Articles | Volume 12, issue 4
Clim. Past, 12, 1009–1027, 2016
https://doi.org/10.5194/cp-12-1009-2016
Clim. Past, 12, 1009–1027, 2016
https://doi.org/10.5194/cp-12-1009-2016
Research article
 | Highlight paper
15 Apr 2016
Research article  | Highlight paper | 15 Apr 2016

The link between marine sediment records and changes in Holocene Saharan landscape: simulating the dust cycle

Sabine Egerer et al.

Related authors

Rapid increase in simulated North Atlantic dust deposition due to fast change of northwest African landscape during the Holocene
Sabine Egerer, Martin Claussen, and Christian Reick
Clim. Past, 14, 1051–1066, https://doi.org/10.5194/cp-14-1051-2018,https://doi.org/10.5194/cp-14-1051-2018, 2018
Short summary

Related subject area

Subject: Climate Modelling | Archive: Modelling only | Timescale: Holocene
Influence of long-term changes in solar irradiance forcing on the Southern Annular Mode
Nicky M. Wright, Claire E. Krause, Steven J. Phipps, Ghyslaine Boschat, and Nerilie J. Abram
Clim. Past, 18, 1509–1528, https://doi.org/10.5194/cp-18-1509-2022,https://doi.org/10.5194/cp-18-1509-2022, 2022
Short summary
Simulated range of mid-Holocene precipitation changes from extended lakes and wetlands over North Africa
Nora Farina Specht, Martin Claussen, and Thomas Kleinen
Clim. Past, 18, 1035–1046, https://doi.org/10.5194/cp-18-1035-2022,https://doi.org/10.5194/cp-18-1035-2022, 2022
Short summary
Calendar effects on surface air temperature and precipitation based on model-ensemble equilibrium and transient simulations from PMIP4 and PACMEDY
Xiaoxu Shi, Martin Werner, Carolin Krug, Chris M. Brierley, Anni Zhao, Endurance Igbinosa, Pascale Braconnot, Esther Brady, Jian Cao, Roberta D'Agostino, Johann Jungclaus, Xingxing Liu, Bette Otto-Bliesner, Dmitry Sidorenko, Robert Tomas, Evgeny M. Volodin, Hu Yang, Qiong Zhang, Weipeng Zheng, and Gerrit Lohmann
Clim. Past, 18, 1047–1070, https://doi.org/10.5194/cp-18-1047-2022,https://doi.org/10.5194/cp-18-1047-2022, 2022
Short summary
The long-standing dilemma of European summer temperatures at the mid-Holocene and other considerations on learning from the past for the future using a regional climate model
Emmanuele Russo, Bijan Fallah, Patrick Ludwig, Melanie Karremann, and Christoph C. Raible
Clim. Past, 18, 895–909, https://doi.org/10.5194/cp-18-895-2022,https://doi.org/10.5194/cp-18-895-2022, 2022
Short summary
Mid-Holocene monsoons in South and Southeast Asia: dynamically downscaled simulations and the influence of the Green Sahara
Yiling Huo, William Richard Peltier, and Deepak Chandan
Clim. Past, 17, 1645–1664, https://doi.org/10.5194/cp-17-1645-2021,https://doi.org/10.5194/cp-17-1645-2021, 2021
Short summary

Cited articles

Adkins, J., deMenocal, P., and Eshel, G.: The “African Humid Period” and the Record of Marine Upwelling from Excess 230Th in ODP Hole 658C, Paleoceanography, 21, PA4203, https://doi.org/10.1029/2005PA001200, 2006.
Armitage, S. J., Bristow, C. S., and Drake, N. A.: West African monsoon dynamics inferred from abrupt fluctuations of Lake Mega-Chad, P. Natl. Acad. Sci., 112, 8543–8548, https://doi.org/10.1073/pnas.1417655112, 2015.
Bartlein, P.: Pollen-based continental climate reconstructions at 6 and 21 ka: a global synthesis, Clim. Dynam., 37, 775–802, https://doi.org/10.1007/s00382-010-0904-1, 2011.
Berger, A.: Long-term variations of daily insolation and quaternary climatic changes, J. Atmos. Sci., 35, 2362–2367, 1978.
Download
Short summary
We demonstrate for the first time the direct link between dust accumulation in marine sediment cores and Saharan land surface by simulating the mid-Holocene and pre-industrial dust cycle as a function of Saharan land surface cover and atmosphere-ocean conditions using the coupled atmosphere-aerosol model ECHAM6-HAM2.1. Mid-Holocene surface characteristics, including vegetation cover and lake surface area, are derived from proxy data and simulations.