Articles | Volume 9, issue 4
https://doi.org/10.5194/cp-9-1683-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Special issue:
https://doi.org/10.5194/cp-9-1683-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Tropical vegetation response to Heinrich Event 1 as simulated with the UVic ESCM and CCSM3
D. Handiani
Department of Geosciences, University of Bremen, Bremen, Germany
now at: Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokohama, Japan
Department of Geosciences, University of Bremen, Bremen, Germany
MARUM – Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
M. Prange
Department of Geosciences, University of Bremen, Bremen, Germany
MARUM – Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
U. Merkel
Department of Geosciences, University of Bremen, Bremen, Germany
MARUM – Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
L. Dupont
MARUM – Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
X. Zhang
Department of Geosciences, University of Bremen, Bremen, Germany
Related authors
No articles found.
Andrés Castillo-Llarena, Franco Retamal-Ramírez, Jorge Bernales, Martín Jacques-Coper, Matthias Prange, and Irina Rogozhina
Clim. Past, 20, 1559–1577, https://doi.org/10.5194/cp-20-1559-2024, https://doi.org/10.5194/cp-20-1559-2024, 2024
Short summary
Short summary
During the last glacial period, the Patagonian Ice Sheet grew along the southern Andes, leaving marks on the landscape showing its former extents and timing. We use paleoclimate and ice sheet models to replicate its glacial history. We find that errors in the model-based ice sheet are likely induced by imprecise reconstructions of air temperature due to poorly resolved Andean topography in global climate models, while a fitting regional climate history is only captured by local sediment records.
Nils Weitzel, Heather Andres, Jean-Philippe Baudouin, Marie-Luise Kapsch, Uwe Mikolajewicz, Lukas Jonkers, Oliver Bothe, Elisa Ziegler, Thomas Kleinen, André Paul, and Kira Rehfeld
Clim. Past, 20, 865–890, https://doi.org/10.5194/cp-20-865-2024, https://doi.org/10.5194/cp-20-865-2024, 2024
Short summary
Short summary
The ability of climate models to faithfully reproduce past warming episodes is a valuable test considering potentially large future warming. We develop a new method to compare simulations of the last deglaciation with temperature reconstructions. We find that reconstructions differ more between regions than simulations, potentially due to deficiencies in the simulation design, models, or reconstructions. Our work is a promising step towards benchmarking simulations of past climate transitions.
Brian R. Crow, Lev Tarasov, Michael Schulz, and Matthias Prange
Clim. Past, 20, 281–296, https://doi.org/10.5194/cp-20-281-2024, https://doi.org/10.5194/cp-20-281-2024, 2024
Short summary
Short summary
An abnormally warm period around 400,000 years ago is thought to have resulted in a large melt event for the Greenland Ice Sheet. Using a sequence of climate model simulations connected to an ice model, we estimate a 50 % melt of Greenland compared to today. Importantly, we explore how the exact methodology of connecting the temperatures and precipitation from the climate model to the ice sheet model can influence these results and show that common methods could introduce errors.
Alexandre Cauquoin, Ayako Abe-Ouchi, Takashi Obase, Wing-Le Chan, André Paul, and Martin Werner
Clim. Past, 19, 1275–1294, https://doi.org/10.5194/cp-19-1275-2023, https://doi.org/10.5194/cp-19-1275-2023, 2023
Short summary
Short summary
Stable water isotopes are tracers of climate processes occurring in the hydrological cycle. They are widely used to reconstruct the past variations of polar temperature before the instrumental era thanks to their measurements in ice cores. However, the relationship between measured isotopes and temperature has large uncertainties. In our study, we investigate how the sea surface conditions (temperature, sea ice, ocean circulation) impact this relationship for a cold to warm climate change.
Takasumi Kurahashi-Nakamura, André Paul, Ute Merkel, and Michael Schulz
Clim. Past, 18, 1997–2019, https://doi.org/10.5194/cp-18-1997-2022, https://doi.org/10.5194/cp-18-1997-2022, 2022
Short summary
Short summary
With a comprehensive Earth-system model including the global carbon cycle, we simulated the climate state during the last glacial maximum. We demonstrated that the CO2 concentration in the atmosphere both in the modern (pre-industrial) age (~280 ppm) and in the glacial age (~190 ppm) can be reproduced by the model with a common configuration by giving reasonable model forcing and total ocean inventories of carbon and other biogeochemical matter for the respective ages.
Kaveh Purkiani, Matthias Haeckel, Sabine Haalboom, Katja Schmidt, Peter Urban, Iason-Zois Gazis, Henko de Stigter, André Paul, Maren Walter, and Annemiek Vink
Ocean Sci., 18, 1163–1181, https://doi.org/10.5194/os-18-1163-2022, https://doi.org/10.5194/os-18-1163-2022, 2022
Short summary
Short summary
Based on altimetry data and in situ hydrographic observations, the impacts of an anticyclone mesoscale eddy (large rotating body of water) on the seawater characteristics were investigated during a research campaign. The particular eddy presents significant anomalies on the seawater properties at 1500 m. The potential role of eddies in the seafloor and its consequential effect on the altered dispersion of mining-related sediment plumes are important to assess future mining operations.
Stefan Mulitza, Torsten Bickert, Helen C. Bostock, Cristiano M. Chiessi, Barbara Donner, Aline Govin, Naomi Harada, Enqing Huang, Heather Johnstone, Henning Kuhnert, Michael Langner, Frank Lamy, Lester Lembke-Jene, Lorraine Lisiecki, Jean Lynch-Stieglitz, Lars Max, Mahyar Mohtadi, Gesine Mollenhauer, Juan Muglia, Dirk Nürnberg, André Paul, Carsten Rühlemann, Janne Repschläger, Rajeev Saraswat, Andreas Schmittner, Elisabeth L. Sikes, Robert F. Spielhagen, and Ralf Tiedemann
Earth Syst. Sci. Data, 14, 2553–2611, https://doi.org/10.5194/essd-14-2553-2022, https://doi.org/10.5194/essd-14-2553-2022, 2022
Short summary
Short summary
Stable isotope ratios of foraminiferal shells from deep-sea sediments preserve key information on the variability of ocean circulation and ice volume. We present the first global atlas of harmonized raw downcore oxygen and carbon isotope ratios of various planktonic and benthic foraminiferal species. The atlas is a foundation for the analyses of the history of Earth system components, for finding future coring sites, and for teaching marine stratigraphy and paleoceanography.
Brian R. Crow, Matthias Prange, and Michael Schulz
Clim. Past, 18, 775–792, https://doi.org/10.5194/cp-18-775-2022, https://doi.org/10.5194/cp-18-775-2022, 2022
Short summary
Short summary
To better understand the climate conditions which lead to extensive melting of the Greenland ice sheet, we used climate models to reconstruct the climate conditions of the warmest period of the last 800 000 years, which was centered around 410 000 years ago. Surprisingly, we found that atmospheric circulation changes may have acted to reduce the melt of the ice sheet rather than enhance it, despite the extensive warmth of the time.
Lydie M. Dupont, Xueqin Zhao, Christopher Charles, John Tyler Faith, and David Braun
Clim. Past, 18, 1–21, https://doi.org/10.5194/cp-18-1-2022, https://doi.org/10.5194/cp-18-1-2022, 2022
Short summary
Short summary
We studied the vegetation and climate of southwestern South Africa for the period of the past 300000 years. Vegetation and climate development in this region are interesting because the vegetation of the Western Cape is a global biodiversity hotspot and because the archeology of the region substantially contributed to the understanding of the origins of modern humans. We found that the influence of precession variability on the vegetation and climate of southwestern South Africa is strong.
Masa Kageyama, Sandy P. Harrison, Marie-L. Kapsch, Marcus Lofverstrom, Juan M. Lora, Uwe Mikolajewicz, Sam Sherriff-Tadano, Tristan Vadsaria, Ayako Abe-Ouchi, Nathaelle Bouttes, Deepak Chandan, Lauren J. Gregoire, Ruza F. Ivanovic, Kenji Izumi, Allegra N. LeGrande, Fanny Lhardy, Gerrit Lohmann, Polina A. Morozova, Rumi Ohgaito, André Paul, W. Richard Peltier, Christopher J. Poulsen, Aurélien Quiquet, Didier M. Roche, Xiaoxu Shi, Jessica E. Tierney, Paul J. Valdes, Evgeny Volodin, and Jiang Zhu
Clim. Past, 17, 1065–1089, https://doi.org/10.5194/cp-17-1065-2021, https://doi.org/10.5194/cp-17-1065-2021, 2021
Short summary
Short summary
The Last Glacial Maximum (LGM; ~21 000 years ago) is a major focus for evaluating how well climate models simulate climate changes as large as those expected in the future. Here, we compare the latest climate model (CMIP6-PMIP4) to the previous one (CMIP5-PMIP3) and to reconstructions. Large-scale climate features (e.g. land–sea contrast, polar amplification) are well captured by all models, while regional changes (e.g. winter extratropical cooling, precipitations) are still poorly represented.
André Paul, Stefan Mulitza, Rüdiger Stein, and Martin Werner
Clim. Past, 17, 805–824, https://doi.org/10.5194/cp-17-805-2021, https://doi.org/10.5194/cp-17-805-2021, 2021
Short summary
Short summary
Maps and fields of near-sea-surface temperature differences between the past and present can be used to visualize and quantify climate changes and perform simulations with climate models. We used a statistical method to map sparse and scattered data for the Last Glacial Maximum time period (23 000 to 19 000 years before present) to a regular grid. The estimated global and tropical cooling would imply an equilibrium climate sensitivity in the lower to middle part of the currently accepted range.
