emilie Capron, Aline Govin, Jeremy S. Hoffman, Elizabeth Isaacs, Masa Kageyama, Paolo Scussolini, Polychronis C. Tzedakis, Charles J. R. Williams, Eric Wolff, Ayako Abe-Ouchi, Pascale Braconnot, Silvana Ramos Buarque, Jian Cao, Anne de Vernal, Maria Vittoria Guarino, Chuncheng Guo, Allegra N. LeGrande, Gerrit Lohmann, Katrin J. Meissner, Laurie Menviel, Polina A. Morozova, Kerim H. Nisancioglu, Ryouta O'ishi, David Salas y Mélia, Xiaoxu Shi, Marie Sicard, Louise Sime, Christian Stepanek, Robert Tomas, Evgeny Volodin, Nicholas K. H. Yeung, Qiong Zhang, Zhongshi Zhang, and Weipeng Zheng
Clim. Past, 17, 63–94, https://doi.org/10.5194/cp-17-63-2021, https://doi.org/10.5194/cp-17-63-2021, 2021
Short summary
Short summary
The CMIP6–PMIP4 Tier 1 lig127k experiment was designed to address the climate responses to strong orbital forcing. We present a multi-model ensemble of 17 climate models, most of which have also completed the CMIP6 DECK experiments and are thus important for assessing future projections. The lig127ksimulations show strong summer warming over the NH continents. More than half of the models simulate a retreat of the Arctic minimum summer ice edge similar to the average for 2000–2018.
Wesley de Nooijer, Qiong Zhang, Qiang Li, Qiang Zhang, Xiangyu Li, Zhongshi Zhang, Chuncheng Guo, Kerim H. Nisancioglu, Alan M. Haywood, Julia C. Tindall, Stephen J. Hunter, Harry J. Dowsett, Christian Stepanek, Gerrit Lohmann, Bette L. Otto-Bliesner, Ran Feng, Linda E. Sohl, Mark A. Chandler, Ning Tan, Camille Contoux, Gilles Ramstein, Michiel L. J. Baatsen, Anna S. von der Heydt, Deepak Chandan, W. Richard Peltier, Ayako Abe-Ouchi, Wing-Le Chan, Youichi Kamae, and Chris M. Brierley
Clim. Past, 16, 2325–2341, https://doi.org/10.5194/cp-16-2325-2020, https://doi.org/10.5194/cp-16-2325-2020, 2020
Short summary
Short summary
The simulations for the past climate can inform us about the performance of climate models in different climate scenarios. Here, we analyse Arctic warming in an ensemble of 16 simulations of the mid-Pliocene Warm Period (mPWP), when the CO2 level was comparable to today. The results highlight the importance of slow feedbacks in the model simulations and imply that we must be careful when using simulations of the mPWP as an analogue for future climate change.
Dipayan Choudhury, Axel Timmermann, Fabian Schloesser, Malte Heinemann, and David Pollard
Clim. Past, 16, 2183–2201, https://doi.org/10.5194/cp-16-2183-2020, https://doi.org/10.5194/cp-16-2183-2020, 2020
Short summary
Short summary
Our study is the first study to conduct transient simulations over MIS 7, using a 3-D coupled climate–ice sheet model with interactive ice sheets in both hemispheres. We find glacial inceptions to be more sensitive to orbital variations, whereas glacial terminations need the concerted action of both orbital and CO2 forcings. We highlight the issue of multiple equilibria and an instability due to stationary-wave–topography feedback that can trigger unrealistic North American ice sheet growth.
Josephine R. Brown, Chris M. Brierley, Soon-Il An, Maria-Vittoria Guarino, Samantha Stevenson, Charles J. R. Williams, Qiong Zhang, Anni Zhao, Ayako Abe-Ouchi, Pascale Braconnot, Esther C. Brady, Deepak Chandan, Roberta D'Agostino, Chuncheng Guo, Allegra N. LeGrande, Gerrit Lohmann, Polina A. Morozova, Rumi Ohgaito, Ryouta O'ishi, Bette L. Otto-Bliesner, W. Richard Peltier, Xiaoxu Shi, Louise Sime, Evgeny M. Volodin, Zhongshi Zhang, and Weipeng Zheng
Clim. Past, 16, 1777–1805, https://doi.org/10.5194/cp-16-1777-2020, https://doi.org/10.5194/cp-16-1777-2020, 2020
Short summary
Short summary
El Niño–Southern Oscillation (ENSO) is the largest source of year-to-year variability in the current climate, but the response of ENSO to past or future changes in climate is uncertain. This study compares the strength and spatial pattern of ENSO in a set of climate model simulations in order to explore how ENSO changes in different climates, including past cold glacial climates and past climates with different seasonal cycles, as well as gradual and abrupt future warming cases.
Robert Beyer, Mario Krapp, and Andrea Manica
Clim. Past, 16, 1493–1508, https://doi.org/10.5194/cp-16-1493-2020, https://doi.org/10.5194/cp-16-1493-2020, 2020
Short summary
Short summary
Even the most sophisticated global climate models are known to have significant biases in the way they simulate the climate system. Correcting model biases is therefore essential for creating realistic reconstructions of past climate that can be used, for example, to study long-term ecological dynamics. Here, we evaluated three widely used bias correction methods by means of a global dataset of empirical temperature and precipitation records from the last 125 000 years.