Martim Mas e Braga, Jorge Bernales, Matthias Prange, Arjen P. Stroeven, and Irina Rogozhina
The Cryosphere, 15, 459–478, https://doi.org/10.5194/tc-15-459-2021, https://doi.org/10.5194/tc-15-459-2021, 2021
Short summary
Short summary
We combine a computer model with different climate records to simulate how Antarctica responded to warming during marine isotope substage 11c, which can help understand Antarctica's natural drivers of change. We found that the regional climate warming of Antarctica seen in ice cores was necessary for the model to match the recorded sea level rise. A collapse of its western ice sheet is possible if a modest warming is sustained for ca. 4000 years, contributing 6.7 to 8.2 m to sea level rise.
Kaveh Purkiani, André Paul, Annemiek Vink, Maren Walter, Michael Schulz, and Matthias Haeckel
Biogeosciences, 17, 6527–6544, https://doi.org/10.5194/bg-17-6527-2020, https://doi.org/10.5194/bg-17-6527-2020, 2020
Short summary
Short summary
There has been a steady increase in interest in mining of deep-sea minerals in the eastern Pacific Ocean recently. The ocean state in this region is known to be highly influenced by rotating bodies of water (eddies), some of which can travel long distances in the ocean and impact the deeper layers of the ocean. Better insight into the variability of eddy activity in this region is of great help to mitigate the impact of the benthic ecosystem from future potential deep-sea mining activity.
Takasumi Kurahashi-Nakamura, André Paul, Guy Munhoven, Ute Merkel, and Michael Schulz
Geosci. Model Dev., 13, 825–840, https://doi.org/10.5194/gmd-13-825-2020, https://doi.org/10.5194/gmd-13-825-2020, 2020
Short summary
Short summary
Chemical processes in ocean-floor sediments have a large influence on the marine carbon cycle, hence the global climate, at long timescales. We developed a new coupling scheme for a chemical sediment model and a comprehensive climate model. The new coupled model outperformed the original uncoupled climate model in reproducing the global distribution of sediment properties. The sediment model will also act as a
bridgebetween the ocean model and paleoceanographic data.
Pepijn Bakker, Irina Rogozhina, Ute Merkel, and Matthias Prange
Clim. Past, 16, 371–386, https://doi.org/10.5194/cp-16-371-2020, https://doi.org/10.5194/cp-16-371-2020, 2020
Short summary
Short summary
Northeastern Siberia is currently known for its harsh cold climate, but remarkably it did not experience large-scale glaciation during the last ice age. We show that the region is also exceptional in climate models. As a result of subtle changes in model setup, climate models show a strong divergence in simulated glacial summer temperatures that is ultimately driven by changes in the circumpolar atmospheric stationary wave pattern and associated northward heat transport to northeastern Siberia.
Gerlinde Jung and Matthias Prange
Clim. Past, 16, 161–181, https://doi.org/10.5194/cp-16-161-2020, https://doi.org/10.5194/cp-16-161-2020, 2020
Short summary
Short summary
All major mountain ranges were uplifted during Earth's history. Previous work showed that African uplift might have influenced upper-ocean cooling in the Benguela region. But the surface ocean cooled also in other upwelling regions during the last 10 million years. We performed a set of model experiments altering topography in major mountain regions to explore the effects on atmosphere and ocean. The simulations show that mountain uplift is important for upper-ocean temperature evolution.
Lydie M. Dupont, Thibaut Caley, and Isla S. Castañeda
Clim. Past, 15, 1083–1097, https://doi.org/10.5194/cp-15-1083-2019, https://doi.org/10.5194/cp-15-1083-2019, 2019
Short summary
Short summary
Multiproxy study of marine sediments off the Limpopo River mouth spanning the Late Pleistocene reveals the impact of atmospheric carbon dioxide on the development of the vegetation of southeast Africa and indicates changes in the interglacial vegetation before and after the Mid-Brunhes Event (430 ka).
Charlotte Breitkreuz, André Paul, and Michael Schulz
Clim. Past Discuss., https://doi.org/10.5194/cp-2019-52, https://doi.org/10.5194/cp-2019-52, 2019
Publication in CP not foreseen
Short summary
Short summary
We combined a model simulation of the Last Glacial Maximum ocean with sea surface temperature and calcite oxygen isotope data through data assimilation. The reconstructed ocean state is very similar to the modern and it follows that the employed proxy data do not require an ocean state very different from today's. Sensitivity experiments reveal that data from the deep North Atlantic but also from the global deep Southern Ocean are most important to constrain the Atlantic overturning circulation.
Charlotte Breitkreuz, André Paul, Stefan Mulitza, Javier García-Pintado, and Michael Schulz
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-32, https://doi.org/10.5194/gmd-2019-32, 2019
Publication in GMD not foreseen
Short summary
Short summary
We present a technique for ocean state estimation based on the combination of a simple data assimilation method with a state reduction approach. The technique proves to be very efficient and successful in reducing the model-data misfit and reconstructing a target ocean circulation from synthetic observations. In an application to Last Glacial Maximum proxy data the model-data misfit is greatly reduced but some misfit remains. Two different ocean states are found with similar model-data misfit.
Javier García-Pintado and André Paul
Geosci. Model Dev., 11, 5051–5084, https://doi.org/10.5194/gmd-11-5051-2018, https://doi.org/10.5194/gmd-11-5051-2018, 2018
Short summary
Short summary
Earth system models (ESMs) integrate interactions of atmosphere, ocean, land, ice, and biosphere to estimate the state of regional and global climate under a variety of conditions. Past climate field reconstructions with deterministic ESMs through the assimilation of climate proxies need to consider the required high computations and model non-linearity. Our tests indicate that iterative schemes based on the Kalman filter and careful sensitivity analysis are adequate for approaching the problem.
Friederike Grimmer, Lydie Dupont, Frank Lamy, Gerlinde Jung, Catalina González, and Gerold Wefer
Clim. Past, 14, 1739–1754, https://doi.org/10.5194/cp-14-1739-2018, https://doi.org/10.5194/cp-14-1739-2018, 2018
Short summary
Short summary
We present the first marine pollen record of the early Pliocene from western equatorial South America. Our reconstruction of the vegetation aims to provide insights into hydrological changes related to tectonic events (Central American Seaway closure, uplift of the Northern Andes). We find stable humid conditions, suggesting a southern location of the Intertropical Convergence Zone. The presence of high montane vegetation indicates an early uplift of the Western Cordillera of the northern Andes.
Axel Wagner, Gerrit Lohmann, and Matthias Prange
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-172, https://doi.org/10.5194/gmd-2018-172, 2018
Publication in GMD not foreseen
Short summary
Short summary
This study demonstrates the dependence of simulated surface air temperatures on variations in grid resolution and resolution-dependent orography in simulations of the Mid-Holocene. A set of Mid-Holocene sensitivity experiments is carried out. The simulated Mid-Holocene temperature differences (low versus high resolution) reveal a response that regionally exceeds the Mid-Holocene to preindustrial modelled temperature anomalies, and show partly reversed signs across the same geographical regions.
Andrea Klus, Matthias Prange, Vidya Varma, Louis Bruno Tremblay, and Michael Schulz
Clim. Past, 14, 1165–1178, https://doi.org/10.5194/cp-14-1165-2018, https://doi.org/10.5194/cp-14-1165-2018, 2018
Short summary
Short summary
Numerous proxy records from the northern North Atlantic suggest substantial climate variability including the occurrence of multi-decadal-to-centennial cold events during the Holocene. We analyzed two abrupt cold events in a Holocene simulation using a comprehensive climate model. It is shown that the events were ultimately triggered by prolonged phases of positive North Atlantic Oscillation causing changes in ocean circulation followed by severe cooling, freshening, and expansion of sea ice.
Amanda Frigola, Matthias Prange, and Michael Schulz
Geosci. Model Dev., 11, 1607–1626, https://doi.org/10.5194/gmd-11-1607-2018, https://doi.org/10.5194/gmd-11-1607-2018, 2018
Short summary
Short summary
The application of climate models to study the Middle Miocene Climate Transition, characterized by major Antarctic ice-sheet expansion and global cooling at the interval 15–13 million years ago, is currently hampered by the lack of boundary conditions. To fill this gap, we compiled two internally consistent sets of boundary conditions, including global topography, bathymetry, vegetation and ice volume, for the periods before and after the transition.
Rony R. Kuechler, Lydie M. Dupont, and Enno Schefuß
Clim. Past, 14, 73–84, https://doi.org/10.5194/cp-14-73-2018, https://doi.org/10.5194/cp-14-73-2018, 2018
Short summary
Short summary
Measuring deuterium and stable carbon isotopes of higher plant wax extracted from marine sediments offshore of Mauritania, we recovered a record of hydrology and vegetation change in West Africa for two Pliocene intervals: 5.0–4.6 and 3.6–3.0 Ma. We find that changes in local summer insolation cannot fully explain the variations in the West African monsoon and that latitudinal insolation and temperature gradients are important drivers of tropical monsoon systems.
Catarina V. Guerreiro, Karl-Heinz Baumann, Geert-Jan A. Brummer, Gerhard Fischer, Laura F. Korte, Ute Merkel, Carolina Sá, Henko de Stigter, and Jan-Berend W. Stuut
Biogeosciences, 14, 4577–4599, https://doi.org/10.5194/bg-14-4577-2017, https://doi.org/10.5194/bg-14-4577-2017, 2017
Short summary
Short summary
Our study provides insights into the factors governing the spatio-temporal variability of coccolithophores in the equatorial North Atlantic and illustrates how this supposedly oligotrophic and stable open-ocean region actually reveals significant ecological variability. We provide evidence for Saharan dust and the Amazon River acting as fertilizers for phytoplankton and highlight the the importance of the thermocline depth for coccolithophore productivity in the lower photic zone.
María Fernanda Sánchez Goñi, Stéphanie Desprat, Anne-Laure Daniau, Frank C. Bassinot, Josué M. Polanco-Martínez, Sandy P. Harrison, Judy R. M. Allen, R. Scott Anderson, Hermann Behling, Raymonde Bonnefille, Francesc Burjachs, José S. Carrión, Rachid Cheddadi, James S. Clark, Nathalie Combourieu-Nebout, Colin. J. Courtney Mustaphi, Georg H. Debusk, Lydie M. Dupont, Jemma M. Finch, William J. Fletcher, Marco Giardini, Catalina González, William D. Gosling, Laurie D. Grigg, Eric C. Grimm, Ryoma Hayashi, Karin Helmens, Linda E. Heusser, Trevor Hill, Geoffrey Hope, Brian Huntley, Yaeko Igarashi, Tomohisa Irino, Bonnie Jacobs, Gonzalo Jiménez-Moreno, Sayuri Kawai, A. Peter Kershaw, Fujio Kumon, Ian T. Lawson, Marie-Pierre Ledru, Anne-Marie Lézine, Ping Mei Liew, Donatella Magri, Robert Marchant, Vasiliki Margari, Francis E. Mayle, G. Merna McKenzie, Patrick Moss, Stefanie Müller, Ulrich C. Müller, Filipa Naughton, Rewi M. Newnham, Tadamichi Oba, Ramón Pérez-Obiol, Roberta Pini, Cesare Ravazzi, Katy H. Roucoux, Stephen M. Rucina, Louis Scott, Hikaru Takahara, Polichronis C. Tzedakis, Dunia H. Urrego, Bas van Geel, B. Guido Valencia, Marcus J. Vandergoes, Annie Vincens, Cathy L. Whitlock, Debra A. Willard, and Masanobu Yamamoto
Earth Syst. Sci. Data, 9, 679–695, https://doi.org/10.5194/essd-9-679-2017, https://doi.org/10.5194/essd-9-679-2017, 2017
Short summary
Short summary
The ACER (Abrupt Climate Changes and Environmental Responses) global database includes 93 pollen records from the last glacial period (73–15 ka) plotted against a common chronology; 32 also provide charcoal records. The database allows for the reconstruction of the regional expression, vegetation and fire of past abrupt climate changes that are comparable to those expected in the 21st century. This work is a major contribution to understanding the processes behind rapid climate change.
Rike Völpel, André Paul, Annegret Krandick, Stefan Mulitza, and Michael Schulz
Geosci. Model Dev., 10, 3125–3144, https://doi.org/10.5194/gmd-10-3125-2017, https://doi.org/10.5194/gmd-10-3125-2017, 2017
Short summary
Short summary
This study presents the implementation of stable water isotopes in the MITgcm and describes the results of an equilibrium simulation under pre-industrial conditions. The model compares well to observational data and measurements of plankton tow records and thus opens wide prospects for long-term simulations in a paleoclimatic context.
Vidya Varma, Matthias Prange, and Michael Schulz
Geosci. Model Dev., 9, 3859–3873, https://doi.org/10.5194/gmd-9-3859-2016, https://doi.org/10.5194/gmd-9-3859-2016, 2016
Short summary
Short summary
We compare the results from simulations of the present and the last interglacial, with and without acceleration of the orbital forcing, using a comprehensive coupled climate model. In low latitudes, the simulation of long-term variations in interglacial surface climate is not significantly affected by the use of the acceleration technique and hence model–data comparison of surface variables is therefore not hampered but major repercussions of the orbital forcing are obvious below thermocline.
Gerhard Fischer, Oscar Romero, Ute Merkel, Barbara Donner, Morten Iversen, Nico Nowald, Volker Ratmeyer, Götz Ruhland, Marco Klann, and Gerold Wefer
Biogeosciences, 13, 3071–3090, https://doi.org/10.5194/bg-13-3071-2016, https://doi.org/10.5194/bg-13-3071-2016, 2016
Short summary
Short summary
The studies were initiated to investigate potential changes in the important coastal upwelling system off NW Africa and to evaluate the role of mineral dust for carbon sequestration into the deep ocean. For this purpose, we deployed time series sediment traps in the deep water column off Cape Blanc, Mauritania. A more than two-decadal sediment trap record from this coastal upwelling system is now presented with respect to deep ocean mass fluxes, flux components and their longer term variability.
Rima Rachmayani, Matthias Prange, and Michael Schulz
Clim. Past, 12, 677–695, https://doi.org/10.5194/cp-12-677-2016, https://doi.org/10.5194/cp-12-677-2016, 2016
Short summary
Short summary
A set of 13 interglacial time slice experiments was carried out using a CCSM3-DGVM to study global climate variability between and within the Quaternary interglaciations of MIS 1, 5, 11, 13, and 15. Seasonal surface temperature anomalies can be explained by local insolation anomalies induced by the astronomical forcing in most regions and by GHG forcing at high latitudes and early Bruhnes interglacials. However, climate feedbacks may modify the surface temperature response in specific regions.
C. M. Chiessi, S. Mulitza, G. Mollenhauer, J. B. Silva, J. Groeneveld, and M. Prange
Clim. Past, 11, 915–929, https://doi.org/10.5194/cp-11-915-2015, https://doi.org/10.5194/cp-11-915-2015, 2015
Short summary
Short summary
Here we show that temperatures in the western South Atlantic increased markedly during the major slowdown event of the Atlantic meridional overturning circulation (AMOC) of the last deglaciation. Over the adjacent continent, however, temperatures followed the rise in atmospheric carbon dioxide, lagging changes in oceanic temperature. Our records corroborate the notion that the long duration of the major slowdown event of the AMOC was fundamental in driving the Earth out of the last glacial.
S. Hoetzel, L. M. Dupont, F. Marret, G. Jung, and G. Wefer
Clim. Past Discuss., https://doi.org/10.5194/cpd-11-1913-2015, https://doi.org/10.5194/cpd-11-1913-2015, 2015
Preprint withdrawn
I. Bouimetarhan, L. Dupont, H. Kuhlmann, J. Pätzold, M. Prange, E. Schefuß, and K. Zonneveld
Clim. Past, 11, 751–764, https://doi.org/10.5194/cp-11-751-2015, https://doi.org/10.5194/cp-11-751-2015, 2015
Short summary
Short summary
This study has great paleoclimatic and paleoecological significance, as it deals with the poorly documented tropical SE African ecosystem during the last deglaciation. Changes in the Rufiji upland vegetation evidenced the response of the regional hydrologic system to high-latitude climatic fluctuations associated with ITCZ shifts, while changes in sensitive tropical salt marshes and mangrove communities in the Rufiji lowland evidenced the impact of sea level changes on the intertidal ecosystem.
R. Rachmayani, M. Prange, and M. Schulz
Clim. Past, 11, 175–185, https://doi.org/10.5194/cp-11-175-2015, https://doi.org/10.5194/cp-11-175-2015, 2015
Short summary
Short summary
The role of vegetation-precipitation feedbacks in modifying the North African rainfall response to enhanced early to mid-Holocene summer insolation is analysed using the climate-vegetation model CCSM3-DGVM. Dynamic vegetation amplifies the positive early to mid-Holocene summer precipitation anomaly by ca. 20% in the Sahara-Sahel region. The primary vegetation feedback operates through surface latent heat flux anomalies by canopy evapotranspiration and their effect on the African easterly jet.
T. Kurahashi-Nakamura, M. Losch, and A. Paul
Geosci. Model Dev., 7, 419–432, https://doi.org/10.5194/gmd-7-419-2014, https://doi.org/10.5194/gmd-7-419-2014, 2014
N. Merz, C. C. Raible, H. Fischer, V. Varma, M. Prange, and T. F. Stocker
Clim. Past, 9, 2433–2450, https://doi.org/10.5194/cp-9-2433-2013, https://doi.org/10.5194/cp-9-2433-2013, 2013
Y. Milker, R. Rachmayani, M. F. G. Weinkauf, M. Prange, M. Raitzsch, M. Schulz, and M. Kučera
Clim. Past, 9, 2231–2252, https://doi.org/10.5194/cp-9-2231-2013, https://doi.org/10.5194/cp-9-2231-2013, 2013
M. Kageyama, U. Merkel, B. Otto-Bliesner, M. Prange, A. Abe-Ouchi, G. Lohmann, R. Ohgaito, D. M. Roche, J. Singarayer, D. Swingedouw, and X Zhang
Clim. Past, 9, 935–953, https://doi.org/10.5194/cp-9-935-2013, https://doi.org/10.5194/cp-9-935-2013, 2013
J. C. Hargreaves, J. D. Annan, R. Ohgaito, A. Paul, and A. Abe-Ouchi
Clim. Past, 9, 811–823, https://doi.org/10.5194/cp-9-811-2013, https://doi.org/10.5194/cp-9-811-2013, 2013
Related subject area
Subject: Climate Modelling | Archive: Modelling only | Timescale: Pleistocene
Contrasting the Penultimate Glacial Maximum and the Last Glacial Maximum (140 and 21 ka) using coupled climate–ice sheet modelling
Contrasting responses of summer precipitation to orbital forcing in Japan and China over the past 450 kyr
Investigating similarities and differences of the penultimate and last glacial terminations with a coupled ice sheet–climate model
Last Glacial Maximum climate and atmospheric circulation over the Australian region from climate models
Uncertainties originating from GCM downscaling and bias correction with application to the MIS-11c Greenland Ice Sheet
Surface mass balance and climate of the Last Glacial Maximum Northern Hemisphere ice sheets: simulations with CESM2.1
A transient coupled general circulation model (CGCM) simulation of the past 3 million years
Atmosphere–cryosphere interactions during the last phase of the Last Glacial Maximum (21 ka) in the European Alps
Summer surface air temperature proxies point to near-sea-ice-free conditions in the Arctic at 127 ka
On the importance of moisture conveyor belts from the tropical eastern Pacific for wetter conditions in the Atacama Desert during the mid-Pliocene
Modeled storm surge changes in a warmer world: the Last Interglacial
No changes in overall AMOC strength in interglacial PMIP4 time slices
The role of ice-sheet topography in the Alpine hydro-climate at glacial times
Simulating glacial dust changes in the Southern Hemisphere using ECHAM6.3-HAM2.3
Climate and ice sheet evolutions from the last glacial maximum to the pre-industrial period with an ice-sheet–climate coupled model
The role of land cover in the climate of glacial Europe
Simulated stability of the Atlantic Meridional Overturning Circulation during the Last Glacial Maximum
Large-scale features of Last Interglacial climate: results from evaluating the lig127k simulations for the Coupled Model Intercomparison Project (CMIP6)–Paleoclimate Modeling Intercomparison Project (PMIP4)
Evaluation of Arctic warming in mid-Pliocene climate simulations
Simulating Marine Isotope Stage 7 with a coupled climate–ice sheet model
Comparison of past and future simulations of ENSO in CMIP5/PMIP3 and CMIP6/PMIP4 models
An empirical evaluation of bias correction methods for palaeoclimate simulations
Hypersensitivity of glacial summer temperatures in Siberia
Distorted Pacific–North American teleconnection at the Last Glacial Maximum
Understanding the Australian Monsoon change during the Last Glacial Maximum with a multi-model ensemble
Effect of high dust amount on surface temperature during the Last Glacial Maximum: a modelling study using MIROC-ESM
The role of regional feedbacks in glacial inception on Baffin Island: the interaction of ice flow and meteorology
Quantifying the influence of the terrestrial biosphere on glacial–interglacial climate dynamics
Intra-interglacial climate variability: model simulations of Marine Isotope Stages 1, 5, 11, 13, and 15
A GCM comparison of Pleistocene super-interglacial periods in relation to Lake El'gygytgyn, NE Arctic Russia
Global sensitivity analysis of the Indian monsoon during the Pleistocene
Interaction of ice sheets and climate during the past 800 000 years
Simulating last interglacial climate with NorESM: role of insolation and greenhouse gases in the timing of peak warmth
Impact of geomagnetic excursions on atmospheric chemistry and dynamics
Assessing the impact of Laurentide Ice Sheet topography on glacial climate
Interdependence of the growth of the Northern Hemisphere ice sheets during the last glaciation: the role of atmospheric circulation
Different ocean states and transient characteristics in Last Glacial Maximum simulations and implications for deglaciation
Why could ice ages be unpredictable?