Pepijn Bakker, Irina Rogozhina, Ute Merkel, and Matthias Prange
Clim. Past, 16, 371–386, https://doi.org/10.5194/cp-16-371-2020, https://doi.org/10.5194/cp-16-371-2020, 2020
Short summary
Short summary
Northeastern Siberia is currently known for its harsh cold climate, but remarkably it did not experience large-scale glaciation during the last ice age. We show that the region is also exceptional in climate models. As a result of subtle changes in model setup, climate models show a strong divergence in simulated glacial summer temperatures that is ultimately driven by changes in the circumpolar atmospheric stationary wave pattern and associated northward heat transport to northeastern Siberia.
Yongyun Hu, Yan Xia, Zhengyu Liu, Yuchen Wang, Zhengyao Lu, and Tao Wang
Clim. Past, 16, 199–209, https://doi.org/10.5194/cp-16-199-2020, https://doi.org/10.5194/cp-16-199-2020, 2020
Short summary
Short summary
The paper shows, using climate simulations, that the Pacific–North American (PNA) teleconnection was distorted or completely broken at the Last Glacial Maximum (LGM). The results suggest that ENSO would have little direct impact on North American climates at the LGM.
Mi Yan, Bin Wang, Jian Liu, Axing Zhu, Liang Ning, and Jian Cao
Clim. Past, 14, 2037–2052, https://doi.org/10.5194/cp-14-2037-2018, https://doi.org/10.5194/cp-14-2037-2018, 2018
Rumi Ohgaito, Ayako Abe-Ouchi, Ryouta O'ishi, Toshihiko Takemura, Akinori Ito, Tomohiro Hajima, Shingo Watanabe, and Michio Kawamiya
Clim. Past, 14, 1565–1581, https://doi.org/10.5194/cp-14-1565-2018, https://doi.org/10.5194/cp-14-1565-2018, 2018
Short summary
Short summary
The behaviour of dust in terms of climate can be investigated using past climate. The Last Glacial Maximum (LGM; 21000 years before present) is known to be dustier. We investigated the impact of plausible dust distribution on the climate of the LGM using an Earth system model and found that the higher dust load results in less cooling over the polar regions. The main finding is that radiative perturbation by the high dust loading does not necessarily cool the surface surrounding Antarctica.
Leah Birch, Timothy Cronin, and Eli Tziperman
Clim. Past, 14, 1441–1462, https://doi.org/10.5194/cp-14-1441-2018, https://doi.org/10.5194/cp-14-1441-2018, 2018
Short summary
Short summary
We investigate the regional dynamics at the beginning of the last ice age, using a nested configuration of the Weather Research and Forecasting (WRF) model with a simple ice flow model. We find that ice sheet height causes a negative feedback on continued ice growth by interacting with the atmospheric circulation, causing warming on Baffin Island, and inhibiting the initiation of the last ice age. We conclude that processes at larger scales are needed to overcome the regional warming effect.
Rima Rachmayani, Matthias Prange, and Michael Schulz
Clim. Past, 12, 677–695, https://doi.org/10.5194/cp-12-677-2016, https://doi.org/10.5194/cp-12-677-2016, 2016
Short summary
Short summary
A set of 13 interglacial time slice experiments was carried out using a CCSM3-DGVM to study global climate variability between and within the Quaternary interglaciations of MIS 1, 5, 11, 13, and 15. Seasonal surface temperature anomalies can be explained by local insolation anomalies induced by the astronomical forcing in most regions and by GHG forcing at high latitudes and early Bruhnes interglacials. However, climate feedbacks may modify the surface temperature response in specific regions.
A. J. Coletti, R. M. DeConto, J. Brigham-Grette, and M. Melles
Clim. Past, 11, 979–989, https://doi.org/10.5194/cp-11-979-2015, https://doi.org/10.5194/cp-11-979-2015, 2015
Short summary
Short summary
Evidence from Pleistocene sediments suggest that the Arctic's climate went through multiple sudden transitions, warming by 2-4 °C (compared to preindustrial times), and stayed warm for hundreds to thousands of years. A climate modelling study of these events suggests that the Arctic's climate and landscape drastically changed, transforming a cold and barren landscape as we know today to a warm, lush, evergreen and boreal forest landscape only seen in the modern midlatitudes.
P. A. Araya-Melo, M. Crucifix, and N. Bounceur
Clim. Past, 11, 45–61, https://doi.org/10.5194/cp-11-45-2015, https://doi.org/10.5194/cp-11-45-2015, 2015
Short summary
Short summary
By using a statistical tool termed emulator, we study the sensitivity of the Indian monsoon during the the Pleistocene. The originality of the present work is to consider, as inputs, several elements of the climate forcing that have varied in the past, and then use the emulator as a method to quantify the link between forcing variability and climate variability. The methodology described here may naturally be applied to other regions of interest.