Assessing the impact of late Pleistocene megafaunal extinctions on global vegetation and climate
The last interglacial (Eemian) climate simulated by LOVECLIM and CCSM3
LGM permafrost distribution: how well can the latest PMIP multi-model ensembles perform reconstruction?
Influence of Last Glacial Maximum boundary conditions on the global water isotope distribution in an atmospheric general circulation model
A new global reconstruction of temperature changes at the Last Glacial Maximum
Modelling snow accumulation on Greenland in Eemian, glacial inception, and modern climates in a GCM
Modelling large-scale ice-sheet–climate interactions following glacial inception
Sensitivity of the North Atlantic climate to Greenland Ice Sheet melting during the Last Interglacial
The impact of different glacial boundary conditions on atmospheric dynamics and precipitation in the North Atlantic region
Present and LGM permafrost from climate simulations: contribution of statistical downscaling
The key role of topography in altering North Atlantic atmospheric circulation during the last glacial period
Uncertainties in modelling CH4 emissions from northern wetlands in glacial climates: the role of vegetation parameters
Violet L. Patterson, Lauren J. Gregoire, Ruza F. Ivanovic, Niall Gandy, Jonathan Owen, Robin S. Smith, Oliver G. Pollard, Lachlan C. Astfalck, and Paul J. Valdes
Clim. Past, 20, 2191–2218, https://doi.org/10.5194/cp-20-2191-2024, https://doi.org/10.5194/cp-20-2191-2024, 2024
Short summary
Short summary
Simulations of the last two glacial periods are run using a computer model in which the atmosphere and ice sheets interact. The results show that the initial conditions used in the simulations are the primary reason for the difference in simulated North American ice sheet volume between each period. Thus, the climate leading up to the glacial maxima and other factors, such as vegetation, are important contributors to the differences in the ice sheets at the Last and Penultimate glacial maxima.
Taiga Matsushita, Mariko Harada, Hiroaki Ueda, Takeshi Nakagawa, Yoshimi Kubota, Yoshiaki Suzuki, and Youichi Kamae
Clim. Past, 20, 2017–2029, https://doi.org/10.5194/cp-20-2017-2024, https://doi.org/10.5194/cp-20-2017-2024, 2024
Short summary
Short summary
We present a climate simulation using version 2.3 of the Meteorological Research Institute's Coupled General Circulation Model (MRI-CGCM2.3) to examine the impact of insolation changes on East Asian summer monsoon variability over the past 450 kyr. We show that changes in summer insolation over East Asia led to distinct climatic responses in China and Japan, driven by altered atmospheric circulation due to the intensification of the North Pacific subtropical high and the North Pacific High.
Aurélien Quiquet and Didier M. Roche
Clim. Past, 20, 1365–1385, https://doi.org/10.5194/cp-20-1365-2024, https://doi.org/10.5194/cp-20-1365-2024, 2024
Short summary
Short summary
In this work, we use the same experimental protocol to simulate the last two glacial terminations with a coupled ice sheet–climate model. Major differences among the two terminations are that the ice sheets retreat earlier and the Atlantic oceanic circulation is more prone to collapse during the penultimate termination. However, for both terminations the pattern of ice retreat is similar, and this retreat is primarily explained by orbital forcing changes and greenhouse gas concentration changes.
Yanxuan Du, Josephine R. Brown, and J. M. Kale Sniderman
Clim. Past, 20, 393–413, https://doi.org/10.5194/cp-20-393-2024, https://doi.org/10.5194/cp-20-393-2024, 2024
Short summary
Short summary
This study provides insights into regional Australian climate variations (temperature, precipitation, wind, and atmospheric circulation) during the Last Glacial Maximum (21 000 kyr ago) and the interconnections between climate variables in different seasons from climate model simulations. Model results are evaluated and compared with available palaeoclimate proxy records. Results show model responses diverge widely in both the tropics and mid-latitudes in the Australian region.
Brian R. Crow, Lev Tarasov, Michael Schulz, and Matthias Prange
Clim. Past, 20, 281–296, https://doi.org/10.5194/cp-20-281-2024, https://doi.org/10.5194/cp-20-281-2024, 2024
Short summary
Short summary
An abnormally warm period around 400,000 years ago is thought to have resulted in a large melt event for the Greenland Ice Sheet. Using a sequence of climate model simulations connected to an ice model, we estimate a 50 % melt of Greenland compared to today. Importantly, we explore how the exact methodology of connecting the temperatures and precipitation from the climate model to the ice sheet model can influence these results and show that common methods could introduce errors.
Sarah L. Bradley, Raymond Sellevold, Michele Petrini, Miren Vizcaino, Sotiria Georgiou, Jiang Zhu, Bette L. Otto-Bliesner, and Marcus Lofverstrom
Clim. Past, 20, 211–235, https://doi.org/10.5194/cp-20-211-2024, https://doi.org/10.5194/cp-20-211-2024, 2024
Short summary
Short summary
The Last Glacial Maximum (LGM) was the most recent period with large ice sheets in Europe and North America. We provide a detailed analysis of surface mass and energy components for two time periods that bracket the LGM: 26 and 21 ka BP. We use an earth system model which has been adopted for modern ice sheets. We find that all Northern Hemisphere ice sheets have a positive surface mass balance apart from the British and Irish ice sheets and the North American ice sheet complex.
Kyung-Sook Yun, Axel Timmermann, Sun-Seon Lee, Matteo Willeit, Andrey Ganopolski, and Jyoti Jadhav
Clim. Past, 19, 1951–1974, https://doi.org/10.5194/cp-19-1951-2023, https://doi.org/10.5194/cp-19-1951-2023, 2023
Short summary
Short summary
To quantify the sensitivity of the earth system to orbital-scale forcings, we conducted an unprecedented quasi-continuous coupled general climate model simulation with the Community Earth System Model, which covers the climatic history of the past 3 million years. This study could stimulate future transient paleo-climate model simulations and perspectives to further highlight and document the effect of anthropogenic CO2 emissions in the broader paleo-climatic context.
Costanza Del Gobbo, Renato R. Colucci, Giovanni Monegato, Manja Žebre, and Filippo Giorgi
Clim. Past, 19, 1805–1823, https://doi.org/10.5194/cp-19-1805-2023, https://doi.org/10.5194/cp-19-1805-2023, 2023
Short summary
Short summary
We studied atmosphere–cryosphere interaction during the last phase of the Last Glacial Maximum in the Alpine region, using a high-resolution regional climate model. We analysed the climate south and north of the Alps, using a detailed map of the Alpine equilibrium line altitude (ELA) to study the mechanism that sustained the Alpine glaciers at 21 ka. The Genoa low and a mild Mediterranean Sea led to frequent snowfall in the southern Alps, thus preserving the glaciers and lowering the ELA.
Louise C. Sime, Rahul Sivankutty, Irene Vallet-Malmierca, Agatha M. de Boer, and Marie Sicard
Clim. Past, 19, 883–900, https://doi.org/10.5194/cp-19-883-2023, https://doi.org/10.5194/cp-19-883-2023, 2023
Short summary
Short summary
It is not known if the Last Interglacial (LIG) experienced Arctic summers that were sea ice free: models show a wide spread in LIG Arctic temperature and sea ice results. Evaluation against sea ice markers is hampered by few observations. Here, an assessment of 11 climate model simulations against summer temperatures shows that the most skilful models have a 74 %–79 % reduction in LIG sea ice. The measurements of LIG areas indicate a likely mix of ice-free and near-ice-free LIG summers.
Mark Reyers, Stephanie Fiedler, Patrick Ludwig, Christoph Böhm, Volker Wennrich, and Yaping Shao
Clim. Past, 19, 517–532, https://doi.org/10.5194/cp-19-517-2023, https://doi.org/10.5194/cp-19-517-2023, 2023
Short summary
Short summary
In this study we performed high-resolution climate model simulations for the hyper-arid Atacama Desert for the mid-Pliocene (3.2 Ma). The aim is to uncover the atmospheric processes that are involved in the enhancement of strong rainfall events during this period. We find that strong upper-level moisture fluxes (so-called moisture conveyor belts) originating in the tropical eastern Pacific are the main driver for increased rainfall in the mid-Pliocene.
Paolo Scussolini, Job Dullaart, Sanne Muis, Alessio Rovere, Pepijn Bakker, Dim Coumou, Hans Renssen, Philip J. Ward, and Jeroen C. J. H. Aerts
Clim. Past, 19, 141–157, https://doi.org/10.5194/cp-19-141-2023, https://doi.org/10.5194/cp-19-141-2023, 2023
Short summary
Short summary
We reconstruct sea level extremes due to storm surges in a past warmer climate. We employ a novel combination of paleoclimate modeling and global ocean hydrodynamic modeling. We find that during the Last Interglacial, about 127 000 years ago, seasonal sea level extremes were indeed significantly different – higher or lower – on long stretches of the global coast. These changes are associated with different patterns of atmospheric storminess linked with meridional shifts in wind bands.
Zhiyi Jiang, Chris Brierley, David Thornalley, and Sophie Sax
Clim. Past, 19, 107–121, https://doi.org/10.5194/cp-19-107-2023, https://doi.org/10.5194/cp-19-107-2023, 2023
Short summary
Short summary
This work looks at a series of model simulations of two past warm climates. We focus on the deep overturning circulation in the Atlantic Ocean. We show that there are no robust changes in the overall strength of the circulation. We also show that the circulation hardly plays a role in changes in the surface climate across the globe.
Patricio Velasquez, Martina Messmer, and Christoph C. Raible
Clim. Past, 18, 1579–1600, https://doi.org/10.5194/cp-18-1579-2022, https://doi.org/10.5194/cp-18-1579-2022, 2022
Short summary
Short summary
We investigate the sensitivity of the glacial Alpine hydro-climate to northern hemispheric and local ice-sheet changes. We perform sensitivity simulations of up to 2 km horizontal resolution over the Alps for glacial periods. The findings demonstrate that northern hemispheric and local ice-sheet topography are important role in regulating the Alpine hydro-climate and permits a better understanding of the Alpine precipitation patterns at glacial times.
Stephan Krätschmer, Michèlle van der Does, Frank Lamy, Gerrit Lohmann, Christoph Völker, and Martin Werner
Clim. Past, 18, 67–87, https://doi.org/10.5194/cp-18-67-2022, https://doi.org/10.5194/cp-18-67-2022, 2022
Short summary
Short summary
We use an atmospheric model coupled to an aerosol model to investigate the global mineral dust cycle with a focus on the Southern Hemisphere for warmer and colder climate states and compare our results to observational data. Our findings suggest that Australia is the predominant source of dust deposited over Antarctica during the last glacial maximum. In addition, we find that the southward transport of dust from all sources to Antarctica happens at lower altitudes in colder climates.
Aurélien Quiquet, Didier M. Roche, Christophe Dumas, Nathaëlle Bouttes, and Fanny Lhardy
Clim. Past, 17, 2179–2199, https://doi.org/10.5194/cp-17-2179-2021, https://doi.org/10.5194/cp-17-2179-2021, 2021
Short summary
Short summary
In this paper we discuss results obtained with a set of coupled ice-sheet–climate model experiments for the last 26 kyrs. The model displays a large sensitivity of the oceanic circulation to the amount of the freshwater flux resulting from ice sheet melting. Ice sheet geometry changes alone are not enough to lead to abrupt climate events, and rapid warming at high latitudes is here only reported during abrupt oceanic circulation recoveries that occurred when accounting for freshwater flux.
Patricio Velasquez, Jed O. Kaplan, Martina Messmer, Patrick Ludwig, and Christoph C. Raible
Clim. Past, 17, 1161–1180, https://doi.org/10.5194/cp-17-1161-2021, https://doi.org/10.5194/cp-17-1161-2021, 2021
Short summary
Short summary
This study assesses the importance of resolution and land–atmosphere feedbacks for European climate. We performed an asynchronously coupled experiment that combined a global climate model (~ 100 km), a regional climate model (18 km), and a dynamic vegetation model (18 km). Modelled climate and land cover agree reasonably well with independent reconstructions based on pollen and other paleoenvironmental proxies. The regional climate is significantly influenced by land cover.
Frerk Pöppelmeier, Jeemijn Scheen, Aurich Jeltsch-Thömmes, and Thomas F. Stocker
Clim. Past, 17, 615–632, https://doi.org/10.5194/cp-17-615-2021, https://doi.org/10.5194/cp-17-615-2021, 2021
Short summary
Short summary
The stability of the Atlantic Meridional Overturning Circulation (AMOC) critically depends on its mean state. We simulate the response of the AMOC to North Atlantic freshwater perturbations under different glacial boundary conditions. We find that a closed Bering Strait greatly increases the AMOC's sensitivity to freshwater hosing. Further, the shift from mono- to bistability strongly depends on the chosen boundary conditions, with weaker circulation states exhibiting more abrupt transitions.
Bette L. Otto-Bliesner, Esther C. Brady, Anni Zhao, Chris M. Brierley, Yarrow Axford, Emilie Capron, Aline Govin, Jeremy S. Hoffman, Elizabeth Isaacs, Masa Kageyama, Paolo Scussolini, Polychronis C. Tzedakis, Charles J. R. Williams, Eric Wolff, Ayako Abe-Ouchi, Pascale Braconnot, Silvana Ramos Buarque, Jian Cao, Anne de Vernal, Maria Vittoria Guarino, Chuncheng Guo, Allegra N. LeGrande, Gerrit Lohmann, Katrin J. Meissner, Laurie Menviel, Polina A. Morozova, Kerim H. Nisancioglu, Ryouta O'ishi, David Salas y Mélia, Xiaoxu Shi, Marie Sicard, Louise Sime, Christian Stepanek, Robert Tomas, Evgeny Volodin, Nicholas K. H. Yeung, Qiong Zhang, Zhongshi Zhang, and Weipeng Zheng
Clim. Past, 17, 63–94, https://doi.org/10.5194/cp-17-63-2021, https://doi.org/10.5194/cp-17-63-2021, 2021
Short summary
Short summary
The CMIP6–PMIP4 Tier 1 lig127k experiment was designed to address the climate responses to strong orbital forcing. We present a multi-model ensemble of 17 climate models, most of which have also completed the CMIP6 DECK experiments and are thus important for assessing future projections. The lig127ksimulations show strong summer warming over the NH continents. More than half of the models simulate a retreat of the Arctic minimum summer ice edge similar to the average for 2000–2018.
Wesley de Nooijer, Qiong Zhang, Qiang Li, Qiang Zhang, Xiangyu Li, Zhongshi Zhang, Chuncheng Guo, Kerim H. Nisancioglu, Alan M. Haywood, Julia C. Tindall, Stephen J. Hunter, Harry J. Dowsett, Christian Stepanek, Gerrit Lohmann, Bette L. Otto-Bliesner, Ran Feng, Linda E. Sohl, Mark A. Chandler, Ning Tan, Camille Contoux, Gilles Ramstein, Michiel L. J. Baatsen, Anna S. von der Heydt, Deepak Chandan, W. Richard Peltier, Ayako Abe-Ouchi, Wing-Le Chan, Youichi Kamae, and Chris M. Brierley
Clim. Past, 16, 2325–2341, https://doi.org/10.5194/cp-16-2325-2020, https://doi.org/10.5194/cp-16-2325-2020, 2020
Short summary
Short summary
The simulations for the past climate can inform us about the performance of climate models in different climate scenarios. Here, we analyse Arctic warming in an ensemble of 16 simulations of the mid-Pliocene Warm Period (mPWP), when the CO2 level was comparable to today. The results highlight the importance of slow feedbacks in the model simulations and imply that we must be careful when using simulations of the mPWP as an analogue for future climate change.
Dipayan Choudhury, Axel Timmermann, Fabian Schloesser, Malte Heinemann, and David Pollard
Clim. Past, 16, 2183–2201, https://doi.org/10.5194/cp-16-2183-2020, https://doi.org/10.5194/cp-16-2183-2020, 2020
Short summary
Short summary
Our study is the first study to conduct transient simulations over MIS 7, using a 3-D coupled climate–ice sheet model with interactive ice sheets in both hemispheres. We find glacial inceptions to be more sensitive to orbital variations, whereas glacial terminations need the concerted action of both orbital and CO2 forcings. We highlight the issue of multiple equilibria and an instability due to stationary-wave–topography feedback that can trigger unrealistic North American ice sheet growth.
Josephine R. Brown, Chris M. Brierley, Soon-Il An, Maria-Vittoria Guarino, Samantha Stevenson, Charles J. R. Williams, Qiong Zhang, Anni Zhao, Ayako Abe-Ouchi, Pascale Braconnot, Esther C. Brady, Deepak Chandan, Roberta D'Agostino, Chuncheng Guo, Allegra N. LeGrande, Gerrit Lohmann, Polina A. Morozova, Rumi Ohgaito, Ryouta O'ishi, Bette L. Otto-Bliesner, W. Richard Peltier, Xiaoxu Shi, Louise Sime, Evgeny M. Volodin, Zhongshi Zhang, and Weipeng Zheng
Clim. Past, 16, 1777–1805, https://doi.org/10.5194/cp-16-1777-2020, https://doi.org/10.5194/cp-16-1777-2020, 2020
Short summary
Short summary
El Niño–Southern Oscillation (ENSO) is the largest source of year-to-year variability in the current climate, but the response of ENSO to past or future changes in climate is uncertain. This study compares the strength and spatial pattern of ENSO in a set of climate model simulations in order to explore how ENSO changes in different climates, including past cold glacial climates and past climates with different seasonal cycles, as well as gradual and abrupt future warming cases.