L. B. Stap, R. S. W. van de Wal, B. de Boer, R. Bintanja, and L. J. Lourens
Clim. Past, 10, 2135–2152, https://doi.org/10.5194/cp-10-2135-2014, https://doi.org/10.5194/cp-10-2135-2014, 2014
P.M. Langebroek and K. H. Nisancioglu
Clim. Past, 10, 1305–1318, https://doi.org/10.5194/cp-10-1305-2014, https://doi.org/10.5194/cp-10-1305-2014, 2014
I. Suter, R. Zech, J. G. Anet, and T. Peter
Clim. Past, 10, 1183–1194, https://doi.org/10.5194/cp-10-1183-2014, https://doi.org/10.5194/cp-10-1183-2014, 2014
D. J. Ullman, A. N. LeGrande, A. E. Carlson, F. S. Anslow, and J. M. Licciardi
Clim. Past, 10, 487–507, https://doi.org/10.5194/cp-10-487-2014, https://doi.org/10.5194/cp-10-487-2014, 2014
P. Beghin, S. Charbit, C. Dumas, M. Kageyama, D. M. Roche, and C. Ritz
Clim. Past, 10, 345–358, https://doi.org/10.5194/cp-10-345-2014, https://doi.org/10.5194/cp-10-345-2014, 2014
X. Zhang, G. Lohmann, G. Knorr, and X. Xu
Clim. Past, 9, 2319–2333, https://doi.org/10.5194/cp-9-2319-2013, https://doi.org/10.5194/cp-9-2319-2013, 2013
M. Crucifix
Clim. Past, 9, 2253–2267, https://doi.org/10.5194/cp-9-2253-2013, https://doi.org/10.5194/cp-9-2253-2013, 2013
M.-O. Brault, L. A. Mysak, H. D. Matthews, and C. T. Simmons
Clim. Past, 9, 1761–1771, https://doi.org/10.5194/cp-9-1761-2013, https://doi.org/10.5194/cp-9-1761-2013, 2013
I. Nikolova, Q. Yin, A. Berger, U. K. Singh, and M. P. Karami
Clim. Past, 9, 1789–1806, https://doi.org/10.5194/cp-9-1789-2013, https://doi.org/10.5194/cp-9-1789-2013, 2013
K. Saito, T. Sueyoshi, S. Marchenko, V. Romanovsky, B. Otto-Bliesner, J. Walsh, N. Bigelow, A. Hendricks, and K. Yoshikawa
Clim. Past, 9, 1697–1714, https://doi.org/10.5194/cp-9-1697-2013, https://doi.org/10.5194/cp-9-1697-2013, 2013
D. Handiani, A. Paul, M. Prange, U. Merkel, L. Dupont, and X. Zhang
Clim. Past, 9, 1683–1696, https://doi.org/10.5194/cp-9-1683-2013, https://doi.org/10.5194/cp-9-1683-2013, 2013
T. Tharammal, A. Paul, U. Merkel, and D. Noone
Clim. Past, 9, 789–809, https://doi.org/10.5194/cp-9-789-2013, https://doi.org/10.5194/cp-9-789-2013, 2013
J. D. Annan and J. C. Hargreaves
Clim. Past, 9, 367–376, https://doi.org/10.5194/cp-9-367-2013, https://doi.org/10.5194/cp-9-367-2013, 2013
H. J. Punge, H. Gallée, M. Kageyama, and G. Krinner
Clim. Past, 8, 1801–1819, https://doi.org/10.5194/cp-8-1801-2012, https://doi.org/10.5194/cp-8-1801-2012, 2012
J. M. Gregory, O. J. H. Browne, A. J. Payne, J. K. Ridley, and I. C. Rutt
Clim. Past, 8, 1565–1580, https://doi.org/10.5194/cp-8-1565-2012, https://doi.org/10.5194/cp-8-1565-2012, 2012
P. Bakker, C. J. Van Meerbeeck, and H. Renssen
Clim. Past, 8, 995–1009, https://doi.org/10.5194/cp-8-995-2012, https://doi.org/10.5194/cp-8-995-2012, 2012
D. Hofer, C. C. Raible, A. Dehnert, and J. Kuhlemann
Clim. Past, 8, 935–949, https://doi.org/10.5194/cp-8-935-2012, https://doi.org/10.5194/cp-8-935-2012, 2012
G. Levavasseur, M. Vrac, D. M. Roche, D. Paillard, A. Martin, and J. Vandenberghe
Clim. Past, 7, 1225–1246, https://doi.org/10.5194/cp-7-1225-2011, https://doi.org/10.5194/cp-7-1225-2011, 2011
F. S. R. Pausata, C. Li, J. J. Wettstein, M. Kageyama, and K. H. Nisancioglu
Clim. Past, 7, 1089–1101, https://doi.org/10.5194/cp-7-1089-2011, https://doi.org/10.5194/cp-7-1089-2011, 2011
Cited articles
Adams, J. and Faure, H.: A new estimate of changing carbon storage on land since the last glacial maximum, based on global land ecosystem reconstruction, Global Planet. Change, 16–17, 3–24, https://doi.org/10.1016/S0921-8181(98)00003-4, 1998.