Robert Beyer, Mario Krapp, and Andrea Manica
Clim. Past, 16, 1493–1508, https://doi.org/10.5194/cp-16-1493-2020, https://doi.org/10.5194/cp-16-1493-2020, 2020
Short summary
Short summary
Even the most sophisticated global climate models are known to have significant biases in the way they simulate the climate system. Correcting model biases is therefore essential for creating realistic reconstructions of past climate that can be used, for example, to study long-term ecological dynamics. Here, we evaluated three widely used bias correction methods by means of a global dataset of empirical temperature and precipitation records from the last 125 000 years.
Pepijn Bakker, Irina Rogozhina, Ute Merkel, and Matthias Prange
Clim. Past, 16, 371–386, https://doi.org/10.5194/cp-16-371-2020, https://doi.org/10.5194/cp-16-371-2020, 2020
Short summary
Short summary
Northeastern Siberia is currently known for its harsh cold climate, but remarkably it did not experience large-scale glaciation during the last ice age. We show that the region is also exceptional in climate models. As a result of subtle changes in model setup, climate models show a strong divergence in simulated glacial summer temperatures that is ultimately driven by changes in the circumpolar atmospheric stationary wave pattern and associated northward heat transport to northeastern Siberia.
Yongyun Hu, Yan Xia, Zhengyu Liu, Yuchen Wang, Zhengyao Lu, and Tao Wang
Clim. Past, 16, 199–209, https://doi.org/10.5194/cp-16-199-2020, https://doi.org/10.5194/cp-16-199-2020, 2020
Short summary
Short summary
The paper shows, using climate simulations, that the Pacific–North American (PNA) teleconnection was distorted or completely broken at the Last Glacial Maximum (LGM). The results suggest that ENSO would have little direct impact on North American climates at the LGM.
Mi Yan, Bin Wang, Jian Liu, Axing Zhu, Liang Ning, and Jian Cao
Clim. Past, 14, 2037–2052, https://doi.org/10.5194/cp-14-2037-2018, https://doi.org/10.5194/cp-14-2037-2018, 2018
Rumi Ohgaito, Ayako Abe-Ouchi, Ryouta O'ishi, Toshihiko Takemura, Akinori Ito, Tomohiro Hajima, Shingo Watanabe, and Michio Kawamiya
Clim. Past, 14, 1565–1581, https://doi.org/10.5194/cp-14-1565-2018, https://doi.org/10.5194/cp-14-1565-2018, 2018
Short summary
Short summary
The behaviour of dust in terms of climate can be investigated using past climate. The Last Glacial Maximum (LGM; 21000 years before present) is known to be dustier. We investigated the impact of plausible dust distribution on the climate of the LGM using an Earth system model and found that the higher dust load results in less cooling over the polar regions. The main finding is that radiative perturbation by the high dust loading does not necessarily cool the surface surrounding Antarctica.
Leah Birch, Timothy Cronin, and Eli Tziperman
Clim. Past, 14, 1441–1462, https://doi.org/10.5194/cp-14-1441-2018, https://doi.org/10.5194/cp-14-1441-2018, 2018
Short summary
Short summary
We investigate the regional dynamics at the beginning of the last ice age, using a nested configuration of the Weather Research and Forecasting (WRF) model with a simple ice flow model. We find that ice sheet height causes a negative feedback on continued ice growth by interacting with the atmospheric circulation, causing warming on Baffin Island, and inhibiting the initiation of the last ice age. We conclude that processes at larger scales are needed to overcome the regional warming effect.
Taraka Davies-Barnard, Andy Ridgwell, Joy Singarayer, and Paul Valdes
Clim. Past, 13, 1381–1401, https://doi.org/10.5194/cp-13-1381-2017, https://doi.org/10.5194/cp-13-1381-2017, 2017
Short summary
Short summary
We present the first model analysis using a fully coupled dynamic atmosphere–ocean–vegetation GCM over the last 120 kyr that quantifies the net effect of vegetation on climate. This analysis shows that over the whole period the biogeophysical effect (albedo, evapotranspiration) is dominant, and that the biogeochemical impacts may have a lower possible range than typically estimated. This emphasises the temporal reliance of the balance between biogeophysical and biogeochemical effects.
Rima Rachmayani, Matthias Prange, and Michael Schulz
Clim. Past, 12, 677–695, https://doi.org/10.5194/cp-12-677-2016, https://doi.org/10.5194/cp-12-677-2016, 2016
Short summary
Short summary
A set of 13 interglacial time slice experiments was carried out using a CCSM3-DGVM to study global climate variability between and within the Quaternary interglaciations of MIS 1, 5, 11, 13, and 15. Seasonal surface temperature anomalies can be explained by local insolation anomalies induced by the astronomical forcing in most regions and by GHG forcing at high latitudes and early Bruhnes interglacials. However, climate feedbacks may modify the surface temperature response in specific regions.
A. J. Coletti, R. M. DeConto, J. Brigham-Grette, and M. Melles
Clim. Past, 11, 979–989, https://doi.org/10.5194/cp-11-979-2015, https://doi.org/10.5194/cp-11-979-2015, 2015
Short summary
Short summary
Evidence from Pleistocene sediments suggest that the Arctic's climate went through multiple sudden transitions, warming by 2-4 °C (compared to preindustrial times), and stayed warm for hundreds to thousands of years. A climate modelling study of these events suggests that the Arctic's climate and landscape drastically changed, transforming a cold and barren landscape as we know today to a warm, lush, evergreen and boreal forest landscape only seen in the modern midlatitudes.
P. A. Araya-Melo, M. Crucifix, and N. Bounceur
Clim. Past, 11, 45–61, https://doi.org/10.5194/cp-11-45-2015, https://doi.org/10.5194/cp-11-45-2015, 2015
Short summary
Short summary
By using a statistical tool termed emulator, we study the sensitivity of the Indian monsoon during the the Pleistocene. The originality of the present work is to consider, as inputs, several elements of the climate forcing that have varied in the past, and then use the emulator as a method to quantify the link between forcing variability and climate variability. The methodology described here may naturally be applied to other regions of interest.
L. B. Stap, R. S. W. van de Wal, B. de Boer, R. Bintanja, and L. J. Lourens
Clim. Past, 10, 2135–2152, https://doi.org/10.5194/cp-10-2135-2014, https://doi.org/10.5194/cp-10-2135-2014, 2014
P.M. Langebroek and K. H. Nisancioglu
Clim. Past, 10, 1305–1318, https://doi.org/10.5194/cp-10-1305-2014, https://doi.org/10.5194/cp-10-1305-2014, 2014
I. Suter, R. Zech, J. G. Anet, and T. Peter
Clim. Past, 10, 1183–1194, https://doi.org/10.5194/cp-10-1183-2014, https://doi.org/10.5194/cp-10-1183-2014, 2014
D. J. Ullman, A. N. LeGrande, A. E. Carlson, F. S. Anslow, and J. M. Licciardi
Clim. Past, 10, 487–507, https://doi.org/10.5194/cp-10-487-2014, https://doi.org/10.5194/cp-10-487-2014, 2014
P. Beghin, S. Charbit, C. Dumas, M. Kageyama, D. M. Roche, and C. Ritz
Clim. Past, 10, 345–358, https://doi.org/10.5194/cp-10-345-2014, https://doi.org/10.5194/cp-10-345-2014, 2014
X. Zhang, G. Lohmann, G. Knorr, and X. Xu
Clim. Past, 9, 2319–2333, https://doi.org/10.5194/cp-9-2319-2013, https://doi.org/10.5194/cp-9-2319-2013, 2013
M. Crucifix
Clim. Past, 9, 2253–2267, https://doi.org/10.5194/cp-9-2253-2013, https://doi.org/10.5194/cp-9-2253-2013, 2013
M.-O. Brault, L. A. Mysak, H. D. Matthews, and C. T. Simmons
Clim. Past, 9, 1761–1771, https://doi.org/10.5194/cp-9-1761-2013, https://doi.org/10.5194/cp-9-1761-2013, 2013
I. Nikolova, Q. Yin, A. Berger, U. K. Singh, and M. P. Karami
Clim. Past, 9, 1789–1806, https://doi.org/10.5194/cp-9-1789-2013, https://doi.org/10.5194/cp-9-1789-2013, 2013
K. Saito, T. Sueyoshi, S. Marchenko, V. Romanovsky, B. Otto-Bliesner, J. Walsh, N. Bigelow, A. Hendricks, and K. Yoshikawa
Clim. Past, 9, 1697–1714, https://doi.org/10.5194/cp-9-1697-2013, https://doi.org/10.5194/cp-9-1697-2013, 2013
T. Tharammal, A. Paul, U. Merkel, and D. Noone
Clim. Past, 9, 789–809, https://doi.org/10.5194/cp-9-789-2013, https://doi.org/10.5194/cp-9-789-2013, 2013
J. D. Annan and J. C. Hargreaves
Clim. Past, 9, 367–376, https://doi.org/10.5194/cp-9-367-2013, https://doi.org/10.5194/cp-9-367-2013, 2013
H. J. Punge, H. Gallée, M. Kageyama, and G. Krinner
Clim. Past, 8, 1801–1819, https://doi.org/10.5194/cp-8-1801-2012, https://doi.org/10.5194/cp-8-1801-2012, 2012
J. M. Gregory, O. J. H. Browne, A. J. Payne, J. K. Ridley, and I. C. Rutt
Clim. Past, 8, 1565–1580, https://doi.org/10.5194/cp-8-1565-2012, https://doi.org/10.5194/cp-8-1565-2012, 2012
P. Bakker, C. J. Van Meerbeeck, and H. Renssen
Clim. Past, 8, 995–1009, https://doi.org/10.5194/cp-8-995-2012, https://doi.org/10.5194/cp-8-995-2012, 2012
D. Hofer, C. C. Raible, A. Dehnert, and J. Kuhlemann
Clim. Past, 8, 935–949, https://doi.org/10.5194/cp-8-935-2012, https://doi.org/10.5194/cp-8-935-2012, 2012
G. Levavasseur, M. Vrac, D. M. Roche, D. Paillard, A. Martin, and J. Vandenberghe
Clim. Past, 7, 1225–1246, https://doi.org/10.5194/cp-7-1225-2011, https://doi.org/10.5194/cp-7-1225-2011, 2011
F. S. R. Pausata, C. Li, J. J. Wettstein, M. Kageyama, and K. H. Nisancioglu
Clim. Past, 7, 1089–1101, https://doi.org/10.5194/cp-7-1089-2011, https://doi.org/10.5194/cp-7-1089-2011, 2011
C. Berrittella and J. van Huissteden
Clim. Past, 7, 1075–1087, https://doi.org/10.5194/cp-7-1075-2011, https://doi.org/10.5194/cp-7-1075-2011, 2011
Cited articles
Behling, H., Arz, H. W., Pätzold, J., and Wefer, G.: Late Quaternary vegetational and climate dynamics in Northeastern Brazil, inferences from marine core GeoB 3104-1, Quaternary Sci. Rev., 19, 981–994, 2000.
Bird, M. I., Taylor, D., and Hunt, C.: Paleoenvironment of insular Southeast Asia during the last glacial period: a savanna corridor in Sundaland?, Quaternary Sci. Rev., 24, 2228–2242, 2005.
Bonan, G. B. and Levis, S.: Evaluating Aspects of the Community Land and Atmosphere Models (CLM3 and CAM3) Using a Dynamic Global Vegetation Model, J. Climate, 19, 2290–2301, 2006.
Bonan, G. B., Levis, S., Sitch, S., Vertenstein, M., and Oleson, K. W.: A dynamic global vegetation model for use with climate models: Concepts and description of simulated vegetation dynamics, Glob. Change Biol., 9, 1543–1566, 2003.
Bonnefille, R. and Riollet, G.: The Kashiru pollen sequence (Burundi), Palaeoclimatic implications for the last 40,000 yr. B.P. in tropical Africa, Quaternary Res., 30, 19–35, 1988.
Bozbiyik, A., Steinacher, M., Joos, F., Stocker, T. F., and Menviel, L.: Fingerprints of changes in the terrestrial carbon cycle in response to large reorganizations in ocean circulation, Clim. Past, 7, 319–338, https://doi.org/10.5194/cp-7-319-2011, 2011.
Broecker, W. S.: Massive iceberg discharges as triggers for global climate change, Nature, 372, 421–424, 1994.
Broecker, W. S., Peteet, D. M., and Rind, D.: Does the ocean-atmosphere system have more than one stable mode of operation?, Nature, 315, 21–26, 1985.
Claussen, M., Mysak, L. A., Weaver, A. J., Crucifix, M., Fichefet, T., Loutre, M. F., Weber, S. L., Alcamo, J., Alexeev, V. A., Berger, A., Calov, R., Ganopolski, A., Goosse, H., Lohmann, G., Lunkeit, F., Mokhov, I., Petoukhov, V., Stone, P., and Wang, Z.: Earth system models of intermediate complexity: closing the gap in the spectrum of climate system models, Clim. Dynam., 18, 579–586, 2002.
Claussen, M., Ganopolski, A., Brovkin, V., Gerstengarbe, F.-W., and Werner P.: Simulated Global-Scale Response of the Climate System to Dansgaard-Oeschger and Heinrich events, Clim. Dynam., 21, 361–370, 2003.
Collins, W. D., Rasch, P. J., Boville, B. A., Hack, J. J., McCaa, J. R., Williamson, D. L., Briegleb, B. P., Bitz, C. M., Lin, S.-J., and Zhang, M.: The formulation and atmospheric simulation of the Community Atmosphere Model version 3 (CAM3), J. Climate, 19, 2144–2161, 2006.
Cox, P. M.: Description of the "TRIFFID" dynamic global vegetation model, Hadley Centre Technical Note 24. Met Office, Bracknell, 2001.
Crucifix, M., Betts, R. A., and Hewitt, C. D.: Pre-industrial potential and Last Glacial Maximum global vegetation simulated with a coupled climate-biosphere model: diagnosis of bioclimatic relationships, Global Planet. Change, 45, 295–312, 2005.
Denton, G. H., Anderson, R. F., Toggweiler, J. R., Edward, R. L., Schaefer, J. M., and Putnam, A. E.: The Last Glacial Termination, Science, 328, 1652–1656, https://doi.org/10.1126/science.1184119, 2010.
Dupont, L. M., Schlütz, F., Teboh Ewah, C., Jennerjahn, T. C., Paul, A., and Behling, H.: Two-step vegetation response to enhanced precipitation in Northeast Brazil during Heinrich event 1, Glob. Change Biol., 16, 1647–1660, 2009.
Fanning, A. G. and Weaver, A. J.: On the role of flux adjustments in an idealized coupled climate model, Clim. Dynam., 13, 691–701, 1997.
González, C. and Dupont, L. M.: Tropical salt marsh succession as sea-level indicator during Heinrich events, Quaternary Sci. Rev., 28, 939–946, 2009.
González, C., Dupont, L. M., Behling, H., and Wefer, G.: Neotropical vegetation response to rapid climate changes during the last glacial period: Palynological evidence from the Cariaco Basin, Quaternary Res., 69, 217–230, 2008.
Grootes, P. M., Stuiver, M., White, J. W. C., Johnsen, S., and Jouzel, J.: Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice cores, Nature, 366, 552–554, 1993.
Handiani, D., Paul, A., and Dupont, L.: Tropical climate and vegetation changes during Heinrich Event 1: a model-data comparison, Clim. Past, 8, 37–57, https://doi.org/10.5194/cp-8-37-2012, 2012.
Harrison, S. P. and Prentice, I. C.: Climate and CO2 controls on global vegetation distribution at the last glacial maximum: analysis based on palaeovegetation data, biome modelling and palaeoclimate simulations, Glob. Change Biol., 9, 983–1004, 2003.
Heaney, L. R.: A synopsis of climatic and vegetational change in Southeast Asia, Climatic Change, 19, 53–61, https://doi.org/10.1007/BF00142213, 1991.
Heinrich, H.: Origin and consequences of cyclic ice rafting in the northeast Atlantic Ocean during the past 130,000 years, Quaternary Res., 29, 142–152, 1988.
Hessler, I., Dupont, L. M., Bonnefille, R., Behling, H., González, C., Helmens, K. F., Hooghiemstra, H., Lebamba, J., Ledru, M.-P., Lézine, A.-M., Maley, J., Marret, F., and Vincens, A.: Millennial-scale changes in vegetation records from tropical Africa and South America during the last glacial, Quaternary Sci. Rev., 29, 2882–2899, https://doi.org/10.1016/j.quascirev.2009.11.029, 2010.
Kageyama, M., Combourieu Nebout, N., Sepulchre, P., Peyron, O., Krinner, G., Ramstein, G., and Cazet, J.-P.: The Last Glacial Maximum and Heinrich Event 1 in terms of climate and vegetation around the Alboran Sea: a preliminary model-data comparison, Comp. Rend. Geosci., 337, 983–992, 2005.
Kageyama, M., Mignot, J., Swingedouw, D., Marzin, C., Alkama, R., and Marti, O.: Glacial climate sensitivity to different states of the Atlantic Meridional Overturning Circulation: results from the IPSL model, Clim. Past, 5, 551–570, https://doi.org/10.5194/cp-5-551-2009, 2009.
Kageyama, M., Paul, A., Roche, D. M., and Van Meerbeeck, C. J.: Modelling glacial climatic millennial-scale variability related to changes in the Atlantic meridional overturning circulation: a review, Quaternary Sci. Rev., 29, 2931–2956, 2010.
Kageyama, M., Merkel, U., Otto-Bliesner, B., Prange, M., Abe-Ouchi, A., Lohmann, G., Ohgaito, R., Roche, D. M., Singarayer, J., Swingedouw, D., and X Zhang: Climatic impacts of fresh water hosing under Last Glacial Maximum conditions: a multi-model study, Clim. Past, 9, 935–953, https://doi.org/10.5194/cp-9-935-2013, 2013.
Kaplan, J. O., Bigelow, N. H., Bartlein, P. J., Christensen, T. R., Cramer, W., Harrison, S. P., Matveyeva, N. V., McGuire, A. D., Murray, D. F., Prentice, I. C., Razzhivin, V. Y., Smith, B., Walker, D. A., Anderson, P. M., Andreev, A. A., Brubaker, L. B., Edwards, M. E., Lozhkin, A. V., and Ritchie, J.: Climate change and Arctic ecosystems II: Modeling, palaeodatamodel comparisons, and future projections, J. Geophys. Res., 108, 8171, https://doi.org/10.1029/2002JD002559, 2003.
Köhler, P., Joos, F., Gerber, S., and Knutti, R.: Simulated changes in vegetation distribution, land carbon storage, and atmospheric CO2 in response to a collapse of the North Atlantic thermohaline circulation, Clim. Dynam., 25, 689–708, 2005.
Ledru, M.-P., Campello, R. C., Landim-Dominguez, J. M., Martin, L., Mourguirat, P., Sifeddine, A., and Turcq, B.: Late-Glacial cooling in Amazonia inferred from pollen at Lagoa do Caçó, Northern Brazil, Quaternary Res., 55, 47–56, 2001.
Lee, S.-Y., Chiang, J. C. H., Matsumoto, K., and Tokos, K. S.: Southern Ocean wind response to North Atlantic cooling and the rise in atmospheric CO2: Modeling perspective and paleoceanographic implications, Paleoceanography, 26, PA1214, https://doi.org/10.1029/2010PA002004, 2011.