Anhuf, D., Ledru, M.-P., Behling Jr., H. F. D. C., Cordeiro, R., der Hammen, T. V., Karmann, I., Marengo, J., Oliveira, P. D., Pessenda, L., Siffedine, A., Albuquerque, A., and Dias, P. D. S.: Paleo-environmental change in Amazonian and African rainforest during the LGM, Palaeogeography, Palaeoclimatology, Palaeoecology, 239, 510–527, https://doi.org/10.1016/j.palaeo.2006.01.017, 2006.
Betts, R. A.: Offset of the potential carbon sink from boreal forestation by decreases in surface albedo, Nature, 408, 187–190, https://doi.org/10.1038/35041545, 2000.
Bigelow, N. H., Brubaker, L. B., Edwards, M. E., Harrison, S. P., Prentice, I. C., Anderson, P. M., Andreev, A. A., Bartlein, P. J., Christensen, T. R., Cramer, W., Kaplan, J. O., Lozhkin, A. V., Matveyeva, N. V., Murray, D. F., McGuire, A. D., Razzhivin, V. Y., Ritchie, J. C., Smith, B., Walker, D. A., Gajewski, K., Wolf, V., Holmqvist, B. H., Igarashi, Y., Kremenetskii, K., Paus, A., Pisaric, M. F. J., and Volkova, V. S.: Climate change and Arctic ecosystems: 1. Vegetation changes north of 55° N between the last glacial maximum, mid-Holocene, and present, J. Geophys. Res.-Atmos., 108, 8170, https://doi.org/10.1029/2002JD002558, 2003.
Bird, M. I., Lloyd, J., and Farquhar, G. D.: Terrestrial carbon storage at the LGM, Nature, 371, 566–566, https://doi.org/10.1038/371566a0, 1994.
Bonan, G. B.: Forests and Climate Change: Forcings, Feedbacks, and the Climate Benefits of Forests, Science, 320, 1444–1449, https://doi.org/10.1126/science.1155121, 2008.
Bradshaw, C. D., Lunt, D. J., Flecker, R., and Davies-Barnard, T.: Disentangling the roles of late Miocene palaeogeography and vegetation Implications for climate sensitivity, Palaeogeogr. Palaeocl., 417, 17–34, https://doi.org/10.1016/j.palaeo.2014.10.003, 2015.
Brovkin, V., Ganopolski, A., Archer, D., and Munhoven, G.: Glacial CO2 cycle as a succession of key physical and biogeochemical processes, Clim. Past, 8, 251–264, https://doi.org/10.5194/cp-8-251-2012, 2012.
Brovkin, V., Boysen, L., Arora, V. K., Boisier, J. P., Cadule, P., Chini, L., Claussen, M., Friedlingstein, P., Gayler, V., van den Hurk, B. J. J. M., Hurtt, G. C., Jones, C. D., Kato, E., de Noblet-Ducoudré, N., Pacifico, F., Pongratz, J., and Weiss, M.: Effect of Anthropogenic Land-Use and Land-Cover Changes on Climate and Land Carbon Storage in CMIP5 Projections for the Twenty-First Century, J. Climate, 26, 6859–6881, https://doi.org/10.1175/JCLI-D-12-00623.1, 2013a.
Brovkin, V., Boysen, L., Raddatz, T., Gayler, V., Loew, A., and Claussen, M.: Evaluation of vegetation cover and land-surface albedo in MPI-ESM CMIP5 simulations, J. Adv. Model. Earth Syst., 5, 48–57, https://doi.org/10.1029/2012MS000169, 2013b.
Ciais, P., Tagliabue, A., Cuntz, M., Bopp, L., Scholze, M., Hoffmann, G., Lourantou, A., Harrison, S. P., Prentice, I. C., Kelley, D. I., Koven, C., and Piao, S. L.: Large inert carbon pool in the terrestrial biosphere during the Last Glacial Maximum, Nature Geosci., 5, 74–79, https://doi.org/10.1038/ngeo1324, 2012.
Claussen, M.: Late Quaternary vegetation-climate feedbacks, Clim. Past, 5, 203–216, https://doi.org/10.5194/cp-5-203-2009, 2009..
Claussen, M., Fohlmeister, J., Ganopolski, A., and Brovkin, V.: Vegetation dynamics amplifies precessional forcing, Geophys. Res. Lett., 33, L09709, https://doi.org/10.1029/2006GL026111, 2006.
Colbourn, G., Ridgwell, A., and Lenton, T. M.: The Rock Geochemical Model (RokGeM) v0.9, Geosci. Model Dev., 6, 1543–1573, https://doi.org/10.5194/gmd-6-1543-2013, 2013.
Collins, M., Tett, S. F. B., and Cooper, C.: The internal climate variability of HadCM3, a version of the Hadley Centre coupled model without flux adjustments, Clim. Dynam., 17, 61–81, https://doi.org/10.1007/s003820000094, 2001.
Cowling, S. A., Maslin, M. A., and Sykes, M. T.: Paleovegetation Simulations of Lowland Amazonia and Implications for Neotropical Allopatry and Speciation, Quaternary Res., 55, 140–149, https://doi.org/10.1006/qres.2000.2197, 2001.
Cox, P. M.: Description of the TRIFFID dynamic global vegetation model, available at: http://jules.jchmr.org/sites/jules.jchmr.org/files/HCTN_24.pdf (last access: 20 October 2017), 2001.
Cox, P., Huntingford, C., and Harding, R.: A canopy conductance and photosynthesis model for use in a GCM land surface scheme, J. Hydrol., 212–213, 79–94, https://doi.org/10.1016/S0022-1694(98)00203-0, 1998.
Cox, P. M., Betts, R. A., Bunton, C. B., Essery, R. L. H., Rowntree, P. R., and Smith, J.: The impact of new land surface physics on the GCM simulation of climate and climate sensitivity, Clim. Dynam., 15, 183–203, https://doi.org/10.1007/s003820050276, 1999.
Crowley, T. J.: Ice Age terrestrial carbon changes revisited, Global Biogeochem. Cy., 9, 377–389, https://doi.org/10.1029/95GB01107, 1995.
Crucifix, M. and Loutre, F. M.: Transient simulations over the last interglacial period (1260–115 kyr BP): feedback and forcing analysis, Clim. Dynam., 19, 417–433, https://doi.org/10.1007/s00382-002-0234-z, 2002.
Davies-Barnard, T., Valdes, P. J., Singarayer, J. S., and Jones, C. D.: Climatic impacts of land-use change due to crop yield increases and a universal carbon tax from a scenario model, J. Climate, 27, 1413–1424, https://doi.org/10.1175/JCLI-D-13-00154.1, 2014a.
Davies-Barnard, T., Valdes, P. J., Singarayer, J. S., Pacifico, F. M., and Jones, C. D.: Full effects of land use change in the representative concentration pathways, Environ. Res. Lett., 9, 114014, https://doi.org/10.1088/1748-9326/9/11/114014, 2014b.
Davies-Barnard, T., Valdes, P. J., Singarayer, J. S., Wiltshire, A. J., and Jones, C. D.: Quantifying the relative importance of land cover change from climate and land use in the representative concentration pathways, Global Biogeochem. Cy., 2014GB004949, https://doi.org/10.1002/2014GB004949, 2015.
Davin, E. L. and de Noblet-Ducoudré, N.: Climatic Impact of Global-Scale Deforestation: Radiative versus Nonradiative Processes, J. Climate, 23, 97–112, https://doi.org/10.1175/2009JCLI3102.1, 2010.
de Noblet, N. I., Prentice, I. C., Joussaume, S., Texier, D., Botta, A., and Haxeltine, A.: Possible role of atmosphere-biosphere interactions in triggering the Last Glaciation, Geophys. Res. Lett., 23, 3191–3194, https://doi.org/10.1029/96GL03004, 1996.
Edwards, N. R. and Marsh, R.: Uncertainties due to transport-parameter sensitivity in an efficient 3-D ocean-climate model, Clim. Dynam., 24, 415–433, https://doi.org/10.1007/s00382-004-0508-8, 2005.
Essery, R., Best, M., and Cox, P.: MOSES 2.2 technical documentation, available at: http://biodav.atmos.colostate.edu/kraus/Papers/Biosphere% 20Models/HCTN_30.pdf, 2001.
Gallimore, R. G. and Kutzbach, J. E.: Role of orbitally induced changes in tundra area in the onset of glaciation, Nature, 381, 503–505, https://doi.org/10.1038/381503a0, 1996.
Ganopolski, A., Calov, R., and Claussen, M.: Simulation of the last glacial cycle with a coupled climate ice-sheet model of intermediate complexity, Clim. Past, 6, 229–244, https://doi.org/10.5194/cp-6-229-2010, 2010.
Gasse, F.: Hydrological changes in the African tropics since the Last Glacial Maximum, Quaternary Sci. Rev., 19, 189–211, https://doi.org/10.1016/S0277-3791(99)00061-X, 2000.
Gedney, N. and Valdes, P. J.: The effect of Amazonian deforestation on the northern hemisphere circulation and climate, Geophys. Res. Lett., 27, 3053–3056, https://doi.org/10.1029/2000GL011794, 2000.
Gillett, N. P., Arora, V. K., Matthews, D., and Allen, M. R.: Constraining the ratio of global warming to cumulative CO2 emissions using CMIP5 simulations, J. Climate, 130314153438000, https://doi.org/10.1175/JCLI-D-12-00476.1, 2013.
Goodwin, P., Williams, R. G., and Ridgwell, A.: Sensitivity of climate to cumulative carbon emissions due to compensation of ocean heat and carbon uptake, Nature Geosci., 8, 29–34, https://doi.org/10.1038/ngeo2304, 2015.
Gregory, D., Smith, R. N. B., and Cox, P. M.: CANOPY, SURFACE AND SOIL HYDROLOGY, http://precis.metoffice.com/UM_Docs/025.pdf, 1994.
Harrison, S. P. and Prentice, C. I.: Climate and CO2 controls on global vegetation distribution at the last glacial maximum: analysis based on palaeovegetation data, biome modelling and palaeoclimate simulations, Global Change Biol., 9, 983–1004, https://doi.org/10.1046/j.1365-2486.2003.00640.x, 2003.