Levis, S., Bonan, G. B, Vertenstein, M., and Oleson, K.: The Community Land Model's Dynamic Global Vegetation Model (CLM-DGVM): Technical description and user's guide, NCAR Technical Note NCAR/TN-459+IA, https://doi.org/10.5065/D6P26W36, 2004.
McManus, J. F., François, R., Gherardi, J.-M., Keigwin, L. D., and Brown-Leger, S.: Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes, Nature, 428, 834–837, 2004.
Meissner, K. J., Weaver, A. J., Matthews, H. D., and Cox, P. M.: The role of land surface dynamics in glacial inception: a study with the UVic Earth System model, Clim. Dynam., 21, 515–537, 2003.
Menviel, L., Timmermann, A., Mouchet, A., and Timm, O.: Meridional reorganizations of marine and terrestrial productivity during Heinrich events, Paleoceanography, 23, PA1203, https://doi.org/10.1029/2007PA001445, 2008.
Merkel, U., Prange, M., and Schulz, M.: ENSO variability and teleconnections during glacial climates, Quaternary Sci. Rev., 29, 86–100, 2010.
Mix, A., Bard, E., and Schneider, R.: Environmental processes of the ice age: land, oceans, glaciers (EPILOG), Quaternary Sci. Rev., 20, 627–657, 1999.
Morley, R. J.: Origin and Evolution of Tropical Forests, Wiley, Chichester, 2000.
Mulitza, S., Prange, M., Stuut, J.-B., Zabel, M., von Dobeneck, T., Itambi, A. C., Nizou, J., Schulz, M., and Wefer, G.: Sahel megadroughts triggered by glacial slowdowns of Atlantic meridional overturning, Paleoceanography, 23, PA4206, https://doi.org/10.1029/2008PA001637, 2008.
Niedermeyer, E. M., Prange, M., Mulitza, S., Mollenhauer, G., Schefuß, E., and Schulz, M.: Extratropical forcing of Sahel aridity during Heinrich stadials, Geophys. Res. Lett., 36, L20707, https://doi.org/10.1029/2009GL039687, 2009.
Oleson, K., Dai, Y., Bonan, G. B., Bosilovichm, M., Dickinson, R., Dirmeyer, P., Hoffman, F., Houser, P., Levis, S., Niu, G.-Y., Thornton, P., Vertenstein, M., Yang, Z., and Zeng, X.: Technical Description of the Community Land Model (CLM), NCAR Technical Note NCAR/TN-461+STR, https://doi.org/10.5065/D6N877R0, 2004.
Oleson, K. W., Niu, G.-Y., Yang, Z.-L., Lawrence, D. M., Thornton, P. E., Lawrence, P. J., Stockli, R., Dickinson, R. E., Bonan, G. B., Levis, S., Dai, A., and Qian, T.: Improvements to the Community Land Model and their impact on the hydrological cycle, J. Geophys. Res., 113, G01021, https://doi.org/10.1029/2007JG000563, 2008.
Peltier, W. R.: Global Glacial Isostacy and the Surface of the Ice-Age Earth: The ICE-5G (VM2) Model and GRACE, Invited paper, Annu. Rev. Earth Planet. Sc., 32, 111–149, https://doi.org/10.1146/annurev.earth.32.082503.144359, 2004.
Peterson, L. C., Haug, G. H., Hughen, K. A., and Röhl, U.: Rapid changes in the hydrologic cycle of the tropical Atlantic during the last glacial, Science, 290, 1947–1951, 2000.
Poulter, B., Ciais, P., Hodson, E., Lischke, H., Maignan, F., Plummer, S., and Zimmermann, N. E.: Plant functional type mapping for earth system models, Geosci. Model Dev., 4, 993–1010, https://doi.org/10.5194/gmd-4-993-2011, 2011.
Prentice, J. C., Guiot, J., Huntley, B., Jolly, D., and Cheddadi, R.: Reconstructing biomes from palaeoecological data: a general method and its application to European pollen data at 0 and 6 ka, Clim. Dynam., 12, 185–194, 1996.
Roche, D. M., Dokken, T. M., Goosse, H., Renssen, H., and Weber, S. L.: Climate of the Last Glacial Maximum: sensitivity studies and model-data comparison with the LOVECLIM coupled model, Clim. Past, 3, 205–224, https://doi.org/10.5194/cp-3-205-2007, 2007.
Sarnthein, M., Winn, K., Jung, S. J. A., Duplessy, J. C., Labeyrie, L., Erlenkeuser, H., and Ganssen, G.: Changes in East Atlantic deep water circulation over the last 30,000 years: an eight time-slice record, Paleoceanography, 9, 209–267, 1994.
Schefuß, E., Kuhlmann, H., Mollenhauer, G., Prange, M., and Pätzold, J.: Forcing of wet phases in southeast Africa over the past 17,000 years, Nature, 480, 509–512, 2011.
Schurgers, G., Mikolajewicz, U., Gröger, M., Maier-Reimer, E., Vizcaíno, M., and Winguth, A.: Dynamics of the terrestrial biosphere, climate and atmospheric CO2 concentration during interglacials: a comparison between Eemian and Holocene, Clim. Past, 2, 205–220, https://doi.org/10.5194/cp-2-205-2006, 2006.
Sitch, S., Smith, B., Prentice, I. C., Arneth, A., Bondeau, A., Cramer, W., Kaplan, J. O., Levis, S., Lucht, W., Sykes, M. T., Thonicke, K., and Venevsky, S.: Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model, Glob. Change Biol., 9, 161–185, 2003.
Stager, J. C., Ryves, D. B., Chase, B. M., and Pausata, F. S. R.: Catastrophic Drought in the Afro-Asian Monsoon Region During Heinrich Event 1, Science, 331, 6022, 1299–1302, https://doi.org/10.1126/science.1198322, 2011.
Stouffer, R. J., Yin, J., Gregory, J. M., Dixon, K. W., Spelman, M. J., Hurlin, W., Weaver, A. J., Eby, M., Flato, G. M., Hasumi, H., Hu, A., Jungclaus, J. H., Kamenkovich, I. V., Levermann, A., Montoya, M., Murakami, S., Nawrath, S., Oka, A., Peltier, W. R., Robitaille, D. Y., Sokolov, A., Vettoretti, G., and Weber, S. L.: Investigating the causes of the response of the thermohaline circulation to past and future climate changes, J. Climate, 19, 1365–1387, 2006.
Thomas, D. S. G., Burrough, S. L., and Parker, A. G.: Extreme events as drivers of early human behaviour in Africa? The case for variability, not catastrophic drought, J. Quat. Sci., 27, 7–12, 2012.
Tjallingii, R., Claussen, M., Stuut, J. B., Fohlmeister, J., Jahn, A., Bickert, T., Lamy, F., and Röhl, U.: Coherent high- and low-latitude forcing of the Northwest African humidity, Nat. Geosci., 1, 670–675, https://doi.org/10.1038/ngeo289, 2008.
Turney, C. S. M., Kershaw, A. P., Lowe, J. J., van der Kaars, S., Johnston, R., Rule, S., Moss, P., Radke, L., Tibby, J., McGlone, M. S., Wilmshurst, J., Vandergoes, M., Fitzsimons, S., Bryant, C., James, S., Branch, N. P., Cowley, J., Kalin, R. M., Ogle, N., Jacobsen, G., and Fifield, L. K.: Climate variability in the southwest Pacific during the Last Termination (20–10 kyr BP), Quaternary Sci. Rev., 25, 886–903, 2006.
Van der Kaars, S., Penny, D., Tibby, J. C., Fluin, J., Dam, R. A. C, and Suparan, P.: Late Quarternary palaeocology, palynology and palaeolimnology of a tropical lowland swamp: Rawa Danau, West-Java, Indonesia, Palaeogeogr. Palaeocl., 171, 185–212, https://doi.org/10.1016/S0031-0182(01)00245-0, 2001.
Van der Kaars, W. A.: Palynology of eastern Indonesian marine piston-cores: A Late Quaternary vegetational and climatic record for Australia, Palaeogeogr. Palaeocl., 85, 239–302, 1991.
Vincens, A., Garcin, Y., and Buchet, G.: Influence of rainfall seasonality on African lowland vegetation during the Late Quaternary: pollen evidence from Lake Masoko, Tanzania, J. Biogeogr., 34, 1274–1288, 2007.
Wang, X., Aufer, A. S., Edwards, R. L., Cheng, H., Cristalli, P. S., Smart, P. L., Richards, D. A., and Shen, C.-C.: Wet periods in northeastern Brazil over the past 210 kyr linked to distant climate anomalies, Nature, 432, 740–743, 2004.
Weaver, A. J., Eby, M., Wiebe, E. C., Bitz, C. M., Duffy, P. B., Ewen, T. L., Fanning, A. F., Holland, M. M., MacFadyen, A., Matthews, H. D., Meissner, K. J., Saenko, O., Schmittner, A., Wang, H., and Yoshimori, M.: The UVic Earth System Climate Model: model description, climatology, and applications to past, present and future climates, Atmos. Ocean, 39, 361–428, 2001.
Woillez, M.-N., Kageyama, M., Combourieu-Nebout, N., and Krinner, G.: Simulating the vegetation response in western Europe to abrupt climate changes under glacial background conditions, Biogeosciences, 10, 1561–1582, https://doi.org/10.5194/bg-10-1561-2013, 2013.
Yeager, S. G., Shields, C. A., Large, W. G., and Hack, J. J.: The low-resolution CCSM3, J. Climate, 19, 2545–2566, https://doi.org/10.1175/JCLI3744.1, 2006.
Zhou, H., Zhao, J., Feng, Y., Gagan, M. K., Zhou, G., and Yan, J.: Distinct climate change synchronous with Heinrich event one, recorded by stable oxygen and carbon isotopic compositions in stalagmites from China, Quaternary Res., 69, 306–315, https://doi.org/10.1016/j.yqres.2007.11.001, 2007.
Special issue