Harrison, S. P., Yu, G., Takahara, H., and Prentice, I. C.: Palaeovegetation (Communications arising): Diversity of temperate plants in east Asia, Nature, 413, 129–130, https://doi.org/10.1038/35093166, 2001.
Hoogakker, B. A. A., Smith, R. S., Singarayer, J. S., Marchant, R., Prentice, I. C., Allen, J. R. M., Anderson, R. S., Bhagwat, S. A., Behling, H., Borisova, O., Bush, M., Correa-Metrio, A., de Vernal, A., Finch, J. M., Fréchette, B., Lozano-Garcia, S., Gosling, W. D., Granoszewski, W., Grimm, E. C., Grüger, E., Hanselman, J., Harrison, S. P., Hill, T. R., Huntley, B., Jiménez-Moreno, G., Kershaw, P., Ledru, M.-P., Magri, D., McKenzie, M., Müller, U., Nakagawa, T., Novenko, E., Penny, D., Sadori, L., Scott, L., Stevenson, J., Valdes, P. J., Vandergoes, M., Velichko, A., Whitlock, C., and Tzedakis, C.: Terrestrial biosphere changes over the last 120 kyr, Clim. Past, 12, 51–73, https://doi.org/10.5194/cp-12-51-2016, 2016.
Hopcroft, P. O. and Valdes, P. J.: Last glacial maximum constraints on the Earth System model HadGEM2-ES, Clim. Dynam., 45, 1657–1672, https://doi.org/10.1007/s00382-014-2421-0, 2014.
Hugelius, G., Strauss, J., Zubrzycki, S., Harden, J. W., Schuur, E. A. G., Ping, C.-L., Schirrmeister, L., Grosse, G., Michaelson, G. J., Koven, C. D., O'Donnell, J. A., Elberling, B., Mishra, U., Camill, P., Yu, Z., Palmtag, J., and Kuhry, P.: Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps, Biogeosciences, 11, 6573–6593, https://doi.org/10.5194/bg-11-6573-2014, 2014.
Jahn, A., Claussen, M., Ganopolski, A., and Brovkin, V.: Quantifying the effect of vegetation dynamics on the climate of the Last Glacial Maximum, Clim. Past, 1, 1–7, https://doi.org/10.5194/cp-1-1-2005, 2005.
Kageyama, M., Braconnot, P., Bopp, L., Caubel, A., Foujols, M.-A., Guilyardi, E., Khodri, M., Lloyd, J., Lombard, F., Mariotti, V., Marti, O., Roy, T., and Woillez, M.-N.: Mid-Holocene and Last Glacial Maximum climate simulations with the IPSL model-part I: comparing IPSL_CM5A to IPSL_CM4, Clim. Dynam., 40, 2447–2468, https://doi.org/10.1007/s00382-012-1488-8, 2012.
Kaplan, J. O.: Wetlands at the Last Glacial Maximum: Distribution and methane emissions, Geophys. Res. Lett., 29, 3-1–3-4, https://doi.org/10.1029/2001GL013366, 2002.
Kaplan, J. O., Prentice, I. C., Knorr, W., and Valdes, P. J.: Modeling the dynamics of terrestrial carbon storage since the Last Glacial Maximum, Geophys. Res. Lett., 29, 2074, https://doi.org/10.1029/2002GL015230, 2002.
Kohfeld, K. E. and Ridgwell, A.: Glacial-Interglacial Variability in Atmospheric CO2, in: Surface Ocean Lower Atmosphere Processes, edited by: Quéré, C. L. and Saltzman, E. S., pp. 251–286, American Geophysical Union, http://onlinelibrary.wiley.com/doi/10.1029/2008GM000845/summary, 2009.
Köhler, P. and Fischer, H.: Simulating changes in the terrestrial biosphere during the last glacial/interglacial transition, Global Planet. Change, 43, 33–55, https://doi.org/10.1016/j.gloplacha.2004.02.005, 2004.
Köhler, P., Knorr, G., and Bard, E.: Permafrost thawing as a possible source of abrupt carbon release at the onset of the Bolling/Allerod, Nature Comm., 5, 5520, https://doi.org/10.1038/ncomms6520, 2014.
Lawson, E. C., Wadham, J. L., Tranter, M., Stibal, M., Lis, G. P., Butler, C. E. H., Laybourn-Parry, J., Nienow, P., Chandler, D., and Dewsbury, P.: Greenland Ice Sheet exports labile organic carbon to the Arctic oceans, Biogeosciences, 11, 4015–4028, https://doi.org/10.5194/bg-11-4015-2014, 2014.
Lord, N. S., Ridgwell, A., Thorne, M. C., and Lunt, D. J.: An impulse response function for the long tail of excess atmospheric CO2 in an Earth system model, Global Biogeochem. Cy., 30, 2–17, https://doi.org/10.1002/2014GB005074, 2016.
Martin Calvo, M. and Prentice, I. C.: Effects of fire and CO2 on biogeography and primary production in glacial and modern climates, New Phytol., 208, 987–994, https://doi.org/10.1111/nph.13485, 2015.
Maslin, M. A., Ettwein, V. J., Boot, C. S., Bendle, J., and Pancost, R. D.: Amazon Fan biomarker evidence against the Pleistocene rainforest refuge hypothesis?, J. Quaternary Sci., 27, 451–460, https://doi.org/10.1002/jqs.1567, 2012.
Matthews, H. D., Weaver, A. J., Eby, M., and Meissner, K. J.: Radiative forcing of climate by historical land cover change, Geophys. Res. Lett., 30, 1055, https://doi.org/10.1029/2002GL016098, 2003.
Matthews, H. D., Gillett, N. P., Stott, P. A., and Zickfeld, K.: The proportionality of global warming to cumulative carbon emissions, Nature, 459, 829–832, https://doi.org/10.1038/nature08047, 2009.
Menviel, L., Yu, J., Joos, F., Mouchet, A., Meissner, K. J., and England, M. H.: Poorly ventilated deep ocean at the Last Glacial Maximum inferred from carbon isotopes: A data-model comparison study, Paleoceanography, 32, 2–17, https://doi.org/10.1002/2016PA003024, 2017.
Montenegro, A., Eby, M., Kaplan, J. O., Meissner, K. J., and Weaver, A. J.: Carbon storage on exposed continental shelves during the glacial-interglacial transition, Geophys. Res. Lett., 33, l08703, https://doi.org/10.1029/2005GL025480, 2006.
Niessen, F., Hong, J. K., Hegewald, A., Matthiessen, J., Stein, R., Kim, H., Kim, S., Jensen, L., Jokat, W., Nam, S.-I., and Kang, S.-H.: Repeated Pleistocene glaciation of the East Siberian continental margin, Nature Geosci., 6, 842–846, https://doi.org/10.1038/ngeo1904, 2013.
O'ishi, R. and Abe-Ouchi, A.: Influence of dynamic vegetation on climate change and terrestrial carbon storage in the Last Glacial Maximum, Clim. Past, 9, 1571–1587, https://doi.org/10.5194/cp-9-1571-2013, 2013.
Pickett, E. J., Harrison, S. P., Hope, G., Harle, K., Dodson, J. R., Peter Kershaw, A., Colin Prentice, I., Backhouse, J., Colhoun, E. A., D'Costa, D., Flenley, J., Grindrod, J., Haberle, S., Hassell, C., Kenyon, C., Macphail, M., Martin, H., Martin, A. H., McKenzie, M., Newsome, J. C., Penny, D., Powell, J., Ian Raine, J., Southern, W., Stevenson, J., Sutra, J.-P., Thomas, I., van der Kaars, S., and Ward, J.: Pollen-based reconstructions of biome distributions for Australia, Southeast Asia and the Pacific (SEAPAC region) at 0, 6000 and 18,000 14C yr BP, J. Biogeogr., 31, 1381–1444, https://doi.org/10.1111/j.1365-2699.2004.01001.x, 2004.
Pongratz, J., Reick, C. H., Raddatz, T., and Claussen, M.: Biogeophysical versus biogeochemical climate response to historical anthropogenic land cover change, Geophys. Res. Lett., 37, L08702, https://doi.org/10.1029/2010GL043010, 2010.
Pope, V. D., Gallani, M. L., Rowntree, P. R., and Stratton, R. A.: The impact of new physical parametrizations in the Hadley Centre climate model: HadAM3, Clim. Dynam., 16, 123–146, https://doi.org/10.1007/s003820050009, 2000.
Prentice, I. C. and Jolly, D.: Mid-Holocene and glacial-maximum vegetation geography of the northern continents and Africa, J. Biogeogr., 27, 507–519, https://doi.org/10.1046/j.1365-2699.2000.00425.x, 2000.
Prentice, I. C., Sykes, M., Lautenschlager, M., Harrison, S., Denissenko, O., and Bartlein, P.: Modelling Global Vegetation Patterns and Terrestrial Carbon Storage at the Last Glacial Maximum, Global Ecol. Biogeogr., 3, 67–76, http://www.jstor.org/stable/2997548, 1993.
Prentice, I. C., Harrison, S. P., and Bartlein, P. J.: Global vegetation and terrestrial carbon cycle changes after the last ice age, New Phytol., 189, 988–998, https://doi.org/10.1111/j.1469-8137.2010.03620.x, 2011.
Ridgwell, A. and Hargreaves, J. C.: Regulation of atmospheric CO2 by deep-sea sediments in an Earth system model, Global Biogeochem. Cy., 21, gB2008, https://doi.org/10.1029/2006GB002764, 2007.
Ridgwell, A., Hargreaves, J. C., Edwards, N. R., Annan, J. D., Lenton, T. M., Marsh, R., Yool, A., and Watson, A.: Marine geochemical data assimilation in an efficient Earth System Model of global biogeochemical cycling, Biogeosciences, 4, 87–104, https://doi.org/10.5194/bg-4-87-2007, 2007.
Ridgwell, A., Maslin, M., and Kaplan, J. O.: Flooding of the continental shelves as a contributor to deglacial CH4 rise, J. Quaternary Sci., 27, 800–806, https://doi.org/10.1002/jqs.2568, 2012.
Saito, K., Sueyoshi, T., Marchenko, S., Romanovsky, V., Otto-Bliesner, B., Walsh, J., Bigelow, N., Hendricks, A., and Yoshikawa, K.: LGM permafrost distribution: how well can the latest PMIP multi-model ensembles perform reconstruction?, Clim. Past, 9, 1697–1714, https://doi.org/10.5194/cp-9-1697-2013, 2013.
Shackleton, N. J., Lamb, H. H., Worssam, B. C., Hodgson, J. M., Lord, A. R., Shotton, F. W., Schove, D. J., and Cooper, L. H. N.: The Oxygen Isotope Stratigraphic Record of the Late Pleistocene [and Discussion], Philos. T. Roy. Soc. B, 280, 169–182, https://doi.org/10.1098/rstb.1977.0104, 1977.
Shellito, C. J. and Sloan, L. C.: Reconstructing a lost Eocene Paradise, Part II: On the utility of dynamic global vegetation models in pre-Quaternary climate studies, Global Planet. Change, 50, 18–32, https://doi.org/10.1016/j.gloplacha.2005.08.002, 2006.
Singarayer, J. S. and Valdes, P. J.: High-latitude climate sensitivity to ice-sheet forcing over the last 120 kyr, Quaternary Sci. Rev., 29, 43–55, https://doi.org/10.1016/j.quascirev.2009.10.011, 2010.
Singarayer, J. S., Ridgwell, A., and Irvine, P.: Assessing the benefits of crop albedo bio-geoengineering, Environ. Res. Lett., 4, 045110, http://stacks.iop.org/1748-9326/4/i=4/a=045110, 2009.
Singarayer, J. S., Valdes, P. J., Friedlingstein, P., Nelson, S., and Beerling, D. J.: Late Holocene methane rise caused by orbitally controlled increase in tropical sources, Nature, 470, 723–757, https://doi.org/10.1038/nature09739, 2011.
Valdes, P. J., Armstrong, E., Badger, M. P. S., Bradshaw, C. D., Bragg, F., Crucifix, M., Davies-Barnard, T., Day, J. J., Farnsworth, A., Gordon, C., Hopcroft, P. O., Kennedy, A. T., Lord, N. S., Lunt, D. J., Marzocchi, A., Parry, L. M., Pope, V., Roberts, W. H. G., Stone, E. J., Tourte, G. J. L., and Williams, J. H. T.: The BRIDGE HadCM3 family of climate models: HadCM3@Bristol v1.0, Geosci. Model Dev., 10, 3715–3743, https://doi.org/10.5194/gmd-10-3715-2017, 2017.
Wadham, J. L., Arndt, S., Tulaczyk, S., Stibal, M., Tranter, M., Telling, J., Lis, G. P., Lawson, E., Ridgwell, A., Dubnick, A., Sharp, M. J., Anesio, A. M., and Butler, C. E. H.: Potential methane reservoirs beneath Antarctica, Nature, 488, 633–637, https://doi.org/10.1038/nature11374, 2012.
Wang, X., Edwards, R. L., Auler, A. S., Cheng, H., Kong, X., Wang, Y., Cruz, F. W., Dorale, J. A., and Chiang, H.-W.: Hydroclimate changes across the Amazon lowlands over the past 45,000 years, Nature, 541, 204–207, https://doi.org/10.1038/nature20787, 2017.
Zeebe, R. E., Wolf-Gladrow, D., and Jansen, H.: On the time required to establish chemical and isotopic equilibrium in the carbon dioxide system in seawater, Marine Chem., 65, 135–153, https://doi.org/10.1016/S0304-4203(98)00092-9, 1999.
Zeng, N.: Glacial-interglacial atmospheric CO2 change - The glacial burial hypothesis, Adv. Atmos. Sci., 20, 677–693, https://doi.org/10.1007/BF02915395, 2003.
Zhou, J., Poulsen, C. J., Rosenbloom, N., Shields, C., and Briegleb, B.: Vegetation-climate interactions in the warm mid-Cretaceous, Clim. Past, 8, 565–576, https://doi.org/10.5194/cp-8-565-2012, 2012.
Zimov, N. S., Zimov, S. A., Zimova, A. E., Zimova, G. M., Chuprynin, V. I., and Chapin, F. S.: Carbon storage in permafrost and soils of the mammoth tundra-steppe biome: Role in the global carbon budget, Geophys. Res. Lett., 36, L02502, https://doi.org/10.1029/2008GL036332, 2009.
Zimov, S. A., Schuur, E. A. G., and Chapin, F. S.: Permafrost and the Global Carbon Budget, Science, 312, 1612–1613, https://doi.org/10.1126/science.1128908, 2006.
Short summary
We present the first model analysis using a fully coupled dynamic atmosphere–ocean–vegetation GCM over the last 120 kyr that quantifies the net effect of vegetation on climate. This analysis shows that over the whole period the biogeophysical effect (albedo, evapotranspiration) is dominant, and that the biogeochemical impacts may have a lower possible range than typically estimated. This emphasises the temporal reliance of the balance between biogeophysical and biogeochemical effects.
We present the first model analysis using a fully coupled dynamic atmosphere–ocean–vegetation...